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ABSTRACT. We will give an explicit description of non-commutative extensions over an
F,-algebra of the additive group scheme (resp. the additive formal group scheme) by the
group scheme (resp. the formal group scheme) which gives a deformation of the additive
group scheme to the multiplicative group scheme (resp. the additive formal group
scheme to the multiplicative formal group scheme).

Introduction

In the previous work [2] we gave an explicit description on the non-
commutative extensions of G, 4 by Gy, 4 or of G, 4 by G, 4« when 4 is a ring
of characteristic p > 0. More precisely, we have constructed isomorphisms

(Ker[F : W(A4) — WA = H* Gty G a)/HE(Gut, G 4)
and
(Ker[F : W(A) — W(A)N > HX(Gy 4,Gon )/ HE (G, 4G 1),

using the Artin-Hasse exponential series. Our aim of this article is to
generalize the isomorphisms to those for ?f,m instead of G, 4. Here
9M) — Spec Z[T,1/(1 + MT)] is a group scheme giving a deformation of G,
to G, (the definition is mentioned in 3.1). More precisely, our result is stated
as follows.

THEOREM. Let A be an Fy[M]-algebra. Then the correspondence
(@), — Hg{} El(,M>(a,;X Y?") induces bijective homomorphisms

(Ker[FM - wM(4) — W ()N 2 HX(Gya, 9/ HE Gty 937

and
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(Rer[FY - W0 (4) — WO (AN = H(Gua 9/ H (Gt 95™).
where H(M) denotes the product for the multiplication in 4™ (4) or 4™ (4).

(Theorem 3.5. For the notation, see the section 3.)

Now we explain the contents of the article.

In the first two sections, we recall necessary facts to state the main
result. At first, we give a short review on Witt vectors W (4) and a variant of
Witt vectors WM)(4), defined by [6]. In the section 2, we recall the definition
of the second Hochschild cohomology groups H?(G,H) for formal group
schemes or group schemes G and H, mentioning the main result concerning
H2(Gy 4,G ) and H2(G, 4,G,, 4) in the previous work [2].

In the section 3, the main theorem is stated and proved. It is crucial that
we have a splitting exact sequence of formal group schemes

0 %" | [[Gums | — Gua—0
B/A

and a splitting exact sequence of group schemes
0—wM T Ws— Wi—0,
B/A

where 4 = Z[M], B= A[t]/(t* — Mt) and [] denotes the Weil restriction
B/A

functor. Furthermore, we obtain a commutative diagram with splitting exact

rows

0 — WMy — W (B) — W(A) — 0

&M l g { & l
0— Zz(éa,Aw(%gM)) I Zz(GmBsz,B) I Zz(éa,A7Gm,A) - 07

which allows us to deduce the theorem from the main result in [2].
In the section 4, we discuss functorialities concerning H?(G,, A,ng)).
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Notation

p. a prime number
A: F,-algebra
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G, 4: the additive group scheme over A
G, 4: the multiplicative group scheme over A
W 4. the group scheme of Witt vectors over A

G, 4: the additive formal group scheme over A

Gy, 4: the multiplicative formal group scheme over A4

W,: the formal group scheme of Witt vectors over A

H?(G, H): the Hochschild cohomology group consisting of 2-cocycles of G with
coefficients in H for formal group schemes or group schemes G and H

B*: the multiplicative group G, (B) for a commutative ring B

MN (resp. MMN): TT,on M (resp. P, _ M;) where M; = M for a commutative
group M

iM: Ker[l : M — M] for an endomorphism / of a commutative group M.

1. Witt vectors
We start with reviewing necessary facts on Witt vectors. For details, see
Demazure-Gabriel [1, Chap. V] or Hazewinkel [3, Chap. III].
1.1. For each r >0, we denote by &(T)= @,(Ty,Ti,...,T,) the so-called
Witt polynomial
G(T) =T +pT!" "+ +p'T,

in Z[T) = Z[Ty,T\,...,T,]. We define polynomials

S (X, Y)=S(Xo,..., X, Yo,..., ¥}),

P.(X,Y)=P.(Xp,.... X, Yp,..., ¥})
in Z[X, Y] =Z[Xy, X1,...,X,, Yo, Y1,..., Y] inductively by

@D,(S)(X,Y),S1(X,Y),....S(X,Y)) = &,(X) + &,(Y),
D, (Py(X,Y),PI(X,Y),....,P(X,Y)) = ,(X)D,(Y)

respectively.
The ring structure of the scheme of Witt vectors

Wy = Spec Z[Ty, T1, T, . . .|
is given by the addition
To— S (T®L1®T), T —SI(TRL1I®T),
S TRLI®T),...

and the multiplication
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To— P (T®1,1®T), Ii—P(T®1L1®T),
T, P(TR11QT),....

