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ABSTRACT. Under the assumption that the three-factor and higher-order interactions
are negligible, we consider a partially balanced fractional 2"+ factorial design derived
from a simple partially balanced array such that the general mean, all the n1; 4+ m, main

my my

effects, and some linear combinations of (') two-factor interactions, of the ("32) ones
and of the m;m, ones are estimable, where 2 < my for k =1,2. This paper presents
optimal designs with respect to the generalized A-optimality criterion when the number
of assemblies is less than the number of non-negligible factorial effects, where 2 < m,
my < 4.

1. Introduction

As a special case of an asymmetrical balanced array as defined by Nishii
[10], a partially balanced array (PBA) of 2 symbols and m + m, constraints
was presented by Kuwada [3]. A PBA of strength m; +m; is said to be
simple, and it is written by SPBA(m + ma; {4, ;}) for brevity, where 4; ; are
the indices of an SPBA. A fractional factorial design derived from an array of
2 symbols and mj + my constraints is called a partially balanced fractional
2mtm factorial (2™*"2-PBFF) design if the variance-covariance matrix of the
estimators of the factorial effects to be of interest is invariant under any
permutation within my, factors for each k& (k =1,2). Under certain conditions,
a PBA of 2 symbols and m; + m, constraints turns out to be a 2™+"-PBFF
design (see [3]). If the general mean (= 6y, say), all the m; main effects
(= 6y, say), all the my ones (=6y, say) and all the Z’]‘ ’ZZ’ two-factor
interactions (= 6,,4,, say) are estimable for aja; € 2%, and the factorial effects
of the (”}fll ) ones (=0, say) are confounded with each other for
biby € Q, then a design is said to be of resolutions R({00,10,01}UQ*|Q),
where the three-factor and higher-order interactions are assumed to be
negligible, Q* = {20,02}, {20, 11} (or {02,11}), {20} (or {02}), {11}, ¢, Q* =
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{20,02,11} — Q*, and @ ={00,10,01,20,02,11}. Optimal 2"™+"-PBFF
designs of resolutions R({00,10,01}UQ"| Q) with respect to the generalized
A-optimality (GA-optimality) criterion (see [6]) have been obtained by Kuwada
et al. [6, 7] and Lu et al. [8], where 2 < mj,m, < 4.

In this paper, we consider a 2" ™2-PBFF design such that 8y, 019 and 0y,
are estimable and the effects of 6, 0y and 6,; are confounded with each
other, where the three-factor and higher-order interactions are assumed to be
negligible. Such a design is said to be of resolution R({00,10,01}|Q). A
resolution R({00,10,01}|€2) design considered here is a part of the ordinary
resolution IV designs (e.g. [9]). Furthermore we present GA-optimal 271+"2-
PBFF designs of resolution R({00,10,01}|€) when the number of assemblies
(or treatment combinations) is less than the number of non-negligible factorial
effects, where 2 < m;,mp <4.

2. Preliminaries

We consider a fractional 2" factorial design T with m + my factors
each at 2 levels and N assemblies, where the three-factor and higher- order
interactions are assumed to be negligible, and 2 < mj,m,. Let @ = (6;;0/;
05,5 050:00,;01,)', which is the v(m;,m;y) x 1 vector of the non-negligible fac-
torial effects, where v(m;,my) =1+ (my +my) + (™1") and A’ denotes the
transpose of a matrix 4. Under the linear model: y(T) = Er@ + ey, where
»(T), Er and er are an N x 1 observation vector, the N x v(mj,my) design
matrix whose elements are either 1 or —1, and an NV x 1 error vector with mean
0Oy and variance-covariance matrix o>ly, respectively, the normal equations for
estimating @ are given by

M6 = Epy(T), (2.1)

where M7 (= E} E ) is the information matrix of order v(my,m,).

Let T (= (TW;T®@), say) be a 2”*_PBFF design derived from an
SPBA (m, +m2,{)»,,712}), where T®) are of size N x my (k=1,2). Then My
is given by

alaz blbz)
MT - E § E y\al —by|+204, |lar— b7|+20(2 o0

ayay byby w0

IRRE e

aray biby B,

where the relationships between p; ;, and /; ;, and K.;;]l;;-,blhz and y; ; are,

respectively, given by
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Ik my — i
y; o iy o
i, iy /lzj;]l_‘[{z (pk)(]lc_lk+pk>} J1,J2
(2.2)
ayay,biby __ (11107 biby)
b - ﬂlﬁzulaz Vlar—by|+20, [ay—ba|+2e
o0

(see [3]). Here D" for ayay, bibs € S,y (w100 = 00, 10,01, 20 (if n7y > 4),
02 (if my > 4), 11) are the v(m;,my) x v(my,m;) ordered association matrices of

the extended triangular multidimensional partially balanced (ETMDPB) as-
sociation scheme D;jfga‘az Dib2) - for araz,biby € Sg g, (p1$, =00,10,01,20 (if

my >4), 02 (if my >4), 11) are the matrices of order v(m;,m,) given by
b b
some linear combinations of D" ang l@e2bib) :z(a1 bl)z(a7 b2)  \where
1%2 > 1Broio Pron 0

Soo — 00.10,01,20,02, 11}, Spo = (10,20 (f m1 = 3). 11} S 2 701,02 (if
my > 3), 11}, Sh = {20} (lf m; > 4), S = {02} (lf my > 4) and S, = {11},
and

T a4 Gttty

= p p

AEEDED/C) s
b—a b—a p

(see [3, 12]). Thus from the properties of the ETMDPB association algebra
[D;jfg:l“bb"’z |ayaz, bibs € Spp, (B1ff, = 00,10,01,20 (if my > 4), 02 (if my > 4),
11)] (= o, say), the information matrix M7 is isomorphic to ||K“1;2 bt
(= Kg,p,, say) of order 6 for f,, = 00, of order 3 (if m; > 3) (or 2 (if m; = 2))
for 8,5, = 10, of order 3 (if m, > 3) (or 2 (if my = 2)) for f,, = 01, of order 1
(if my = 4) for f,f, =20, of order 1 (if m, > 4) for f,$, =02 and of order 1
for B, = 11 with multiplicities ¢qy, P19, Po1>, P20, Po» and ¢, respectively
(see [3]). Here ¢y =y ¢y, and ¢y = (r/?) - (/—11)‘ Note that Ky, are
called the irreducible representations of My with respect to the ideals
[D;f];?lm bib2) |a1a2,b1b2 € Sﬁlﬁz] (: &//31/;2, say) for ﬁlﬁz = 00 10 01 20 (lf
my = 4), 02 (if my > 4), 11 of the algebra .o/ (see [3]). Let A#(a‘a2 i) be the

Na,q, X Hp,p, Submatrices of D;f ; 12:01P2) oo rresponding to the alaz -th row block

and the b;b,-th column block, where ng,,,, = (’:}1) (’Z’f) Then the properties of
A#(GIHZsble) and D#(“labblbz) )
BB

are cited in the following:

Pr1Ba
#arar,c102) g #(crer,biby) _ #(araz,biby)
Ap gD AT = by 5, AR T,
Aézlaz,alaz) _ ]ndm’ rank{A# aiay,biby) } = ¢ﬁ]ﬁz, (2.3)

BB
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# 2 dydr,b1by) #(a1az, b1 b
D/f’](/)'azluz o >D;1£§’zl 2 ibe) 5(ldléczdzéﬁlyléﬂvyzDﬂ]ﬂila : z)’
# #( biby)
Z ZDIJI%IGZ ) — Iv(mhmz)v rank{D 1 b1b2) } = ¢[ilﬁz

aa pif,
(see [3]), where J,, is the Kronecker delta. From (2.2), we have

K5, = (Dp,p, Fp,p, 45,5,) (Dp,p, Fp, 5, Ap p,)’ (2.4)

(see [6]), where

Doo = diag[1; —1/y/my; —1/y/ma; 1/3/2mi(my = 1);1//2ma(my — 1); 1//mimy),

D diag[2; —2/,/m;) if my =2,
107 diag[2; —2/v/my = 2; -2/ /i) if my > 3,
D diag[2; —2/./mj] if my =2,
07\ diag[2; —2/ v, — 232/ Jmr) if my > 3,
vanishes if m; = 2,3, vanishes if m, = 2,3,
Dy =1 ., . 02 = , Dy =22,
2 if m; > 4, 22 if my > 4,
the column vector of Fy corresponding to A, (0 <a <m;;0 < x <my) is
1
m — 2a
my — 2x

