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ABSTRACT. Let G be a finite group. We show that for a fixed n > 1 the set of
homotopy types of orbit spaces of all free G-actions on homotopy (2n — 1)-spheres is
finite and bounded by the order of some quotient group associated with G. In
particular, we deduce that there are at most two homotopy types of lens spaces de-
termined by all free Z/p™-actions on homotopy 3-spheres when p is an odd prime, and
only one homotopy type of those spaces provided that 4 f p — 1. There is also only one
homotopy type of lens spaces of dimension 2n — 1 determined by all Z/2"-free actions
provided that n is odd.

Introduction

A finite group has the periodic homology if it acts freely on a finite
homology sphere [1, Chap. III] and [3, 4]. On the other hand, Swan [10]
showed that any finite group with periodic homology of period / acts freely on
a finite CW complex of the homotopy type of an (n/ — 1)-sphere for some
positive integer n. This CW complex may not have the homotopy type of a
closed manifold. The symmetric group S3 has a periodic homology but does
not act freely on any manifold which has the homotopy type of a sphere due to
the result of Milnor [8]: Every element of order two must be in the center.

The study of free actions of a group on homotopy spheres is related to the
study of their orbit spaces. In the case of the cyclic group Z/2 of order two,
the orbit space has the homotopy type of the real projective space and the
problem of classifying manifolds of this homotopy type has been studied
extensively in [7, 11]. An old result of homotopy type theory (see e.g. [9]) says
that, up to homotopy, the set of lens spaces exhausts all the homotopy types of
orbit spaces of free actions of the cyclic group Z/m of order m on homotopy
(2n — 1)-spheres. Thus the classification of all the Z/m-actions on those
homotopy spheres is equivalent to the classification of manifolds of the
homotopy type of lens spaces studied by Browder in [2]. The set of homotopy
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types of lens spaces is evidently finite and their homotopy classification has
been presented in [5, 9]. The main purpose of this paper is to present in
Corollary 1.3 a proof of the following result to estimate the number of
homotopy types of the orbit spaces.

Let G be a finite group with H*'(G;Z) = Z./|G| for a fixed n > 1, where |G|
is the order of the group G. Then the set of homotopy types of orbit spaces of
all free G-actions on all homotopy (2n — 1)-spheres is finite and bounded by the
order of the quotient group Aut(Z/|G|)/{+¢*;p € Aut G} of the automorphism
group AUt(Z/|G|), where ¢* is the induced automorphism on the cohomology
H>(G;Z) = 1/|G| by ¢ in the automorphism group Aut G.

In particular, under some assumptions on n and m, we calculate in
Corollary 2.3 the number of homotopy types of lens spaces given by free Z/p"'-
actions on homotopy (2n — 1)-spheres and we estimate in Corollary 2.5 the
number of homotopy types of orbit spaces given by free actions of the
generalized quaternion group Q,.+> on homotopy (4n — 1)-spheres.

The paper is divided into two sections. In §1 we use tom Dieck’s theorem
[6, p. 126] to prove our main result. Then in Proposition 1.5 we deduce that
the group of homotopy classes of homotopy equivalences of the orbit space of
a free G-action on a homotopy sphere is isomorphic to the subgroup of Aut G
which consists of all the automorphisms ¢ with ¢* = +1 (mod|G|) provided
that |G| > 2.

In §2 we examine the quotient group Aut(Z/|G|)/{+¢*;p € Aut G} for a
cyclic group G of finite order. In particular, there are at most two homotopy
types of lens spaces determined by all the free Z/p™-actions on homotopy 3-
spheres when p is an odd prime, and only one homotopy type of those spaces
provided that 4 ¥ p — 1. There is also only one homotopy type of lens spaces
of dimension 2n — 1, determined by all the Z/2"-free actions provided that » is
odd. We prove that the number of homotopy types of the orbit spaces of
free actions of the quaternion group Qg on homotopy 3-spheres is bounded by 2.

At the end, we deal with the group of homotopy types of self-homotopy
equivalences of a lens space given by a free Z/p-action on a homotopy
(2n — 1)-sphere, provided that p is a prime.

