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ABSTRACT. In this paper, we give a formula for the quandle cocycle invariants
associated with the Fox shadow p-coloring of all pretzel links.

1. Introduction

A quandle cocycle invariant of a link L is defined when a quandle 3-
cocycle is fixed. In this paper, we consider a quandle cocycle invariant ¥,(L)
associated with the 3-cocycle 6, of the dihedral quandle of order p founded
by Mochizuki [7], where p is an odd integer. This invariant takes value in
a Laurent polynomial ring Z[T,T~']/(T? —1). It is calculated when L is a
torus knot and p is an odd prime [2], when L is a 2-bridge knot and p is an
odd prime [6], and when L is a 3-braid knot and p =3 [10]. The purpose of
this paper is to calculate the invariants ¥,(L) for all pretzel links. (Asami
[1] calculates quandle cocycle invariants of alternating odd pretzel knots.
However his result (Proposition 4 of [1]) is not correct.)

For integers mj,...,m,, we denote by D(my,...,m,) the diagram shown
in Fig. 1, where m; indicates an m; half twist on the i-th column for each i.
We call such a diagram a pretzel link diagram. A link represented by
D(my,...,my) is called a pretzel link and denoted by P(my,...,m,).
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Fig. 1
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Let p be an odd prime integer. We denote {ie{l,...,n}|m; =0
(mod p)} by I, = I,(my,...,m,). The p-fundamental sequence of (my,...,my,)
is the sequence obtained from (my,...,m,) by dropping all elements that are
not multiples of p, and is denoted by F, = F,(my,...,m,). For example,
F3(4,-6,5,3,-2,0,1) = (=6,3,0). For an element x in Z, (or Z,, resp.), we
denote by X (or x~!, resp.) the multiplicative inverse element of x if there exists.
Put W= + 7 + -+, e Zyand W =my' + - +m;,! € Z, when I, = ¢.

THEOREM 1.1. Let L= P(my,...,my,) be a pretzel link and p be an odd
prime integer. Let (My,..., M;) be the p-fundamental sequence of (my,...,my,),
where [ = |I,|.

(i) If 1>2, then

¥,(L) = p? Z TN /p)si++(Mifp)s}}

s1+e+s =0

where sy,...,s; run over 0,1,... p—1 such that s;+---+s =0 (mod p).
(i) If1=0 and W =0 (mod p) (ie., W is divisible by p), then

p—1

is?

vy(L) = p2 3 TS
s=0

(i) If [ and W are not in the case of (i) nor (ii), then
¥,(L) = P

By Theorem 1.1, we see that the invariant ¥,(L) of a pretzel link L =
P(my,...,my,) does not depend on the order of the sequence (my,...,m,), and
that if />2, then ¥,(L) depends only on the p-fundamental sequence of
(ml,...,m,,).

For a surface link S in R* we denoted by ®,(S) the quandle cocycle
invariant of S (defined in [3]) associated with the 3-cocycle 0,. As a corollary
of Theorem 1.1, we have quandle cocycle invariants of twist-spin of pretzel
links.

COROLLARY 1.2. Let L = P(my,...,my,) be a pretzel link and p be an odd
prime integer. Let r be an even integer and let t"L be an r-twist-spin of L.
Let (M,,..., M) be the p-fundamental sequence of (my,...,my), where | = |I,|.

(i) If 1 =2, then

Gp(c'Ly=p Y T

sp+-485=0

where sy,...,s; run over 0,1,... p—1 such that s;+---+s =0 (mod p).
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(i) If I=0 and W =0 (mod p) (ie., W is divisible by p), then
=l o
D,(t'L) = pz T Wip)s®,
s=0

(i) If [ and W are not in the case of (i) nor (ii), then
D,(t"L) = p.

When r is an odd integer, any diagram of "L has only p trivial p-
colorings, and hence @,(t"L) = p (cf. [9]).

Throughout this paper, by x = y and x =, y, we mean x = y (mod p) and
x =y (mod p?), respectively. Furthermore, for a color a of an arc or a region,
we fix a representative element in Z, and it may be also denoted by the same
symbol a. Some elements in Z,» may be defined by using such representative
elements. For example, 0 =,a’ —a in Lemma 2.1 is an element in Z, such
that 0 =z’ — z, where z and z’ are fixed representative elements in Z of a
and a’, respectively. In §2, we review quandle cocycle invariants. We prove
Theorem 1.1 in §3, and Corollary 1.2 in §4.

