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ABSTRACT. We investigate generalized solutions of nonlinear diffusion equations in
the sense of Colombeau and extend the results of Biagioni and Oberguggenberger [2]
to more general equations. We prove the existence and uniqueness of a generalized
solution which is shown to be consistent with the classical solution.

1. Introduction

Biagioni and Oberguggenberger [2] have studied generalized solutions of
the Cauchy problem

(1.1)

U+ oy = flilyy, xeR, >0,
i|,_o = o, x eR,

where /i is a generalized constant belonging to the algebra ¥, , of generalized
functions, which is a modified version of the algebra introduced by Colombeau
[3, 4] to deal with the multiplication of distributions. This algebra contains
the space of bounded distributions &,. so that initial data with strong sin-
gularities can be considered in this setting. They formulated the classical
Cauchy problem

u+uu, =0, xeR, >0, (12)
ul,_y = U, xeR
as
u,+uu,~0, xeR, >0,
{f (1.3)
i|,_o = to, xeR

in the present setting, where “~” denotes the association relation on ¥, ,, and
proved that the generalized solution of (1.3) is obtained as the generalized
solution of (1.1) with g~0. Furthermore, they proved the existence and
uniqueness of a generalized solution of (1.1) and showed that, if the initial data
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belong to L*(R) and i ~ 0, the generalized solution is associated with the weak
entropy solution of (1.2).
In this paper we study generalized solutions of the Cauchy problem

{ i+ f(x, t, )i, +g(x, t,0)d = fityy, xeR, >0, (14)

i|,_o = dlo, x eR,

where fi is a generalized constant. As in [2] we formulate the classical Cauchy
problem

u+ f(x, t,wu, +g(x, t,u)u=0, xeR, >0, (1.5)

ul,_g = uo, xeR ’
as

w+ f(x, t,w)u, +g(x, t,)a~0, xeR, >0, (1.6)

iil,_ = ilo, xeR ’

in the present setting.

In this paper, we extend results in [2] to (1.4) with general functions f and
g. We first recall the definition of the Colombeau algebra %, in Section 2.
In Sections 3 and 4, we prove results concerning existence and uniqueness of a
generalized solution of (1.4) (Theorems 3.1 and 4.4). In Section 5, we study
the distribution with which the generalized solution of (1.4) is associated, when
the initial data belong to L*(R). Tt turns out that if a coefficient & is as-
sociated with zero, the generalized solution of (1.4) is associated with the weak
solution of (1.5) which satisfies the entropy condition (Theorem 5.3) and, if g
is a positive number, the generalized solution is associated with the unique
classical solution (Theorem 5.5).

2. The algebra of generalized functions

We briefly recall the definition of a modified version of the Colombeau
algebra of generalized functions [3, 4].

NotaTIONs 2.1. Let Q be a nonempty open subset of RY. We set

6R2] ={R:(0,0) x 2 — R such that R(e x) is of class C*
in xe Q for each ¢ > 0};

&[Q] = {R:(0,00) x @ — R such that R| ..o € &[€]
and that the map xe€ Q — R(e, x) e R and all its
derivatives can be continuously extended to Q,
for each ¢ > 0};
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En 5.4/Q] = {R € &[Q] such that for all oe N7,
there exist N e N,¢ > 0 and # > 0 such that
sup |[D*R(e, x)| < ce™™ for all 0 <e<n};
xed

N;.41Q] = {R € &]Q] such that for all xe N’ and geN,

there exist ¢ > 0 and # > 0 such that
sup [D¥R(e, x)| < ce? for all 0 <& <n}.
xed

The algebra of generalized functions % ,(Q) is defined by
gw(é) = éMAq[!_Q]/qu[Q]

We denote by R;(e,x) a representative of a generalized function
e %, ,(Q). Then for any o e N’ we can define a generalized function D%
to be the class of {D¥R;(e,x)},.,. Also, for any generalized function
e, 4(Rx[0,T]), we can define u|,_, to be the class of {R;(e, x,0)},.-

Concerning nonlinear functions f of elements of the algebra %, ,(RY), we
define the following notion.