The authors are extremely grateful to the referee for carefully reading the
original manuscript and his many valuable suggestions. The first author
acknowledges the Sao Paulo University hospitality and the FAPESP-Sdo Paulo
(Brasil) financial support during his visit when the work has been done.

1. Main result

An n-dimensional CW complex X with the homotopy type of an n-sphere
S™ is called a homotopy n-sphere. An orientation for X consists of a choice of



Homotopy spherical space forms—a numerical bound for homotopy types 109

a generator z(X) in the cohomology group H"(X;Z)=Z. Suppose that a
finite group G of order |G| acts freely on X. Then by [4], the group G has
periodic cohomology groups of period n + 1 with H"*1(G;Z) = Z/|G|. Given
two oriented homotopy n-spheres X' and X2 with free G-actions, we can
associate to each G-map f : X! — X? a degree d(f), defined by f*z(X?) =
d(f)z(X"), where f* is the induced map on cohomology groups. Throughout
this section G will be a finite group acting freely and cellularly on an odd
dimensional homotopy sphere X. Then all the hypotheses of Theorem 4.11 in
[6, p. 126] are satisfied for homotopy spheres and it can be formulated as
follows.

THEOREM 1.1.  Suppose that X' and X? are oriented homotopy n-spheres
with free cellular actions of a finite group G. Then the following holds:
(1) The set [X',X?|; of G-homotopy types of all G-maps X' — X? is not
empty.
(2) Let f:X'"— X? be a G-map. Suppose that d = d(f) (mod|G|). Then
there exists a G-map h: X' — X? such that d(h) =d.
(3) Suppose that fo,fi : X' — X? are G-maps. Then d(f;) = d(f;) (mod|G)|).
4) Two G-maps fo.f1 : X' — X?* are G-homotopic if and only if d(f,) = d(f).

From Theorem 1.1 it follows that for a G-map f : X' — X2 of homotopy
(2n — 1)-spheres with free G-actions there is a G-map ¢ : X? — X! with d(gf)
=d(g)d(f) =1 (mod|GJ|). Hence the degree d(f) determines a unit in Z/|G]|
and then an automorphism of the cyclic group Z/|G|. Since H*'(G;Z) =
Z/|G|, we have the induced map of automorphism groups Aut G —
Aut(H?*'(G;Z)) = Aut(Z/|G|). For an automorphism ¢ of the group G, let ¢*
be its image in Aut(Z/|G|). Observe that ¢* can be identified with a unit
of the ring Z/|G| so in the sequel we may also identify ¢* with some
positive integer less than the order |G| of the group G, which is invertible in this
ring.

Write X, for a homotopy (2n — 1)-sphere X with a free cellular G-
action y: Gx X — X and let X/y be the associated orbit space. By the
Serre spectral sequence argument H*(X/y;Z) = H*(G;Z) for 0 <k <2n—1,
H» YX/yp;Z)=7 and H¥(X/y;Z)=0 for k>2n—1. Consequently,
with any map between G-orbit spaces we can also associate its degree. Fix an
arbitrary free cellular G-action y, on a homotopy (21 — 1)-sphere X°. Then
by Theorem 1.1, there is a G-map f, : X, — X.}%.

THEOREM 1.2, Two orbit spaces X'/y, and X?/y, of homotopy (2n —1)-
spheres X' and X? have the same homotopy type if and only if d(fy]) =
+9*d(f,,) (mod|G)|) for some ¢ in the group Aut G and G-maps f, : X} — X
and f,, - X — X

Y0
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PrOOF. Suppose that for two orbit spaces X'/y, and X?2/y, there is
an automorphism ¢ of the group G such that d(f, )= +¢*d(f,) (mod|G]).
Then, in view of Theorem 1.1, there is a G-map f/ : X — X such that
d(fL ) = dUf)d(f,) = 9" (mod|G])

Let (X!/y),, ; be the (2n — 1)-stage of the Postnikov tower of X!/y, and
consider the canonical maps (X!/y,),, ; — K(G, 1) to the Eilenberg-MacLane
space K(G,1) and X'/y; — (X'/7)),, ;- The map K(p~',1):K(G,1)—
K(G,1) determined by the automorphism ¢! yields a map ¢: (X'/y,),, | —
(X'/71)3,_, with a homotopy commutative square

(Xl/Vl)zn—l —¢> (Xl/Vl)zn—l

| |

—1
kG 20 k6.

