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ABSTRACT. In this paper we derive error bounds for asymptotic expansions of the
hypergeometric functions Fi(n;n+ b;Z) and Fi(n;n+b;—Z), where Z is a px p
symmetric nonnegative definite matrix. The first result is applied for theoretical ac-
curacy of approximating the moments of A =|S.|/|S, + Si|, where S, and S, are
independently distributed as a noncentral Wishart distribution W,(¢q,2, % 12Qx1/2) and
a central Wishart distribution W, (n, ), respectively. The second result is applied for
theoretical accuracy of approximating the probability density function of the maximum
likelihood estimators of regression coefficients in the growth curve model.

1. Introduction

It is well known that some distributions or moments in multivariate
analysis are expressed in terms of the hypergeometric functions of one matrix
argument and two matrix arguments. For these results, see James (1964),
Muirhead (1982), Mathai, Provost and Hayakawa (1995), etc. These functions
have power series expansions in terms of zonal polynomials. However, such
series generally converge extremely slowly. So, it is important to approximate
these functions. Asymptotic expansions for some types of hypergeometric
functions have been obtained, see, e.g., Muirechead (1970a, 1970b, 1982),
Sugiura and Fujikoshi (1969), Fujikoshi (1970), etc.

In this paper we are interested in theoretical accuracy for asymptotic
expansions of the hypergeometric function |F;. More precisely we derive error
bounds for (i) asymptotic expansions of F(n;n+ b;Z) and (ii) asymptotic
expansions for |Fy(n;n+ b;—Z), where Z is a p x p symmetric nonnegative
definite matrix. It may be noted that our error bounds are expressed in
computable forms. The result for (i) is applied for theoretical accuracy of
approximating the moments of A4 = |S,|/|S. + Si|, where S;, and S, are inde-
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pendently distributed as a noncentral Wishart distribution W, (g, %, X1/2Qx1/?)
and a central Wishart distribution W, (n,2), respectively. The distribution of
A appears as, for example, the one of a likelihood ratio test for testing a linear
hypothesis in a multivariate linear model. The result for (ii) is applied for
theoretical accuracy of approximating the probability density function of the
maximum likelihood estimators of regression coefficients in the growth curve
model. Further, some problems to be solved are also discussed.

2. Hypergeometric functions of matrix argument

The power series expansion for the hypergeometric function ,F; of one
matrix argument is given (Constantine (1963)) by

S)i

,,Fx(al, .. .,a,.;bl, Ce ,bS;Z) = ZZ Ecbli;,‘ ce EZY;K . Czck(|Z) 7 (21)
k=0 K Ko :

where ai,...,a,, by,...,by are real or complex constants, x = {ki,..., k,}
denotes a partition of the integer k such that ki +---+k, =k and
ki >--->k, >0 and C.(Z) is the zonal polynomial of the p x p symmetric
matrix Z corresponding to x. Further,

ﬁ(a _l_l)k/ (x), =x(x+1)...(x+n—1). (2.2)

i=1

[\)

For integer p > 1, the multivariate gamma function I,(a) is defined by

Fp(a):JYOetr( Y)| Y|« gy
>

= PP /4Hr (i—1)/2),

where etr(Z) = exp(tr Z) and the real part of a(= %Z(a)) > (p—1)/2. The
multivariate beta function B,(a,b) is defined by

(@)1 (b)

By(a,b) = I,(a+b)

_ J |Y| (p+1 /2|I Y| (p+1) /2dY
0<Y<l,

where %(a) > (p—1)/2 and #(b) > (p —1)/2. In general, it is said that a
positive definite random matrix S is distributed as a Whishart distribution
W,(n,I,) when the probability density function of S is given by
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etr(—S)|s| "D/,

1
I, (3m)

Similarly, it is said that a random matrix S satisfying 0 < S < I, is distributed
as a multivariate beta distribution f,(a,b) when the density function of S is
given by

1

S a—(p+1)/2 I - S b—(p+1)/2.
a5 s

The hypergeometric function ,F; in (2.1) was originally defined (Herz
(1955)) by using the recurrence relation based on a generalization of Laplace
and inverse Laplace transformations. Some of the the hypergeometric func-
tions have integral representations. The integral representation for | F) is given
by

