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Abstract. We investigate generalized solutions of nonlinear di¤usion equations in

the sense of Colombeau and extend the results of Biagioni and Oberguggenberger [2]

to more general equations. We prove the existence and uniqueness of a generalized

solution which is shown to be consistent with the classical solution.

1. Introduction

Biagioni and Oberguggenberger [2] have studied generalized solutions of

the Cauchy problem

~uut þ ~uu~uux ¼ ~mm~uuxx; x A R, t > 0,

~uujt¼0 ¼ ~uu0; x A R,

�
ð1:1Þ

where ~mm is a generalized constant belonging to the algebra Gs;g of generalized

functions, which is a modified version of the algebra introduced by Colombeau

[3, 4] to deal with the multiplication of distributions. This algebra contains

the space of bounded distributions D 0
Ly so that initial data with strong sin-

gularities can be considered in this setting. They formulated the classical

Cauchy problem

ut þ uux ¼ 0; x A R, t > 0,

ujt¼0 ¼ u0; x A R

�
ð1:2Þ

as

~uut þ ~uu~uuxA0; x A R, t > 0,

~uujt¼0 ¼ ~uu0; x A R

�
ð1:3Þ

in the present setting, where ‘‘A’’ denotes the association relation on Gs;g, and

proved that the generalized solution of (1.3) is obtained as the generalized

solution of (1.1) with ~mmA0. Furthermore, they proved the existence and

uniqueness of a generalized solution of (1.1) and showed that, if the initial data
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belong to LyðRÞ and ~mmA0, the generalized solution is associated with the weak

entropy solution of (1.2).

In this paper we study generalized solutions of the Cauchy problem

~uut þ f ðx; t; ~uuÞ~uux þ gðx; t; ~uuÞ~uu ¼ ~mm~uuxx; x A R, t > 0,

~uujt¼0 ¼ ~uu0; x A R,

�
ð1:4Þ

where ~mm is a generalized constant. As in [2] we formulate the classical Cauchy

problem

ut þ f ðx; t; uÞux þ gðx; t; uÞu ¼ 0; x A R, t > 0,

ujt¼0 ¼ u0; x A R

�
ð1:5Þ

as

~uut þ f ðx; t; ~uuÞ~uux þ gðx; t; ~uuÞ~uuA0; x A R, t > 0,

~uujt¼0 ¼ ~uu0; x A R

�
ð1:6Þ

in the present setting.

In this paper, we extend results in [2] to (1.4) with general functions f and

g. We first recall the definition of the Colombeau algebra Gs;g in Section 2.

In Sections 3 and 4, we prove results concerning existence and uniqueness of a

generalized solution of (1.4) (Theorems 3.1 and 4.4). In Section 5, we study

the distribution with which the generalized solution of (1.4) is associated, when

the initial data belong to LyðRÞ. It turns out that if a coe‰cient ~mm is as-

sociated with zero, the generalized solution of (1.4) is associated with the weak

solution of (1.5) which satisfies the entropy condition (Theorem 5.3) and, if ~mm

is a positive number, the generalized solution is associated with the unique

classical solution (Theorem 5.5).

2. The algebra of generalized functions

We briefly recall the definition of a modified version of the Colombeau

algebra of generalized functions [3, 4].

Notations 2.1. Let W be a nonempty open subset of Rd . We set

Es½W� ¼ fR : ð0;yÞ 
W ! R such that Rðe; xÞ is of class Cy

in x A W for each e > 0g;

Es½W� ¼ fR : ð0;yÞ 
W ! R such that Rjð0;yÞ
W A Es½W�
and that the map x A W 7! Rðe; xÞ A R and all its

derivatives can be continuously extended to W;

for each e > 0g;
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EM; s;g½W� ¼ fR A Es½W� such that for all a A Nd ;

there exist N A N; c > 0 and h > 0 such that

sup
x AW

jDa
xRðe; xÞj < ce�N for all 0 < e < hg;

Ns;g½W� ¼ fR A Es½W� such that for all a A Nd and q A N;

there exist c > 0 and h > 0 such that

sup
x AW

jDa
xRðe; xÞj < ceq for all 0 < e < hg:

The algebra of generalized functions Gs;gðWÞ is defined by

Gs;gðWÞ ¼ EM; s;g½W�=Ns;g½W�:

We denote by R~uuðe; xÞ a representative of a generalized function

~uu A Gs;gðWÞ. Then for any a A Nd , we can define a generalized function Da
x ~uu

to be the class of fDa
xR~uuðe; xÞge>0. Also, for any generalized function

~uu A Gs;gðR
 ½0;T �Þ, we can define ~uujt¼0 to be the class of fR~uuðe; x; 0Þge>0.
Concerning nonlinear functions f of elements of the algebra Gs;gðRdÞ, we

define the following notion.

Definition 2.2. We say that a function f A CyðRdÞ is slowly increasing

at infinity if for every a A Nd there exist c > 0 and r A N such that, for all

x A Rd ,

jDaf ðxÞja cð1þ jxjÞ r:

We denote by OMðRdÞ the space of slowly increasing functions at infinity.

