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ABSTRACT. This paper gives the definition and some properties of a-minimally thin sets
at oo in a cone. Our results are based on estimating Green potential with a positive
measure by connecting with a kind of density of the modified measure.

1. Introduction

Let R and R, be the set of all real numbers and all positive real numbers,
respectively. We denote by R” (n > 2) the n-dimensional Euclidean space. A
point in R” is denoted by P = (X,y), X = (x1,x2,...,X,—1). The Euclidean
distance of two points P and Q in R" is denoted by |P— Q|. Also |P— O|
with the origin O of R” is simply denoted by |P|. The boundary and the
closure of a set S in R” are denoted by 4S and S, respectively.

We introduce a system of spherical coordinates (r,®), 6 =
(61,602,...,68,-1), in R" which are related to cartesian coordinates
(x1,%2,...,%X—1,y) by

x| = r(er:ll sin H,) (n>2), y =rcos 0,

and if n > 3, then
Xpilok = r(H;:ll sin Hj) cos O 2<k<n-1),

where 0<r<+o, —in<0,,<3n and if n>3, then 0<0 <=
(1<j<n-=2).

The unit sphere and the upper half unit sphere are denoted by S”~!
and Sf’[l, respectively. For simplicity, a point (1,0) on S"! and the set
{0;(1,0) e Q} for a set Q, Q2 = S"™!, are often identified with © and Q,
respectively. For two sets 4 < R, and Q = S"7!, the set

{(r,@©)eR"re,(1,0)eQ}

2000 Mathematics Subject Classification. 31B05, 31B20.
Key words and phrases. cone, Green potential, g-minimally thin.



62 Ikuko Mivamoto and Hidenobu YOSHIDA

in R” is simply denoted by 4 x Q. In particular, the half-space
R. xS" ' ={(X,y)eR%y >0}

will be denoted by T,.
Let Q be a domain on 8"~ (n > 2) with smooth boundary. Consider the
Dirichlet problem

(A, +7)f=0 on Q
=0 on 09,

where A, is the spherical part of the Laplace operator 4,

-10 @
=0Ty,

A roor or?

We denote the least positive eigenvalue of this boundary value problem by 7
and the normalized positive eigenfunction corresponding to 7o by fo(O);

J {fa(0))doo = 1,
Q

where dog is the surface element on S"~'. We denote the solutions of the
equation
P+n—2t—19=0

by 20, —fo (%0,f0 >0). If @ =8"" then ag=1, fo=n—1 and
fa(@) = (2ns;1)"? cos 6y,

n

where s, is the surface area 27"/2{I'(n/2)}~" of "'

To simplify our consideration in the following, we shall assume that if
n>3, then Q is a C>*domain (0 < <1) on S"' (e.g. see Gilbarg and
Trudinger [9] for the definition of C?**-domain).

By C,(R), we denote the set R, x € in R” with a domain Q (Q 7 S"!)
on 8"' (n>2). We call it a cone. Then T, is a special cone obtained by
putting Q = Sfl. The set I x  with an interval I on R, is denoted by
Cu(2;1).

It is known that the Martin boundary of C,(Q) is the set dC,(2)U {0},
each of which is a minimal Martin boundary point. When we denote the
Martin function at oo by K(P;o0,Q) (Pe C,(2)) with respect to a reference
point chosen suitably, we know

K(P; 0,Q) = r*f,(0) (P=(r,0) e C,(Q)).

We denote the Green function of C,(2) by Go(P,Q) (Pe C,(Q),
Qe C,(Q)) and the Green potential
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J Go(P,Q)dv(Q) (P Cy(Q))
Ci(Q)

with a positive measure v on C,(22) by Gov(P) (P e Cy(R)).

The regularized reduced function 1@}?(‘; 0,0 of K(;00,Q) relative to a
bounded subset E of C,(Q) is bounded on C,(2). Hence we see from the
Riesz decomposition theorem that there exists a unique positive measure g on
C,(Q) such that

(1.1) RE (. 0)(P) = Gode(P)  (PeCy(Q)).
The (Green) energy yo(E) of E is defined by

Gi(Q)

For a subset E of C,(2) we put
E(k) = ENC,(Q; 2%, 2% (k=0,1,2,...).