\Fi(a;b;Z) = By(a,b —a)™" J etr(ZY)
0<Y<I,

x |y PtOR )y et gy, (2.3)
The hypergeometric function |F; satisfies the Kummer formula given by

1F1(Cl;b;Z) :etr(Z)lFl(b—a;b; —Z). (24)

3. Asymptotic expansions and error bounds

First we consider an asymptotic expansion of Fy(3n;3(n+b);Z) when
n is large, where Z is any symmetric matrix. The following method was
proposed by Fujikoshi (1968), Sugiura and Fujikoshi (1969), Fujikoshi (1970),
etc. Note that

1 1
k 2
(n+b),=n 1+2 {2bk+a1(K)}+2n2{k+l2b k(k—1)

+12b(k — Vay (k) — ar (k) + 3ay (k)*} + - - |,

where
D p
ai(k) = Zk“(ka —a), a (i) = Zk%(4kf — 6ok, + 30%).

a=1 a=1

Therefore we can write as
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1 1

Cu(2)
Z (4( n+b) k!

K 2

Z[ ~bk + — {%bzk(m 1) +ba1(,<)} +}

K

1 1

T
[}

Ce(2)
k!

Now we use the following formulas (Fujikoshi (1968), Sugiura and Fujikoshi
(1969), Fujikoshi (1970)) for weighted sums of zonal polynomials.

ZZ!{ Gl _etr (Z)tr Z,

k=0 x

ZZk -1) )—etr( Z)(tr Z)?,
k=0 K

ZZal —etr(Z) tr Z2.
k=0 K

These imply the following asymptotic expansions:
1 1 1
1 Fy 35 (n+b);Z | =ete(Z)[1 + O(n )],
1 1 [ b _2
1Fy 3 2(n+b) =etr(Z) I—ZtrZ+0(n )

— [ b -2
=etr(2) _1 T trZ+ O(n )},

11 [ b 1 (1 5
1 Fy (2 2(n+b) ) =etr(Z) _1 - trZ+ﬁb{§btrZ(trZ+2)—|—trZ }
+O(n3)}

Our interests are to give computable error bounds for the terms O(n~!),
O(n7?), etc. In the following, we consider to derive error bounds for two
asymptotic approximations given by

etr(Z) and etr(Z){l - j)_ b tr Z}. (3.1)
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Our error bounds are obtained for each of two cases Z > 0 and Z < 0. First
we assume that Z > 0, and consider error bounds for the approximations in
(3.1). Using (2.3) we can rewrite as

1 F (ln;l(n + b);Z> = Eyletr(YZ)]

= etr(Z)Esletr(—ZS)], (3.2)

where Y is a random matrix having f,(}n,1b), and

1,1
S = Ip -Y ~ﬂp(2b,2n>
Using (3.2) and

70|x

e =1-e"x

1
— 1 _ _67'923( 2
x—|—2 X°,
we have

Fy Gn; % (n +b); Z) = etr(Z){1 — Es[tr ZSe™" "]}, (3.3)

Fy (%n;%(ﬂ +b); Z) = etr(Z){l — Egtr ZS] + %ES[(tr ZS)ze”Z"ZS]}, (3.4)

where 0 < 0, <1 and 0 < 0, < 1.

LEmMA 3.1. Let S be distributed as a multivariate beta distribution
ﬁp(l—z’,g). Then

Es[(tr 2S)'| = di(b,n; Z2),  i=1,2, (3.5)
where
di(bn; 2) = b tr Z,
n+b
dy(b,n; Z) = % o Zgl()an; "y {(tr 2)* +2tr 2%}
2 b(b—2)

{(tr 2)* —tr Z*}.