DEFINITION 2.2. We say that a function f e C*(RY) is slowly increasing
at infinity if for every o e N? there exist ¢ > 0 and re N such that, for all
xeR?,

1Df(x)] < (1 + |x])".
We denote by Oy (RY) the space of slowly increasing functions at infinity.

If feOy(R?) and i € %, 4,(R?) for i=1,...,p, we can define a gen-
eralized function f(iiy, ..., i) € %, ,(R?) to be the class of {f(Ry,. .. R, }oso-
For details see [1, 3, 4].

REMARK 2.3. The algebra %, ,(RY) contains the space of bounded
distributions Z;..(RY). Let f be an element of Z;.(R?). Since R(e, x)=
f * p,(x) is a representative of f, we obtain Z,..(R?) = %, ,(R?), where p is a
fixed element of #(RY) satisfying [ p(x)dx = 1, [x*p(x)dx = 0, for all x e N,

|¢| > 1, and
1 [/x
pe(x) = g—dﬂ(g)

DEFINITION 2.4. A generalized function @€ %, ,(Q) is said to be asso-
ciated with a distribution we 2'(Q) if it has a representative R; € & s 4[Q)]
such that
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Ri(e,x) —w  in 2'(Q) as ¢ — 0.
We denote by #~w if # is associated with w.
In other words, a generalized function € %, ,(Q) is associated with a

distribution w if # behaves like w on the level of information of distribution
theory. Actually, if /€ 2., the class of {f xp,}.., is associated with f.

DEFINITION 2.5, A generalized function i € 9, ,(Q) is called a generalized
constant if it has a representative which is constant for each ¢ > 0. We call g a
generalized positive number if it has a representative R;(¢) such that there exist
N eN and 7 > 0 such that ¢V < Rz(e) <& for 0 <e<n.

DEFINITION 2.6. We say that @ e %, ,(Q) is of bounded type if it has a
representative R € &p,5.4 [[_2] such that there exist ¢ > 0 and # > 0 such that

sup |Ru(e,x)| < ¢ for 0 <e<.
xeS_Z

We note that up € L*(R), viewed as an element of ¥, ,(R), is of bounded
type.

3. Existence theorem

THEOREM 3.1. Assume that @i is a generalized positive number and that
f,g € C*(R3) satisfy the following conditions: for every o € N>, there exist ¢ > 0
and r €N such that, for all (x,t,u) € R,

D%/ (x, t,u)| < (1 + Jul)’,

[D%g(x, t,u)| < (1 + [u]),
and g > 0. Then for each T > 0 there exists a solution 6 € 4 4(R x [0, T]) of
(1.4).

In order to prove Theorem 3.1, we first prove Lemmas 3.3 and 3.4. Let
us recall a next well-known result.

Lemma 3.2 ([7], Section 28, Theorems 7 and 8). Let 0 <a<1 and
0< p <1, andlet k and ¢ be two nonnegative integers such that k + o > ¢ + f.
Furthermore, let an open subset D of R? be bounded and convex or bounded with
a C®-boundary. Then the identity map
I:C*(D) — C’*#(D)
is compact.

LeEmMA 3.3. Let g be a function on R x (0,T), where 0 < T < o0, such
that for any 0 <t < T,
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suplg(x,1)| < MtV
xeR

for some M >0 depending on T and for some 0 < f < 1. Then

o(x,0) = —K x 9= —J' J K(x =& t=n)g(& n)dédy,

0J—0

K(x,t) = | ex v
Y2/t p 4ut

is a distributional solution of the problem

U+ g =uv, XxXeR 0<t<T,
U|t:0:O, XER,

where yt > 0.  Furthermore, v and v, are Hélder continuous with respect to x and
t, and for 0 < o <1, the sup norm || -| and Hélder norm |-|, on the domain
R X [t,s] satisfy

si=h

1—

v|| < M,
[[o]] B
L (3.1)
R B(1 - p,1/2) max{s'/>F s\ 2P\,
T

l[oxll <
o], < K(u™?+1)M, with o< la<1-p,
. 1

|U)C|[x < K(ﬂ7(1+9€)/2 _"_ﬂ*l/z)Ml*ﬁ, Wlth o< 5, (3.2)

. 1 1 . 1
oyl < K(u= V2 4 07 V2)M,  with o < 3 < 3 - B, if p< 3

for some positive constant K, where B is the beta function.