2. Quandle cocycle invariants

A quandle cocycle invariant of a link associated with a 3-cocycle f of a
finite quadle Q, which is based on [3, 8], is defined in [4]. When we calculate
it, we need to take account of signs of crossing points. However, when Q is
the dihedral quandle of order p and f is Mochizuki’s 3-cocycle 6,, we do not
need to be careful about this as seen below (cf. [6, 11]).

Let D be a diagram of a link (or a tangle) L, and X' (D) the set of arcs of
D. A map C:X(D)— Z, is a p-coloring of D if C(p;)+ C(u,) =2C(v) at
each crossing x, where u; and p, are under-arcs separated by an over-arc v. A
shadow p-coloring of D extending C is a map C: X(D) — Z,, where X(D) is
the union of X' (D) and the set of regions separated by the underlying immersed
curve of D, satisfying the following conditions: (i) C restricted to X(D) co-
incides with C, and (ii) if 4; and A, are regions separated by an arc u, then
C(h) + C(2) =2C(p). The set of p-colorings (or shadow p-colorings) is
denoted by Col,(D) (or Col,(D)). A p-coloring of D is trivial if the image of
the p-coloring consists of a single element; otherwise non-trivial. A shadow p-
coloring C of D is trivial if C restricted to X (D) is a trivial coloring; otherwise
non-trivial.

Let C be a shadow p-coloring, and at a crossing point x, let a, b, ¢, R and
R’ € Z, be the colors of three arcs and two regions as in Fig. 2. We note that
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s

Fig. 2
P cP — 2P P el — DpP
(R— a)% = (R — c)% €Z,. Thus, we can define the
Boltzmann weight at x by
N Py eP — 2pP
Wy C)=(R-a)" " g,

p
We put W,(C) =3 W,(x; C), where x runs over all crossings of the diagram

D. Consider the state-sum

w,0)= Y T O ez, T)/(T" - 1).

CeCol,(D)

The state-sum ¥,(D) is invariant under Reidemeister moves and does not
depend on a choice of the orientation of L, and hence we may denote it by
¥,(L) (cf. [6, 11]). This is equal to the quandle cocycle invariant associated
with Mochizuki’s 3-cocycle 0,, in the sense of [4].

We need the following lemma and corollary for later calculations.

Lemma 2.1 ([11])). Let D be a tangle diagram and let R, a and a' be the
colors of the region and two arcs in D as in Fig. 3 by a shadow p-coloring C,
where m in Fig. 3 indicates m half twist. Then,

(R—a)a? + (a— R—0)a”
p
N (@a— R+ md)(md+a)’ +(R—a— (m—1)0)(md+a’)’
p

Wp(é) =

)

where 6 =2 a’ — a.
COROLLARY 2.2. In Lemma 2.1, if m is divisible by p, then
—mé*

Wp(é) = »

. D J ? ?
ProOF. Since m is divisible by p, (mo+x)" _ x
p

Therefore, by Lemma 2.1,



Quandle cocycle invariants of pretzel links 357

a a
Z 7
X
m>0m<0

Fig. 3

(R—a)a’ + (a — R —0)a”

wW,(C) = »
. (a— R+md)a? + (R—a— (m—1)0)a”
p
_ mo(a? — a’)
==,
Since m is divisible by p,
Wp(é)zmé(a—a’):—méz. 0
P P

3. Pretzel links

Let L= P(my,...,m,) be a pretzel link and D= D(my,...,m,) be a
pretzel link diagram. Let y;, v; and 4; be the top-, bottom-left arcs and the
left-side region of the i-th column for each i. (Put p, , =y, v,41 = v and
Jny1 = 41.) See Fig. 4. Let (M;,...,M;) be the p-fundamental sequence of
(mi,...,my,).

Lemma 3.1. Let D= D(m,...,m,) be a pretzel link diagram such that
I, # ¢.

Fig. 4
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(i) Any p-coloring C of D satisfies a condition that C(y;) = C(y,) if

i¢ 1,

(i) For ay,...,a; € Ly, there is a unique p-coloring C = C(ay,...,a;) of D
such that C(u,) = a;, where {t1,..., 1} =1,, 11 <--- <1

(iii) Any p-coloring of D is represented as C(ay,...,q;) for some ai,...,
a e’y

(iv) If |I,| =1, Col,(D) consists of trivial colorings.