We gave a criterion of Wiener’s type for a subset E of C,(Q) to be minimally
thin at oo with respect to C,(R2) (for the definition of minimal thinness, e.g. see
Brelot [4, p. 103]);

o0

(1.2) yo(E(k))2HCah) < 4o
k=0

(Miyamoto and Yoshida [13, Theorem 1]).

The “if” part of the following Theorem A is well known (e.g. see Doob [6,
p. 213]). The proof of the “only if” part is found in the proof of Miyamoto
and Yoshida [13, Theorem 1].

THEOREM A. A subset E of C,(Q) is minimally thin at oo with respect to
C,(Q) if and only if there exists a positive measure & on C,(Q) such that

E c {Pe Cy(Q); Gol&(P) = K(P; 0, Q)}.

Both Theorem A and (1.2) are qualitative. So we had a quantitative
property of minimally thin sets as follows. As an extension of a result of
Dahlberg [5, Theorem 4]), we proved the following measure theoretical
property of minimally thin sets at oo with respect to C,(2) by using an
inequality of Hardy in Ancona [2] (also Lewis [11]); Let a Borel subset E of
Ci(Q2) be minimally thin at o with respect to C,(Q). Then we have

dpP

(Miyamoto, Yanagishita and Yoshida [12, Theorem 2]).
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By observing that (1.3) is equivalent to the conclusion of the following
Theorem B, we immediately have a covering theorem for a minimally thin set
in C,(2) as in T, (Essén, Jackson and Rippon [7, Corollary 3]).

THEOREM B. If a subset E of C,(Q) is minimally thin at co with respect to
C.(Q), then E is covered by a sequence of balls B (k=0,1,2,...) satisfying

(1.4) i(;—i)n < +o0,

k=0

where 1y is the radius of By, and d is the distance between the origin and the
center of By.

To classify minimally thin sets in T,, for each number a (0 <a < 1),
Aikawa [1] introduced the notion of a¢-minimally thin sets, in which 1-minimally
thin sets are minimally thin sets. By a different way from Yanagishita’s in
[15], we shall give a conical version of g-minimally thin sets.

Let ¢ be a number satisfying 0 <a <1 and E a bounded subset of
C,(Q). Since {K(P;00,2)}" (Pe C,(R)) is a positive superharmonic function
on C,(Q) vanishing on dC,(£2) and RfK(ﬁm,Q)}a(P) is bounded on C,(Q), there
exists a unique positive measure Az, on C,(£2) concentrated on Bp, where

By ={Pe C,(Q);E is not thin at P}

(see Brelot [4, Theorem VIII, 11] and Doob [6, XI. 14. Theorem.(d)]), such
that

(1.3) REg(o)o(P) = Galpa(P)  (Pe G,(Q)).

By using this positive measure Ag ,, we further define another positive measure
Nga o0 Cu(82) by

dng o (P) = K(P; 00, Q2)digq(P) (P e Cy(Q)).

It is easy to see that 75 ,(C,(2)) < +c0.
Let E be a subset of C,(22) and k be any non-negative integer. A subset
E of C,(Q) is said to be a-minimally thin at oo with respect to C,(Q), if

o0

(1.6) > ey, o Ca(R))27H @) < oo,
k=0

RemARK 1. Yanagishita [15, Definition 3] defined a measure Nk ON
C,(Q) by using Martin type kernel as in Aikawa [1] on T,. It is easily seen
that it is the same measure to ours 77z, ,. Hence the definition of ¢-minimal
thinness given by Yanagishita [15, Definition 4] is also equal to ours.
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REMARK 2. We see from (1.1) and (1.5) that if @ =1, then

AE(K),1 = AE(k)
for any non-negative integer k. Since Ag( is concentrated on Bp) and

SE(k
Ry )OO,Q)(P) =K(P;0,Q)  (PeBgw),

K(;
we have
va(E(k)) = Galp) (Q)dAirw(Q) = J ngf)w,g)(Q)dﬂm)(Q)
Ci(Q) Cu(Q)
| K@@ = | K00 Qi (©)
Je, @) (@)
= dNg 1 = NEw),1(Ca(Q))-
Gi(Q)

Hence we see from (1.2) and (1.6) that in the conical case the 1-minimal
thinness at oo with respect to C,(€2) is also equivalent to the minimal thinness
at oo with respect to C,(Q).