, the column one of Fjy corresponding to

(my — 2x)* —my

m; — 2a)2 —m

(my — 2a)(my — 2x) 1
by (1<b<m —1;0<y<my) is +/Apy| m —2b (if m =>3) (or
1 —
VAL y< ) (if m; =2)), the column one of Fj corresponding to
my — 2y 1
e O<c<mpl<z<m-—1) is Aoz | My — 2z (if mpy>3) (or

1 my — 2¢
\/it,,1<m1 2c> (if my =2)), and the columns of F,, corresponding to

aw 2<d<m —2;0<u<m), of Fyp corresponding to 4., (0 <e < my;

2<v<my—2) and of Fj; corresponding to s, (1<f<m —1,

l<w<m—1) are \/Agu, \/Ae,» and \/As,, respectively, and the diagonal
elements of Agp, (S, =00,10,01,20 (if m; >4), 02 (if my>4), 11)

corresponding to A, (B <g<m — ;5 <s<my—f, are given by

\/ (’”g‘:;lﬂl) (’”j_’/?fz) and the off-diagonal elements of them are all zero. Note
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that Fy is of size 6 x {(m; + 1)(my + 1)}, Fio is of size 3 x {(m; — 1)(m2 + 1)}
(if m; = 3) (or 2 x (my+ 1) (if m; =2)), For is of size 3 x {(m; + 1)(my — 1)}
(if my = 3) (or 2 x (my + 1) (if my = 2)), Fay (if my > 4) is of size 1 x (m; — 3
Foy (if my > 4) is of size 1 x (my —3) and F); is of size 1 x {(m; — 1)(my — 1)
and Agp are of order (my+1—2B)(my +1—2p,).

It follows from the definitions of Dyg s, Fg 5, and Ag g, that rank{Kp s } =
r-rank{Fp 5, }, where r-rank{4} denotes the row rank of a matrix 4.

Let 7= (TW;T®) be an SPBA(m +m2,{/1,1 »}), and further let
T=(TW; 7®), T =(TM;T@) and T = (TW;T?), where T®) denotes the
complement of T7®). Then T, T and T are called the former complementary
array (FCA) of T, the latter complementary array (LCA) of T and the
completely complementary array (CCA) of T, respectively. Note that when T
is an SPBA(m; +my; {2, ,}), T, T and T are the SPBA (1) + m; {2, i i })>
the SPBA(m; + ma; {i, m,—i}) and the SPBA(my + my; { A, —i, m—i,}), respec-
tively. Let My, M; and M5 be the information matrices associated with T, T
and T, respectively, where T is an SPBA(mj +my;{/; ;,}), and further let
Kgp,, Kpp, and Kp s be the irreducible representations of My, My and My
with respect to the ideals .73y of the ETMDPB association algebra .oz,
respectively. Then we have the following (see [6]):

5

)
b

Lemma 2.1. Let T be an SPBA(m1 —|—mz,{il1 ,2}) where 2 < my
(k=1,2). Then Kgp, = Ap,5,Kp, 455, Kpp, fAﬂlﬁzK/flﬂzé'ﬂlﬂz and Kpp, =
Aﬁlﬁ7Kﬁlﬂ2Aﬁlﬂ2 Sfor B8, =00,10,01,20 (if m; =4), 02 (if my, = 4), 11, where

doo = diag[+; —;+; 45 +; -, Ao = diag[+;+; —; +;+: =], doo = diag[+; ==
+5 45+, Alo:diag[+;—; +] (i my =3) (or d1ag[+;+]_ (if my=2)), 4=
diag[+;+; =] (if my = 3) (or diag[+;—] (if mi =2)), 4y = diag[+;—;—] (if

my >3) (or diag[+;—] (f m =2)), 4o =diag[+;+;-] (i m2=3)) (or
diag+; -] (if my=2)), Ao =diagl+;—;+] (f m=3) (or diag[+;+] (if
my =2)), Ag = diag[+; —; =] (if my=3) (or diag[+;—] (if m»=2)), 4y =
Aryg = Apg = (—I—) (lf m; = 4) (or vanishes (lf m1 =2 3)) A()z = A()2 = A()z =
(+) (if my > 4)) (or vanishes (if my =2,3)) and Ay, = Ay} = Ay, = (+). Here
+ and — denote 1 and —1, respectively.

3. Parametric functions

We now consider a 2" "2-PBFF design of resolution R({00,10,01}|€)
derived from an SPBA(m; + m2; {4, ,,}). A necessary and sufficient condition
for parametric functions C@ of @ to be estimable for some matrix C of order
v(my,my) is that there exists a matrix X of order v(mj,m,) such that XMr = C
(e.g. [11]). Since M7 belongs to the ETMDPB association algebra .o/, we
impose some restrictions on C such that it belongs to .7, and hence X also
belongs to it (e.g. [6]). Thus we define C and X as follows:



124

Shujie Lu et al.

C = D(;%(OO,OO + {D# (10, 10) +D17§(6)10 10) } + {D# (01,01) +D(;)éé1(01 01)}

zo 20 D#(zo 20) | 120,20 1y #(20,20) (

+ g2 0D (if > 4)}

20,02
20,02 D#( )

+yg oz 20D#(02 20)}

+ {900

20, 11D#(20 1) | 20,11 p#(20.11) (

+ {950 + 9% if my > 3)
i éé ZOD(;%(IMO) +gl1é.zoD1;4(e)(11,zo) Gf > 3)}

+ { 02, 02D#(02 02) +g 02 OZD#(OZ 02) (

if mp >3)
FABEDE iy 2 4)
4 {gQR2 N LIy g2 11 pAORID i ) > 3
i 901 OZD#(“ 02 4 01 OZD#(11 02) (if my, > 3)}
b (gl pAALID | gILH p#ILID L1 (111

11,11
+g11 "D )}, (3.1)

DRI

ayay biby pip,

where g’““zvhl”z are some constants. Then C and X are isomorphic to Iy p,
and XW;Z (B, =00,10,01,20 (if m; = 4), 02 (if my > 4), 11), respectively,

where
20,20 20,02 20,11
900 900 900
Y . 02,20 02,02 02,11
Iy = diag | I3; 9oo’ 1) 900 )
11,20 11,02 11,11
00 900 900
diag[1; 95" it my =2,
T r 20,20 20,11\ T
. 910 910 :
diag| I; | "5 i if m >3,
L 10 910’
diag[l; g 1! if my =2
lag[ 7g01 ] 1 m =2,
T'op r 02,02 02,11
. 9o1 9o .
diag|1; 102 1L if my >3,
9o1 9o
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r vanishes if m; = 2,3, vanishes if m, = 2,3,
DTGB i my > 4, 27U g% it my > 4,
11,11 2.bib
=gy Xppg =gl

Thus XM7 = C is isomorphic to Xgp Kgp = Ipp,. Note that if CO is
estimable, where C is given by (3.1), then a design is of resolution
R({00,10,01} | Q).

If N > v(mi,my), then there exists a 2" ""2-PBFF design of resolution
R(Q|Q) (e.g. [3]). A resolution R(Q2|Q) design is of resolution V. Thus we
focus on obtaining a 2™*"™-PBFF design of resolution R({00,10,01}|Q)
derived from an SPBA(m; +ma; {4 ;,}) with N <v(my,m;) and 2 < my
(k=1,2). Since N < v(mj,m;), the information matrix My is singular, and
hence at least one of Kp g, is singular. Therefore at least one of Fp g, is not of
full row rank. The system of equations (m; — 2a)* —m; = 0, (my — 2x)> — my
=0 and (m; — 2a)(my; —2x) =0 with parameters ¢ and x has no solution.
Thus there do not exist the indices 4, , of an SPBA such that r-rank{Fy} =3
and the last three rows of Fy, are zero. Applying Lemma A.1 to the matrix
equations Xg g Kg 3, = I'p s, with parameter matrices Xp s,, we have the fol-
lowing:

Lemma 3.1. Let T be a 2™P™.PBFF design of resolution
R({00,10,01} | Q) derived from an SPBA(m; + my;{A; 1,}) with N < v(my,my)
and 2 < my for k =1,2.  Then the first three rows of Fyo and each of the first
row of Fiy and of Fyi must be linearly independent, and furthermore
(A) (i) if rrank{Fy} =4, then (a) the last two rows of Fyy are zero,

(b) the fourth and the last rows of Fyy are zero,
(c) the fourth and the fifth rows of Fyy are zero,
(d) the last row of Fy is zero and the fifth equals uyy (# 0) times the

fourth,

(e) the fifth row of Fy is zero and the last equals vyy (# 0) times the
fourth,

(£)  the fourth row of Fy is zero and the last equals woy (# 0) times
the fifth, or

(g) the fifth and the last rows of Foy equal upy (# 0) times the fourth
and vy (#0) times the fourth, respectively, and
(i) if r-rank{Fop} =5, then (a) the last row of Fy is zero,
(b) the fifth row of Fy is zero,
c) the fourth row of Fy is zero,
) the last row of Fy equals wy (#0) times the fifth,
e) the last row of Fyy equals vy (#0) times the fourth,
£) the fifth row of Fy equals uy (#0) times the fourth, or

o

(
(
(
(
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(g) the last row of Fy equals the sum of voy (#0) times the fourth
and woo (# 0) times the fifth,
(B) (i) if r-rank{Fio} = 1, then (1) when m; =2, the last row of F\q is zero,
and
(2) when my =3, the last two rows of F are zero, and
(1) if my =3 and r-rank{Fjo} =2, then (a) the last row of Fyy is zero,
(b) the second row of Fyy is zero, or
(c) the last row of Fyy equals vy (#0) times the second, and
(C) (i) if rrank{Fy} =1, then (1) when my =2, the last row of Fy is zero,
and
(2) when my =3, the last two rows of Fy are zero, and
(i) if my =3 and r-rank{Fy} =2, then (a) the last row of Fy is zero,
(b) the second row of Fy is zero, or
(c) the last row of Fy equals wo (#0) times the second.