If f A OMðRpÞ and ~uui A Gs;gðRdÞ for i ¼ 1; . . . ; p, we can define a gen-

eralized function f ð~uu1; . . . ; ~uupÞ A Gs;gðRdÞ to be the class of f f ðR~uu1 ; . . . ;R~uupÞge>0.
For details see [1, 3, 4].

Remark 2.3. The algebra Gs;gðRdÞ contains the space of bounded

distributions D 0
LyðRdÞ. Let f be an element of D 0

LyðRdÞ. Since Rðe; xÞ ¼
f � reðxÞ is a representative of f , we obtain D 0

LyðRdÞHGs;gðRdÞ, where r is a

fixed element of SðRdÞ satisfying
Ð
rðxÞdx ¼ 1,

Ð
xarðxÞdx ¼ 0, for all a A Nd ,

jajb 1, and

reðxÞ ¼
1

ed
r

x

e

� �
:

Definition 2.4. A generalized function ~uu A Gs;gðWÞ is said to be asso-

ciated with a distribution w A D 0ðWÞ if it has a representative R~uu A EM; s;g½W�
such that
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R~uuðe; xÞ ! w in D 0ðWÞ as e ! 0:

We denote by ~uuAw if ~uu is associated with w.

In other words, a generalized function ~uu A Gs;gðWÞ is associated with a

distribution w if ~uu behaves like w on the level of information of distribution

theory. Actually, if f A D 0
Ly , the class of f f � rege>0 is associated with f .

Definition 2.5. A generalized function ~mm A Gs;gðWÞ is called a generalized

constant if it has a representative which is constant for each e > 0. We call ~mm a

generalized positive number if it has a representative R~mmðeÞ such that there exist

N A N and h > 0 such that eN aR~mmðeÞa e�N for 0 < e < h.

Definition 2.6. We say that ~uu A Gs;gðWÞ is of bounded type if it has a

representative R~uu A EM; s;g½W� such that there exist c > 0 and h > 0 such that

sup
x AW

jR~uuðe; xÞj < c for 0 < e < h:

We note that u0 A LyðRÞ, viewed as an element of Gs;gðRÞ, is of bounded
type.

3. Existence theorem

Theorem 3.1. Assume that ~mm is a generalized positive number and that

f ; g A CyðR3Þ satisfy the following conditions: for every a A N3, there exist c > 0

and r A N such that, for all ðx; t; uÞ A R3,

jDaf ðx; t; uÞja cð1þ jujÞr;

jDagðx; t; uÞja cð1þ jujÞ r;
and gb 0. Then for each T > 0 there exists a solution ~uu A Gs;gðR
 ½0;T �Þ of

(1.4).

In order to prove Theorem 3.1, we first prove Lemmas 3.3 and 3.4. Let

us recall a next well-known result.

Lemma 3.2 ([7], Section 28, Theorems 7 and 8). Let 0 < aa 1 and

0 < ba 1, and let k and l be two nonnegative integers such that k þ a > lþ b.

Furthermore, let an open subset D of Rd be bounded and convex or bounded with

a Cy-boundary. Then the identity map

I : CkþaðDÞ ! ClþbðDÞ
is compact.

Lemma 3.3. Let g be a function on R
 ð0;TÞ, where 0 < T ay, such

that for any 0 < t < T ,
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sup
x AR

jgðx; tÞjaMt�b

for some M > 0 depending on T and for some 0a b < 1. Then

vðx; tÞ ¼ �K �
x; t

g ¼ �
ð t
0

ðy
�y

Kðx� x; t� hÞgðx; hÞdxdh;

Kðx; tÞ ¼ 1

2
ffiffiffiffiffiffiffi
pmt

p exp � x2

4mt

� �

is a distributional solution of the problem

vt þ g ¼ mvxx; x A R, 0 < t < T ,

vjt¼0 ¼ 0; x A R,

�

where m > 0. Furthermore, v and vx are Hölder continuous with respect to x and

t, and for 0 < aa 1, the sup norm k � k and Hölder norm j � ja on the domain

R
 ½t; s� satisfy

kvka s1�b

1� b
M;

kvxka
m�1=2ffiffiffi

p
p Bð1� b; 1=2Þ maxft1=2�b; s1=2�bgM;

8>>>><
>>>>:

ð3:1Þ

jvja aKðm�a=2 þ 1ÞM; with a < 1; aa 1� b;

jvxja aKðm�ð1þaÞ=2 þ m�1=2ÞMt�b; with a <
1

2
;

jvxja aKðm�ð1þaÞ=2 þ m�1=2ÞM; with a <
1

2
; aa

1

2
� b; if b <

1

2

8>>>>>><
>>>>>>:

ð3:2Þ

for some positive constant K, where B is the beta function.

Proof. Since the inequalities of (3.1) are clear, we only prove (3.2).

Since

exp � ðx� xÞ2

4mðt� hÞ

 !
� exp � ðy� xÞ2

4mðt� hÞ

 !