Since the homotopy fiber of the map X!/y; — (X'/y1)y,, is (2n—2)-
connected, by obstruction theory the map @ : (X'/y,),, 1 — (X'/71),,_; admits
a map ®@: X!/y; — X'/y, such that the diagram

Xl/Vl i’ Xl/Vl

| |

X 7)ot —— (X /70

commutes up to homotopy. If Xy is a base point in X'/y,and @: X' — X'is
a cover of the map @, then &(gx) = 9 '(g)®(x) for all g in the group G and x
in the space X'. This means that @ LX) ' — X! is a G-map with d(®) =

(p*)™' (mod |G|), where 7Gx X! — X1 is the G-actlon such that yi(g,x) =
¢(g)x for all g€ G and x e X'. For the composite G-map f}’ f}]@ X1 — X7,
we get that d(f ;2 f,,®) = 41 (mod|G|). Then Theorem 1. 1 yields a G-map
h:X, b — X.2 with d(h) = +1 which in view of [9] induces a homotopy
equlvalence X! /v; — X?/7, of the orbit spaces, since the spaces X'!/y, and

X'/y| are homeomorphic.

Suppose now that f : X'/y, — X?/y, is a homotopy equivalence and fix a
base point x, in the orbit space X!/y,. Then we get an automorphism ¢ =
nl( f) of the group G, determined by the fundamental group functor z;. Let
7 : X' = X2 be a cover of the map fand @: X! — X! the map associated to
the automorphism ¢~' in the light of the first part of this proof. Then f (gx)
= ¢(9)f (x) and D(gx) = ¢~ (g)B(x) for all g€ G and x € X', so the composite
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fo: X! — X is a G-map with d(f®) = +(p")* (mod|G|). Finally, in the
light of Theorem 1.1 we get that d(f, )= +(p~ hy d(f,,) (mod|G|) and the
proof is complete. O

In particular, if two orbit spaces X'/y, and X2/, of homotopy (2n — 1)-
spheres X' and X2 are homeomorphic, then d(f, ) = te*d(f,) (mod|Gl) for
some ¢ € Aut G and G-maps f,, : X, — X andf” x; —>X0

Write #3""" for the set of all homeomorphlsm classes [X /v] of orbit
spaces X /y of all homotopy (2n — 1)-spheres X with respect to all free cellular
G-actions. Then the map

9%}"1 : %GZ’H — Aut(Z/|G|)/{t¢";p € Aut G}

given by 227 1([X /y]) = [d( f,)], where [d(f)] is the class of the automorphism
in Aut(Z/|G|) determined by the integer d(f,), is well-defined. Here we note
that the equality d(f,) = —1 holds if f, is the identity map of a homotopy
(2n — 1)-sphere to itself with the opposite orientation. Let #Z7""'/_ be the
quotient set of J{”GZ”*I by the homotopy relation ~. Then we can state

COROLLARY 1.3.  The map 22" : 42" — Au(Z/|G|)/{£¢*; ¢ € Aut G}
induces an injection IX~V: #F/. — Aut(Z/|G|)/{+¢*; p € Aut G}. Conse-
quently, the set #2"""/~ is finite and bounded by the order of the quotient group
Aut(Z/|G|)/{+¢*;p € Aut G}.

If G is the cyclic group Z/m of order m, then by [5, 9] the map 22! is
surjective on the homotopy types of the lens spaces. Thus we deduce from
Theorem 1.2 one of the classical results of homotopy theory.

COROLLARY 1.4. Given a free cellular action y of the cyclic group Z./m on
a homotopy (2n — 1)-sphere X, the orbit space X[y is homotopy equivalent to a
lens space.