If Fp p, is of full row rank for some f,f, (and hence K s, is of full rank),
then in the matrix equation Xpg g Kp g, = I'pp,, there always exists Xp g such
that Xp p = Ky }3 , and hence I'pp, is the identity matrix. Thus if F,,, is of
full row rank, then without loss of generality, we can put g™ bk — 1
(17, = 00,10,01,20 (if my; >4), 02 (if my=4), 11) if ajap =b1by and
gy bib =0 (y;7,=00,10 (if my =3), 01 (if my>3)) if ajay # bbs.
Therefore (2.3), (2.4), and Lemmas 3.1 and A.l yield the following:

THEOREM 3.2. Let T be a 2™7T™-PBFF design of resolution
R({00, 10,01} | Q) derived from an SPBA(m; + ma;{2; i }) with N < v(my,my)
and 2 <my (k=1,2). Then we have the following:

(L) If the matrix Fgp, (B4, = 00,10, 01 20 (if my =4), 02 (if my > 4), 11) is
of full row rank, then AZ (;7‘”2 ae) 040, (ar1ay € Spp,) are estimable,
(I1)  if the first three rows of Fu are linearly independent, then A#(alaz’“‘“’)ﬁ
(ayay = 00,10,01) are estimable, and in addition
(A) (i) if rrank{Fo} =4, and furthermore
(@) if the last two rows of Fyy are zero, then

ayaz

(l])(l)bz,ZO #(Br1b2.20) 0 — g(l);olbz 20 A (blbz 20) (A #(20 20) 02)

(biby = 20,02, 1)
are estimable,
(b) if the fourth and the last rows of Fyy are zero, then

biby,02 bibs,02) (02,02
g(l)bz,ozA#( | )002 blbz 02A#( 1D2, (A# )002)

are estimable,
(c) if the fourth and the fifth rows of Fy are zero, then
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([)7(])[72 11/4#(/”[;2 11)0 o= é)(])bz 11A#(b1b2 “)(A# (11,11) 011)

are estimable,
if the last row of Fy is zero and the fifth equals uy (3 0)
times the fourth, then

b1by,20  #(b1b2,20)
goo Ay 0 +g

. bibs,20 39.20) 20,02
= gob™ ZOA#( i )(A# 49zoJr g Ay 00o)

blbz ozA #(b]bz 02)002

are estimable, where ujy = /my(my — 1)/{ma(my — 1) }ugo,
if the fifth row of Fy is zero and the last equals vy (# 0)
times the fourth, then

gé)(l)b» ZOA# (b152,20) 0 iy J

are eslimable, where 06‘0 =/2(m — 1) /mavgo,

if the fourth row of Fyy is zero and the last equals
woo (#£ 0) times the fifth, then

biba,02 4 #(b1bs,02) b1 #(blbzll)
doo - Ago 00 +goy Ay 011

gg(l)bz OZA#(b1b2 ()2)(A# 02 02) 002 + AO#S()Z 11) 0“)

are estimable, where wi, = /2(my — 1)/miweo, and

if the fifth and the last rows of Fyy equal uyy (#0) times
the fourth and vy (# 0) times the fourth, respectively, then

(b1b2,11)
blbz IIA# 102, 011

biby, ZOA# (b15,20) biby, 11

oo bb 11 0 o
Agg( 2, )0”

gg(l)bz ZOA #(blbz 20) (A #(20,20) 020 + “ooA# (20, 02)002

+o A#Z()llall)

bb 02 ,#(b1by,02)
12 A 102, 00+g

are estimable, and

if r-rank{Fy} =5, and furthermore

()

if the last row of Fyy is zero, then

biby, 20 4 #(b16,20)

ble 02 #(b]ba 02)
00 A 0>

)05 +y9
(1);(1)172 20A#(b1b2,20)(A# 20 20) 020)

02,02
(Agf)( '0,2)
are estimable,
if the fifth row of Fy is zero, then
éaébz zoA blbzzbo go ot g;l)b;ollAOO(b]bz 11)011 .
g(.)bz 20A#( 162 >(A#( )0 o) + g(,)bz 11 g #(bib2, 1)

o (Agff“’“)ém)

are estimable,

b1b7,02 4 #(b1b2,02)
+ 900 Ago
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(c) if the fourth row of Fy is zero, then

b1by,02  #(b1b2,02) b1by, 11 #(blbz 11)
goo A 0 + 9oo A 01

(l))olbz OZfTEb]bz 02)(A# 02 02) 002) +g()0b2 11A# (b1by,11)
x (421 ey

are estimable,
(d) if the last row of Fyy equals woy (# 0) times the fifth, then

gé?(])b? ZOA# (b1b2,20) 0 + g
A#(b]bo 11)011

a0 #(bibe,20), , #(20,20)
=4goo Ay (Aoo 105

bib biba,02) s #(02,02 . 202,11
+ oo OZAST) i (Agé)( 00> + WooAgf)( )011)

biby, 02A# (b152,02) biby, 11

160, + 9o

are estimable,
(€) if the last row of Fyy equals voy (#0) times the fourth,
then

b1b2,20 4 #(b1b2,20)
g0 2" Ao 0 +9

A#(blbz 11)011

o0 #(bibs, 20) , | #(20,20) #(20,11)
=Yoo =~ Ay (12 )(Aoo 02 +v ooA 011)

by, 03 #(b1bs, 02) o #(02,02
+9o0 - Agy )(Aoo( )002)

blbz OZA# b]bz 02 b]b? 11

0 +9

are estimable,
(£) if the fifth row of Fy equals ugy (#0) times the fourth,
then

b]bz 20 # blbz 20
g0 " Ago 60, +g

A#(b]bz 11)011

blbz OZA# (b15,,02) b]b'> 11

0 +4g

g(l)bz % A#(blbz 20 #2020 i, A# 20,02 )
buby. 1Lo: #(brba, 1) o (1111
+9o0 - Agy )(AOO< >011)

are estimable, and
(g) if the last row of Fy equals the sum of voy (# 0) times the
SJourth and wy (# 0) times the fifth, then

bib2,20 s #(b1b3,20)
g07(1) 2, A 102, 02 +
Do, 11
X A#( 172 )011
bibo20  #(biba,20) , | #(20,20) #(20,11)
=doo  Ap (Aoo 02+ ovoo 011)

n g(l)}(l)bz ozA #(blbz 02)(A #(02, 02)002 i WOOA(;%(OZ 11)011)

blbz ozA #(b1b2 02) blhz,ll

0 +4g

are estimable,
(B) (i) if rrank{Fio} = 1, and furthermore if my =2 and the last row

of Fip is zero, or if my =3 and the last two rows of Fyo are

zero, then Afg(lo’lo)ﬂm is estimable, and
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(i) if my =3, r-rank{Fio} =2 and the first row of Fyy is linearly
independent, then A#(IO 1) 010 is estimable, and furthermore
(@) if the last row of Fyy is zero, then

f(l)lz ZOA#(01L‘2720)0 _ g]c(l)cz ZOA# (c1¢2,20) (A#(20 20)020)
(6162 = 20, 11)

are estimable,
(b) if the second row of Fyy is zero, then

ciep, 11 #(6162,1]) el # (‘lc‘z,ll) #(11 11
910 A 011 =9y Ajy (A 011)

are estimable, and
(c) if the last row of Fiy equals vip (# 0) times the second,
then

gf(l)(z 20A#(01£2,20)0 +g zlm llA# crea, 11) 0 .
_ g;‘(l)(z,ZOAlyé(é](clcz 20>(A17%(20 20)020 oA# (20, 11)011)
are estimable, where vi, = \/(m — 2)/myvio, and
(C) (i) if r-rank{Fy } =1, and furthermore if my =2 and the last row
of Fy1 is zero, or if my >3 and the last two rows of Fy are
zero, then Aoﬁ(m'm)ﬂm is estimable, and
(1) if my =3, r-rank{Fo1} =2 and the first row of Fy is linearly
independent, then A#Ol on 001 is estimable, and furthermore

(@) if the last row of Fyy is zero, then
Odl]dz ozA #(d[dz ) 6111(12 02A #(dldz 02) (A# (02,02) 002)
(dd> = 02, 11)
are estimable,

(b) if the second row of Fy is zero, then

gidz llA#(dldz 11)0 q(;illdz 11A#(dld2.11)(A#(11,11)0 )

are estimable, and
(c) if the last row of Fy equals wo; (# 0) times the second,
then

(did>,02)
Odl]dz,OZA# 142, 00 +

didr,02 #(d] d»,02) # 02 02) #(02,11)
=g > A} A4y 002 +wg A 011)

are estimable, where wg, = \/(my — 2)/miwo;.