¼
ðjx�xj a

j y�xja
� 2

a

z2=a�1

4mðt� hÞ

 !
exp � z2=a

4mðt� hÞ

 !
dz;

using the change of variable and


jx� xja � j y� xja



a jx� yja, 0 < aa 1, we

obtain that
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jvðx; tÞ � vðy; tÞja jx� yjaBð1� b; 1� a=2Þ

� 2
3�affiffiffi
p

p
a

ðy
0

z2�ae�z2dz � m�a=2Mt1�a=2�b

from the hypothesis on g. Similarly, for 0 < ta t1 < t2a s,

jvðx; t2Þ � vðx; t1Þj

a

ð t1
0

ðy
�y

ððt2�hÞa

ðt1�hÞa
q

qt

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pmt1=a

p exp �ðx� xÞ2

4mt1=a

 !" #
dt � gðx; hÞdxdh














þ
ð t2
t1

ðy
�y

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pmðt2 � hÞ

p exp � ðx� xÞ2

4mðt2 � hÞ

 !
gðx; hÞdxdh














a ðt2 � t1ÞaBð1� b; 1� aÞ 1ffiffiffi
p

p
a

ðy
�y

ð1=2þ z2Þe�z2dz �Mt
1�a�b
1

þ 1

1� b
ðt2 � t1Þ1�b

M:

If we take a such that aa 1� b, then 1� a=2� b > 1� a� bb 0. Therefore

the first inequality of (3.2) holds. Similarly

jvxðx; tÞ � vxðy; tÞja jx� yjaBð1� b; 1=2� a=2Þ 2
2�affiffiffi
p

p
a

�
ðy
0

ðz1�a þ 2z3�aÞe�z2dz � m�ð1þaÞ=2t1=2�a=2�bM

þ jx� yjaBð1� b; 1=2� a=2Þ 2
1�affiffiffi
p

p
a

� sup
z AR

ðjzj2�a
e�z2Þ � m�ð1þaÞ=2t1=2�a=2�bM;

and, for 0 < ta t1 < t2a s,

jvxðx; t2Þ � vxðx; t1Þj

a ðt2 � t1ÞaBð1� b; 1=2� aÞ � 1ffiffiffi
p

p
a

ðy
�y

ð3jzj=2þ jzj3Þe�z2dz � m�1=2t
1=2�a�b
1 M

þ 1ffiffiffi
p

p m�1=2
ð t2
t1

ðt2 � hÞ�1=2h�bdh �M ð3:3Þ

a ðt2 � t1ÞaBð1� b; 1=2� aÞ � 1ffiffiffi
p

p
a

ðy
�y

ð3jzj=2þ jzj3Þe�z2dz � m�1=2t
1=2�a�b
1 M

þ ðt2 � t1Þ1=2
2ffiffiffi
p

p m�1=2t�bM:
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If b < 1=2, (3.3) can also be estimated as follows:

1ffiffiffi
p

p m�1=2
ð t2
t1

ðt2 � hÞ�1=2h�bdh �M

a
Mffiffiffi
p

p
m1=2

�ððt1þt2Þ=2

t1

t2 � t1

2

� ��1=2
h�bdh

þ
ð t2
ðt1þt2Þ=2

ðt2 � hÞ�1=2 t1 þ t2

2

� ��b

dh

�

¼ Mffiffiffi
p

p
m1=2

�
t2 � t1

2

� ��1=2 1

1� b

t1 þ t2

2

� �1�b

� t
1�b
1

" #

þ 2
t2 � t1

2

� �1=2
t1 þ t2

2

� ��b�

a
Mffiffiffi
p

p
m1=2

1

1� b
þ 2

� �
t2 � t1

2

� �1=2�b

:

Thus the assertion follows. r

Under the assumptions that m > 0 and f ; g satisfy the conditions given in

Theorem 3.1, we consider the classical Cauchy problem

ut þ f ðx; t; uÞux þ gðx; t; uÞu ¼ muxx; x A R; 0 < t < T ; ð3:4Þ
ujt¼0 ¼ u0; x A R ð3:5Þ

�

in CðR
 ½0;TÞÞ if u0 A CbðRÞ, where Cb denotes the space of all bounded

continuous functions. For the initial data u0 A LyðRÞ, we need to weaken the

initial condition (3.5) as follows: For the dual space C 0
0ðRÞ of the space of all

continuous functions with compact support,

ujt¼0 ¼ u0 in C 0
0ðRÞ; ð3:6Þ

which means that for any continuous function j on R with compact support,

lim
t!þ0

ðy
�y

uðx; tÞjðxÞdx ¼
ðy
�y

u0ðxÞjðxÞdx:

Then, we can easily see that for the solution u in the following lemma

lim
t!0;x!x0

uðx; tÞ ¼ u0ðx0Þ

holds at every continuous point x0 of u0ðxÞ.
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Lemma 3.4. Let u0 A LyðRÞ. Then for each T > 0 there exists a bounded

classical solution of (3.4) satisfying (3.6). Furthermore, it is unique.