ProOOE. Since the inequalities of (3.1) are clear, we only prove (3.2).
Since
(x—¢? =9’
exp| —————= | —exp| ———F+—=
( 4u(t —n) 4u(t —n)

[x—=¢|* 2 C2/x—1 €2/a dC
= —=———|exp| ———— |d(,
J e\ 2 du(e=n) ) TP\ du(r =)
using the change of variable and |[x — &|* — [y —&]*| < |x—y[*, 0<a < 1, we
obtain that
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o(x, 1) —o(y, Ol < |x = y[*B(1 = .1 — a/2)

LA /2402 p
. e dE M T A
ﬁdjg

from the hypothesis on g¢.

Similarly, for 0 <t <1 <t <s,
lvo(x, 12) — v(x, 11)]

L R 1 (x—=¢)°
S ~— | —F/———= €X _—— d‘[.g 57 déd
Jo me J(,ln)« ot LW p< 4ut!/* (&,m)dcdn
+

Iy O 1 (x _ 5)2
L Jmm xP <— m) g(&m)d&dn

< ([2 - ll)qB(l 7187 1-— (X)

ﬁjmumcz)ﬁdam}”

1 1-p
1 — M.
+1—l)’(2 1)

If we take o such that o <1—f, then 1 —0/2—f>1—0a—f >0. Therefore
the first inequality of (3.2) holds.

Similarly
, 222
ox(x, 1) — vx(y, )] < |x = |"B(1 = B,1/2 = “/z)ﬁ
' JOC (7 4 2030 e . 22228
0

1—a
= B =12 = 22)

. Eug(|c|2—167{2) ) ﬂ7(1+a)/2t1/271/27ﬂM’
€

and, for 0 <1<t <t <,

[ox(x, 12) — vy(x, 11)]

< (h—1)*B(1—B,1/2— ) ﬁr BIU/2 + 1L)e Cdg - e P g

15}

1 4/2[ -2 —p
+— Hh— dn- M 33
N n(z n) ' yThdy (3.3)

< (12— 1)"B(1 - f.1/2~ ) fi | ol pee g o

2
+ (12 — l‘])l/zﬁﬂil/ztiﬂM.
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If f<1/2, (3.3) can also be estimated as follows:

15}

1 71/2J —1/2, B
— tr — dn- M
ﬁﬂ (ta—mn) ""nPdn

141

- M {J(t1+tz)/2 ([2 _ t1>1/2;7ﬁd;7
< P 1, 2
L _ n+n\"
+J th—1 1/2(—) d’?}
(11+t2)/2( ) 2

M n-n\"? 1
V' 2 1-p

Thus the assertion follows. O

Under the assumptions that 4 > 0 and f, g satisfy the conditions given in
Theorem 3.1, we consider the classical Cauchy problem

u + f(x, t,u)uy + g(x, fu)u = puy, xeR0<t<T, (3.4)
{u|t0 = uy, xeR (3.5)

in C(Rx[0,7)) if up € Cy(R), where C, denotes the space of all bounded
continuous functions. For the initial data uy € L*(R), we need to weaken the
initial condition (3.5) as follows: For the dual space Cj(R) of the space of all
continuous functions with compact support,

ul,_g = up in Cj(R), (3.6)

which means that for any continuous function ¢ on R with compact support,

zgrfo Jio u(x, t)p(x)dx = Ji; up(x)p(x)dx.

Then, we can easily see that for the solution u in the following lemma

lim  u(x, 1) = up(xo)
t—0,x—X0

holds at every continuous point xy of u(x).
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LemMA 3.4. Let up € L*(R). Then for each T > 0 there exists a bounded
classical solution of (3.4) satisfying (3.6). Furthermore, it is unique.

Proor. In order to prove the existence of a solution, it suffices to consider
the integral equation

u=Kxuy— K x {f(x,t,u)u, + g(x,t,u)u},
X x,t

where
[oe]

K Uy = J K(x =& tup(&)dé.