Let &[X!'/y,,X?/y,] denote the set of homotopy classes of homotopy
equivalences f : X'/y; — X?/y,. Then from the proof of Theorem 1.2, we
may deduce the following result which is a generalization of the result in [5,
p. 96] stated for cyclic groups only.

PropoSITION 1.5. If |G| > 2 and orbit spaces X'/y,, X?/y, of homotopy
spheres are homotopy equivalent, then there is a bijection from the set
E[X )y, X?]p,) to the subgroup of the group Aut G consisting of all auto-
morphisms ¢ such that ¢* = +1 (mod|G|). In particular, the group &[X/y,
X /y] is isomorphic to that subgroup of the group Aut G, for the orbit space X[y
of a homotopy sphere X.

Proor. Let f: X'/y, — X2/, be a homotopy equivalence, fix a base
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point in X'/y, and let ¢ = 7;(f) be the automorphism of the group G induced
by the fundamental group functor z;. Then d(f) = +1 and by the Serre
spectral sequence argument ¢* =d(f) = +1 (mod|G|). Define A([f]) =
ni(f) for [fle &[X /)y, X?/y,]. We show that 4 gives the required bijection
from the set &[X'/y,, X2/7,].

Consider two homotopy equivalences f,g: X'/y; — X?/y, with 7;(f) =
m(g)=¢. If f,§G: X' — X? are covers of f and g, respectively then
f®,GP : X! — X are G-maps, where & : X' - X' is a map associated with
the automorphism ¢! as in the proof of Theorem 1.2. In view of Theorem
1.1,  d(f)(e*) " =d(f]) = d(Gd) = d(g)(p*)"" (mod|G|). Consequently,
d(f) =d(g) (mod|GJ), hence d(f) = d(g) since d(f),d(g) = +1 and |G| > 2.
Finally, in the light of [9], the maps f,g: X'/y, — X?/y, are homotopic.

Let now  be an automorphism of the group G such that y* = +I1
(mod |G|) and f: X'/y; — X?/y, be a fixed homotopy equivalence with ¢ =
n1(f). Then, by the proof of Theorem 1.2, there is a map Q:X!/y, —
X'/y, associated with the automorphism ® = ¢~ 'y and d(Q) = +1, so it is
a homotopy equivalence by [9]. But 7(fQ)=y and the proof is
complete. O

REMARK 1.6. It is well-known that the group &[X/y, X/y] is isomorphic
to the cyclic group Z/2 provided that |G| <2 for any homotopy sphere X.

In the next section we calculate the group &[X/y, X /y], when G is a cyclic
group Z/p with p an odd prime and X a homotopy (2n — 1)-sphere.

2. Estimation of the number of orbit spaces

Let g> be a generator of the cohomology group H?(Z/m;Z) = Z/m. The
results of [4, Chap. XII, §11] show that (g,)" generates H*'(Z/m;Z) = Z./m.
Then, for any ¢ e Aut(Z/m), the induced automorphism ¢* of the group
H*(Z/m;Z) = Z/m is determined by the power k", for some k with (k,m) =
1, that is ke (Z/m)".

Let now Qun = {x,y;x" = y?,xyx =y} be the generalized quaternion
group of order 4m and g, a generator of H*(Qun;Z) = Z/4m. Then by [10],
the element (g4)" generates H*'(Qun; Z) = Z/4m, and for any ¢ in the group
Aut Q4 the induced automorphism ¢* of the group H*'(Qun;Z) = Z/4m is
determined by the power k", for some k with (k,4m) = 1.