ReMark 3.1. It follows from Lemma A.l that in Theorem 3.2(II), since

gsPib2 (319, = 00,10,01) are arbitrary, without loss of generality, we can put

d]dz llA#(d]dz 11 0“
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(A) go™“* =1 for (i)(a) and (ii)(a),(b),(d) (a1a2 = 20), (i)(b) and (ii)(a),(c),
(€ (may=02), (i)(c) and (ii)(b),(c),(f) (ajar = 11), g&®"™ =0 for
(ii)(a),(d),(e),(g) ((a1a2, b1b2) = (20,02),(02,20)), (b),(f) ((@1a2,b1b2) =
(20,11), (11,20)), (c) ((a1az,biby) = (02,11),(11,02)), gl 20 for
(1)(3) ( ) ( ) (g) (a1a2 02 11; b1b2 = 20) ( ) ( ) (alaz = 20 11;b1b2 = 02),
(©) (a1ay =20,02;b1hy = 11), and (gi“"P gaanacy 2 (0,0) for (ii)(c)
(a1a2 = 20 b]bz = 02 C16) = 11) (b),(f) (a1a2 = 02;b1b2 = 20;616’2 = 11),
(a),(d),(e),(g) (araz = 11;b1by = 20;¢1c2 = 02),

(B) gl =1 for (ii)(a) (a1a2 = 20), (b) (ayay = 11), and g{3 """ £ 0 for
(ii)(a),(c) ((a1az,b1b2) = (11,20)), (b) ((a1a2,b1b2) = (20, 11)), and

(C) glia® =1 for (ii)(a) (a1ay = 02), (b) (aay = 11), and g{1*"" # 0 for
(11)(21) (C) ((alaz,blbz) (11 02)) (b) ((a]az,b]bz) (02 11))

Furthermore we define gg)““ (= gg™““(a), say) for (A)(i)(d),(e),(g) and

(if)(e).(F).(g) (a1a2 =20), (i)(f) and (ii)(d).(2) (@102 =02), g;g™ (= g7 (),

say) for (B)(ii)(c), and g02 02 (= gglz’oz(oz), say) for (C)(ii)(c) as follows:

gaae(0) =1 (py, = 00,10,01) for all the cases, ggo > () = 1/(1+ |ugp|) if

a=1 and 1/y/1+ (u)* if a=2 for (A)i)(d) and (i)(f), go0*(2) =
1/(1+vgl) if «a=1 and 1/ 1+(v§0)2 if «=2 for (A)(i)(e) and (ii)(e),(g),
9oy = 1/(1 + |wip|) if =1 and 1/1/1 4 (wgy)? if & =2 for (A)(i)(f) and
()(d)(@). g0 ™ (o) = 1/(1+ lu] + logol) if o= 1 and 1/3/1+ (i)’ + (w5)? if
o =2 for (A)(i)(g), gy () = 1/(1 + |vfy|) if ¢ = 1 and 1/4/1 + (v}y)? if =2
for (B)(ii)(c), and g0 (@) = 1/(1 + |wg,|) if =1 and 1/4/1 + (wg,)?* if & =2
for (C)(ii)(c).

Using Lemma 3.1, we can obtain the following:

THEOREM 3.3. Let T be an SPBA(m) + ma; {4 1 }) with N < v(m,ma),
where 2 <my <my <4 Then T is a 2™T™-PBFF design of resolution
R({00,10,01} | Q) if and only if one of the following holds:

(1) When my =my =2 (v(2,2) =11),
(1) 1011,11’072172,)4,1 > 1 and }v(),z = },111 = 1210 = 0, and ful’l‘/’le‘l’WlOVﬁ’
(1) o+ Ao+t A1 <5 and Joo = A2 =0, or
(2) 1070 + 22’2 >1 and 2().()71 + )»1’0 + 1172 + /’{2’1) + /1070 + 12’2 <
10, or its FCA, or
(i) JAo,0,40,2,42,0,422 =1, Aii=1, Ado+lo2+i0+42<6 and
Aot = A0 =A10=/21 =0,
(H) when my =2 and mpy =3 (V(2,3) = 16), )»()7()4-123 >1, /1(),1,/1170,/1173,
1272 > 1, 3(1071 + /12’2) + 2()»1,() + /1173) + 1070 + /12’3 <15 and ;»0,2 = )»0,3
= /1],1 = )»1’2 = 12’0 = 1271 = O, or its FCA,
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when my =2 and my =4 (v(274) = 22), )vo,o +j.274 > 1, 10_1,111071174,
Az =1, 4(/1()_]1 + ;»2,3) + 2(1110 + )»1,4) + Ao,0 + 42,4 <21 and Ay = ll,y
=h.=02<x<41<y<3,0<z<2), or its FCA,

when my =my =3 (v(3,3) =22), i3 =140=0, and in addition

(1)

10’171170,)»2,3,}.3,2 >1and Ay = ia,x = }.3,1 =0 (1 <ax< 2), and
furthermore
(1) at least two out of {200,403, 43,0, 23,3} except for {lo0,233}
and {03,230} are nonzero and 3(lo1 + 210+ A2z + A32) +
AO,O + /1()73 + ;»3,0 + /1373 <21, or its FCA, or
(2) Ao+ 433 >1, 3(Ao1 + A0+ 423+ As2) 4+ Ao + 43,3 <21
and Jo3 =230 =0, or its FCA,
Mo=h3z=M1=Ar=Mho=1 and X1 =lr=ho=A2=
o1 =l3=23x=0 (1 <x<3), or its FCA, LCA and CCA, or
at least two out of {20, %0,3,23,0,43,3} except for {40,233} and
{103,/13,0} are nonzero, 1072,11’0,/12,371371 >1, 3(2072 + /11.,0 + )»2,3 +
/"u371)+/1070+/1073 +/13‘0+/13’3 <21 and /10’1 :)La,x:/h’z:()
(1 <a,x<?2), or its FCA,

when my =3 and my =4 (v(3,4) =29), A1 =2 =/lo2 =123 =0, and
in addition

(1)

(ii)
(iii)

o1, 41,0, 424,433 =1 and Jpr=A3=Aa=rloo=431=732=

0, and furthermore

(1) at least two out of {0,0,20.4,23.0,A3,4} except for {200,234}
and {}.074, 13‘0} are nonzero 4(/1071 + },3‘3) + 3(/11’0 + ;\,274) +
0,0+ 0,4+ A3 0+ 434 <28 and A1 3 =721 =0, or its FCA,

(2) Zoo+A34=1,4(A01+233) +3(Ai0+ A2,4) + Ao,0 + 434 < 28
and )~014 = )\4113 = 1211 = 13"0 =0, or its FCA, or

(3) M3z=1, 400+ 234<2and los=721=721,0=0,orits FCA,
LCA and CCA,

i =h3=ha=lo=Mn3=1 and lox=710=72,1="r24=

3,=0 (x=0,2,3,4,y=0,1,2,4), or its FCA, LCA and CCA, or

/11’0722,4 >1 and 21,3 = }v1,4 = }vzvo = 1211 =0, and furthermore

(1) at least two out of {200,404, 23,0, 23,4} except for {lo0, 234}
and {4,230} are nonzero and X9 1 = 233 = 0, and moreover
(@) Ao,2,432 =1, 6(Ao2 + 43,2) + 3(A1,0 + 42,4) + 40,0 + 40,4 +

