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Generalized Hardy’s theorem for the Jacobi transform
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ABSTRACT. The classical Hardy theorem on R was generalized by Miyachi [10] and
Bonami, Demange, and Jaming [2]. In this paper we show that Miyachi’s theorem and
Bonami-Demange-Jaming’ one can be reformulated for the Jacobi transform in terms of
the heat kernel.

1. Introduction

For f e L'(R) we define the Fourier transform f(.), A€ R, of f by

o0

Fo =] e ax
Let us take two positive numbers a, b which satisfy the relation ab = 1/4.
Miyachi’s theorem in [10] states that if /e L'(R) satisfies

e f(x) e L'(R) + L*(R)
and

+00 7 bi?
J log* 7|f(iée | di < oo
— 00

for some C > 0, then f is a constant multiple of e~ where L'(R) 4+ L*(R)
is the set of functions of the form f = f; + f5, fi € L'(R), f, € L*(R), and
log" x=1logx if x>1 and logh x=0 if x<1. On the other hand, one
dimendional case of Bonami-Demange-Jaming’s theorem in [2] states that
f e L*(R) satisfies

J J ‘f(x” |f(y)|Ne|xy\ dxdy < o0

e (T 1)

for some N > 0 if and only if / is written as f(x) = P(x)e~®", where P is a
polynomial of degree < (N —1)/2. Both theorems are generalizations of the
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classical Hardy theorem and the Cowling-Price theorem which is an L’ version
of the classical Hardy one (see [5] and [3]).

Recently, Hardy’s theorem on Lie groups has been investigated by various
people. As remarked by V. S. Varadarajan some years ago, Hardy’s theorem
can be written in terms of the heat kernel of the Laplacian on the groups.
Then, considerable attention has been paid to discover a connection between
the heat kernel and analogues of Hardy’s theorem and Cowling-Price’s theorem
on Lie groups. For this subject we refer to [11], [12], [13], and [14].
Moreover, N. B. Andersen [1] and the second auther of this article and J. Liu
[6] obtained independently an analogue of Hardy’s theorem and its L” version
for the Jacobi transform. The aim of this article is to show that the above two
theorems can be restated for the Jacobi transform in terms of the heat kernel.

2. Notations

We collect relevant material from the harmonic analysis associated with
the Jacobi transform. General references for this section are [4], [7] and [8].
For o,f,A€C and xe R = [0, o0), the Jacobi function ¢,(x) of order (o, f),
o# —1,-2,..., is the unique solution on R, of the differential equation:

Lygu=—(A*4p"u,  u(0)=1, and u'(0) =0,
where p=o+f+1 and
2

d
Lyp= @—i— ((20 + 1) coth x + (2 + 1) tanh x)—x.

In the following we suppose that « > ff > —1/2. Then ¢,(x) is estimated as

1 if |S4] < p,
¢, (x)| < Q el3H=7x if 4] > p, (1)
Pisi (%)

for all x e R, (see [4, Lemma 11]). For a compactly supported C* function f
on R, the Jacobi transform f (1), 1€ C, of f is given by

F@) = | S8, g0, @)
where 4, g(x) = (2 sinh x) (2 cosh x)#™ . We recall that for all /e C,
(Lop /)" (1) = (2% + p*) [ (2). 3)

The Abel transform Fr(x), xeR,, of f is given as
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Fy(x) = jw S A s)ds, x>0, )

where A(x,s) is positive, even with respect to x and moreover, it satisfies

Ay p(8)9,(s) = CJ: cos(Ax)A(x, s)dx, s> 0. (5)

We refer to [7, (2.16), (3.5)] for the explicit form of A(x,s). We recall that
f@)=F@),  ieC (6)

where f and Fr are regarded as even functions on R and the right hand side
F; denotes the Euclidean Fourier transform of Fy;. We note that the
Jacobi transform is extended to functions for which the right hand side of (2)
is well-defined. For example, if f e L'(R;,4,4(x)dx), then (1), AeR,
is well-defined and it has a holomorphic extension on the tube domain
|SA| < p (see (1)). Also the relations (3) and (6) hold for |34 < p. Moreover,
the map [ — f extends to an isometry between L?(R.,4, 3(x)dx) and
LZ(R+,\C1_ﬁ(/1)|72d/1), where C, p(A) denotes the Harish-Chandra C-function
(cf. [7, (2.6))).

For ¢ > 0 let /,(x), x € R, denote the heat kernel associated to L, p, that is,
the even C® function on R such that

h(2) = e @7 jeR. (7)
We recall that
h,(x) ~ t—oc—leplte—px—xl/élt(l 4 x)“71/2(1 + x), x>0, (8)

where “~”” means that the ratio of the left side and the right side is bounded
below and above by positive constants (see [9, Corollary 1], cf. [6, Theorem
3.1]). Hence (8) and (1) imply that /,(4) is entire and (7) holds for 1€ C.

3. Miyachi’s theorem

We shall obtain an extension of Miyachi’s theorem for the Jacobi
transform. We put

d,x = (tanh x)*"' (1 4+ x)*2dx  on R,
and
L*(Ry) + L' (Ry,d,x) = {fi + f: /i e L”(Ry), fr € L' (R4, d,x)}.

THEOREM 3.1. Let us take positive constants a, b which satisfy ab =1/4.
Suppose f is a measurable function on R, satisfying
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(A): f(x)hify,(x) € L (Ry) + L' (R, dx)

© F( D) eb?
(B): J log+% di. <o  for some 0 < C < o0.