Let M be a positive number such that

~1/2

sup{|f (x, t,u)t™""p + g(x, t,u)ul [ x € R, [u| +|p|

< (U () ™) |u| oy + 1} < M2 (3.7)

for any 1€ (0,7] and let s < T be a positive number such that
B(1/2,1/2
2(1 +M)SI/ZM <. (3.8)
2\ /mu

Furthermore, let B be the Banach space of all continuous functions u# on
(—n,n) x (0,s] which are continuously differentiable with respect to x on the
same domain with the finite norm ||u||z defined by

lullg = sup fu(x, )]+ sup 1"2Jux(x,0)].
—n<x<n —n<x<n
0<t<s 0<t<s

Let E be the closed, bounded and convex set in B defined by
E={ueB||lullg < (1 + (1))l o gy + 13-
We define a map 4 from E into B by
Au=K xug — K *ZF[u]n,

where

F[u] _ {f(x7 Z u)ux + g(X, Z u)uv for (x’ t) € (_nan) X (07S]7
0, otherwise.

Then by Lemma 3.3 we have

14ully < lluoll - gy +25'2M + —— |luoll gy +

N7

< (14 (o)™ ) ol oy + 1,
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which shows that 4 is a map of E into E. Since for u,v € E, there exists ¢ > 0
such that

l4u — Avllg < ("2 +5)Ju— vllg,

A is continuous. Furthermore, from Lemma 3.2 and Lemma 3.3 it follows
that the set {—Au + K *, up |u € E} is compact in B, and hence that the map 4
is compact. By Schauder’s Fixed Point Theorem, there exists a fixed point u,
in £ with u, = Au,, and obviously u, is a distributional solution of (3.4) in
(—n,n) x (0, s].

The function v, = K *, , Flu,], is defined for all xeR, 0 <t <s. Since
all the estimates are independent of n in the discussion above, it follows from
Lemma 3.3 that the sequence {v,},-, is bounded in the Holder norm with
exponent 1/2 on R x [0,s]. Therefore according to Lemma 3.2, there exists a
uniformly convergent subsequence which converges to a Holder continuous
function v with exponent 0 < o < 1/2. Since also by Lemma 3.3, {dv,/dx},,
is bounded in a Holder norm with exponent 0 < o’ < 1/2 on R X [t,s], for
every 0 << s, it follows that v is differentiable in x and dv/dx is a Holder
continuous with exponent 0 < o” < o’ in R x (0,s]. Now we have

o & o @
(5‘“@)“1’")*(W”@)(—”Kt%) as e

in the distributional sense on R x (0,s], since K *, uy is a solution of the heat
equation. Furthermore, we have

o &
(& - ”@) (wtn) = =F[ -0+ K o],

0
—>—f(x,t,—v—i—Kiug)a(—v—&—lﬁ;uo)
—g(x,t,—v—l—K*‘uo)(—u—&-K*uo) as n— oo

in the distributional sense. Hence, u = —v + K *, ug is a distributional solution
of (3.4) in R x (0,s], which can be written as

u=Kxuy— K * {f(x,t,u)uy + g(x, t,u)u}, (3.9)

by the above considerations. Furthermore, from the hypotheses on f and g¢
and (3.9) it follows that u is a classical solution of (3.4) and satisfies (3.6).
Taking u(x,s) as the initial data and applying the above argument, we have
a solution in R X [s,s+ s1], where s; is determined by (3.7) and (3.8) from
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l|u(- )l z=r)- By the Maximum Principle, we have [[u(-,s+s1)||z-g) <
(- $)|| . (r)- Therefore, by repeating the above method k times we have a
solution in R x [s,5(k 4+ 1)]. Consequently, we have a solution for each 7' > 0.

Since f and g belong to C*(R?), the uniqueness is obtained by a similar
way to the proof for Theorem 7 of Oleinik [6]. O

Proor oF THEOREM 3.1. In order to prove the existence of a generalized
solution of (1.4), it suffices to prove that for any initial data u§ € &y 4[R] and
any coefficient ¢ satisfying eV < u® < &V for suitable N, (3.4) and (3.5) have a
solution u” € &y 5 4R % [0, T]] for each T > 0.