We denote by Wy the formal completion of Wy along the zero section.
Wy is considered as a subfunctor of Wz. Indeed, if 4 is a ring, then

. a; is nilpotent for all i and
W(A) = ... ) e W(A); .
(4) {(ao,al,ag, ) e Wid); a; =0 for all but a finite number of i}

1.2. Let 4 be an F,-algebra. The Verschiebung homomorphism V' : W(A4) —
W(A) is defined by

(007611,027 .. ) = (0,(1()7611,&2, .. ')7
and the Frobenius homomorphism F : W(A4) — W(A) is defined by
(ap,ai,az,...) — (ab,al,db,...).

Then it is verified without difficulty that F is a ring homomorphism. It is
obvious that W(4) is stable under F.

1.3. Let A be an F,-algebra. Then we can verify without difficulty that:
(1) FV =VF = p;
(2) V(F(a)b) =aV(b) for a,be W(A).

Now let ae 4. We denote the Witt vector (a,0,0,...) by [a]. The
element [q] is called the Teichmiller lifting of a. It is readily seen that:
(1) [a][b] = [ab];

@ Fld = [a7);
(3) (a()7 ay,da, .. ) = Z/?:o Vk[ak].
Next we recall variants of Witt vectors defined in [4, Sect. 1].

1.4. For each r >0, we define
oM(T) = dMN(Ty,...,T,) € ZIM][Ty, ..., T)
by

1
oM(T) = 7 O (MTo,.... MT,)

= MY pM? TP g p M T 4 ' T
Furthermore, we define
SM(X,Y)=SM(Xo,..., X, Yo,..., ;) € ZIM][Xo, ..., X, Yo, ..., Y],
PM (X, Y)=PM(X,,...,X,, Yo,..., Y,) € ZIM][Xo, ..., X, Yo, ..., V)]
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by
1
SM (X Y) = MS,(MXm o MX, MYy,... MY,),
1
PIM(X,Y) = 2o Pr(Xo.... . Xp M Yo, MY,)
respectively.
1.5. Put WM = Spec Z[M]|[Ty, Ty, T>,...]. Then a morphism

WD g0y WD
=Spec ZM|[To @1, TI @1, T, ®1,.... 10T, 1QT1,1® T, .. ]
— WWM) = Spec Z|M|[Ty, T}, T, . . ]
defined by
To—S"Te1,10T), Ti—S"Te1,10T),
T S"(T®1,1QT),...

gives an addition on W) Which induces a structure of a commuatative group
scheme over Z[M] on WM) (cf. [6, Sect. 1]).
Furthermore, a morphism

Wz *zan W
=Spec ZIM|[THo @1, T @1, T2 ®1,...,1® T, 1 @ T1,1 @ T,.. ]
— WWM) = Spec Z|M [Ty, T}, T, . . ]
defined by
To—PM(TeL1eT), Ti-P"(Tel,1eT),
T—PM(TR1L1I®T),.

gives an action of Wy, which induces a structure of Wz -module on W M)
(cf. [4, Sect. 1]).

REMARK 1.5.1. Let A4 be a Z[M]-algebra. Let a, beW )(4) and
ce W(A). We will denote sometimes a+b, c-a by a+ b, ¢-M a, re-
spectively, to avoid confusion.

1.6. Let A be a Z[M ] algebra and let y denote the image of M in 4. We
denote sometimes WM ®z 14 by W, We define also
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SW(X,Y) =S"(Xo,..., X, Yo,..., Y,) € A[Xo, ..., X,, Yo,..., Y],
PU(X,Y)=P"(Xo,...., X, Yo,..., ¥,) € A[Xo, ..., Xy, Yo,..., V)]
by substituting M by u in SﬁM) (X,Y), PgM) (X,Y), respectively.
ExampLE 1.6.1. It is clear that

SO(X,Y)=S.(X,Y), PUX,Y)=P(X,Y),

and therefore WS) is nothing but the scheme of Witt vectors Wy.
ExampLE 1.6.2. It follows that
sSOXx,v)=x.+7Y, PYX,Y)=ad.(X)Y,
(cl{i [6, 1.4]). Hence the group scheme Wéo) is isomorphic to the direct product
G, ;.