In this paper we shall obtain a measure-theoretic property of a-minimally
thin sets at oo with respect to C,(2) (Theorem 3), which extends a result in
Essén, Jackson and Rippon [7] for T, by the way completely different from
theirs. Our proof is essentially based on Hayman [10], USakova [14] and
Azarin [3]. This property follows from the following two results. One is
another characterization of g-minimally thin sets at oo with respect to C,(Q)
(Theorem 1), as Theorem A characterizes minimal thinness. The other is the
fact that the value distribution of Green potential with any positive measure is
connected with a kind of density of the measure (Theorem 2).

In order to avoid complexity of our proofs, we shall assume n > 3. But
our all results in this paper are also true for n = 2. All constants appearing in
the following sections will be always written as A;, 4,... as far as we do not
need to specify them.

2. Statements of results
First of all we shall state

THEOREM 1. Let a be a number satisfying 0 <a <1. A subset E of
C,(Q) is a-minimally thin at oo with respect to C,(Q) if and only if there exists a
positive measure Cg , on C,(Q) such that

(21) GQéE,a(P) ;_—L +00 (P € Cn(‘Q))
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and
E c {P=(r,0) € C\(Q); Galp.o(P) = r™{fa(0)}"}.

REMARK 3. Let 0<a; <a, <1. We see from Theorem 1 that if a
subset £ of C,(Q) is a;-minimally thin at co with respect to C,(Q), then E is
ay-minimally thin at oo with respect to C,(Q).

Let x4 be any positive measure on C,(€2) such that
Gou(P) & +o0 (P e Cy()).
For this x# we define a positive measure m(u) on R” by

tPafo(@)du(t,®) (Q = (1,®) € C,(2;[1, +0)))

dm(p)(Q) {0 (QeR" — Cu(2:[1,+0))).

REMARK 4. We remark that the total mass of m(u) is finite (see
Miyamoto and Yoshida [13, (i) of Lemma 1]).

Let m be any positive measure on R” having the finite total mass. Let ¢
and ¢ be two positive numbers. For each P = (r,0) e R" we set

B(P
M(P;m,q) = sup M’
O<p<2-lr pa

where B(P, p) denotes a ball in R” having a center P and a radius p. The set
{P=(r,0) eR"; M(P;m,q)r?! > ¢} is denoted by ¥ (&;m,q).

RemMARK 5. If m({P}) >0, then M(P;m,q) = +oco. Hence we see
{PeR" m({P}) >0} = S(&:m,q)
for any positive number ¢ and any positive number &.

The following Theorem 2 gives a way to estimate the Green potenial with
a measure.

THEOREM 2. Let u be any positive measure on C,(Q) such that
Gou(P) # +oo  (PeC(Q)).

Let a be a number satisfying 0 < a < 1. Then for a sufficiently large L and a
sufficiently small ¢ >0

{P=(r,0) e C\(Q;(L,+x0)); Gou(P) = r**{fo(0)}'} = F(e;m(pn),n — 1 + a).

As in T, (Essén, Jackson and Rippon [7, Remark]) we shall give a
covering theorem for an g-minimally thin set in C,(Q) by using Theorems 1
and 2.
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THEOREM 3. Let a be a number satisfying 0 < a < 1. If a subset E of
C,(Q) is a-minimally thin at oo with respect to C,(Q), then E is covered by a
sequence of balls B, (k=0,1,2,...) satisfying

0 n—l+a

Tk
E (d) < 400,
k=0 \“k

where ry is the radius of By, and dy is the distance between the origin and the
center of By.

By an example we shall show that the reverse of Theorem 3 is not true.