From Lemma 3.4 there exists a classical solution u* of (3.4) and (3.5) with
the initial data u§ in R x [0,T], because u{ is continuous. Then, by the
Maximum Principle we have |[[u®[|,gxp,7)) < [[4jll1~®)- Furthermore from
the boundedness of d.u§ and Lemma 3.4 we obtain the boundedness of 0.u°.
In fact, from the proof of Lemma 3.4, K *,{f(x,t,u)u,+ g(x, t,u)u} is
Hélder continuous with exponent o for any 0 <o < 1/2. Since K *, ug is
bounded, Lipschitz continuous in x and 1/2-Hélder continuous in ¢ globally, it
is a-Holder continuous for any o (0 < « < 1/2). Therefore it follows that the
solution u® of (3.4) and (3.5) is Hélder continuous with exponent 0 < o < 1/2.
From the Holder continuity of u® we obtain the boundedness of 0,u®, namely,
there exist N e N,c¢ >0 and # > 0 such that

sup  |0guf| < ce™V

(x,7)eRx[0,T]

for each 0 <& <. Similarly we can prove that all derivatives of u® are
dominated by ce~" with suitable c and N. Finally by taking R;(e, x, 1) = u®(x, )
as a representative of u, the assertion is obtained. O

4. Uniqueness theorem

Here, we will prove the uniqueness of a generalized solution of (1.4). We
first prove Lemma 4.1 and Proposition 4.2.

LemMA 4.1. For a smooth function f on R, put

n—1
(u—0v)™" (f(u) - Z%f“"(v)(u— v)">, if u# o,
k=0 """

1
nl

Gn(f,u71)) =
™ (), if u=v

for each ne N. Then
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L Gu(f10) = nGya (fi.0) + Go([ ), @)
Gl iu0) = nGya(fr0). )

Furthermore, if f € Oy (R), then we obtain that for any ne N there exist ¢ >0
and r € N such that

|Ga(f5u,0)] < (1 + Ju] +[v])". (4.3)

Proor. Differentiating G, with respect to u, for n > 2 we have

s (u—0)" (=nG(f;u,0) + Gy (f5u,0)), if uv,
EGn(f;uﬂ]): 1

EESNTANNCOL i u=v.

For each n e N we have

Golf.8) = (14— 1) G (f0.8) + = 1 0),

so that for each ne N

£ G fi,0) = G (f10,0) + Go([ 0,

Furthermore, since

6_(1 (n:)%f'(k)(v)(u — U)k> — (n_l 1)!f(")(v)(u o U)n—l)

k=

we have

0 . :
%Gn(fa ll, U) = nGn+1 (f;ua U)'

Also, since

G, (f;u,v) :%f(")(ﬁu—&- (1 =0)v)

holds for some 0 <0 < 1, if f € Oy (R), then for any ne N there exist ¢ > 0
and r e N such that

|Ga(f3u,0)| < e(1+ [u] + o))"

Thus the assertion follows. O
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PrOPOSITION 4.2.  Assume that f is a function as in Theorem 3.1. Let u
and v be elements of &y 4R x [0, T]]. Put

a(f; 87 x7 t) = Gl (f(x7 t? '); u(67 x, Z)’ 0(87 x7 t))
Sfor each (x,t) e R x [0,T]. Then we obtain that a € &y 5 4R x [0, T1].

Proor. Since all derivatives of # and v with respect to x and ¢ belong
to &, 4R x [0,T]], it suffices to prove that all derivatives of a with respect
to u and v belong to & 4R x[0,7]]. Since u and v are elememts of
Eum,s,gR x [0, T]], (4.3) implies that for any n € N there exist N e N, ¢ > 0 and
n > 0 such that

sup [Gu(f(x, 1, )sule, x, 1), v(e, x, 1)) < ™ (4.4)
(x,7)eRx[0, T

for all 0 < & <#. Consequently, from (4.1), (4.2) and (4.4) we obtain that all
derivatives of a with respect to u and v belong to &5 4[R % [0,T]]. Thus the
assertion follows. O

Lemma 4.3 ([2], Lemma 2.2). Let u be a nonnegative, continuous function
on [0,00) and assume that

t
u(t) <ap + azj ut(s) ds  for t>0
0 — S

with some constants aj,a, > 0. Then
u(t) < ai(1 4 2a,V/t) exp(ra3t)  for any ¢ > 0.