1.7. Let 4 be a Z[M]-algebra and B = A[f]/(t* — Mt). Let ¢ denote the image
of #in B. Then we have ¢> = Me. We define a map i : WM (4) — W(B) by

(ag,ar,ay,...) — (eap,ear,ea, . . .).

Then i: WM)(4) — W(B) is a homomorphism. Moreover, let 7: B — 4
denote the ring homomorphism defined by e +— 0. Then n: B — A4 induces a
ring homomorphism W(B) — W (A), denoted also by . We have an exact
sequence A

0— WML w(B) S w(d) —o.

Let 7y : B— A denote the ring homomorphism defined by ¢ — M. The
7y 2 B— A induces a ring homomorphism W (B) — W(A), denoted also by
ny. A homomorphism o™ : WM (4) — W(A) is defined as the composite
ny oi. More concretely, o™ : WM (4) — W(A) is given by

(00,6117027...) = (Mao,Mal,Maz, .. )
As in the classical case, we define a map V: WM (4) — WM)(4) by
(ag,ar,az,...)— (0,a9,ai,...).

Then V: WM (4) - WM(4) is a homomorphism, and we have a com-
mutative diagram
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Furthermore, if A4 is an F,[M]-algebra, we define a map
FM) M) (4) — wM)(4) by

(ap,ar,a,...) — (Mp_lag,Mp_la{),Mp_laf,...).

Then FM) . wM)(4) — WM)(4) is a homomorphism and we have a com-
mutative diagram

w4 — w(B).

1.8. Let 4 be a Z[M]-algebra and a e A. We denote (a,0,0,...) e WM (A4)
by [a]. Then for (ag,ar,a,...) € WM(A), (co,c1,¢2,...) € W(A) and a,c € A,
we have
(1) [c] - (ao,a1,as,...) = (cap, cPay, c ay, .. .);
) (co,c1,¢2,...) - [a] = (coa, MP~Leral , MP* "L ena?’ . );
(3) FU([a]) = [MP~"aP]
(cf. [6, Lemma 1.13.1]).

REMARK 1.9. The assertion stated above can be formulated as follows
(6, Th. 1.21]). Put A= Z[M] and B=Z[M,1/(t> — Mt). Then WM is
isomorphic to Ker [n: 11 Ws— WA}, where [] denotes the Weil re-

B/A B/A
striction functor. Furthermore, the inclusion 4 — B defines a section of

n: [[ W — Wy, and therefore we obtain a splitting exact sequence
B/A A
0— WM ST ws S Wa—0.
B/A

The endomorphisms FM) and ¥ of W™) are induced by F and V on [] Wp.
B/A

2. Hochschild cohomology

First we recall Hochschild cohomology groups. For generalities of
Hochschild cohomology, see [1, Chap. I1.3 and Chap. II1.6].

2.1. Let 4 be a ring, and let G and H be group schemes or formal group
schemes over A4, which are commutative in both the algebraic and formal
cases. As usual, we define

Z*(G,H) = {2-cocycle of G with coefficients in H?},
Z3(G, H) = {symmetric 2-cocycle of G with coefficients in H},
B*(G,H) = {2-coboundary of G with coefficients in H}.
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Then we have
B*(G,H) = Z}(G,H) = Z*(G, H).
Moreover, we define
H*(G,H)=Z*G,H)/B*(G,H),
H}(G,H) = Z}(G,H)/B*(G, H).

It is well known that:

1) H?(G,H) is isomorphic to the group of classes of central extensions of G
by H, which split as extensions of formal A-schemes or A-schemes,

2) HZ(G,H) is isomorphic to the group of classes of commutative extensions
of G by H, which split as extensions of formal A-schemes or A-schemes.

2.2. Let A be a ring. By the definition of the Hochschild complex, we
have

F(X,Y)=1 moddeg 1,
F(X,Y)F(X+Y,Z)=F(X,Y + Z)F(Y,Z) |’

F(X,Y)=1 moddegl,
{F(X, Y)e A[X,Y]]; FX,Y)F(X+ Y,Z)=F(X, Y—FZ)F(Y,Z),}7
F(X,Y)=F(Y,X)

B*(Gy 4, G a) = { ((X)+(Y)) F(T) e A[[T)]*,F(T) = 1 mod deg 1}.