23,0+ 23,4 <28 and Aoz =231 =0, or its FCA, or
(b) o3, A3 =1, 4(Z0,3 + 23,1) + 3(A1,0 + A2,4) + Zo,0 + Ao,a +
23,0+ 23,4 <28 and Ao =32 =0, or its FCA, or

(2) Zoo+loa+A30+A34=1, at least three out of {101,203,
231,433} are nonzero, 4(Ao 1+ Ao3+ 43,1+ 23,3) + 3(A1,0+
22,4) F 00+ Aoa+ 230+ 34 <28 and Ao = A3 2 =0, or its
FCA,
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when my =mp = 4 (V(4,4) = 37), 11_2 = /11_]3 = /127); = }v3,1 = }.312 =0

(1 <x<3), and in addition

(i) Zoo+Aaa=1, doa,dao=1, Aii=A3=1, Jloo+loa+ a0+
/"L4’4 <4 and ia,x = /qub’() = lb74 =0 (a =0,41<b,x< 3), or its
FCA,

(i) Aoo+Aaa =1, Ao1,41,0,434, 443 =1, 4(Ao1 + 41,0+ 43,4 + A4 3) +
20,0 + 24,4 <36 and Ao, = A1 =Aa=7loo=/loa=A30=7133=
=0 (2<y<40<z<2), or its FCA,

(iif) at least two out of {200,404, 24,0, A4 4} except for {200, a4} and
{%0,4, 24,0} are nonzero and 21\ = A4 = A3 0= A33 =0, and fur-

thermore
(1) Z20,A4=1 and Ao3s=Aio=72A4=2721=0, and more-
over

(@) Ao2,442=1, 6(lo2+Aro+ Ara+ A42)+ Ao0+ Aoa+
147() —|—l4,,4 < 36 and 10,1 = /14’3 =0, or
(b) /1071, /1473 > 1, 6(/12,0 + /]»274) + 4(1()11 + )v473) + 10,0 + /]»074 +
/1470 + 44 <36 and Ao =42 =0, or its FCA, or
(2) Zi,0,434=1 and Ao o = Ao4 =0, and moreover
(a) /1072, )\44,2 > 1, 6(/10,2 + )\44,2) + 4(],170 + )@74) + 10,0 + )\40,4 +
/14,0 +/14_’4 <36 and AO,I = /1013 = /1471 = /14’3 =0, or its
FCA,
(b) /10,1, )\4473 > 1, 4(/10_]1 + )u1’0 + /1314 + }V4,3) + /10,’0 + )\4074 +
1470 +A4_’4 <36 and iO,Z = 1073 = 1471 = 1472 =0, or its
FCA, or
(c) 20,3, 441 =1, 4(10_]3 + 10+ A3,4 + )y4,1) + Ao,0 + Ao,4+
14,0 +i4_]4 <36 and i()‘yl = 10,2 = 1472 = 14,3 =0, or its
FCA, or
(iv) Aoo+Aoa+Aao+Aaa =1 and Ay =733 =0, and furthermore
(1) at least three out of {l01,%0,3,24.1,%4,3} are nonzero and
Ao,2 = A4 =0, and moreover
(a) 42,0,A2,4 = 1, 6(/1210 + )»2,4) + 4(1(),1 + 0,3+ A4 + ;»4,3) +
20,0 + 40,4+ Aa0+ Aaa <36 and Lo = A4 =430 =134
-0,
(®) Ao, Asa=1,  4(Ao1+Aos+ Ao+ Asa+ e+ Aa3)+
20,0 + Ao, + A40+ Aaa <36 and L4 = A2 0= A4 =30
=0, or its FCA, or
(c) at least three out of {A10,41.4,43,0,434} are nonzero,
4(Zo1+ o3+ A0+ e+ As0+ 234+ Aa1 + Aa3) + oo
+/1074 + 1470 + /14,4 < 36 and 227() = )»2,4 =0, or
(2) at least three out of {i10,21.4,230,434} are nonzero and
20,3 = 22,0 = A2,4 = A4,1 =0, and moreover
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(@) Ao,2,442 =1, 6(Ao2 + A42) +4(A10+ A4+ 430+ A34) +
20,0 + Ao,4 + A40 + Aaa <36 and o1 =43 =0, or

(b) Zo1,443=>1, 4(Ao1+A0+Aa+ 430+ 434+ 443)+ 200
+ Ao4+ Aao+ Aaa <36 and Ao = Aap =0, or its FCA.

REmaArk 3.2. In Theorem 3.3,

(a)
(b)

the matrix Fy is of full row rank for (IV)(i)(1),(iii), (V)(i)(1),(iii) and

(VI i), (iv),

r-rank{Fy} = 5, and furthermore

(1) the fifth row of Fy is equal to up (= 1) times the fourth for
(1)), (IV)(i) and (VI)()

(2) the last row of Fy is equal to the sum of vy (# 0) times the
fourth and wg (#0) times the fifth for (I)(i)(2), (II), (III),
(IV)(©)(2), (V)(1)(2),(3),(i1) and (VI)(ii), where vgp = wgo = 1 for
(I)(1)(2), Voo = 3/2 and woo = 1/2 for (Il), Voo — 2 and
woo = 1/3 for (IH), Voo = Woo = 3/4 for (IV)(])(Z), Voo = 1 and
woo = 1/2 for (V)(l)(2),(3), Voo = 1 and Wwoo = —1/6 for (V)(ll),
and Voo = Woo = 2/3 for (VI)(II),

r-rank{Fy} = 4, the last row of Fy is zero, and the fifth row of Fy

is equal to up (= —1) times the fourth for (I)(i)(1),

the matrix Fjo is of full row rank for (I)(i), (II), (L), (V)(1)(3),(ii)

and (VI)(iv)(1)(c),(2)

r-rank{Fjo} = 2, and furthermore

(1) the second row of Fyy is zero for (VI)(iii)(1),(iv)(1)(a),

(2) the last row of Fjg is equal to vjp (# 0) times the second for
(IV)(0), (i), i), (V)(E)(1),(2),Gif) and (VI)G), (i), Gif)(2), (iv) (1)(b),
where vjp =3 for (IV)(i),(iii), vjo =1 for (IV)(ii) and (VI)(i),
vio =4 for (V)(i)(1),(2),(>iii), and vy =2 for (VI)(ii),(iii)(2),
(iv)(1)(b),

r-rank{Fjo} = | and the last row of Fjy is zero for (I)(ii),

the matrix Fy; is of full row rank for (I)(i), (V)(i)(3),(ii),(iii)(2) and

(VI)iv)(1),

r-rank{Fy; } = 2, and furthermore

(1) the second row of Fy; is zero for (V)(iii)(1)(a) and (VI)(iii)(1)(a),
()(a).(¥)2)(a),

(2) the last row of Fy; is equal to wo; (# 0) times the second for
(L), (ILL), (IV)(Q)(i0). (i), (V)()(1).(2),(ii)(1)(b) and (VI)(), (i),
(1i1)(1)(b),(2)(b),(c),(iv)(2)(b), where wo; = 2 for (IT) and (VI)(ii
(if)(1)(b), (2)(b), ((V)(2)(b), wor = 1 for (III), (IV)(ii) and (VI)(i
wor = 3 for (IV)(i), wor = —3 for (IV)(iii), wo; = 3/2 for (V)(i)(1),
(2), wor = —3/2 for (V)(iii)(1)(b), and wo; = —2 for (VI)(iii)(2)(c),

b

)
),
)
)
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(¢) r-rank{Fy} =1 and the last row of Fy is zero for (I)(ii),
(D) (a) the matrix Fy is of full row rank for (VI)(iii)(1),(iv)(1)(a),
(b) r-rank{Fo} = 0 for (VI)i),(ii),(if)(2), (v)(1)(b).(0).(2),
(c) the matrix Fy vanishes for (I), (II), (III), (IV) and (V),
(E) (a) the matrix Fy, is of full row rank for (V)(iii)(1)(a) and (VI)(iii)(1)(a),

(2)(a),(iv)(2)(a),
(b) rrank{Fp} =0 for (III), (V)(i),(i),>i)(1)(b),(2) and (VI){i),(ii),
(i) (1)(b),(2)(b),(c), (iv)(1),(2)(b),
(c) the matrix Fy, vanishes for (I), (II) and (IV),
(F) (a) the matrix Fy; is of full row rank for (I)(ii), (IV)(ii), (V)(i)(3),(ii) and
(VI)(@),
(b) r-rank{Fj;} =0 except for (I)(ii), (IV)(ii), (V)(1)(3),(ii) and (VI){i).