Proof. In order to prove the existence of a solution, it su‰ces to consider

the integral equation

u ¼ K �
x
u0 � K �

x; t
f f ðx; t; uÞux þ gðx; t; uÞug;

where

K �
x
u0 ¼

ðy
�y

Kðx� x; tÞu0ðxÞdx:

Let M be a positive number such that

supfj f ðx; t; uÞt�1=2 pþ gðx; t; uÞuj j x A R; juj þ jpj

a ð1þ ðpmÞ�1=2Þku0kLyðRÞ þ 1gaMt�1=2 ð3:7Þ

for any t A ð0;T � and let saT be a positive number such that

2 1þ Bð1=2; 1=2Þ
2
ffiffiffiffiffiffi
pm

p
� �

s1=2Ma 1: ð3:8Þ

Furthermore, let B be the Banach space of all continuous functions u on

ð�n; nÞ 
 ð0; s� which are continuously di¤erentiable with respect to x on the

same domain with the finite norm kukB defined by

kukB ¼ sup
�n<x<n
0<tas

juðx; tÞj þ sup
�n<x<n
0<tas

t1=2juxðx; tÞj:

Let E be the closed, bounded and convex set in B defined by

E ¼ fu A B j kukBa ð1þ ðpmÞ�1=2Þku0kLyðRÞ þ 1g:

We define a map A from E into B by

Au ¼ K �
x
u0 � K �

x; t
F ½u�n;

where

F ½u�n ¼
f ðx; t; uÞux þ gðx; t; uÞu; for ðx; tÞ A ð�n; nÞ 
 ð0; s�,
0; otherwise.

�

Then by Lemma 3.3 we have

kAukBa ku0kLyðRÞ þ 2s1=2M þ 1ffiffiffiffiffiffi
pm

p ku0kLyðRÞ þ
Bð1=2; 1=2Þffiffiffiffiffiffi

pm
p s1=2M

a ð1þ ðpmÞ�1=2Þku0kLyðRÞ þ 1;
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which shows that A is a map of E into E. Since for u; v A E, there exists c > 0

such that

kAu� AvkBa cðs1=2 þ sÞku� vkB;

A is continuous. Furthermore, from Lemma 3.2 and Lemma 3.3 it follows

that the set f�Auþ K �x u0 j u A Eg is compact in B, and hence that the map A

is compact. By Schauder’s Fixed Point Theorem, there exists a fixed point un
in E with un ¼ Aun, and obviously un is a distributional solution of (3.4) in

ð�n; nÞ 
 ð0; s�.
The function vn ¼ K �x; t F ½un�n is defined for all x A R, 0a ta s. Since

all the estimates are independent of n in the discussion above, it follows from

Lemma 3.3 that the sequence fvngyn¼1 is bounded in the Hölder norm with

exponent 1/2 on R
 ½0; s�. Therefore according to Lemma 3.2, there exists a

uniformly convergent subsequence which converges to a Hölder continuous

function v with exponent 0 < a < 1=2. Since also by Lemma 3.3, fqvn=qxgyn¼1
is bounded in a Hölder norm with exponent 0 < a 0 < 1=2 on R
 ½t; s�, for

every 0 < t < s, it follows that v is di¤erentiable in x and qv=qx is a Hölder

continuous with exponent 0 < a 00 < a 0 in R
 ð0; s�. Now we have

q

qt
� m

q2

qx2

 !
ð�vnÞ !

q

qt
� m

q2

qx2

 !
�vþ K �

x
u0

� �
as n ! y

in the distributional sense on R
 ð0; s�, since K �x u0 is a solution of the heat

equation. Furthermore, we have

q

qt
� m

q2

qx2

 !
ð�vnÞ ¼ �F �vn þ K �

x
u0

h i
n

! � f x; t;�vþ K �
x
u0

� � q

qx
�vþ K �

x
u0

� �

� g x; t;�vþ K �
x
u0

� �
�vþ K �

x
u0

� �
as n ! y

in the distributional sense. Hence, u ¼ �vþ K �x u0 is a distributional solution

of (3.4) in R
 ð0; s�, which can be written as

u ¼ K �
x
u0 � K �

x; t
f f ðx; t; uÞux þ gðx; t; uÞug; ð3:9Þ

by the above considerations. Furthermore, from the hypotheses on f and g

and (3.9) it follows that u is a classical solution of (3.4) and satisfies (3.6).

Taking uðx; sÞ as the initial data and applying the above argument, we have

a solution in R
 ½s; sþ s1�, where s1 is determined by (3.7) and (3.8) from
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kuð� ; sÞkLyðRÞ. By the Maximum Principle, we have kuð� ; sþ s1ÞkLyðRÞ a

kuð� ; sÞkLyðRÞ. Therefore, by repeating the above method k times we have a

solution in R
 ½s; sðk þ 1Þ�. Consequently, we have a solution for each T > 0.

Since f and g belong to CyðR3Þ, the uniqueness is obtained by a similar

way to the proof for Theorem 7 of Oleı̆nik [6]. r

Proof of Theorem 3.1. In order to prove the existence of a generalized

solution of (1.4), it su‰ces to prove that for any initial data ue
0 A EM; s;g½R� and

any coe‰cient me satisfying eN a me a e�N for suitable N, (3.4) and (3.5) have a

solution ue A EM; s;g½R
 ½0;T �� for each T > 0.

From Lemma 3.4 there exists a classical solution ue of (3.4) and (3.5) with

the initial data u e
0 in R
 ½0;T �, because ue

0 is continuous. Then, by the

Maximum Principle we have ku ekLyðR
½0;T �Þ a kue
0kLyðRÞ. Furthermore from

the boundedness of qxu
e
0 and Lemma 3.4 we obtain the boundedness of qxu

e.