We have also

Zz(GmA; GmA)

—{F(X,Y) e A[X,Y]"; F(X,Y)F(X + Y,Z) = F(X, Y + Z)F(Y, Z)},
Zg(Ga AaGm,A)
= {F(X, Y)eAlX, Y] ig ;;H);:YY;) =FX,Y+2)F(Y,2), }

F(X)F(Y)

#GaGnd = {5

;F(T)eA[T]X}.

In the previous work [2], we have verified the following assertion:
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23. Let 4 be an F,-algebra. Then the correspondence (a;),., —
[1,51 Ep(a:; XY?") gives rise to isomorphisms

(Ker[F : W(4) = WA = H*(Go, 4, G 4)/Hi (G, 4, G 4)
and
(Ker[F - W(A) — WA = H* (Gt Gna)/Hi (Ga.t, Gina)
(2, Theorem 2.8]). Here E,(T) denotes the Artin-Hasse exponential series:
T

aﬂbm{z,)dwmm

r=0

For U = (U,),-,, we put

%W”:HWMwa%Z@@ﬂ)

r
70 =0 P

3. Statement and proof of the theorem

3.1. Let A be a Z[M]-algebra. We define a group scheme @;M) over A by

M) _ Goee Al 1
Yy = Spec [ T+ MT
with
(1) the multiplication: T—T®1+1QT+MT®T;
(2) the unit: T +— 0;
(3) the inverse: T +— —T/(1+ MT).
Moreover, we define an A-homomorphism ozilM) : {ﬁf(lM) — Gy, 4 by
U—1+MT:A|U : AT 1
— : —| — —.
U "1+ MT
If M is invertible in A4, acilm is an A-isomorphism. On the other hand, if
M =0 in A, gf,M) is nothing but the additive group G 4.
We denote by @;M) the formal completion of ééflm along the zero section.

REMARK 3.2. Let 4 be a Z[M]-algebra and B = A[f]/(t> — Mt). Let
¢ denote the image of ¢ in B. Then we have ¢> = Me. Defining a ring
homomorphism B — A4 by ¢+— 0, we have

Ker[B* — A*| ={l 4 ea;ae A,1 + Ma is invertible in A}.
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Hence %SM) is isomorphic to Ker[ 11 G5 — Gu, A], where [] denotes the
B/A B/A
Weil restriction functor. Furthermore, the inclusion 4 — B defines a section

of T] Gum,s — G, 4, and therefore, the exact sequence
B/A

0— gle) - H Gm,B - Gm,A —0
B/A

splits.
3.3. Let 4 be an F,[M]-algebra. The 2-cochain group C2(G,, A,{%(‘M)) is
identified to
{F(X,Y)e A|[X,Y]]; F(X,Y) =1 mod deg 1}
with the multiplication
(F(X,Y),G(X,Y)) — F(X,Y)+ G(X,Y)+ MF(X, Y)G(X, Y).
Under this identification, we have

Zz( AavAa A,ElM>)

= (F(X,Y)eA[X,Y]; F(X,Y)+F(X + Y,Z)+ MF(X,Y)F(X + Y,Z)

F(X,Y)=0 mod deg I, }
—F(X,Y+Z)+F(Y,Z)+ MF(X,Y + Z)F(Y,Z)

F(X,Y)=0 moddegl,

F(X,Y)+F(X+Y,Z)+ MF(X,Y)F(X + Y,Z)
—F(X,Y+2Z)+F(Y,Z)+ MF(X,Y + Z)F(Y,Z),(’
F(X,Y)=F(Y,X)

={F(X,Y)eA[X, Y]]

B (G, 4™

_ {F(X) +F(Y)+ MF(X)F(Y)—F(X +Y) F
F

(T) e A[[T]], }
1+ MF(X +Y) ’ '

(T) =0 mod deg |

We have also

Z2(Gy s, 9M)

FX,Y)eAX,Y; FX,Y)+F(X+Y,Z)+ MF(X,Y)F(X + Y,Z)
=FX,Y+Z)+F(Y,Z)+ MF(X,Y + Z)F(Y,Z

{ 1+ MF(X,Y) is invertible in A[X, Y], }
)
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Z2(Gy 1, M)