The automorphism group Aut(Z/m) is isomorphic to the unit group
(Z/m)" of the ring Z/m. Therefore, we are led to compute the quotient group
(Z/m)* J{+x";x e (Z/m)*}. Tf m=pf' ... pk is the prime factorization of an
integer m > 1 with k; > 1 for i =1,...,s, then it is well-known (see e.g. [12,
Chapter 1V]) that (Z/m)" = (Z/p¥)* x --- x (Z/p’)*. Moreover, (Z/p')" =
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Z/(p—1)xZ/p'~! for p an odd prime or / < 3 and (Z/2)" =Z/2 x Z/2'~2
for / > 3 with generators, multiplication by —1 giving the element of order two,
and multiplication by 5 or —3 giving the element of order 2/~2

In the group Z/(p — 1) x Z/p™~!, if p is an odd prime, (p —1)/2 is the
only element of order 2, which corresponds to —1 in the group (Z/p™)" by
the isomorphism above. Therefore, the equation —1 = x” has a solution in the
multiplicative group (Z/p™)" if and only if (p — 1)/2 is divisible by the integer
n in the additive group Z/(p — 1). Note that 2k+ 1)(p—1)/2=(p—1)/2
(mod(p —1)). On the other hand —1 # x" for any element x in the group
(Z/2™)* if n is an even integer. Thus, we will get the proposition below and
we may concentrate in the sequel on the quotient group (Z/p™)"/{+x";
xe (Z/p™)*}, for positive integers m,n and a prime p.

k.

ProposSITION 2.1. If m = p{“ ---py Is the prime factorization of an integer

m > 1, then for any integer n > 1 there is an extension
0= (Z/2)" — (Z/m)" [{£x";x € (Z/m)"}

= (Z/p}) H{Ex"x € (Z/p1) "} x o x (Zp)" {£x"x e (2/p)'}

— 0,

where t is determined as follows:

(1) If —le{x";xeZ/pX'} for any i=1,...,s, then t=0;

(2) Otherwise t =s — 1 — #{i;—1 e {x";xe Z/p¥'}}. In particular, when
n is an odd integer, —1 € {x";x € Z/pll‘i} for any i=1,...,s and hence t = 0;
when n is an even integer, t + 1 is the number of odd primes p; which appears in
the prime factorization of m and (p;, — 1)/2 is not divisible by n in the group

Z/(p;~ 1).
Proor. Of course, we have the extension
0= ("5 e (Z/pl") ) x oo x {2353 e (Z/pl) )L £x"x e (Z/m) ')
— (2 /m)" [{£x"5x € (Zjm)'} — (Z)p}') [{£x"x e (2/p)))
X (Z)p) L x € (Z/pF)'} = 0,

The square of every element in {+x";xe(Z/pf')"} x---x{+x"xe
(Z/p*)*} lies in {x";x e (Z/m)*}, because (+ x")* = (x?)". So, it follows
that the group

(47 xe (Z/ph) ) o x {£x"x e (Z/pk) H{ £ x" x e (Z/m)")

is isomorphic to a direct sum of Z/2’s. Certainly, t=s— 1 in the case (1).
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In the case (2), —1 € {x";x € (Z/m)"}; we can replace +x" with x" for (Z/m)"
and for (Z/pF)* with —1 € {x";x e (Z/p*)*}. Then it is not hard to see the

result. O
Of course, we can assume that n = gj' -- ” and p— 1 =g¢;"---¢q,", where
q1,---,q are different primes, ¢1,...,t,uy,..., u/ are non-negative integers and
t; or u; is positive for all i=1,... 1.
ProPOSITION 2.2. Let m,n be positive integers, p a prime and qy,...,q;

primes from the factorization above. Then the quotient group (Z/p™)"/
{x"; xe(Z/p™)" } is lSOWlO}’p/’llL lo one of the following groups:

(1) Z/g)™ ") o x Z)g™ ) if p£2 and p # qu,.. . qu;
(2) Z/qumn(t],u]) i Z/ ::ml(l‘o 17”'0 Vo Z/pmm m=1,tj) < Z/ ::_Tl(r’o*l Uig+1)

X e xZ/q}nin("ul if p#2 and p = q,, for some 1 <iy <1,
(3) the trivial group E, if p=2 and n is odd,
(4) Z/)2 x Z)27m=2) if =2 and q;, =2 for some 1 <iy <.