THEOREM 4.4. Assume that a representative R;(e) of a generalized positive
number [ satisfies

R;(e) logé >1 (4.5)

for any 0<e<n with w>0. Then for each T >0 the solution ue
G, y(R x [0, T]) of bounded type of (1.4) is unique.

ProoF. Let iy, € 9, 4(R x [0,T]) be two solutions of (1.4) with rep-
resentatives Ry, R;, of bounded type, respectively. Then there exist H e
N5 g[R x [0, T]] and h e A 4[R] such that
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(Rﬁl - Rﬁz)l = Rﬂ(Rfll - Rﬁz)xx - (f(xa Z, Rﬁ1)(Rﬁ1)X - f(x7 Z Rﬁz)(Rﬁz)x)
- (g(xa Z Rﬁ])Rﬁl - g(x, Z, Rﬁz)Rﬁz) + H,

Rﬁl - Rﬁz't:O =h.

By changing representatives suitably, we may assume that #=0. Let F be a
function which satisfies

Fu(X, t, R,;,) = f(x, t, R,;f)
for i=1,2 and set R; = R;, — R;,. Then we have

(Rﬁ)t = Rﬂ(Rﬁ)xx - [F()C, t7 Rﬁl) - F(X, tv Rﬁg)]x + EY(X7 [ Rﬁl) - E‘C(-xa Z, Rflz)
- g(x, Z Rﬁl)Rﬁ - [g(xa Z, Rﬁ1) - g(xv f, Rﬁz)]Rﬁz +H,
Rili—g = 0.

From Proposition 4.2 it follows that

(Ra)t = Ra(Ra)xx — [a(F; e, X, 1) Ra]x + a(Fyi e, x, 1) Ry
- g(x7 la Rﬁl)Rﬁ - a(gv &, X, I)RﬂRﬂz + Ha
Ril,—g = 0.

Since R; satisfies

Ro— j J K(x— &1 — ) - (—[a(F;e & n)Rals + a(Fyi 6, &, 1) Ra

0J—-00
- g(é7 n, Rfll )RIZ - Cl(g, &, éa n)RﬁRﬁz + H)déd”7
we have

Rile.x,0)| <T  sup  |H(z,x,1)]

(x,7)eRx[0, T

4 1
+ sp  a(Fex, r>|J L wplRue, &)y
(x.1)eRx[0, T 0 /7Ra(e)(t — 1) cer

+ ( sup |a(Fy;e,x, 1) + sup lg(x,t, Rz )|
(x,7)eRx[0,T] (x,7)eRx[0,T]

t

© s lalgiex, z)Rm)j sup Rae, &, )|
(x,7)eRx[0,T] 0¢eR

Furthermore, from +/z/\/f—# > 1 for any 0 <7 < ¢, it follows that
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[Ra(e,x, )| < T sup  [H(e x,1)|

(x,7)eRx[0,T]

t 1
+ sup a(Fie 1) j L Sup|Rale )y
(x.0)eRX[0, 7] 0 /7Ru(e)(t —n) cer

+( swp  Ja(Fviex )+ sup oo, Ra)l
(x,1)eRx[0,T] (x,1)eRx[0,T]

Vi
+ su a(g; e, x, )Ry > J sup |Ri(e, &, n)|d

(x,1)eRx[0,T]

<T sup |H(gx,1)|
(x,7)eRx[0,T]

1 1
+—=\| == sup
VT ( Ri(&) (x.0)erx[0,7)

VAT sup a(Fee x| +VaT  sup  lg(x,t Ra)l
(x,1)eRx[0,T] (x,1)eRx[0,T]

la(F; &, x, 1)