14+ MF(X,Y) is invertible in A[X, Y],
FX,Y)+FX+Y,Z)+ MF(X,Y)F(X +Y,Z)
—F(X,Y+2Z)+F(Y,Z)+ MF(X,Y + Z)F(Y,Z), (’
F(X,Y)=F(Y,X)

={F(X,Y)eA[X,Y];

BX(Gy 4, 9\

F(T) e A[T],
) FX)+F(Y)+ MF(X)F(Y)-F(X+Y) . .
= T+ ME(X 1 7) ; i1n+AA[47{i“(T) is invertible

34. Let U= (U,),»,- We define a formal power series E;M>(U; T)e

Z(p) [M, UO, U], UZu .- ]HT]] by

1

EMO(U; T) = [E,(U00: T) — 1

“ @, (MUy, MU, ..., MU,) .,
exp(Z (MUy, MUy, ... . U)Tp> 1
r=0 pr

1

REMARK 3.4.1. [6, 2.3] defines a formal power series E,(,M)(U,A;T)e
Z[A, M, Uy, Uy, Uy, .. ][[T]]. The formal power series EP(M>(U; T) is nothing
but ES*(U,0;T).

Now we can state our main result:

THEOREM 3.5. Let A be an F,[M]-algebra. Then the correspondence
(@), — Hfg; E,SM)(a,.;XYpr) induces bijective homomorphism

(Ker[FM w0 (4) — wOD ()N = HX(Gy 1, M) /HZ (G4, 4
and
(Ket[FM) - M (4) — wD(A)])N 2 BG4, %) HE (G s, 97,

where H(M) denotes the product notation for the multiplication in 4™ (A4) or
M) (4).

Proor. For simplicity, we put H*(G,H)= H*(G,H)/H}(G,H) for
formal group schemes or group schemes G and H. Then we have a canonical
isomorphism

Z*(G,H)/Z§(G,H) > H*(G,H) = H(G, H)/H; (G, H).
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Let A be a F,[M]-algebra and B = A[f]/(> — Mt). Let ¢ denote the
image of ¢+ in B. Then we have &> = Me. The splitting exact sequence of
formal group schemes

0— @;M) — H/é\m’g — Gm,A — 0
B/A
induces a splitting exact sequence
0— Z%Guu,9M) 5 Z%(Gu 5, G 5) — Z*(Gut, Gy a) — 0.
More precisely,
Z*(Gu,5:Gm,8) = Z*(Gu, 4, Gy, 4)

is induced from the ring homomorphism 7z:B — A defined by &— 0.
Moreover
r: Zz<éa,A7 /(1M)) - Zz(éa,B7GmVB)
is defined by
G(X,Y)— 1+:G(X,Y): A[[X, Y]] — B[[X, Y]]".

On the other hand, we have a commutative diagram with splitting exact
rows

0 —— WM(4) —— W(B) —— W(4) —— 0
F(M)J( Fl Fl
0 —— WM(4) —— W(B) —— W(4) —— 0
as is remarked in 1.7. Hence we obtain a splitting exact sequence
0 — pon WM (A) = zW(B) — rW(A4) — 0.

Obviously the diagram

4

FW(B)  ——  FW(4)

Zz(Ga.Bz Gm,B) L) Zz(ca,/h Gm7A),
is commutative. Here the homomorphisms
ér,B . FW(B) - Zz(éa,By Gm,B)

and

él’,A : FW(A) - ZZ(Ga.AaGmﬁA)
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are defined by b — E,(b; XY?') and by a — E,(a; XY?"), respectively. Hence
we obtain a homomorphism

EM i WD) — Z2(Go i, G4).

It is readily seen that the map f%) is defined by a+— E,(,M> (a; XYP").
To sum up, we obtain a commutative diagram with splitting exact rows

0 — F(M) W(M) (A) _— F W(B) E— F W(A) E— 0
& l & Bl S l
0— Zz(éa,Avg,gM)) E— Zz(éaﬁBaémﬁB) — ZZ(Ga,Aaém,A) — 0.

Putting f;M) =115, é%), we have gotten a commutative diagram with splitting
exact rows

0 — (o WM —  EWB) — W) — 0
ci;”’l éal é{

0 —— Z2Guu,9") —— Z%(Gu5.Gnp) —— Z*(Guu,Gpa) — 0.

and therefore, a commutative diagram with splitting exact rows

0 — (GuoW™U)N — BN — WA — 0

e i .|
0 —— I:Iz(éu,A 4 , A

Noting that

Ep: (zW(B)N — H*(G, 3,Gn )
and
Ey: (W (AN = H* Gy, G a)

are isomorphisms ([2, Theorem 2.8]), we obtain the assertion of the theorem in
the case of formal group schemes. We can prove similarly the assertion for
group schemes.

