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Abstract. The classical Hardy theorem on R was generalized by Miyachi [10] and

Bonami, Demange, and Jaming [2]. In this paper we show that Miyachi’s theorem and

Bonami-Demange-Jaming’ one can be reformulated for the Jacobi transform in terms of

the heat kernel.

1. Introduction

For f A L1ðRÞ we define the Fourier transform ~ff ðlÞ, l A R, of f by

~ff ðlÞ ¼
ðy
�y

f ðxÞe�ilx dx:

Let us take two positive numbers a, b which satisfy the relation ab ¼ 1=4.

Miyachi’s theorem in [10] states that if f A L1ðRÞ satisfies

eax
2

f ðxÞ A L1ðRÞ þ LyðRÞ

and ðþy

�y
logþ

j ~ff ðlÞebl2 j
C

dl < y

for some C > 0, then f is a constant multiple of e�ax2
, where L1ðRÞ þ LyðRÞ

is the set of functions of the form f ¼ f1 þ f2, f1 A L1ðRÞ, f2 A LyðRÞ, and

logþ x ¼ log x if x > 1 and logþ x ¼ 0 if xa 1. On the other hand, one

dimendional case of Bonami-Demange-Jaming’s theorem in [2] states that

f A L2ðRÞ satisfies ðy
�y

ðy
�y

j f ðxÞj j ~ff ðyÞj
ð1þ jxj þ jyjÞN

ejxyj dxdy < y

for some Nb 0 if and only if f is written as f ðxÞ ¼ PðxÞe�ax2

, where P is a

polynomial of degree < ðN � 1Þ=2. Both theorems are generalizations of the

2000 Mathematics Subject Classification. Primary 33C45; Secondary 43A90, 22E30.

Key words and phrases. Uncertainly principle, Jacobi analysis, heat kernel.



classical Hardy theorem and the Cowling-Price theorem which is an Lp version

of the classical Hardy one (see [5] and [3]).

Recently, Hardy’s theorem on Lie groups has been investigated by various

people. As remarked by V. S. Varadarajan some years ago, Hardy’s theorem

can be written in terms of the heat kernel of the Laplacian on the groups.

Then, considerable attention has been paid to discover a connection between

the heat kernel and analogues of Hardy’s theorem and Cowling-Price’s theorem

on Lie groups. For this subject we refer to [11], [12], [13], and [14].

Moreover, N. B. Andersen [1] and the second auther of this article and J. Liu

[6] obtained independently an analogue of Hardy’s theorem and its Lp version

for the Jacobi transform. The aim of this article is to show that the above two

theorems can be restated for the Jacobi transform in terms of the heat kernel.

2. Notations

We collect relevant material from the harmonic analysis associated with

the Jacobi transform. General references for this section are [4], [7] and [8].

For a; b; l A C and x A Rþ ¼ ½0;yÞ, the Jacobi function flðxÞ of order ða; bÞ,
a0�1;�2; . . . , is the unique solution on Rþ of the di¤erential equation:

La;bu ¼ �ðl2 þ r2Þu; uð0Þ ¼ 1; and u 0ð0Þ ¼ 0;

where r ¼ aþ b þ 1 and

La;b ¼
d 2

dx2
þ ðð2aþ 1Þ coth xþ ð2b þ 1Þ tanh xÞ d

dx
:

In the following we suppose that ab bb�1=2. Then flðxÞ is estimated as

jflðxÞja
1 if j=lja r;

eðj=lj�rÞx if j=lj > r;

fi=lðxÞ

8><
>: ð1Þ

for all x A Rþ (see [4, Lemma 11]). For a compactly supported Cy function f

on Rþ the Jacobi transform f̂f ðlÞ, l A C, of f is given by

f̂f ðlÞ ¼
ðy
0

f ðxÞflðxÞDa;bðxÞdx; ð2Þ

where Da;bðxÞ ¼ ð2 sinh xÞ2aþ1ð2 cosh xÞ2bþ1. We recall that for all l A C,

ðLa;b f Þ5ðlÞ ¼ �ðl2 þ r2Þ f̂f ðlÞ: ð3Þ

The Abel transform Ff ðxÞ, x A Rþ, of f is given as
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Ff ðxÞ ¼
ðy
x

f ðsÞAðx; sÞds; xb 0; ð4Þ

where Aðx; sÞ is positive, even with respect to x and moreover, it satisfies

Da;bðsÞflðsÞ ¼ c

ð s
0

cosðlxÞAðx; sÞdx; sb 0: ð5Þ

We refer to [7, (2.16), (3.5)] for the explicit form of Aðx; sÞ. We recall that

f̂f ðlÞ ¼ ~FFf ðlÞ; l A C; ð6Þ

where f and Ff are regarded as even functions on R and the right hand side
~FFf denotes the Euclidean Fourier transform of Ff . We note that the

Jacobi transform is extended to functions for which the right hand side of (2)

is well-defined. For example, if f A L1ðRþ;Da;bðxÞdxÞ, then f̂f ðlÞ, l A R,

is well-defined and it has a holomorphic extension on the tube domain

j=lj < r (see (1)). Also the relations (3) and (6) hold for j=lj < r. Moreover,

the map f ! f̂f extends to an isometry between L2ðRþ;Da;bðxÞdxÞ and

L2ðRþ; jCa;bðlÞj�2
dlÞ, where Ca;bðlÞ denotes the Harish-Chandra C-function

(cf. [7, (2.6)]).