ExamMPLE. When the radius r; and the distance dj between the origin and
the center of a ball By are given by

3 3
e :zzkkfl/(nfl)7 dk 252/{’

a sequence {By} of these balls satisfies

n—1+a
T _ —(n—1+a)/(n—1)
S(G) = Teree <,

Let C,(Q') be a subcone of C,(R2) i.e. ' = Q. Suppose that those balls are so
located: there is an integer k¢ such that

By < Cn(.Ql), —-— <

for every k > ko. Then the set
E= U::ko By

is not g-minimally thin at oo with respect to C,(£2). This fact will be proved
at the end in this paper.

3. Proof of Theorem 1

LemMmA 1. Let a be a number satisfying 0 <a <1 and k be any non-
negative integer. If E is a subset of C,(Q) and & is a positive measure on C,(Q)
such that

(3.1) Gol(P) = {K(P. o, @)} (PeE(k)),

then

(3.2) Te.a(Cr(Q) < j 9 fo (B)dE(1, B).
C”(Q)

When & = Ag,a the equality holds in (3.2).
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Proor. First of all, we shall prove

(3.3) NE),q(Ca(R)) = JC <9){K(P; 0, 2)}“d2g ) (P).

Since both 7y , and Agy) are concentrated on B and

RE®) «(P) = {K(P; 0, Q)}* (P € Bg),

{K(:00,2)}
we have
E(k)
E0 0 (0)
7] a Cn Q = d77 a :J d” a Q
Ek),a(Cn(2)) JCH(Q) E(k), o) K(0;0,9) E(k),a(Q)
= J (J Ga(P, Q)dAg ) AQ))diE(k)(P)
a@ \Ja(@Q
»E(k
= RE oy (PYAhpuo (P)
Gi(Q)
= {K(P; OO,Q)}adiE(k)(P)
Cu(Q)
We see from (3.1) and (3.3) that
(3:4) NEw),(Ca(Q)) = {K(P; 00,Q)} d g (P) < J Gol(P)d A (P)
C(Q) Gi(Q)

= (J Go(P, Q)d/lg(k)(P)>df(Q)
Ci(Q) C,(Q)

— | REM (040 < J K(Q; 0, 2)dE(0).

C(Q) ()

which gives (3.2).
If &= Zgx),q» the equalities always hold in (3.4), which gives the second
part of Lemma 1.

PrOOF OF THEOREM 1. Suppose that
(3.5)  EcH(Cpa) ={P=(r0)e Ci(Q); Galro(P) = r{/a(0)}"}
for a positive measure &r , on C,(Q) satisfying (2.1). We write
(3.6) Golr.d(P) = F"(P) + BV (P) + 1V (P),

where
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) - | Gal(P. 0)dé.,(0).
Co(€; (0,25 1Y)
HO) - | Gal(P. Q) ,(0)
Cu([24,262))
and
FO(p =J Go(P,0)dér (Q)  (PeCu(Q)ik=1,23,...).
Co(2; 2542, 00))
Now we shall show the existence of an integer N such that
1
(1) Hsa) (0 <{P = (10) < G A 2P > 3 (ful0))?}

for any integer k, kK > N. We set

Jo = sup fo(@).
Oe

Then Jg is finite, because fo =0 on 0Q. First we shall remark that

)}a ie.  fa(0) < Jy {fal0)}" (0€Q).

To estimate Fl(]‘>(P) and F§k)(P) we use the following inequality;

(3.9) Go(P, Q) < Ar*217Pafy(0) fo (D)

for any P = (r,0) € C,(Q) and any Q = (¢, ®) € C,(Q) satisfying 0 < r/t <4/5
and hence 0 < r/t < 1/2 (Azarin [3, Lemma 1], Essén and Lewis [8, Lemma
2]). Then for any P = (r,0) e C,(2; 2%, 2%1)), we have

FY(P) < AyrPofo(6) J 9 fo( @) o1, B)
C (925 (0,2"*]))
and
FO(P) < 41r2/,(6) j dm(Es.).
C (95 [2"*2. 0))