ExamMpLE 3.5.1. Let 4 be an F,-algebra. As is remarked in 3.1, the

correspondence U +— 1+ T defines an A-isomorphism

1
ococ“):%(ll)SpecA[T, }HGmyASpecA[U,U}

L
I+7

Furthermore, o induces isomorphisms
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Oy * Zz(Ga,A; g,gl)) = Zz(Ga,A7Gm,A)

and

Oy ZZ((A}G,A,?;)) = Z4Gaa, G a)-
More concretely, o, is given by
F(X,Y)—1+F(X,Y).
Noting that

L+ TTVED (@ xY7) = T Eplars XY7),

r>1 r>1
we regain the main result in [2].

ExampLE 3.5.2. Let 4 be an F,-algebra. As is remarked in 1.6.2 and
1.7, the additive group W (A4) is isomorphic to the direct product AN,
and FO: w0 (4) — WO (4) is the zero map. Then the correspondence
(@), — H,(~OZ)1E1(70> (a;; XYP") gives rise to an isomorphism

EY (AN 2 H(Gaa, Gu )/ HY (G, Ga ).
Moreover, we have
EV(U;T) Z UT".
In fact, noting that
®,(MUy, MUY,..., MU,) = (MUp)" + p(MU)?" + -+ p" Y (MU,_,)"
+ p"(MU,) = p"MU, mod M?

in Q[U, Uy,..., U, M], we obtain

2 &, (MU, MUy,...,MU,) ., = :
exp(Z (Mo pr‘ ) ) =1+M> UT” mod M’
r=0 =

in Z,[Up, Uy, ..., U, M][[T]]. This implies that

EMU;T)= Y UT" mod M.
r=0

Hence we obtain

H E° (a; XYP") ZZarkX” yr™

r>1 r>1k>0
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We recover then the description of the non-symmetric 2-cocycles of
Z*(Ggy 4,Gy 4) in Demazure-Gabriel [1, Chap. I1.3].

3.6. The symmetric 2-cocycles of Ga, 4 by @;M) are determined by Sekiguchi-
Suwa as follows ([6, Theorem 3.5.1 and Remark 3.12]).

Let A be an F,[M]-algebra. Then the correspondence a — F;M>(a; X,Y)
gives rise to isomorphisms

Coker[F™M) - W (4) — WM (4)] = HE (G, 4, %M
and
Coker[FM) - W (4) — WM (4)] > HE(Gy 4, %M.

Here the formal power series F,(U;X,Y) € Z,)[U][[X, Y]] is defined by

XV LY — (X + Y)Y
F,,(U;X,Y):exp(ZUﬂ‘ i i( +Y) )
i1 p

(4, 2.2]). For U= (U,),5( we put

F(U; X, Y) = [[ Fp(Us X7, Y7")

r=0

0 XpH»l + Ypr—l - X + Y p’*l
:exp<z 2,(0) =t
r=0

(4, 2.5]). Moreover, the formal power series F,EM)(U; X,Y)e
Z(p) [M, Uy, Ul, Uz, .. H[X, Y]] is defined by
1
MU X, Y) = [ (MU X, Y) = 1]

([6, 2.7)).
Combining this result with our main theorem, we obtain the following:

COROLLARY 3.7. Let A be an F,[M]-algebra and P(X,Y) € Z*(Gy 4, @/(IM))
(resp. ZZ(G%A,%SM))). Then P(X,Y) is cohomologous to a 2-cocycle of the
form:

(M) r
FMb X, Y)+ [ EM (@ XYP') + MEM™ (b; X, Y)

r=1

where be WM (A) and (a,),, € (Ker[FM) : WM (4) — WM ()N (resp.
be WM(A) and (a,),., € (Ker[FM) : W (4) — M (4)])t
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4. Functorialities
In this section, we discuss functorialities of the map filM).