For t > 0 let htðxÞ, x A R, denote the heat kernel associated to La;b, that is,

the even Cy function on R such that

ĥhtðlÞ ¼ e�tðl2þr2Þ; l A R: ð7Þ

We recall that

htðxÞ@ t�a�1er
2te�rx�x2=4tð1þ tþ xÞa�1=2ð1þ xÞ; xb 0; ð8Þ

where ‘‘@’’ means that the ratio of the left side and the right side is bounded

below and above by positive constants (see [9, Corollary 1], cf. [6, Theorem

3.1]). Hence (8) and (1) imply that ĥhtðlÞ is entire and (7) holds for l A C.

3. Miyachi’s theorem

We shall obtain an extension of Miyachi’s theorem for the Jacobi

transform. We put

dax ¼ ðtanh xÞ2aþ1ð1þ xÞaþ1=2
dx on Rþ

and

LyðRþÞ þ L1ðRþ; daxÞ ¼ f f1 þ f2; f1 A LyðRþÞ; f2 A L1ðRþ; daxÞg:

Theorem 3.1. Let us take positive constants a, b which satisfy ab ¼ 1=4.

Suppose f is a measurable function on Rþ satisfying

333Hardy’s theorem for the Jacobi transform



ðAÞ: f ðxÞh�1
1=4aðxÞ A LyðRþÞ þ L1ðRþ; daxÞ

ðBÞ:
ðy
�y

logþ
j f̂f ðlÞebl2 j

C
dl < y for some 0 < C < y:

Then f is a constant multiple of h1=4a.

Proof. The first condition (A) implies that f h�1
1=4a ¼ uþ v, where

u A LyðRþÞ and v A L1ðRþ; daxÞ and hence, f ¼ h1=4auþ h1=4av. As for the

first term, it follows from (1) that for all l ¼ xþ ih A C,

jðh1=4auÞ5ðlÞja kuky
ðy
0

h1=4aðxÞfihðxÞDa;bðxÞdx

¼ cĥh1=4aðihÞ ¼ cebh
2

:

As for the second term, it follows from (1) and (7) that, if jhj > r, then

jðh1=4avÞ5ðlÞj

a c

ðy
0

jvðxÞje�rx�ax2ð1þ xÞa�1=2ð1þ xÞeðjhj�rÞxDa;bðxÞdx

a c

ðy
0

jvðxÞjðtanh xÞ2aþ1ð1þ xÞaþ1=2
e�aðx�jhj=2aÞ2 dx � eh2=4a

a ckvkL1ðRþ;daxÞe
bh2

and, if jhja r, since e�ax2
a ce�rx for xb 0, it follows that

jðh1=4avÞ5ðlÞja ckvkL1ðRþ;daxÞ a cebh
2

:

Hence, f̂f ðlÞ is entire and it satisfies j f̂f ðlÞja cebh
2

for all l A C and (B). We

here recall the lemma which is used in the proof of Miyachi’s theorem (see [10,

Lemma 4]):

Lemma 3.2. Suppose FðlÞ is an entire function and there exist constant

A;B > 0 such that

jF ðlÞjaAeBð<lÞ
2

and

ðy
�y

logþjFðlÞjdl < y:

Then F is a constant function.

Therefore, applying this lemma to f̂f ðlÞe�bl2=C, we see that f̂f ðlÞ ¼ ce�bl2

and thus, f ðxÞ ¼ ch1=4aðxÞ. 9

334 R. Daher and T. Kawazoe



4. Bonami-Demange-Jaming’s theorem

We shall obtain an extension of Bonami-Demange-Jaming’s theorem for

the Jacobi transform.

Theorem 4.1. Let us take a function f A L2ðRþ;Da;bðxÞdxÞ and a non-

negative integer N. Then the inequality

ðAÞ
ðy
0

ðy
0

j f ðxÞj j f̂f ðlÞj
ð1þ lÞN

filðxÞDa;bðxÞdxdl < y

holds if and only if f can be written as

ðBÞ f ðxÞ ¼ PðLa;bÞhaðxÞ;

where a > 0 and P is a polynomial of deg P < ðN � 1Þ=4.