By applying Lemma 1 in Miyamoto and Yoshida [13], we can take an integer
N such that for any k, k> N,

’ 1
27k(9£g+/ju) J Zagfg(é)déE,a(la CD) < )
C’1<Q:(072/c—1)) : 4A1‘]§2 _a)

and
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1
J dm(Ce.a) € ——q-
(2 2442, 0)) 44,7,
Thus we obtain from (3.8) that
(k) L a
(3.10) FOP) < 1ol fa(©))
and
(k) s a
(3.11) F(P) < g1 {/a(0)}

for any P=(r,0)e C,(Q;]2 2%1)), (k>=N). Hence if P=(r,0)e
H(¢g ,)(k) (k= N), then we obtain

1

HOP) 2 P (fo(@)) — 37 (fal®)) = 37 /2(0)}"

from (3.5), (3.10) and (3.11), which gives (3.7).
If we define a function u;(P) on C,(Q) by

w(P) =2 *1-ae p®(py  (Pe C(Q);k=0,1,2,...),
then we have from (3.5) and (3.7)
uk(P) > {K(P; 00, Q)}°
for any Pe E(k) (k> N). Since

u(P) = J Ga(P. 0)d(Q),

Cu(Q)
where
p1-k(=dne gep (Q)  (Q e Co(2;[2571,252)))

0= { 0 (Q € Cu(&:(0,21) U Cu(@: 2572, 0))),

we obtain

Me.a(Ch(Q)) < jc o @)

- zl-’cﬂ-@m{j £ fo( @) o1 cb)} (k= N)
CIX(Q; [2k71’2k+2>>

by applying Lemma 1 to ux(P). Finally we have

Z 27k(uag+ﬁg)’7E(k),a(Cn(Q)) <6-4%

J dm(éE,a)v
k= Ca(2; 2V, 0))
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in which the integral of the right side is finite by Remark 4 and hence E is
a-minimally thin at oo with respect to C,(Q2).
Suppose that a subset E of C,(Q) satisfies

(3.12) Zz K tPaly o o(Ca(Q)) < +o0.
k=0

Consider a function vg ,(P) on C,(Q2) defined by

o0

vpa(P) =y 2k RED L L(P) (P G(Q)),
k=1
where
E(-1)=EN{P=(r,0)e C\(Q);0 <r<1}.
When we put

o0
fg)a _ Z o(k+1-ak)ag B0
k=-1

we have from (1.5) that

vE.a(P) = j Go(P,0)dEY (0)  (Pe ().
Cu(Q)

We shall show that vg ,(P) is always finite on C,(). Take any point
=(r,0) e C,(Q) and a positive integer k(P) satisfying r < 2KP+1 We
represent vg ,(P) as

where

UE a Z k+1-ak)og J o GQ(P, Q)diE(k)a(Q)

k=-1

and

= > e | (P, O)dzp.u(Q)

k=k(P)+2 Gi(Q)

Since Ag),. is concentrated on By = E(k)NC,(Q2), we have from (3.9)
that
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20 | Ga(P. Qdze)4(Q)
Gi(Q)

< Appktl=akae oo 0 (@) J tPofo(P)d g olt, P)
Cu(RQ)

< Ay2%ar10 (@) Kataha) J 0 fo(D) gy ot ) (k= K(P)+2).
Ci(Q)

Hence we know

(2) (P) <A120(Qramfg Z k(aoo+pfo) N (k),a(Cl’l(‘Q))
P

from the second part of Lemma 1. This and (3.12) show that vg)a(P) is finite
and hence vg ,(P) is also finite for any P e C,(Q).
Since

»E(k a
REG) 0o (P) = {K(P; 0, Q)}

on By and By < E(k)N C,(2) (Brelot [4, p. 61] and Doob [6, p. 169]), we
see

—ak)oo pEk o a
(3.13) vpa(P) = 201k REG) L (P) > 1 {fo(6)}
for any P = (r,0) € Bgy) (k= -1,0,1,2,...) and hence for any P = (r,0) €