Proor. Put p,,; = u; and v,.; =v; for each i. We remark that C(v;) =
mi(Cpiyy) — Cw)) + C(wy) and C(vipr) = mi(C(uiy) — C(wy)) + Cpy,y) for
each i. Hence we have C(v;)—C(y;) = C(viy1) — C(pyy) for each i
Therefore

Cn) = Clu) = C(n) = Cpy) = -+ = C(va) = Cu)-

Since I, # ¢, there exists an integer iy €, with m; =0. Since C(v;) =
miy (C(iy41) — C(a,)) + Clay,), we have C(vi,) = C(g;,).  Since C(vi) — (1)
= C(v;,) — C(u,,) for each i, we have C(v;) = C(y;) for any i. Thus, if i ¢ I,
then C(y;) = Cluyy) by C(vi) = mi(Cuypy) — C(py)) + Cpy) and Cvi) =
C(y;). This completes the proof of (i) and (iv) and induces that any p-
coloring is deteremined by the colors of w, ,...,u,. For ay,...,a €Z,, we
can construct a unique p-coloring C = C(ay,...,a;) of D such that C(u,,) = a;
for each i. Concretely, there is a p-coloring C satisfying the following con-
ditions; see Fig. 5:

ay ag a9 as ay aq
My M, Moy,
ay a2 a2 as a; a
Fig. 5

(a) C(u,,) = C(v,) = a; for each i.

(b) If i, <j<7tiy1 (j¢1y), then C(x) =a;yy for any arc x in the i-th
column.

Thus, we have (ii). The statement (iii) follows from the fact that any
p-coloring C’ can be represented as C(C'(u,,),...,C'(u,)). O

When I, # ¢, by Lemma 3.1 (ii), for any ai,...,a; and R € Z,, we see that
there is a unique shadow p-coloring C = C(ai, ..., a;, R) such that Cl|y, = C
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and C(ll) = R for the unbounded region 4;. Any shadow p-coloring is rep-
resented as C(ay,...,a;, R) by Lemma 3.1 (iii).

ProposITION 3.2. Let D =D(my,...,my) be a pretzel link diagram such
that |I,| > 2 and (M\,...,M;) be the p-fundamental sequence of (my,...,my).
Let C=C(ay,...,a;,R). Put s;=2a;,1—a;€ly, for i=1,....1—1 and
s; =ray —a;.  Then,

Mlsl2 +~~+M1s12
» .

Wp(é) =-

Proor. Let X; be the set of crossing points of the i-th column of D for
each i. By Lemma 3.1 (i), if i ¢ I,, then C(1;) = C(ts1), 50 3. Wy(x;C) =

xeX;

0. Thus, by Corollary 2.2, W,(C)= 3. 3 W,(x;C) = 3 3 Wy(x;C) =
] MS i=1 xeX; iel, xeX;

M =y A ]
i=1 p =T

LemmA 3.3, Let D= D(m,...,m,) be a pretzel link diagram such that
I, =¢. Then,

(i) there is a non-trivial p-coloring of D if and only if W =0. If W =0,
then

(i) for ai,bi € Z,, there is a unique p-coloring C = C(ai,by) such that
C(yy) =ay and C(v)) = by,

(i) any p-coloring of D is represented by C(ay,by) for some a; and by.

Proor. Since  C(vi) = mi(C(yipy) — C(y;)) + C(y;)  and  C(viy1) =
m(Clay) = ) + Claty) for each i, we have Cluy)=mmi(C(n)—
Clm)) + C(w) and Cv) = (C(n) = C(m)) + C(v1). In the same way,

) -

we have  Clu)= Clu) +( S5 ) (C(n

- C(y)) and C(v)=C(n)+
<§ Wl]) (C(Vl) - C('ul)) for /;aCh i. In particular: C(lul) = C(ﬂn+l) =

W(Cn) = C(m)) + Cay) and C(v1) = C(vup1) = W(C(n) = C(py)) + Cn).
Thus, there is a p-coloring C if and only if W =0 or C(x;) = C(v;). When
C(uy) = C(v1), C is trivial. When W =0 and C(y) # C(v;), C is non-
trivial. Thus, we have (i). For a;,b; €Z,, we can construct a unique
p-coloring C = C(ay,b;) of D such that C(y;) = a; and C(vl) =b;. Con-

cretely, there is a p-coloring C such that C(u) = a; + ij (by —a;) and
Jj=1
Clvi)=b + Zm, (by —a;). This completes the proof of (ii). The state-

ment (iii) follows from the fact that any p-coloring C’ can be represented as
C(C'(my), C'(v)). O
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When [, = ¢ and W =0, by Lemma 3.3 (ii), for any a;, b; and Re Z,,
we see that there is a unique shadow p-coloring C = C~’(a1,b1,R) such that
é‘ﬂD) =C and C(4) =R for the unbounded region 4;. Any shadow p-
coloring is represented as C(a;,b;, R) by Lemma 3.3 (iii). Proposition 3.4
follows from Lemmas 3.5 and 3.6.