SVAT sup falgis O Ra
(x,1)eRx[0,T]

t
1
: su Rl? & 5377 d’?
JOVZ_W q’eg| ( )‘

Applying Lemma 4.3, we have

sup | Rale, x,1)| < ar(1 4 2a;V/'T) exp(na?T),
(x,1)eRx[0,T]

where

a=T sup |H (g, x,1)],
(x,7)eRx[0,T]

1
su

it
- — p
N3 Ri(&) (x.)eRx[0,T]

VAT sup  a(Fse x| +VaT  sup  lg(x.t Rq)l
(x,1)eRx[0,T] (x,1)eRx[0,T]

ap |a(F7 & X, [)|

FVAT s g Rl ).
(x,7)eRx[0,T]

By Lemma 4.1, Proposition 4.2 and the hypothesis that #; is of bounded type

for i =1,2, it follows that a is uniformly bounded for sufficiently small ¢ > 0.

Therefore, there exists C > 0 such that for sufficiently small ¢ > 0
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a < ¢ ;4— : +1
2= g R;(e) Ri(e) '

Consequently, we obtain that for sufficiently small & > 0,
exp(na;T) < exp| CT ! + b +1
S Ri(z) ' \/Ra(e)
1 1
<exp| CT logg—k logg—kl
1 1\2CT
< exp(CT(Z logg—k 1)) = (E) e“T,

which means that for all ¢ € N, there exist ¢ > 0 and # > 0 such that

sup  |Ru(e,x, 1)| < ce?
(x,7)eRx[0,T]

for each 0 < & <#. Similarly we can prove the same type of estimate for any
derivative of R; with respect to x and z. Hence R;(e, x,t) € A5 4[R x [0, T],
that is, @4 — i, =0 in ¥, (R x [0,7]). Thus the assertion follows. O

5. Relationship to classical solutions

In [5], Lax introduced the following pseudo-norm, defined for locally
integrable functions f on R, but possibly infinite:

|f], = sup
yeR

J: f(x)dx

We will investigate the relationship between generalized solutions and classical
solutions by using this pseudo-norm. We first prove Lemma 5.1 and Propo-
sition 5.2.

LemMmA 5.1. Let u>0, upe L*(R) and u be the solution constructed in
Lemma 3.4 of the problem

u[ + (F(X’ t? u))x = :quxv
Ug=u in Cj(R),

where F is an element of C*(R?) such that for any o € N* there exist ¢ > 0 and
reN such that for all (x,t,u) € R®

|D*F(x, t,u)| < c(1+ |u]), (5.1)



140 Hideo DEGUCHI

and for all (x,t,u) € R?
u-Fy(x,t,u) >0. (5.2)
Then [y u(&,1)dé converges to [, ug(&)dE as t tends to 0.

Proor. It suffices to prove the case where x > 0. Let ¢,(¢) be a positive
continuous function on R such that for each 0 < e < x

& e
1 for - <&é<x—
0 for £<0,x <,

and ¢, < 1. Let L =sup, ,crxjor [u(x,?)]. For fixed x >0 we have

u(E, (1 — g, (¢ dc] < Lo

|| utende - [ uenne di‘

Similarly,

JX uo(S)de = J; uo(f)cﬂs(f)dé‘ < Le.

0

Furthermore from the hypothesis, for any ¢ > 0 there exists 6 > 0 such that for
any 0 <1t<9,

|| wtenmode - [ w(@oe df]<e

Consequently, we obtain that

[RECIE G d5‘<e o),

Thus the assertion follows. O

PROPOSITION 5.2.  Assume that F satisfies (5.1) and (5.2). Let u >0,
ug,; € L”(R) and u; be the solution constructed in Lemma 3.4 of the problem

{ Uy + (F(xa t? u))x = ﬂuxx»
ul,_y =uo,; in C{(R)

for i=1,2 and assume that |uy,1 — up 2|, is finite. Then for each T >0,

sup |ui(-,t) —ua(-,1)], < 2|ug,1 — uo,2|,-
0<t<T

PrOOF. Let
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IM&OZYW@0&+MM,

0

where for i =1,2,

hi (1) = u(u;)x(0,2) — F(0, £,u;(0, 1)), hi(0) = 0.