3(n+b)(n+b-2)
ProoF. In general, it holds (see, e.g., Muirhead (1982)) that

E8 o

ES[CK(ZS)] = (l (n er))
2 K
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Using C()(Z) = tr Z, we have
ES['[I’ ZS] = Es[C(l)(ZS)]

(30)
27/
=1 ‘w2
(%(”"’_b))(l) w
b
= tr Z.
ntb
Note that there are the following relations (James (1964), Fujikoshi (1970)):
(tr 2)? _1{2 2 Hc(z)(zw
tI'22 212 -1 C(IZ)(Z) ’
Co(2)]_1[1 27 (r2z)?
Cay(Z)| 3|2 2] wz? |

Therefore, we have

Es|(tr ZS)*] = Es[C12)(ZS) + C12)(ZS)]

 (Bh)y (20) 12
(3t b))(z) Col2)+ (3(n+ b))(n)

which is equal to dy(b,n;Z). This completes the proof.

Cuy(Z2)

Using (3.4) and the first formula in Lemma 3.1 we have

2

1 1
1 Fy (En;—(n +b); Z) - etr(Z)‘ = |etr(Z)Es]tr ZSe~ " %5]|

<etr(Z)Es[tr ZS]
=etr(Z)d,(b,n; Z), (3.6)
since [e™ " %S| < 1for0 < S < I. Similarly, from (3.4) and Lemma 3.1 we have
1 1
‘1F1 (511,5(11 + b);Z) —etr(Z){1 —b(n+b)""tr Z}
1

|etr(Z)Es[(tr ZS)Ze—()ztrZS”
< = etr(Z)Es[(tr ZS)?]

etr(Z)ds (b, n: Z). (3.7)

= o) — NI

These imply the following theorem.
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THEOREM 3.1. Let Z be any nonnegative definite matrix. Then

(1) ’lFl(; ;(n+b) )—etr(Z)‘Setr(Z)dl(b,n;Z),

1 Fy (1 n;%(n + b);Z> —etr(Z){1 —b(n+b)"" tr Z}
etr(Z)dy(b,n; Z2),

where di(b,n; Z) and dy(b,n;Z) are given in Lemma 3.1.

Note that the order of d)(bh,n;Z) is O(n~') and the order of d(b,n;Z) is
O(n=2).

Next we consider the case where Z is any negative definite matrix. For
this, we consider | Fj(n;n + b; —Z) where Z is any nonnegative definite matrix.
From (3.2) we have

1 Fy (; ;(n +b); — > = etr(—Z)Eg[etr(ZS)], (3.8)

where S~ f,(5,4). Using

etr(ZS) = 1+ (tr ZS) etr(0, ZS)

=1+trZS+ % (tr ZS)? etr(0,ZS),
we have
I 1
1Fi (2 2 ~(n+b);— > =etr(—Z)Es[l + (tr ZS) etr(6,Z9)], (3.9)

11 (; ;(” +b);— ) =etr(—Z)Es [1 +tr ZS + % (tr ZS)2 etr(6,ZS)|. (3.10)

Therefore, we have

1B <; ;(n +b); = ) - etr(—Z)l <etr(—Z)Eg[(tr ZS) etr(0, ZS)]

<etr(—Z)Es[(tr ZS) etr(2)]
=d\(b,n; Z), (3.11)

since tr 0, ZS <tr Z for 0 < S <1, Similarly we have
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\Fy G" %(n+b) ) —etr(=Z){1 +b(n+b)"'}

<etr(—Z)Eg B (tr ZS)? etr(OQZS)}

<etr(—Z)Es B (tr ZS)? etr(Z)]

:%dz(b,n;Z). (3.12)

These imply the following theorem.

THEOREM 3.2. Let Z be any nonnegative definite matrix. Then

(1) 1Fi <; ;( +b);— )—etr(—Z)’sdl(b,n;Z)7

2)

where di(b,n; Z) and dy(b,n;Z) are given in Lemma 3.1.