4. GA-optimal designs

In this section, we present GA-optimal 2”1*"2-PBFF designs of resolution
R({00,10,01}| Q) derived from SPBAs(m; + ma;{Z; ,}) with N < v(m;,my),
where 2 <m; <my <4. If CO is estimable (and hence there exists a matrix
X such that XM = C), then its unbiased estimator is given by C O, where @ is
a solution of the Eqs. (2.1), and Var[C@O] = 0>XM7X'. By utilizing the al-
gebraic structure of the ETMDPB association scheme, XM 7 X' is isomorphic to
X/}IﬁzKﬁlﬁzXﬁllﬂz (B, =00,10,01,20 (if m; = 4), 02 (if mp > 4), 11).

Let Koo(alaz) (a1a2 = 20, 02, 11) and Koo(blbz, Cl(,’z) ((blbg7 C1C2) =
(20,02),(20,11), (02,11)) be the 4 x 4 submatrix of Ky corresponding to the
first three and the {aja;)-th rows and columns, and the 5 x 5 one corre-
sponding to the first three, the <{b;h;>-th and the <{c;c;)-th rows and columns,
respectively, where the {x;x;)>-th denotes ‘“‘the fourth”, ‘“the fifth” and ‘“‘the
last” according as x;x; = 20,02 and 11, respectively, and further let Kjo(d;d,)
(dvdy = 20,11) and Kyi(ejez) (ejex =02,11) be the 2 x 2 submatrices of Kjg
and of Ky corresponding to the first and the [y;y;]-th rows and columns,
respectively, where the [y;y,]-th denotes “the second” and “‘the last” according
as y1y2 =20 (if m; = 3) (or 02 (if my > 3)) and 11, respectively. Now we
define the matrix ¢?V7 as the variance-covariance matrix of the linearly in-
dependent estimators in CO. Then from Theorem 3.2, Lemma A.2 and the
properties of the ETMDPB association algebra .o/, we get the following:

LemmMA 4.1. Let T be a 2™T™-PBFF design of resolution
R({00,10,01} | Q) derived from an SPBA(m; + ma; {2 ,}) with N assemblies,
where N < v(my,my) and 2 < my, for k =1,2.  Then the matrix Vy (= Vy(a),
say) is isomorphic to Vg p (o) (B, = 00,10,01,20 (if my >4), 02 (if my > 4),
11) for 0 < a <2, where
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Iy if Fgp, is of full row rank,

Koo(aléle1

if r-rank{Fo} = 4, and furthermore if exactly two rows of Fy out
of last three except for the {aja;)-th are zero (aja; = 20,02,11),

0 ggg,zo(a) 00(20) 0 gé(()),zo(a)

if r-rank{Fy} =4, and furthermore (1) if the last row of Fy is

zero and the fifth equals ugy (# 0) times the fourth,

(2) if the fifth row of Fy is zero and the last equals vy (3 0)
times the fourth, or

(3) if the fifth and the last rows of Fyy equal uy (# 0) times the
SJourth and voy (# 0) times the fourth, respectively,

13 O —1 13 O
K (02
(0 dpm )50 (o o)
if r-rank{Fyo} = 4, and furthermore if the fourth row of Fy is zero
and the last equals wyy (#0) times the fifth,
Koo(araz, b1by) ™!

if -rank{Fyo} = 5, and furthermore if exactly one row of Fyy out
of the last three except for the {ajayy-th and {b\by)-th is zero
((ar1az, bibz) = (20,02), (20, 11), (02, 11)),

L 9 \k (20,02)"" Lo 9

0 ggg,oz(a) 00(20, 0 g(())g,oz(a)

if r-rank{Fo} =5, and furthermore if the last row of Fyy equals
woo (# 0) times the fifth,

L 0 0 L 0 0
0 goo™(@) 0 |Kp(20,02)7" 0 go0®(@) ©
0 0 1 0 0 1

if r-rank{Fo} =5, and furthermore if the last row of Fy equals
voo (#£0) times the fourth,

L 0 0 I 0 0
0 go™ (@ 0 |Kp(20,11)7" 0 g5 (®) ©
0 0 1 0 0 1
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if r-rank{Fyo} = 5, and furthermore if the fifth row of Fyy equals
ugy (#0) times the fourth,

Iz 0 0 I 0 0
0 g0 (@ 0 |Kw20,02)7[ 0 gooP(@) 0
0 0 9”@ 0 0 g ()

if r-rank{Fo} =5, and furthermore if the last row of Fyy equals
the sum of vy (#0) times the fourth and woy (#0) times the
fifth,

g
if r-rank{Fyo} = 1, and furthermore (1) if my =2 and the last row
of Fyy is zero, or
(2) if my =3 and the last two rows of F\y are zero,

1(10(6162)71

if my > 3 and r-rank{Fyo} = 2, and furthermore if exactly one row
of Fio out of the last two except for the [cicy]-th is zero
(0162 = 20, 11),

1 0 Kio(20)"" 1 0
0 g5 )5 o g

if my >3 and r-rank{F\o} = 2, and furthermore if the last row of
Fio equals vig (#0) times the second,
e

if r-rank{Fo1} = 1, and furthermore (1) if my =2 and the last row
of Fy is zero, or
(2) if my >3 and the last two rows of Fy are zero,

Koi(dydy) ™!

if my >3 and r-rank{Fy } =2, and furthermore if exactly one
row of Fo1 out of the last two except for the [didy]-th is zero
(didy = 02,11),

(o a0 (o gy

if my > 3 and r-rank{Fy, } = 2, and furthermore if the last row of
Fy1 equals wyy (#0) times the second,



GA-optimal 2"+"_PBFF designs 137

Vao() vanishes if m; =2,3,
o) =
20 0 if m >4 and r-rank{F5} =0,
Vool) vanishes if mp = 2,3,
o) =
02 0 if my>4 and r-rank{Fp} =0,
Table 4.1. GA,-optimal 2>*2-PBFF designs.
N A tr{V7(0)} tr{Vr(1)} tr{Vr(2)} Theorem
8 010 101 010 0.87500 0.78125 0.81250 (D)G)(1)
101 010 101 0.87500 0.78125 0.81250 (1)(ii)
9 201 010 101 0.82031 0.73242 0.76172 (D)(it)
10 010 201 010 0.76563 0.68359 0.71094 (D)G)(1)
020 101 010 0.76563 0.68359 0.71094 MG
201 010 102 0.76563 0.68359 0.71094 (D)(it)
201 010 201 0.76563 0.68359 0.71094 (I)(i1)
202 010 101 0.76563 0.68359 0.71094 (1)(ii)
Table 4.2. GA,-optimal 22+3-PBFF designs.
N A tr{V7(0)} te{Vr(1)} tr{Vr(2)} Theorem
11 1100 1001 0010 1.73611 1.04633 1.25000 (II)
12 1100 1001 0011 1.32738 0.88855 1.00655 (I1)
13 2100 1001 0011 1.24911 0.85834 0.95993 (1II)
14 2100 1001 0012 1.19298 (II)
1100 2001 0011 0.80558 0.92037 (I1)
15 2100 2001 0011 1.14653 0.86986 (1II)
1200 1001 0011 0.77088 (II)
Table 4.3. GA,-optimal 22+*-PBFF designs.
N A te{V7(0)} te{Vr(1)} tr{Vr(2)} Theorem
13 11000 10001 00010 1.93750 1.36833 1.54948 111
14 11000 10001 00011 1.47064 1.11239 1.22585 111
15 21000 10001 00011 1.36690 1.05551 1.15394 11T
16 21000 10001 00012 1.29911 1.01755 1.10640 111
17 21000 20001 00011 1.26540 0.97053 1.06570 111

19 22000 10001 00011 1.16330 0.89233 0.97610
20 22000 10001 00012 1.10617 0.93830
21000 20002 00012 0.85611

(1)
(L)
(1)
(1)
(L)
18 21000 20001 00012 1.20515 0.93702 1.02324 (111)
(1)
(L)
(II)
21 22000 20001 00011 1.06005 0.80589 0.88632 (I11)
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Vll(oc) =0 lf r-rank{Fn} = 0,

and gg1> (o) (717, = 00,10,01) for 0 <o <2 are given in Remark 3.1.

By Theorem 3.2(I) and Lemma 4.1, we obtain the following:

THEOREM 4.2. Let T be a 2™7T™-PBFF design of resolution
R({00, 10,01} | Q) derived from an SPBA(m; + ma; {2 ,}) with N assemblies,
where N <v(my,my) and 2 <my (k=1,2). Then we get

tr{Vr(2)} = oo tr{Voo(2)} + 1o tr{Vi0(2)} + oy tr{ Voi ()}

+ oo tr{V20(@)} (if mi = 4) + dop tr{Voa ()} (if mr > 4)
+ o te{ V() for 0 <a<2.
As a generalization of the A-optimality criterion, Kuwada et al. [5]

introduced the GA-optimality criterion for the selection of a design. For
resolution R({00,10,01}|2) designs, we define the GA,-optimality criteria

Table 4.4. GA,-optimal 23+3-PBFF designs.