ProproSITION 3.4. Let D= D(my,...,my) be a pretzel link diagram such
that I, =¢ and W =0. Let C = C(ay,bi,R). Then,

. W2
WP(C) = CO )
P
where ¢y =2 by — ay.
For a shadow p-coloring C = C(ay, by, R), let as, ..., a, be the elements in

Z, such that C’(,u,») =a;. Put a,,1 =a;. Let 4; and B; be the elememts in
z, such that

Ai =) (Rl — a,»)af’ + (ai — R,‘ — 5i)afl1
and

Bi =) (ai - Ri + miéi)(miéi + ai)p + (Ri —da; — (mi — 1)5,)(1’}’1,(5, + a,»+1)’7,

where
i—1
5,’ =2diy1 — 4 and Ri EZR + 225]‘,
j=1
for each i. It is seen that ¢y =m0 = - = m,,0,, and C~'(/1,<) = R;, so we will

assume that for each i, R; is given by a representative element in Z for C(J;).
By Lemma 2.1,

~ 1
Wy(C)=—) (4i+B)
plzl

LemMma 3.5.

n

ZAi =) 0.

i=1
Proor. Since ;1 =ra; —a;_; and R; — R;_| =,20;_; for i=2,3,....,n,

we have (R;—a;)+ (ai-.1 — Ri-1 —90i—1) =20 for i=2,3,...,n. Since J, =
ai—a, and R, =R +22j”:11 0;, we have (R;—a))+ (ay—R,—0,) =
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237710, =20. Therefore, ; Ai = (R —ar)al + Y a’{(Ri — a;) + (a;i-1 —

i=2

Riot —0;i1)} + (an — Ry — ,)a =50, 0

LEMmA 3.6.

i B, = ch
i=1

PrROOF. Put mg = m, and dp =J,. Let 5; be the element in Z,> such that
n; =2 mo; —m;_10,—1 for each i. By ¢y =mioy =--- =m,0,, n; is divisible
by p. This induces (m1 + x)’ =, -+ =, (m,d, + x)” for any x e Z,. Thus,
since R, — R;_; =,26;_1 and #; is divisible by p,

n n
Z B; = Z(miéi —mi_10;-1)(md; + a;)"
i—1 p)
= Y _nilco+a)’
p)

=) Z ni(co + ai)
i=1

n

=5 Z(—Wl,&lz)

i=1

Let ¢; be the element in Z, such that {; =co—md; for each i. Then,
3 =5 (co — &)m: L. Since 6, = — (81 +2 + -+ + 1),

n n—1 n—1 i—1
> Bi=2 ) —(mi+my)o; —2m, 3:0;
i=1 i=1 i=2 j=1
n—1
=2 (m; + mn)(mil) ( 2¢0¢;)
i=1
n—1 i—1
—2my, m; ! (cf — (& + &)eo)
i=2 j=1
= —c(my' -y 1 )?)

n—1
+2C02€,<m + my,(m; )—Hnnm1 Z mj1>
i=1

1<j<n,j#i
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n—1
=, —ci(my' + -+ m L )m, W + 2¢o Z Em; \m, W
i—1

n—1
= —cé(W - m;l)mnW+ 2¢q Zfim;lmn w.

i=1

Since &; and W are divisible by p,

n
> Bi=—cy(m, Yym,W = W O
i=1

ProoFr oF THEOREM 1.1. (i) and (ii) follows from Propositions 3.2 and 3.4,
respectively. For the remaining cases, all colorings are trivial by Lemmas 3.1
(iv) and 3.3 (i). Thus, we have (iii). O

4. Twist-spin of pretzel links

PrOOF OF COROLLARY 1.2. Asami and Satoh [2] defined a quandle cocycle
invariant ¥ (L) of a link L with a base point and proved that if r is even,
Dy(v'L) = ¥, (L)|r_ 7 It is shown in [12] that ¥,(L) = p¥, (L), and hence

Y (L) = p~'¥,(L). Thus, Corollary 1.2 is obtained from Theorem 1.1. [J

ReMARK 4.1. For an n-component link L, there are n r-twist-spins of L.
They need not to be equivalent to each other, but quandle cocycle invariants
of them are the same by Corollary 1.2. For example, for a 2-component
pretzel link L = P(2,3,6m), there are two 2-twist-spins of L. One is a union
of 2-twist-spin of a trefoil and an unknotted torus, and the other is a union of
an unknotted 2-sphere and a knotted torus. Thus, they are not equivalent.
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