E’, where
= Uf:_l Bk

Since E’ is equal to E except a polar set S, we can take another posi-

tive superharmonic functlon v( ) ,(P) on C,(R) such that vg) (P) = Ggfg)a(P)

,a
with a positive measure &2 Eoa on C,(Q) and vg)a is identically +o0 on S (see

Doob [6, p. 58]). Finally, define a positive superharmonic function v on C,(Q)
by

o(P) = vg.u(P) + 05 ,(P) = Golp.u(P) (P& ()
with &g, = égy)u +f§_)u. Also we see from (3.13) that

E = {P = (,0) € Cu(Q); Golra(P) = r*{ fa(0)}}.

4. Proof of Theorem 2

To prove Theorem 2, we need the following new type of covering theorem
which is purely measure-theoretical.
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LeMMA 2. Let m be any positive measure on R" having the finite total mass
|lm||. Let ¢ and q be two any positive numbers. Then ¥ (g;m,q) is covered by
a sequence of balls B, (k=1,2,...) satisfying

0 e q
Z d_ < 400,
=0 k

where 1y is the radius of By, and dy is the distance between the origin and the
center of By.

Proor. Put
Fi(esm,q) = L (e;m, q) N E(k) (k=2,3,...).
Let k£ be any positive integer satisfying k > 2. If P = (r,0) € Sx(g;m, q),
then there exists a positive number p(P) (p(P) <27'r) such that
(4.1) {p(P)} < re” ' m(B(P,p(P)) < 24Dz |m].
Since S (e;m,q) has a trivial covering {B(P,p(P)); P € Si(e;m,q)} satistying

sup  p(P) < 20D Ve m|| V9 < 4 oo,
Pet%c(“"””#‘])

by the Besicovitch covering theorem there exists a countable subfamily
{B(Pk.i,p.1)} (Pr.i = p(Pk.i)) which covers ¥(e;m,q) and intersects each
other at most N times, where N depends only on the dimension n. Since
B(P,p(P)NEk+2)=g and B(P,p(P))NE(k—-2)=¢ for any Pe
Fx(e;m,q), we have from (4.1)

621:(|f’l;l,|> Zm (Pr.ispr.i)) < Nm(E(k —1)UE(k)UE(k + 1)).

Thus | J, Sk(e;m,q) is covered by a sequence of balls {B(Pr:,p )}
(k=2,3,4,...;i=1,2,3,...) satisfying

Pk,i 1 _
Z<|P ) < 3N|m||e”!
k,i kl|

Since

S (e;m,q) N{P = (r,0) eR";r = 4} = (J,_, Si(esm, q),
S (e;m,q) is finally covered by a sequence of balls {B(Py,py ;), B(Po,6)}
(k=2,3,4,...;i=1,2,3,...) satisfying

\Y
Z(Ip,’"") < 3N|m|le" + 69 < +oo,
ki MUk
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where B(Py,6) (Py=(1,0,...,0) e R") is the ball which covers {P = (r,0) €
R r < 4}.
Proor oF THEOREM 2. If we can show that
(42) Gou(P) < r*{fa(0)}"  (Pe Col@:(L,+)) — S (em(p).n— 1+ a))

for a sufficiently large L and a sufficiently small ¢, then we can conclude
Theorem 2.
For any point P = (r,0) € C,(Q), write Gou(P) as the sum

(4.3) Gou(P) = I\(P) + L(P) + I (P),
where
Ca(€2;(0, (4/5)1])
L(P) = Go(P, Q)du(0),
Ca(92;((4/5)r,(5/4)1])
L(P) = Go(P, Q)du(Q).
Cu(Q;((5/4)r,+0))

To estimate I;(P) and I3(P), we shall again use (3.9).
We first have

Li(P) < Alr_ﬂQfQ(Q)J 1" fo(®)du(Q)

Ca(2:(0,(4/5)1)

. 4 —(2+fq) .
< Airofo(0)(2r | (79 o @)d( Q).
5 (€0, (4/5)r))

Since

lim R*%WMJ
Rt G(Q:(0,R))

17 o ®)du(1, @) = 0
(Miyamoto and Yoshida [13, Lemma 1]), we see
(4.4) I;(P) = o(1)K(P; 0, Q) (r — +00).