1 F (; ;( +b);— ) —etr(—=2Z){1 +b(n+b)*1 w72} < %dz(b,n;z),

4. Applications

Let S, and S, be independently distributed as a noncentral Wishart
distribution W,(g,%,2"?Qx1/?) and a central Wishart distribution W, (n, %),
respectively. Then, the sth moment of A =|S,|/|S.+ Si| can be expressed
(Constantine (1963)) as

o T2+ )T+ 0)/2)
B = e a7t

Bulter and Wood (2002) studied Laplace approximations for (4.1). Using (2.4)
we can write the hypergeometric function in (4.1) as

1 1 1 1 1 1
1F1< 2(n+q) +5; _EQ) :etr(—iQ)lFl (E(n+q),§(n+q)+s,§[2).
Therefore, from Theorem 3.1 we obtain

1 1 1
( s;=(n+q) + —§Q>—I'Sdl(Zs,n—i—q—l—Zs;E.Q), (4.2)

(20

1 1
S,E(n+q)+s,§.(2>. 4.1

l\)

.Q) — {14 2s(n+q+25) " tr Q}’

N |

ldz (25 n+q+ ZS,;.Q) (4.3)
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The results hold for any nonnegative definite matrix 2. Under the assumption
©Q = O(1) it holds that

1 .
d,~<2s,n+q+2s;59>:0(n’), i=1,2.

Let X =@; bxg be the normalized estimator of regression coefficient
matrix in the growth curve model. Then it is known (Gleser and Olkin (1970),
Fujikoshi and Shimizu (1989)) that the probability density function is given by

g2 Lg((m+1)/2) Iy ((m + b)/2)
Ly(m/2)y((m +b+1)/2)

J(X) = (2m)

1 1 1
Here the constants b, g and r are fixed, but m depends on the sample size. It
may be interesting in an asymptotic expansion of the density fuction of X when
m 1is large and its error bound. From Theorem 3.2 it holds that for the
hypergeometric function in (4.4)

(©)

1 1 1, 1,
1F1(§(m+b),§(m+b+r),—§X X)—etr(—EX X)‘

gch(r,m—f—b;%)(’/\’)7 (4.5)

(d) 'lFl G(m+b);%(m+b+r);—%)(’x>

—etr<—;X’X){l +%r(m+b+r)*1 tr X'XH

1 1
< §d2<r,m+b;§X’X>. (4.6)

On the other hand, Fujikoshi and Shimizu (1989) gave an asymptotic
expansion of the probability density function of X given by

f(x) = (2r) ™ etr<—;X’X) : {1 + ﬁ (tr X'X — bg)}.

Integrating f(Y) on the space {yipyi <xy,i=1,...,b,j=1,...,g}, we obtain
an asymptotic expansion of the distribution function of X given by

b g
S P ¢<2><xy>{¢<xl-j>}1] ,

i=1 j=1

F(X) = Fo(X)
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where @ is the distribution function of N(0,1) and Fy(X) = Hf’zl [T, @(xp).
Fujikoshi and Shimizu (1989) obtained error bounds for the approximations
f(X) and F(X) of f(X) and F(X), respectively. Their derivation is based on
that X has a probabilistic structure

X=U-mnw'?p,

where all the elements of the random matrices U; b x g, Vi; b xrand Vy; rx g
are independently distributed as N(0,1), W; r x r is distributed as a central
Wishart distribution W,(m — g,1,), and they are all independent. These results
imply that there exists some bound dj(h,n;Z) in Theorem 3.2 such that

J di(b,n;2)dZ = O(n™"),  i=1,2,
zZ

where jZ denotes the integral over the elements of Z. It is expected to find a
direct method of deriving such an error bound.

Let S be the sample covariance matrix based on a sample of size N =n+ 1
from a p-variate normal population N,(u,2). Then, nS is distributed as a
central Wishart distribution W,(n,%). Let/; >--->/,and 4y >--- >4, >0
be the characteristic roots of S and X, respectively. Then, it is known (see,
e.g., Muirhead (1982)) that

P/ < x) = I((p+1)/2)

n X —1n/2
<X =it pr Dy W/D¥

1 1 1 1
x 1F (En,z(n+p+ 1),f§nx2 >

Therefore, the distribution function of y; = /n/2{/1/21 — 1} is expressed as

P(y; <x) = F]Igﬁ(ﬁ ;B{f}z) |(n/2)D|""?
x 1 (%n;%(n+p+1);—%nD>, 4.7

where D = (14 /2/nx) diag(1,41/22,...,41/4p). It is interesting to find error
bounds for an asymptotic expansion of |Fj(n;n + b;nD). This problem is left
as a future problem.
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