N A tr{V7(0)} t{Vr (1)} te{ Vr(2)} Theorem
13 1100 1000 0001 0010 2.14844 135345 1.55580 (IV)()(2)
14 1100 1000 0001 0011 1.71023 1.09901 1.22808 (IV)(1)(2)
15 2100 1000 0001 0011 1.61285 1.04247 1.15526 (IV)(i)(2)
16 1011 1000 0001 1101 1.50694 (1V)(iii)
2100 1000 0001 0012 1.00472 1.10714 (IV)(i)(2)
17 1012 1000 0001 1101 1.47467 (IV )(ii)
2011 1000 0001 1101 1.47467 (1V)(iii)
1100 2000 0001 0011 0.98323 (IV)([)2)
1200 1000 0001 0011 0.98323 (IV)(i)(2)
3100 1000 0001 0012 1.08435 (IV)(i)2)
18 2100 2000 0001 0011 1.42822 0.92004 1.02235 (IV)()2)
2200 1000 0001 0011 1.42822 0.92004 1.02235 (IV)(i)(2)
19 1011 2000 0001 1101 1.34207 (IV)(iii)
1021 1000 0001 1101 134207 (IV) i)
2100 2000 0001 0012 0.88885 0.98168 (IV)(i)(2)
2200 1000 0001 0012 0.88885 0.98168 (IV)(i)2)
20 1022 1000 0001 1101 130316 (IV) i)
2011 2000 0001 1101 1.30316 (IV (i)
1200 2000 0001 0011 0.86662 (IV)()(2)
3100 2000 0001 0012 0.95531 (IV)([)2)
3200 1000 0001 0012 0.95531 (IV)(i)(2)
21 1001 0100 0010 1000 0.85185 0.66537 0.75231 (IV)(ii)
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(0 <o <2) as follows: If tr{Vy(a)} < tr{V7: ()} for any T*, where both T
and 7* are 2" 1t"-PBFF designs of resolution R({00, 10,01} | Q) derived from
an SPBA(my +ma; {4 i, }) with N assemblies and an SPBA(m; + ma; {4; ;})
with the same number of assemblies, respectively, and N < v(m;,m,) and
2 <my (k=1,2), then T is said to be GA,-optimal for 0 < o <2. Tt follows
from Theorem 3.2(II) and Lemma 4.1 that the GA;- and GA,-optimality
criteria reflect the confounding (or aliasing) relationship among Affg‘;‘”z’zo)()zo,
A2 g0 and A7, (ayay = 20,02, 11) for 7,7, = 00,10,01. In this
sense, the authors believe that the GA,-optimality criteria for y =1,2 are
suitable for comparison of designs.

Using Theorems 3.3 and 4.2, we can obtain GA,-optimal 22+2- 223.
22H4. 2343 234 and 24*4-PBFF designs of resolution R({00, 10,01} |€) for
0 < o < 2 derived from SPBAs(m; + my; {4 ;}) with N < v(m;,m;), which are
given by Tables 4.1 through 4.6, respectively. In each table, all GA,-optimal
designs except for my =2, my =3 and N = 14,15, m; =2, my =4 and N = 20,
my =my;=3and N =16,17,19,20, m; =3, my =4 and N = 18,19,20,24,27,
and my =my =4 and N =20,21,22,35,36 are also GA,-optimal for other
two y (0 <y#a<2). Here GAj-optimal designs with m; =2, m; =3 and
N=14, miy=my =3 and N =16,19, m; =3, my =4 and N = 18,24,27, and

Table 4.5. GA,-optimal 2>**-PBFF designs.

N yy t{V7(0)} tw{Vr(1)} tr{Vr(2)} Theorem
15 11000 10000 00001 00010 2.52333 1.82926 2.01806 V)H)2)
16 11000 10000 00001 00011 193229 139828 152257 VD)
17 21000 10000 00001 00011 1.78883 1.29367 1.40231 V)®H)(2)
18 10011 10000 00001 11001 1.66301 (V)(iii)(1)(b)
21000 10000 00001 00012 122883 132792 VD)
19 10012 10000 00001 11001 1.60252 129002 (V)(iii)(1)(b)
31000 10000 00001 00012 1.19688 V)H)2)
20 10101 10000 00001 00100 1.47608 (V)(iii)(1)(a)
21000 20000 00001 00011 117029 VD)
10012 10000 00001 21001 124974 (V)(iii)(1)(b)
21 10101 10000 00001 00101 1.29396 1.07174 1.09396 (V)(iii)(1)(a)
22 10101 10000 00001 10101 121277 0.99055 101277 (V)(iii)(1)(a)
23 20101 10000 00001 10101 1.17014 0.94791 0.97014 (V) (iii)(1)(a)
24 10101 10000 00002 00101 1.11404 (V)(ii)(1)(a)
20101 10000 00001 10102 0.91905 0.94128 (V)(iii)(1)(a)
25 10101 20000 00001 10101 1.04905 0.88239 0.89905 (V)(ii)(1)(a)
26 20101 20000 00001 10101 0.99858 0.83191 0.84858 (V)(iii)(1)(a)
27 10101 20000 00002 00101 0.96078 (V)(i)(1)(a)
30101 20000 00001 10101 0.80938 0.82605 (V)(ii)(1)(a)
(V)(ii)(1)(a)

28 10101 20000 00002 10101 0.89116 0.78005 0.79116

<
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Table 4.6. GA,-optimal 24**-PBFF designs.

N yy w{Vr(0)}  te{Vr()}  te{Vr(2)} Theorem

17 11000 10000 00000 00001 00010 3.03704 2.43921 2.62222 (VI)(ii)

18 11000 10000 00000 00001 00011 2.21970 1.76384 1.88636 (VI)(ii)

19 21000 10000 00000 00001 00011 2.00952 1.59017 1.69714 (VI)(i1)

20 10011 10000 00000 00001 11001  1.82217 157217 (VI)(ii)(2)(0)
21000 10000 00000 00001 00012 1.48684 (VI)(ii)

21 10011 10000 00000 00001 11002  1.76435 151435 (VI)i)(2)(c)
10012 10000 00000 00001 11001 1.76435 151435 (VI)(ii)(2)(c)
31000 10000 00000 00001 00012 1.43442 (VI)(ii)

22 10011 10000 00000 00001 21002  1.70652 145652 (VI)(iii)(2)(c)
10012 10000 00000 00001 11002 1.70652 145652 (VI)(iii)(2)(c)
31000 10000 00000 00001 00013 1.39380 (VI)(ii)

23 10101 10000 00000 00001 00101 1.45909 1.30376 1.33409 (VI)(iii)(2)(a)
11001 00000 10001 00000 00011  1.45909 1.30376 133409 (VI)(iii)(1)(b)

24 20101 10000 00000 00001 00101 137318 1.21785 124818 (VI)(iii)(2)(a)
21000 00000 10001 00000 10011 1.37318 121785 124818 (VI)(iii)(1)(b)

25 20101 10000 00000 00001 10101  1.30938 1.15405 118438 (VI)(iii)(2)(a)
21001 00000 10001 00000 10011 130938  1.15405 118438 (VI)(ii)(1)(b)

26 10100 00000 10001 00000 10100 1.03646 1.03646 1.03646 (VI)(iii)(1)(a)
10101 00000 10001 00000 00100 103646 1.03646 103646 (VI)(iii)(1)(a)

27 10101 00000 10001 00000 10100  0.94792 094792 094792 (VI)(iii)(1)(a)

28 10101 00000 10001 00000 10101  0.85938  0.85938  0.85938  (VI)(iii)(1)(a)

29 20101 00000 10001 00000 10101  0.83894  0.83894 0.83894  (VI)(iii)(1)(a)

30 20101 00000 10001 00000 20101  0.81851  0.81851 0.81851  (VI)(iii)(1)(a)
20102 00000 10001 00000 10101 0.81851 0.81851 0.81851  (VI)(iii)(1)(a)

31 20102 00000 10001 00000 20101 0.80457 0.80457 0.80457  (VI)(iii)(1)(a)

3220102 00000 10001 00000 20102 0.79063  0.79063  0.79063  (VI)(iii)(1)(a)

3330102 00000 10001 00000 20102 0.78391 0.78391 078391 (VI)(iii)(1)(a)