PROPOSITION 4.1. Let A be an F,[M]-algebra. Then:
(1) The diagrams

Fon W (A4) - Fon W (4)

éf.:‘?l léﬁf”ﬁ

A M A M A (M A (M
H (Gt 95"/ H3 (G, 9") —— HXGua, 95"/ H3 (Gt 9)

pon WD (4) — o WD ()
| |
HX(Gua, 44") [ H}(Ga, 9") —— H (G, 95")/H} (Guoa 4,

are commutative.
(2) The diagrams

Fon WM (4) LN Fon WM (4)

cﬁ;ﬂ

Hz(éa,Aa A/(iM))/HoZ(Ga,A, A/(lM)) T) Hz(éa.,Aa?,QM))/H()Z(Ga,Aag,gM))

and

a [(,[)V+l]' N

HX(Gya, 8V HY(Go 1, 8™ —— H(Gua, 9")/HF (G s, 9")

"
are commutative.
PrOOF.
(1) By the definition, the map F*: Z*(Gy 4, 4™ — Z%(Gy 4,9\ is
given by

F(X,Y)— F(X?, YP).

In particular, we obtain
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r+1

F* EM(a; XY?') = EM (a; XPYP).

Moreover, we have

(M) . r+l1 o
EMU;xP ) =

<[ -

k

pyp P
lexp<zq§k(MUo,MU1,...,MUk)(X Y )_ 11
k>0

pk

@ (0, MUy, MUy, ..., MU )(XY?")""

eXp(Z k ) 05 | B k—1 >_1‘|
k=0 p

— EM (U xy?
=EM(VU; xY?)

in Z(p>[U0,U1,U2,...,M][[X, Y]] ) . ) R
(2) By the definition, the map [c]" : Z*(Gy 4, flM)) — Z(Gy, 4, <M)) is
given by

F(X,Y)— F(cX,cY).
In particular, we obtain
[c]" s ESM) (a; XYP') s I (a5 c? XY,
Moreover, we have
(M) (7. ~P'+1 4
EM(U; e XY

RS
M

k

O (MUy, MU, ..., MU (c? 1 xy?' )"
eXp(Z k( 05 15 ) k)(c ) )_ 1]
k>0 p

§Y: k

1 B (Mc? Uy, McP PO U, . Me? D gy (xyr' )2
— [exp (Z k( c U07 c Ul ) ) c Uk)( ) _ 1
M

k>0 p
_ (M) “+11r7. "

= EM ([’ U XY

il’l Z(w[Ug, Ul, Uz, ceey M][[X, Y]]

We conclude the article by showing the other functoriality. First we recall
some results of [6].

4.2. Let A be a Z[4, M]-algebra. Then the correspondence a+—
E1<,M)(a,/1; T) gives rise to an isomorphism

gL KerF — (4771 W (4) — W (4)] > Hom,y_g (9", 41

([6, Theorem 3.5.1]).
Here the formal power series E,(U,4;T) € Z,)[U, A][[T]] is defined by
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0 ) . r pi—1
E,(U,4;T) = (1 —|—/1T)U/A H(l _|_AP'TP')(1/P HU/H” —(U/H" )

r=1
([5, Lemma 2.8]). For U = (U,),-,, We put

E,(U,A4;T) = [[ E(U,, 475 T7)
r=0
k

= (1+4T)"WY H AP ety A o) e ),

Moreover, the formal power series EI(, )(U,A; T) e Z,A,M, Uy, Uy, Us, .. ]-
[[T]] is defined by

EM(U,A;T) = %[Ep(a‘mU’A; =1
(16, 2.3)).

The following assertion is also proved:

REMARK 4.3. Let A4 be a Z,[4, M]-algebra, ae WM (4) and ue
WA (4). If FM(a) = [A"]a,

EM(a, 4; E (u; T)) = EI™ (Cu,a) 4 5 T).

Here

g = 3V (a) € WOD(4)
=

([6, Corollary 4.23]).

PrROPOSITION 4.4. Let A be an F, |4, M]-algebra and a e Ker[FM) —
(AP~ s WM (4) — WM)(A)].  Then the diagram

is commutative.

PrROOF. By the definition, the map ¢&'(a), : Z2(Guu, 4" —
Z%(Gy s, %) is defined by F(X,Y)— ES™(a,4;F(X,Y)). In particuler,
we have
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ENa), : ENw; XYP') = EX (a, A; ES (u; XYP')).

Then the result follows from Remark 4.3.

REMARK 4.5. We can obtain the functoriality of the case of group schemes

similarly as above.

(1]

[2]

(3]
[4]

(5]

[6]
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