Proof. First we shall prove that ðAÞ implies ðBÞ by reducing the case to

the original Bonami-Demange-Jaming theorem on R. Since f̂f ðlÞ ¼ ~FFf ðlÞ (see

(6)), it follows from (4), (5) and ðAÞ that

ðy
0

ðy
0

jFf ðxÞj j ~FFf ðlÞj
ð1þ xþ lÞN

exl dxdl

a

ðy
0

ðy
0

j f ðsÞj j f̂f ðlÞj
ð s
0

Aðx; sÞexl

ð1þ xþ lÞN
dx

 !
dsdl

a 2

ðy
0

ðy
0

j f ðsÞj j f̂f ðlÞj
ð1þ lÞN

ð s
0

Aðx; sÞ cosðixlÞdx
� �

dsdl

¼ 2c

ðy
0

ðy
0

j f ðsÞj j f̂f ðlÞj
ð1þ lÞN

filðsÞDa;bðsÞdsdl < y:

As in the first step of the proof of Proposition 2.2 in [2], Ff belongs to

L1ðRþÞ. Hence f̂f ¼ ~FFf is bounded on R. Since ~FFf A L2ðRþ; jCa;bðlÞj�2
dlÞ

and jCa;bðlÞj�2 is polynomial growth of order aþ 1=2, it easily follows that
~FFf A L2ðRÞ and thus, Ff A L2ðRÞ as an even function on R. Then Ff satisfies

the condition of Theorem 1.1 in [2], which yields that

~FFf ðlÞ ¼ QðlÞe�al2

;

where a > 0 and Q is an even polynomial of degree < ðN � 1Þ=2. Since Q is

even, this relation can be rewritten as

~FFf ðlÞ ¼ Pð�ðl2 þ r2ÞÞe�aðl2þr2Þ;
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where P is a polynomial of deg P < ðN � 1Þ=4. Since the map f ! ~FFf is

bijectiove on L2ðRþ;Da;bðxÞdxÞ, it easily follows from (3) that f ðxÞ ¼
PðLa;bÞhaðxÞ.

Next we suppose that f ðxÞ ¼ PðLa;bÞhaðxÞ, where a > 0 and P is a

polynomial of deg P < ðN � 1Þ=4. Then, f̂f ðlÞ ¼ ~FFf ðlÞ is of the form

QðlÞe�al2 , where Q is an even polynomial of degree < ðN � 1Þ=2. We note

that, if f b 0, then

ðy
0

ðy
0

j f ðxÞj j f̂f ðlÞj
ð1þ lÞN

filðxÞDa;bðxÞdxdl

¼
ðy
0

f̂f ðilÞj f̂f ðlÞj
ð1þ lÞN

dl ¼
ðy
0

QðilÞjQðlÞj
ð1þ lÞN

dl < y:

We recall that for xb 0, f ðxÞ ¼ PðLa;bÞhaðxÞ@UðxÞha, where UðxÞ is a

polynomial of degree d ¼ 2 deg P, because ha ¼ ha;b
a is defined by ha;b

a @
W 2

�b�1=2W
1
�aþbðe�x2=4aÞ as a function of x (cf. [6, § 3]) and thus, dha;b

a =dx ¼
sinhð2xÞW 2

�1ðha;b
a Þ@ sinhð2xÞhbþ1;aþ1

a @ xha;b
a (see (8)). Here we may suppose

that the coe‰cient of xd is positive. Since there exists a positive constant c

such that haðxÞb cð1þ xÞaþ1=2
e�x2=4a�rx b ce�x2=4a�rx for xb 0 (see (8)), there

exists a positive constant A such that f ðxÞ þ AhaðxÞb 0 for xb 0. Hence,

j f ðxÞj ¼ j f ðxÞ þ AhaðxÞ � AhaðxÞja f ðxÞ þ 2AhaðxÞ. Then, replacing j f ðxÞj
with f ðxÞ þ 2AhaðxÞb 0, that is, QðilÞ with QðilÞ þ 2Ae�ar2

in the above

calculation, we have the desired result. 9

As an easy consequence of Theorem 4.1, we can deduce the Beurling

theorem for the Jacobi transform.

Theorem 4.2. Suppose that f A L1ðRþ;Da;bðxÞdxÞ satisifesðy
0

ðy
0

j f ðxÞj j f̂f ðlÞjfilðxÞDa;bðxÞdxdl < y:

Then f ¼ 0.

Added in proof. After we have accomplished this paper, we were informed

that R. P. Sarkar and J. Sengupta also investigated a generalization of

Beurling’s theorem in the paper titled Beurling’s theorem for Riemaniann

symmetric spaces of noncompact type.
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Université Hassan II

B.P. 5366 Maarif, Casablanca

Morocco

Takeshi Kawazoe

Department of Mathematics

Keio University at Fujisawa

Endo, Fujisawa, Kanagawa 252-8520

Japan

337Hardy’s theorem for the Jacobi transform