3410101 00000 20001 00000 10101 0.76224 076224 076224 (VI)(iii)(1)(a)
10201 00000 10001 00000 10101  0.76224 076224 076224 (VI)(iii)(1)(a)

35 20101 00000 20001 00000 10101 0.73933 (VI)(iii)(1)(a)
20201 00000 10001 00000 10101 0.73933 (VI)(iii)(1)(a)
10001 01000 00000 00010 10000 0.68362 0.73648 (VD)(i)

36 20101 00000 20001 00000 20101  0.71616 (VI)(iii)(1)(a
20202 00000 10001 00000 10101 0.71616 (VI)(iii)(1)(a)
10001 01000 00000 00010 10001 0.65079 0.69349 (VD)(i)

my =my =4 and N = 35,36 are GAj-optimal, and GAy-optimal designs with
mq 22, m2:3 and N=15, mq 22, Wl2=4 andN:ZO, nmy 23, m2=4 and
N =19, and m; =mp =4 and N = 20,21,22 are GA,-optimal. On the other
hand, GA,-optimal designs with m; =my; =3 and N =17,20, and m; = 3,
my; =4 and N =20 are all different for each «. Note that in each table,
A= (;u()y(),}vo‘l, - a}vO‘mZ,/ALl,Oyil,h - 7/117,,12, ... 7)~m1.,07/1m1,la - 7/1,,11,,,12) and the
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number (¥)(**)(***)(****) of the last column corresponds to Theorem 3.3
()(F)(F*F*F)(****).  Furthermore from Lemma 2.1, in each table, if a design
derived from an SPBA is GA,-optimal for 0 < o« < 2, then the designs derived
from its FCA, LCA and/or CCA are also GA,-optimal. Interchanging i; and
i of the indices /; ;, of Tables 4.2, 4.3 and 4.5, we can obtain GA,-optimal
designs of resolution R({00,10,01}|€) for 2 <my < m; < 4.

Note that GA-optimal 2" *"™-PBFF designs with det(K,,,) #0 (77, =
00,10,01,20 (if my = 4), 02 (if my > 4)) and K;; =0 for 4 < m; +my < 6, and
with det(K;,,,) # 0 (7, = 00,10,01) and furthermore (A) Kay # 0 (if m; > 4)
or vanishes (if m; = 2,3) and Ko, = Kj; =0 for 2 <m; <4 and mp =4, and
(B) K» = Ky = K11 =0 for m; = mp =4 were obtained by Kuwada [2] and
Kuwada and Matsuura [4], respectively, where det(4) denotes the determinant
of a matrix 4. Moreover GA,-optimal 2"1*"-PBFF designs of resolutions
R({00,10,01,20,02} | 2) and R({00,10,01,20,11} | Q) with N < v(my,m;) and
2 <my; <4, of resolution R({00,10,01,20}|Q) with N < v(m;,m;) and
2 <my <4, and of resolution R({00,10,01,11}|Q2) with N < v(m;,m,) and
2 <m; < my <4 have been obtained by Kuwada et al. [6, 7] and Lu et al. [8],
respectively.

5. Appendix

Let us consider a matrix equation ZL = H with a parameter matrix Z of
order n, where L = ||L;| is the positive semidefinite matrix of order n with
rank{L} = rank{ (Lll le)}: ni+n (=1) and H = || Hy| (i,j=1,2,3)

Ly Ly
is a matrix of order n with Hy =1,, Hix = H}y = 0y,xn, and H3 = H}, =
0y, xn;. Here both L; and Hj; are of size n; x nj, ny +ny +n3 =n, and 0,,, is
the zero matrix of size p x g. The equation ZL = H has a solution if and
only if rank{L’'} = rank{(L’; H')}. Thus we have the following (see [1]):

LemMA A.l. A matrix equation ZL = H has a solution, where Z is a
parameter matrix of order n, if and only if
(I) n3=0, where Hy (if ny = 1) is arbitrary, or
(I) n3 =1, and in addition
(i) when ny =0, L3z = O0p,xpn,, and furthermore Hzz = 0,,p,, oF
(i) when ny > 1, there exists a matrix W of size n3 x ny such that
(L31; La; L33) = W (Lat; Lay; Lo3), and furthermore Hjy = WH;, and
H}, = WH},, where Hy and Hz, are arbitrary.

By use of a solution Z of the ZL = H, we obtain the following (see [6]):
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LEMMA A.2.
Lﬁl lf ny =n3 =0,
1,
( 0'>L111(I,11;0) if my=0 and n3 > 1,
L, 0 N(Ly Lo\'/L 0 .
ZL7Z' = (”1 )( ! if np>1 and n3 =0,
0 Hxyp/\Ly Lx 0 Hj, 4
I, 0
(n)] H <L11 L )1 (Im 0 0 )
0 H Ly Ly 0 Hz/2 H3/2
R if my>1 and n3 > 1,
where Hy, and Hj are arbitrary.
Acknowledgement

The authors are grateful to the referee and the Managing Editor for their
valuable comments and suggestions which have improved the early draft of this
paper. The third author’s work was partially supported by Grant-in-Aid for
Scientific Research (C) of the JSPS under Contract Number 14580348.

References

[1] S. Ghosh and M. Kuwada, Estimable parametric functions for balanced fractional 2"
factorial designs, Statistical Research Group, Technical Report 01-7, Hiroshima University,
2001.

[2] M. Kuwada, Optimal partially balanced fractional 2" +" factorial designs of resolution
IV, Ann. Inst. Statist. Math., A38 (1986), 343-351.

[3] M. Kuwada, A-optimal partially balanced fractional 2™ factorial designs of resolution
V, with 2 <m; +m, <6, J. Statist. Plann. Inference, 18 (1988), 177-193.

[4] M. Kuwada and M. Matsuura, Further results on partially balanced fractional 2™+
factorial designs of resolution IV, J. Japan Statist. Soc., 14 (1984), 69-83.

[5] M. Kuwada, Y. Hyodo and H. Yumiba, GA-optimal balanced fractional 2" factorial
designs of resolution R*({0,1}|3), Sankhya, 66 (2004), 343-361.

[6] M. Kuwada, S. Lu, Y. Hyodo and E. Taniguchi, GA-optimal partially balanced fractional
2m+ma factorial designs of resolutions R({00,10,01,20,02} | 2) and R({00,10,01,20,11} | Q)
with 2 <mj,my <4, J. Japan Statist. Soc., 36 (2) (2006a), 237-259.

[7] M. Kuwada, S. Lu, Y. Hyodo and E. Taniguchi, GA-optimal partially balanced fractional
2m+ma factorial designs of resolution R({00,10,01,20}| Q) with 2 < m;,m; <4, Commun.
Statist. Theory Methods, 35 (11) (2006b), 2035-2053.

[8] S. Lu, E. Taniguchi, Y. Hyodo and M. Kuwada, GA-optimal partially balanced fractional
2m+m factorial designs of resolution R({00,10,01,11}|Q2) with 2 <m; <my <4, Sci.
Math. Japon, 65 (1) (2007), 81-94.



(9]
(10]
(11]

(12]

GA-optimal 2"*"_PBFF designs 143

B. H. Margolin, Resolution IV fractional factorial designs, J. Roy. Statist. Soc., B31
(1969), 514-523.

R. Nishii, Balanced fractional r” x s" factorial designs and their analysis, Hiroshima
Math. J., 11 (1981), 379-413.

S. Yamamoto and Y. Hyodo, Extended concept of resolution and the designs derived from
balanced arrays, TRU Math., 20 (1984), 341-349.

S. Yamamoto, T. Shirakura and M. Kuwada, Characteristic polynomials of the information
matrices of balanced fractional 2™ factorial designs of higher (2/ + 1) resolution, in “Essays
in Probability and Statistics”, eds. S. Ikeda et al., Shinko Tsusho, Tokyo, 1976, pp. 73-94.

Shujie Lu
Graduate School of Engineering
Hiroshima University
Higashi-Hiroshima 739-8527, Japan
E-mail: lushujie@mis. hiroshima-u.ac.jp

Eiji Taniguchi
Graduate School of Informatics
Okayama University of Science

Okayama 700-0005, Japan
E-mail: nabu_ru@yahoo.co.jp

Masahide Kuwada
Graduate School of Engineering
Hiroshima University
Higashi-Hiroshima 739-8527, Japan
E-mail: kuwada@mis. hiroshima-u.ac.jp

Yoshifumi Hyodo
Graduate School of Informatics
Okayama University of Science

Okayama 700-0005, Japan
E-mail: hyodo@gs.finfo.ous.ac.jp