In fact, from the proof of Lemma 3.4, K �x; t f f ðx; t; uÞux þ gðx; t; uÞug is

Hölder continuous with exponent a for any 0 < a < 1=2. Since K �x ue
0 is

bounded, Lipschitz continuous in x and 1=2-Hölder continuous in t globally, it

is a-Hölder continuous for any a ð0 < a < 1=2Þ. Therefore it follows that the

solution ue of (3.4) and (3.5) is Hölder continuous with exponent 0 < a < 1=2.

From the Hölder continuity of ue we obtain the boundedness of qxu
e, namely,

there exist N A N; c > 0 and h > 0 such that

sup
ðx; tÞ AR
½0;T �

jqxueja ce�N

for each 0 < e < h. Similarly we can prove that all derivatives of ue are

dominated by ce�N with suitable c and N. Finally by taking R~uuðe; x; tÞ ¼ ueðx; tÞ
as a representative of ~uu, the assertion is obtained. r

4. Uniqueness theorem

Here, we will prove the uniqueness of a generalized solution of (1.4). We

first prove Lemma 4.1 and Proposition 4.2.

Lemma 4.1. For a smooth function f on R, put

Gnð f ; u; vÞ ¼
ðu� vÞ�n

f ðuÞ �
Xn�1
k¼0

1

k!
f ðkÞðvÞðu� vÞk

 !
; if u 6¼ v,

1

n!
f ðnÞðuÞ; if u ¼ v

8>>><
>>>:

for each n A N. Then
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q

qu
Gnð f ; u; vÞ ¼ �nGnþ1ð f ; u; vÞ þ Gnð f 0; u; vÞ; ð4:1Þ

q

qv
Gnð f ; u; vÞ ¼ nGnþ1ð f ; u; vÞ: ð4:2Þ

Furthermore, if f A OMðRÞ, then we obtain that for any n A N there exist c > 0

and r A N such that

jGnð f ; u; vÞja cð1þ juj þ jvjÞ r: ð4:3Þ

Proof. Di¤erentiating Gn with respect to u, for nb 2 we have

q

qu
Gnð f ; u; vÞ ¼

ðu� vÞ�1ð�nGnð f ; u; vÞ þ Gn�1ð f 0; u; vÞÞ; if u 6¼ v,

1

ðnþ 1Þ! f
ðnþ1ÞðuÞ; if u ¼ v.

8><
>:

For each n A N we have

Gnð f ; u; vÞ ¼ ðu� vÞGnþ1ð f ; u; vÞ þ
1

n!
f ðnÞðvÞ;

so that for each n A N

q

qu
Gnð f ; u; vÞ ¼ �nGnþ1ð f ; u; vÞ þ Gnð f 0; u; vÞ:

Furthermore, since

q

qv

Xn�1
k¼0

1

k!
f ðkÞðvÞðu� vÞk

 !
¼ 1

ðn� 1Þ! f
ðnÞðvÞðu� vÞn�1;

we have

q

qv
Gnð f ; u; vÞ ¼ nGnþ1ð f ; u; vÞ:

Also, since

Gnð f ; u; vÞ ¼
1

n!
f ðnÞðyuþ ð1� yÞvÞ

holds for some 0a ya 1, if f A OMðRÞ, then for any n A N there exist c > 0

and r A N such that

jGnð f ; u; vÞja cð1þ juj þ jvjÞ r:

Thus the assertion follows. r
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Proposition 4.2. Assume that f is a function as in Theorem 3.1. Let u

and v be elements of EM; s;g½R
 ½0;T ��. Put

að f ; e; x; tÞ ¼ G1ð f ðx; t; �Þ; uðe; x; tÞ; vðe; x; tÞÞ

for each ðx; tÞ A R
 ½0;T �. Then we obtain that a A EM; s;g½R
 ½0;T ��.

Proof. Since all derivatives of u and v with respect to x and t belong

to EM; s;g½R
 ½0;T ��, it su‰ces to prove that all derivatives of a with respect

to u and v belong to EM; s;g½R
 ½0;T ��. Since u and v are elememts of

EM; s;g½R
 ½0;T ��, (4.3) implies that for any n A N there exist N A N, c > 0 and

h > 0 such that

sup
ðx; tÞ AR
½0;T �

jGnð f ðx; t; �Þ; uðe; x; tÞ; vðe; x; tÞÞja ce�N ð4:4Þ

for all 0 < e < h. Consequently, from (4.1), (4.2) and (4.4) we obtain that all

derivatives of a with respect to u and v belong to EM; s;g½R
 ½0;T ��. Thus the

assertion follows. r

Lemma 4.3 ([2], Lemma 2.2). Let u be a nonnegative, continuous function

on ½0;yÞ and assume that

uðtÞa a1 þ a2

ð t
0

uðsÞffiffiffiffiffiffiffiffiffiffi
t� s

p ds for tb 0

with some constants a1; a2b 0. Then

uðtÞa a1ð1þ 2a2
ffiffi
t

p
Þ expðpa22 tÞ for any tb 0:

Theorem 4.4. Assume that a representative R~mmðeÞ of a generalized positive

number ~mm satisfies

R~mmðeÞ log
1

e
b 1 ð4:5Þ

for any 0 < e < h with h > 0. Then for each T > 0 the solution ~uu A
Gs;gðR
 ½0;T �Þ of bounded type of (1.4) is unique.