Similarly we have
B(P) < 417 £ul®) | o fo(@)du(0),
Cu(Q;((5/4)r,+0))
and hence

(4.5) L(P) = o()K(P;0,Q)  (r — +o0)
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by Remark 4. Thus we have from (3.8), (4.4) and (4.5) that
(4.6) L(P),I5(P) = o(1)r**{fa(@)}*  (r— o).
To estimate I,(P) we use the following inequality;

f2(0)fo(P)

Go(P,Q) < 4, ;

+ 1 P2 fo (D) Un(P, Q)

for any P = (r,0) € C,(Q2) and any Q = (1,®) € C,(£2; [*r,3r]), where

the AsrtPetlf(0)
P—0|" fo(®) |P=0QI

(Azarin [3, Lemma 4 and Remark]). Then we have

(4.7) L(P) < L. (P)+ La(P),

Uo(P,Q) = min{

for any P = (r,0) € C,(Q) satisfying 2r > 1, where

BA(P) = 427a(6) | 14 dn(12)(Q)
Cu(;((4/5)r,(5/4)r])

and

Ba(P) = | Ua(P, 0)dm(1)(0).

Ca(2;((4/5)r,(5/4)r])
Then from Remark 4 and (3.8) we immediately have
5\*
a8 mar) = (5) arsao) | an(u)(©)
Cu(@2;((4/5)r,(5/4)r])

= o(DK(P;0,Q) = o()r*{ ()} (r — +0).

To estimate 1, »(P), take a sufficiently small positive number # independent
of P such that

s ae ={woec, (@ (3ryr] )00 - o <nf<s(r))

and divide C,(2; (3r,3r]) into two sets A(P) and A'(P), where

A'(P) = C, (Q; Gr,%r]) — A(P).
We set

2)

(4.10) ba(P) = B)(P) + I3 (P),

where
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L(p) = L(P) Ua(P, Qdm(u)(Q),  1A(P) = j Ua(P, Q)dm(1)(0).

4'(P)
For any Q€ 4'(P) we have |P — Q| > rsinn and hence

411) (P < J @M

dm
c@ @y - IP=al )Q)

< Agr™fo(0O) J dm(p)(Q)

Co(2;((4/5)r, )
= o(1)K(P; 0, 2) = o(1)r**{ fo(O)}" (r— 40)
from Remark 4 and (3.8).
M

Now we shall estimate I, ,(P) under the assumption P ¢ .%(e;m(p),
n—1+a) for a positive number ¢. Now put

Di(P)={QeA(P);2"'6(P) <|P- Q| <2'6(P)}  (i=0,%1,42,43,...),
where
o) = inf P~ 0l
Since P ¢ S (g;m(u),n — 1 +a) and hence m(u)({P}) =0 from Remark 5, we
can divide Iz(]%(P) into

(4.12) LBY(P) = Ji(P) + J2(P),
where
=3 JW) UalP, Qum(1(©),  1:P) =3 jm Ua(P, Q)dm(41)(Q).

Since J(Q) + |P — Q| = J(P), we have
Astfo(®) = 6(Q) = 27'5(P)
for any Q = (¢,®) € D;(P) (i=—-1,-2,...) and hence

tPe

———dm
PO (@) (1)(Q)

j Ua(P. Q)dm(1)(Q) < j
Di(P) D
Jm()(B(P,25(P)))

< A62(1+u)ir1+u+ﬁg {fQ(@)} {2’5(P)}n71+a

< A2 £(0)) M (P m()on — 1+ a)
(i=—1,-2,...).
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Since P = (r,0) ¢ S(e;m(u),n — 1+ a), we obtain
(4.13) Ji(P) < Aqer™f5(0).

Next we shall estimate J,(P). We first remark from (4.9) that when we
take a positive integer i(P) satisfying 2/P)~15(P) < r/2 < 2/P)5(P),

DiP)=@  (i=i(P)+1,i(P)+2,..).