—o0
Then f is a constant multiple of hy 4.

Proor. The first condition (A) implies that fhl’/lé‘a =u+v, where
ue L*(R,) and ve L'(R,,d,x) and hence, S = hjaqtt + hyjaqv. As for the
first term, it follows from (1) that for all 1 =¢+in e C,

A

(U jaatt) ()] < ], j Iy a0 () () A ()l

= citl/4a(i;1) = ce’.

As for the second term, it follows from (1) and (7) that, if |#| > p, then
| (1 4a0) " (2)]

o0
< | Pl (107 (1 ) )
0

o0
< CJ |U(x)|(tanh x)201+] (1 + X) C<+l/2€7a(x7\r]\/2u)2 dX ) 6);7-/40
0

b 2
<clvllpr,,a0e™

and, if |y| < p, since e " < ce ™ for x > 0, it follows that

2
(71 4a0) " (A)] < elloll iR, g < ce”.
Hence, f(/) is entire and it satisfies [f(2)| < ce”’ for all 1€ C and (B). We
here recall the lemma which is used in the proof of Miyachi’s theorem (see [10,
Lemma 4]):

LEmMA 3.2. Suppose F(A) is an entire function and there exist constant
A, B >0 such that

' logt|F(A)|di < oo.

— 0

IF(3)| < 4P’ and J

Then F is a constant function.

12

Therefore, applying this lemma to f (/l)e‘Mz /C, we see that f(1) = ce
and thus, f(x) = chyjg.(x). W
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4. Bonami-Demange-Jaming’s theorem

We shall obtain an extension of Bonami-Demange-Jaming’s theorem for
the Jacobi transform.

THEOREM 4.1. Let us take a function f e L*>(Ry, A4, 3(x)dx) and a non-
negative integer N. Then the inequality

S
(A) L L e i (x) Ay p(X)dxd ). < o0

holds if and only if f can be written as
(B)  f(x) = P(La.p)ha(x),
where a >0 and P is a polynomial of deg P < (N —1)/4.

Proor. First we shall prove that (A) implies (B) by reducing the case to
the original Bonami-Demange-Jaming theorem on R. Since f(1) = Fy(1) (see
(6)), it follows from (4), (5) and (A) that

J‘ J |F}ﬁ(x)| |P}r(/;3[| ex/l dxd)
0 Jo (14+x+2)

J:]Lf|fxsn|fiz>|(j;zfigéégﬁggﬁ.dx>zkdi

IA

/&)1 ()] :
SZL Jo L (LA(x,s) cos(le)dx)dsdxl
_ /() 1/ (A)]
~ 2 L JO L a0 o)t < o

As in the first step of the proof of Proposition 2.2 in [2], F; belongs to

L'(R,). Hence f =F; is bounded on R. Since Fye L*(Ry,|C,s(2)| >d2)
and |C, 4(/ )| is polynomial growth of order o+ 1/2, it easily follows that
F; € L*(R) and thus, Fy € L*(R) as an even function on R. Then F; satisfies
the condition of Theorem 1.1 in [2], which yields that

Fy(2) = 0(2)e™ ",

where @ > 0 and Q is an even polynomial of degree < (N —1)/2. Since Q is
even, this relation can be rewritten as

Fr(2) = P(—(22 4 p2))e @7,
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where P is a polynomial of deg P < (N —1)/4. Since the map f — F; is
bijectiove on L?*(R., 4, p(x)dx), it easily follows from (3) that f(x)=
P(L ().

Next we suppose that f(x) = P(Lyp)h.(x), where a >0 and P is a
polynomial of deg P < (N —1)/4. Then, f(1) =F;(2) is of the form
Q(A)e‘“’lz, where Q is an even polynomial of degree < (N —1)/2. We note
that, if f > 0, then

Jo Jo Il )|¢12(X)Amﬂ(x)dxdi

(1+ )Y
_[LaL [ ey,
o (1+ )Y o (1+Y

We recall that for x>0, f(x)= P(Lyp)hsx)~ U(x)h,, where U(x) is a
polynomial of degree d =2 deg P, because h, =h*# is defined by h*# ~
W2, W, (e e™’/%) as a function of x (cf. [6, §3]) and thus, dh®’/dx =
smh(2x) W2 (h2F) ~ smh(Zx)hﬁ+1 “+1 ~ xh*# (see (8)). Here we may suppose
that the coefficient of x? is positive. Since there exists a positive constant ¢
such that h,(x) > ¢(1 4 x)*"/2e=>"/4a=px > ce=>*/4a=px for x > 0 (see (8)), there
exists a positive constant 4 such that f(x)+ 4h,(x) >0 for x > 0. Hence,
|f(x)| = |f(x) + Aha(x) — Aha(x)| < f(x) +2A4h.(x). Then, replacing |f(x)]
with f(x) +24h,(x) > 0, that is, Q(iA) with Q(il) 4+ 24e %’ in the above
calculation, we have the desired result. H

As an easy consequence of Theorem 4.1, we can deduce the Beurling
theorem for the Jacobi transform.

THEOREM 4.2. Suppose that [ e L'(R., 4, p(x)dx) satisifes

[ @I dpiasdr < .

o Jo
Then f =0.

Added in proof. After we have accomplished this paper, we were informed
that R. P. Sarkar and J. Sengupta also investigated a generalization of

Beurling’s theorem in the paper titled Beurling’s theorem for Riemaniann
symmetric spaces of noncompact type.
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