ProOF. Let 4 be a finite additive abelian group and n a positive integer.
Then, for the endomorphism 7: A — A given by the multiplication by 7, the
quotient group A/Im 7 is isomorphic to the kernel Ker 7, where Im 7 is
the image of 7. We consider the endomorphism of the multiplicative group
(Z/p™)" given by taking the n-th power. But the group (Z/p™)" is isomorphic
to the additive group Z/(p — 1) x Z/p™~!, for p an odd prime or m < 3 and
to the group Z/2 x /22 for p=2 and m >3. Thus the result follows.
Remark that u;, =0 in (ii). O

Consequently, the following holds.

COROLLARY 2.3. Let m,n and p be as in Proposition 2.2 and let T,(m,n)
denote the number of homotopy types of lens spaces given by free Z/p™-actions
on homotopy (2n — 1)-spheres.

(1) If p is an odd prime and (p — 1)/2 is divisible by n in the group Z/(p — 1),
or p=2 and n is an odd integer, then T,(m,n) is equal to:

(i) g™ g i p 2 and p £ qu, .. qn

(i) qllmn(t‘ m) ;:flft'o 1y “to l)pmm(m L4 )qglfl(hoﬂ Uig+1) '(];mn t,uy) i p#2
and p =qi, for some 1 <iy<I;
i) 1, if p=2.

(2) Otherwme T,(m,n) is equal to:
(1) - 1qun1n(t| ul)”.qmmt,u, ifp#2and p#q,. .. q

I
.. —1 mln(l| u|) lﬂln(f,o 1 Ui — 1) min(m—1,z; ) mln(l,0+1 ut0+l) min(lI,lI/) .
(11) 2 q -t )4 11 g 5 if

p #2 and p = q,, for some 1 <iy<I;
(i) 2min(ti0,i7172)) if p=2 m=>3 and q;, =2,
(iv) L ifp=2 m<2 and g =2.
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In particular, we get

COROLLARY 2.4. Let p be a prime and m a positive integer. Then the
number of homotopy types of lens spaces given by free Z1/p™-actions on a
homotopy 3-sphere is equal to:

(1) 2, if either p—1 is divisible by 4 or p =2 and m > 2;
(2) 1, if either p — 1 is divisible by 2 but not divisible by 4 or p =2 and m = 1.

Moreover, for the generalized quaternion group Q,»+> one can deduce

COROLLARY 2.5. The number of homotopy types of orbit spaces given by
free Qymiz-actions on homotopy (4n — 1)-spheres is bounded by 2 for any m > 0,
provided that n is an odd positive integer.

Proor. In the light of [10, Proposition 8.1], for any ¢ in the group
Aut Qymi2, the induced automorphism ¢* of H*(Qyma;Z) = Z./2"2 is de-
termined by the power k2" for some k with (k,2"*2) = 1. The result follows
from the same argument as for Corollary 2.3. O

Finally, let L be a lens space determined by a Z/p-free action on a
homotopy (2n — 1)-sphere with p an odd prime. Then, by Proposition 1.5, the
group &[L,L] of homotopy types of all its self-homotopy equivalences is
isomorphic to the subgroup of (Z/p)” consisting of all elements k with k" = +1
(mod p). But (Z/p)"=7Z/(p—1), so the corresponding subgroup of Z/
(p—1) consisting of all elements / with n/=0 or nl=(p—-1)/2. If d=
(n,p — 1) is the greatest common divisor of the integers n and p — 1, then the
subgroup G, of Z/(p — 1) generated by (p — 1)/d consists of all elements / in
the group Z/(p — 1) with nl =0. Moreover, if there is a solution [y in the
group Z/(p — 1) of the equation n/ = (p — 1)/2, then the set of all solution of
that equation in the group Z/(p — 1) is equal to the coset [y + G;. We can
conclude the paper with the following result deduced from the consideration
above.

PROPOSITION 2.6. Let L be a lens space determined by a free Z./p-action on
a homotopy (2n — 1)-sphere with an odd prime p. Then the group &[L,L] of
homotopy classes of all its self-homotopy equivalences is isomorphic either to the
subgroup Gy of the cyclic group Z./(p — 1) or to the subgroup G;U (lh + Gy),
provided that there is a solution ly of the equation nl = (p —1)/d in the group
Z/(p-1).
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