Proof. Let ~uu1; ~uu2 A Gs;gðR
 ½0;T �Þ be two solutions of (1.4) with rep-

resentatives R~uu1 ;R~uu2 of bounded type, respectively. Then there exist H A
Ns;g½R
 ½0;T �� and h A Ns;g½R� such that
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ðR~uu1 � R~uu2Þt ¼ R~mmðR~uu1 � R~uu2Þxx � ð f ðx; t;R~uu1ÞðR~uu1Þx � f ðx; t;R~uu2ÞðR~uu2ÞxÞ
� ðgðx; t;R~uu1ÞR~uu1 � gðx; t;R~uu2ÞR~uu2Þ þH;

R~uu1 � R~uu2 jt¼0 ¼ h:

8><
>:

By changing representatives suitably, we may assume that h1 0. Let F be a

function which satisfies

Fuðx; t;R~uuiÞ ¼ f ðx; t;R~uuiÞ

for i ¼ 1; 2 and set R~uu ¼ R~uu1 � R~uu2 . Then we have

ðR~uuÞt ¼ R~mmðR~uuÞxx � ½F ðx; t;R~uu1Þ � Fðx; t;R~uu2Þ�x þ Fxðx; t;R~uu1Þ � Fxðx; t;R~uu2Þ
� gðx; t;R~uu1ÞR~uu � ½gðx; t;R~uu1Þ � gðx; t;R~uu2Þ�R~uu2 þH;

R~uujt¼0 ¼ 0:

8><
>:
From Proposition 4.2 it follows that

ðR~uuÞt ¼ R~mmðR~uuÞxx � ½aðF ; e; x; tÞR~uu�x þ aðFx; e; x; tÞR~uu

� gðx; t;R~uu1ÞR~uu � aðg; e; x; tÞR~uuR~uu2 þH;

R~uujt¼0 ¼ 0:

8><
>:

Since R~uu satisfies

R~uu ¼
ð t
0

ðy
�y

Kðx� x; t� hÞ � ð�½aðF ; e; x; hÞR~uu�x þ aðFx; e; x; hÞR~uu

� gðx; h;R~uu1ÞR~uu � aðg; e; x; hÞR~uuR~uu2 þHÞdxdh;

we have

jR~uuðe; x; tÞjaT sup
ðx; tÞ AR
½0;T �

jHðe; x; tÞj

þ sup
ðx; tÞ AR
½0;T �

jaðF ; e; x; tÞj
ð t
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR~mmðeÞðt� hÞ

p sup
x AR

jR~uuðe; x; hÞjdh

þ
�

sup
ðx; tÞ AR
½0;T �

jaðFx; e; x; tÞj þ sup
ðx; tÞ AR
½0;T �

jgðx; t;R~uu1Þj

þ sup
ðx; tÞ AR
½0;T �

jaðg; e; x; tÞR~uu2 j
�ð t

0

sup
x AR

jR~uuðe; x; hÞjdh:

Furthermore, from
ffiffi
t

p
=
ffiffiffiffiffiffiffiffiffiffi
t� h

p
b 1 for any 0 < h < t, it follows that
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jR~uuðe; x; tÞjaT sup
ðx; tÞ AR
½0;T �

jHðe; x; tÞj

þ sup
ðx; tÞ AR
½0;T �

jaðF ; e; x; tÞj
ð t
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR~mmðeÞðt� hÞ

p sup
x AR

jR~uuðe; x; hÞjdh

þ
�

sup
ðx; tÞ AR
½0;T �

jaðFx; e; x; tÞj þ sup
ðx; tÞ AR
½0;T �

jgðx; t;R~uu1Þj

þ sup
ðx; tÞ AR
½0;T �

jaðg; e; x; tÞR~uu2 j
�ð t

0

ffiffi
t

pffiffiffiffiffiffiffiffiffiffi
t� h

p sup
x AR

jR~uuðe; x; hÞjdh

aT sup
ðx; tÞ AR
½0;T �

jHðe; x; tÞj

þ 1ffiffiffi
p

p
�

1ffiffiffiffiffiffiffiffiffiffiffiffi
R~mmðeÞ

p sup
ðx; tÞ AR
½0;T �

jaðF ; e; x; tÞj

þ
ffiffiffiffiffiffiffi
pT

p
sup

ðx; tÞ AR
½0;T �
jaðFx; e; x; tÞj þ

ffiffiffiffiffiffiffi
pT

p
sup

ðx; tÞ AR
½0;T �
jgðx; t;R~uu1Þj

þ
ffiffiffiffiffiffiffi
pT

p
sup

ðx; tÞ AR
½0;T �
jaðg; e; x; tÞR~uu2 j

�

�
ð t
0

1ffiffiffiffiffiffiffiffiffiffi
t� h

p sup
x AR

jR~uuðe; x; hÞjdh:

Applying Lemma 4.3, we have

sup
ðx; tÞ AR
½0;T �

jR~uuðe; x; tÞja a1ð1þ 2a2
ffiffiffiffi
T

p
Þ expðpa22TÞ;

where

a1 ¼ T sup
ðx; tÞ AR
½0;T �

jHðe; x; tÞj;

a2 ¼
1ffiffiffi
p

p
�

1ffiffiffiffiffiffiffiffiffiffiffiffi
R~mmðeÞ

p sup
ðx; tÞ AR
½0;T �

jaðF ; e; x; tÞj

þ
ffiffiffiffiffiffiffi
pT

p
sup

ðx; tÞ AR
½0;T �
jaðFx; e; x; tÞj þ

ffiffiffiffiffiffiffi
pT

p
sup

ðx; tÞ AR
½0;T �
jgðx; t;R~uu1Þj

þ
ffiffiffiffiffiffiffi
pT

p
sup

ðx; tÞ AR
½0;T �
jaðg; e; x; tÞR~uu2 j

�
:

By Lemma 4.1, Proposition 4.2 and the hypothesis that ~uui is of bounded type

for i ¼ 1; 2, it follows that a is uniformly bounded for su‰ciently small e > 0.

Therefore, there exists C > 0 such that for su‰ciently small e > 0
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a22 a
C

p

1

R~mmðeÞ
þ 1ffiffiffiffiffiffiffiffiffiffiffiffi

R~mmðeÞ
p þ 1

 !
:

Consequently, we obtain that for su‰ciently small e > 0,

expðpa22TÞa exp CT
1

R~mmðeÞ
þ 1ffiffiffiffiffiffiffiffiffiffiffiffi

R~mmðeÞ
p þ 1

 ! !

a exp CT log
1

e
þ

ffiffiffiffiffiffiffiffiffiffi
log

1

e

r
þ 1

 ! !

a exp CT 2 log
1

e
þ 1

� �� �
¼ 1

e

� �2CT
eCT ;

which means that for all q A N, there exist c > 0 and h > 0 such that

sup
ðx; tÞ AR
½0;T �

jR~uuðe; x; tÞja ceq

for each 0 < e < h. Similarly we can prove the same type of estimate for any

derivative of R~uu with respect to x and t. Hence R~uuðe; x; tÞ A Ns;g½R
 ½0;T ��,
that is, ~uu1 � ~uu2 ¼ 0 in Gs;gðR
 ½0;T �Þ. Thus the assertion follows. r

5. Relationship to classical solutions

In [5], Lax introduced the following pseudo-norm, defined for locally

integrable functions f on R, but possibly infinite:

j f j� ¼ sup
y AR

ð y
0

f ðxÞdx










:
We will investigate the relationship between generalized solutions and classical

solutions by using this pseudo-norm. We first prove Lemma 5.1 and Propo-

sition 5.2.

Lemma 5.1. Let m > 0, u0 A LyðRÞ and u be the solution constructed in

Lemma 3.4 of the problem

ut þ ðF ðx; t; uÞÞx ¼ muxx;

ujt¼0 ¼ u0 in C 0
0ðRÞ;

�

where F is an element of CyðR3Þ such that for any a A N3 there exist c > 0 and

r A N such that for all ðx; t; uÞ A R3

jDaFðx; t; uÞja cð1þ jujÞ r; ð5:1Þ
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and for all ðx; t; uÞ A R3

u � Fxðx; t; uÞb 0: ð5:2Þ

Then
Ð x
0 uðx; tÞdx converges to

Ð x
0 u0ðxÞdx as t tends to 0.

Proof. It su‰ces to prove the case where x > 0. Let jeðxÞ be a positive

continuous function on R such that for each 0 < e < x

jeðxÞ ¼
1 for

e

2
a xa x� e

2
,

0 for xa 0, xa x,

8<
:

and je a 1. Let L ¼ supðx;tÞ AR
½0;T � juðx; tÞj. For fixed x > 0 we haveð x
0

uðx; tÞdx�
ð x
0

uðx; tÞjeðxÞdx










 ¼
ð x
0

uðx; tÞð1� jeðxÞÞdx










aLe:

Similarly, ð x
0

u0ðxÞdx�
ð x
0

u0ðxÞjeðxÞdx










aLe:

Furthermore from the hypothesis, for any e > 0 there exists d > 0 such that for

any 0 < t < d, ð x
0

uðx; tÞjeðxÞdx�
ð x
0

u0ðxÞjeðxÞdx










a e:

Consequently, we obtain thatð x
0

uðx; tÞdx�
ð x
0

u0ðxÞdx










a eð1þ 2LÞ:

Thus the assertion follows. r

Proposition 5.2. Assume that F satisfies (5.1) and (5.2). Let m > 0,

u0; i A LyðRÞ and ui be the solution constructed in Lemma 3.4 of the problem

ut þ ðF ðx; t; uÞÞx ¼ muxx;

ujt¼0 ¼ u0; i in C 0
0ðRÞ

�

for i ¼ 1; 2 and assume that ju0;1 � u0;2j� is finite. Then for each T > 0,

sup
0ataT

ju1ð� ; tÞ � u2ð� ; tÞj� a 2ju0;1 � u0;2j�:

Proof. Let
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Uiðx; tÞ ¼
ð x
0

uiðx; tÞdxþ hiðtÞ;

where for i ¼ 1; 2,

h 0
i ðtÞ ¼ mðuiÞxð0; tÞ � F ð0; t; uið0; tÞÞ; hið0Þ ¼ 0:

Then Ui satisfies

ðUiÞt þ F ðx; t; ðUiÞxÞ ¼ mðUiÞxx;

Uijt¼0 ¼
ð x
0

u0; iðxÞdx:

8<
:

Thus letting W ¼ U1 �U2, we have

Wt þ Fuðx; t; u3ÞWx ¼ mWxx;

W jt¼0 ¼
ð x
0

½u0;1ðxÞ � u0;2ðxÞ�dx;

8<
:

where u3 denotes a value between u1 and u2. It follows from Lemma 5.1 that

the function W is continuous up to t ¼ 0. Hence by the Maximum Principle

we obtain the inequality

sup
ðx; tÞ AR
½0;T �

jWðx; tÞja sup
x AR

jWðx; 0Þj:

Since

ju1ð� ; tÞ � u2ð� ; tÞj� a sup
x AR

jWðx; tÞj þ jWð0; tÞj;

the assertion follows. r

Theorem 5.3. Assume that F satisfies (5.1), (5.2) and that for all u and

ðx; tÞ A R
 ½0;T � Fuu b 0, and that there exist positive numbers t and l such that

Fuu b l > 0 for bounded u and 0a ta t. Let u0 A LyðRÞ and u be the weak

entropy solution of the problem

ut þ ðF ðx; t; uÞÞx ¼ 0;

ujt¼0 ¼ u0:

�
ð5:3Þ

Furthermore, let ~mm be as in Theorem 4.4 and ~mmA0. Finally, let ~vv A
Gs;gðR
 ½0;T �Þ be the solution of the problem

~vvt þ ðFðx; t; ~vvÞÞx ¼ ~mm~vvxx;

~vvjt¼0 ¼ ~uu0;

�
ð5:4Þ

where ~uu0 ¼ u0 in Gs;gðRÞ. Then we have ~vvAu.
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Lemma 5.4 ([2], Lemma 3.4). Let u0 A LyðRÞ and r be as in Remark 2.3.

Then it follows that ju0 � u0 � rej� converges to 0 as e tends to 0.

Proof of Theorem 5.3. Let R~vv be a representative of ~vv satisfying

ðR~vvÞt þ ðF ðx; t;R~vvÞÞx ¼ R~mmðR~vvÞxx;
R~vvjt¼0 ¼ R~uu0 ¼ u0 � re:

�

Applying Proposition 5.2 with m ¼ R~mmðeÞ, where R~mm is a representative of ~mm,

u0;1 ¼ u0, u0;2 ¼ u0 � re, u1 ¼ ue, u2 ¼ R~vv for fixed e, we obtain that

sup
0ataT

jueð� ; tÞ � R~vvðe; � ; tÞj� a 2ju0 � u0 � rej�:

By Lemma 5.4 and the fact that ue converges to the weak entropy solution u in

D 0ðR
 ð0;T ÞÞ ([6], Theorem 8), the assertion follows. r

Theorem 5.5. Let f and g be functions satisfying the conditions given in

Theorem 3.1. Let m be a fixed positive real number and u be the solution

constructed in Lemma 3.4 of the problem

ut þ f ðx; t; uÞux þ gðx; t; uÞu ¼ muxx;

ujt¼0 ¼ u0 in C 0
0ðRÞ:

�
ð5:5Þ

Furthermore, let ~vv A Gs;gðR
 ½0;T �Þ be the solution of the problem

~vvt þ f ðx; t; ~vvÞ~vvx þ gðx; t; ~vvÞ~vv ¼ m~vvxx;

~vvjt¼0 ¼ ~uu0;

�

where ~uu0 ¼ u0 in Gs;gðRÞ, then we have ~vvAu.

Proof. From the hypotheses on f and g, it follows that R~vv is uniformly

bounded in C2þa;1þaðKÞ for some a > 0 and every compact subset K of

R
 ð0;TÞ. Therefore, we can pass to the limit e ! 0 along a subsequence and

obtain a function uðx; tÞ in the same space, which is a classical solution of (5.5)

in R
 ð0;TÞ. From the uniqueness of a solution of (5.5) we obtain that R~vv

converges to u, that is, ~vv is associated with u. r

Remark 5.6. Let Fðx; t; uÞ ¼ u2=2. Then Fuðx; t; uÞ ¼ u, Fuuðx; t; uÞ ¼ 1

and Fxðx; t; uÞ ¼ 0. Hence, it is seen that our results include the ones in

Biagioni and Oberguggenberger [2].

Remark 5.7. It is well-known (Oleı̆nik [6]) that problem (5.3) has the

unique weak entropy solution under some condition on F. In Theorem 5.3 we

need, in addition to the condition on F as in Oleı̆nik [6], only the requirement

that F is smooth and polynomially bounded, together with all derivatives, to
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obtain the result that the generalized solution of (5.4) is associated with the

weak entropy solution of (5.3).
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