Since
rfo(@) < Asd(P) (P = (r,0) € G,(Q)),

we have

tﬂg+l

Jmp) Uo(P, Q)dm(p)(Q) < A31fo(0O) JD,»(P) P_or dm(p)(Q)
—i(1-a) . a+1+B, « m(p)(Di(P))
< Ay2 r {fQ(@)} {2i(5(P)}I1_1+a
(i=0,1,2,...,i(P)).
Here we see

m(p)(Di(P)) _ m(u)(B(P,2'9(P)))
{Zié(P)}n—l+a - {2i5(P)}”_1+“

Sgr_,H_l_a (l':()’]’Z,...,l.(P)—l)

<M(P;m(p),n—1+a)

and

m(u)Dip)(P)) - _ m(©)(A(P)) _  _uii-a

{Zi(P)é(P)}n71+a - (%)n71+a - ’

because P = (r,0) ¢ F(g;m(p),n — 1 +a). Hence we obtain
(4.14) J2(P) < Ayger* { fa(0)}“.

From (4.3), (4.6), (4.7), (4.8), (4.10), (4.11), (4.12), (4.13) and (4.14), we
finally obtain that if L is sufficiently large and ¢ is sufficiently small, then

Gou(P) < r*{fa(@)}*
for any P = (r,0) € C,(Q; (L,40)) — F(¢;m(p),n — 1 + a), which gives (4.2).

5. Proofs of Theorem 3 and Example

ProOOF OF THEOREM 3. Since E is ¢-minimally thin at oo with respect
to C,(Q), by Theorem 1 there exists a positive superharmonic function
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Golp «(P) # +0 (Pe C,(Q)) with a positive measure &g, on C,(Q) such
that

E c{P=(r,0) e C,(Q); Galr o(P) 2 r"*{fa(O)}"}.
Hence by Theorem 2 we have two positive numbers L and & such that
EN Cn(Q§ (La +OO)) < <y(gﬂln(éE,a)an -1 + a)'

Here by Lemma 2, % (e;m(¢g ,),n — 1 4 a) is covered by a sequence of balls By
satisfying

o0 n—1+a
'k
Z(d—) < too
k=1 \%k

and hence E is also covered by a sequence of balls B, (k=0,1,...) with an
additional finite ball By covering C,(2;(0,L]), satisfying

0 n—l4a
Tk
E (d_> < 400,
k=0 \%k

where r; is the radius of By, and dj is the distance between the origin and the
center of By.

PrROOF OF EXAMPLE. Since fo(@) > A for any @ € Q', we have
K(P;0,Q) > Appd)®
for any Pe By (k > ko). Hence we have
(5.1) R o)(P) = And®
for any Pe By (k > ko).
Take a measure 7 on C,(Q), supp T < By, 7(B;) =1 such that

(5.2) j P — 01> "dx(P) = {Cap(Br)} ",
C”(Q)

for any Q e B;, where Cap denotes the Newtonian capacity. Since

Go(P,0)<|P— 0" (PeCyRQ),0e Ci(RQ)),

(Cap(B) " im (Go(@) = | (| 1P - 0 *de(r) )i (0

> J(J Gol(P, 0)di, (Q))df(P)

_ J (RE ., o) (P)AT(P) = Avdi#e(By) = Ao
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from (5.1) and (5.2). Hence we have
(5.3) 25, (Ca(Q)) = A2 Cap(Br)d}® > Apory2d}?,

because Cap(By) = ri2.

Thus from (1.1), (5.1) and (5.3) we obtain

vo(B) = | (Gatw)din = | Rl o(Plia(P)> A

('1 ©
(@) ()

If we observe yo(E(k)) = yo(Bi), then we have

0 o0
Z 27k(ag+ﬂ_q)yg(E(k)) > Aj; Z k=21 — o
k=ko k=ko

from which it follows by (1.2) that E is not minimally thin at oo with respect to
C,(Q). Hence by Remark 3, FE is not ¢-minimally thin at co with respect to
Cu(Q).
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