1

Then U; satisfies
(Ui)t + F(X7 , (Ut)\) = ﬂ(Ui)x,w

wszmﬁwé

Thus letting W = U; — U,, we have

Wt + Fu(x; Z, u3) Wx = ,UVVXXa

vmoﬁma@meﬂ,

where u3 denotes a value between u; and u,. It follows from Lemma 5.1 that
the function W is continuous up to ¢t =0. Hence by the Maximum Principle
we obtain the inequality

sup W (x,0)| < sup|W(x,0).
(x,7)eRx[0, T xeR

Since

(8 = (-, DI, < sup [W(x, O] + [W(0, 1),

the assertion follows. O

THEOREM 5.3. Assume that F satisfies (5.1), (5.2) and that for all u and
(x,0) e R x [0, T] F,, = 0, and that there exist positive numbers © and . such that
Fy > A>0 for bounded u and 0 <t <t. Let upe L*(R) and u be the weak
entropy solution of the problem

{ut + (F(X, 2 u))x - 07

5.3
ul,_o = . (5.3)

Furthermore, let g be as in Theorem 4.4 and j=0. Finally, let ve
G, (R x [0, T]) be the solution of the problem

{ U+ (F(xa Z 5))»( = ﬂﬁxx’
5‘1:0 = U,

(5.4)

where tiy = uy in s 4,(R). Then we have ¥ = u.
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LeEmMA 5.4 ([2], Lemma 3.4). Let up € L*(R) and p be as in Remark 2.3.
Then it follows that |up — ug * p,|, converges to 0 as & tends to 0.

Proor oF THEOREM 5.3. Let R; be a representative of ¢ satisfying

{ (Rﬁ)t + (F(xa Z Rﬁ))x = Rﬂ(Rﬁ)XX7
R5|z:0 = Rﬁo = Up * P,.

Applying Proposition 5.2 with = R;(e), where R; is a representative of f,
Up,1 = Up, U2 = Uy * p,, U =u’, up =Ry for fixed &, we obtain that

sup |u(-,1) — Rs(e, -, 1), < 2lup — up * p,|,.
0<t<T

By Lemma 5.4 and the fact that u* converges to the weak entropy solution u in
Z2'(R x (0,T)) ([6], Theorem 8), the assertion follows. O

THEOREM 5.5. Let [ and g be functions satisfying the conditions given in
Theorem 3.1. Let u be a fixed positive real number and u be the solution
constructed in Lemma 3.4 of the problem

{ut +f(x7 t> u)ux-l—g(x, t> l/l)ll :ﬂuxx» (5 5)

ul,_y =uo in Cj(R).
Furthermore, let ©€ 9 4(R x [0, T]) be the solution of the problem

{ 61 + f(xa ta 5)5‘6 + g(X, tv 5)5 = /uﬁx)ﬁ
5‘1:0 = up,

where 1y = uy in 9, 4(R), then we have v = u.

Proor. From the hypotheses on f and g, it follows that R is uniformly
bounded in C***!**(K) for some o >0 and every compact subset K of
R x (0,T). Therefore, we can pass to the limit ¢ — 0 along a subsequence and
obtain a function u(x, 7) in the same space, which is a classical solution of (5.5)
in R x (0,7). From the uniqueness of a solution of (5.5) we obtain that R;
converges to u, that is, ¥ is associated with wu. O

REMARK 5.6. Let F(x,t,u) =u®/2. Then F,(x,t,u) =u, F,(x,t,u)=1
and Fy(x,t,u) =0. Hence, it is seen that our results include the ones in
Biagioni and Oberguggenberger [2].

REMARK 5.7. It is well-known (Oleinik [6]) that problem (5.3) has the
unique weak entropy solution under some condition on F. In Theorem 5.3 we
need, in addition to the condition on F as in Oleinik [6], only the requirement
that F is smooth and polynomially bounded, together with all derivatives, to
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obtain the result that the generalized solution of (5.4) is associated with the
weak entropy solution of (5.3).
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