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ABSTRACT. Standing pulse solutions of three-component systems with competition and
diffusion are considered. Under the assumption that travelling front and back solutions
with the same zero velocity coexist, it is shown that standing pulse solutions bifurcate
globally from these travelling front and back solutions. The direction of bifurcation
and stability properties of bifurcated solutions are also shown.

1. Introduction

Spatio and/or temporal patterns arising in ecological and biological prob-
lems have been investigated theoretically by applying several mathematical
concepts. Among them, reaction-diffusion systems have been used extensively
as continuous space-time models for interacting and diffusing biological species
in population dynamics. Lotka and Volterra classify their relationships into
three types of interactions between individuals with the diffusion terms which
model the migration of each species; competition for limited resouces, prey-
predator interaction, and mutualistic relationships. Though these systems are
relatively simple, they can exhibit a variety of interesting spatial and spatio-
temporal patterns, including travelling fronts and pulses.

In this article, we study the following 3-component reaction-diffusion
systems for three competing species:

uy; = dyuy o + (11 — anuy — apts — apuz)u
Uy, = datty xy + (r2 — an1uy — anuy — axzuz)uz, (1,x) € Ry x R, (1.1)

uz s = d3us xx + (r3 — aziun — azuy — azsus)us
where u;(¢, x) denote the population densities of three competing species at time
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¢t and spatial position x. d; are the diffusion rates, r; are the intrinsic growth
rates, a; are the intraspecific competition rates of u;, and a; (i # j) are the
interspecific competition rates between u; and u;, respectively. All of the
coefficients are positive constants.

Under a suitable transformation, (1.1) is rewritten as

Uy, = ‘?lul,xx +a(l —uy — apouy — og3u3)uy
U, = daty vy + b(1 — apyuy — uy — op3us)up, (1, x) e Ry x R, (1.2)

Uz, = us yx + (1 — 03101 — 031 — uz)u3

d;,a,b and o;; are all positive constants. Here we assume that two species u;
and u, diffuse slowly relative to the third species us.

(H1) dy =¢&* dy=de* for d >0 and small &> 0.

Simply, we often write (1.2) with (H1) as

_ 2
{u, = & Duy, +f(u, U), (t,x) e Ry xR, (1:3)

Uy = Uxyx + g(“v l))

where D = diag{l,d} and

[ _ (N(w)  fa(l —u — o — aizv)uy
u= , f(u,v) = = ,
ua S2(u,v) b(1 = opuy — uy — a3v)up
v=u3,g(u,v) = (1 — a3ju; — azuy — v)v.

Null sets of the nonlinearities of fi,f; and g are given in Fig. 1. First we
assume the following: If the u; species is absent, the u, and the v species
coexist. That is, we may say that if the competition between the u, and the v
species is not so strong, they can coexist. Similarly if the u, species is absent,
the u; and the v species coexist. Thus, we assume

(H2) o3 < 1, o3 < 1, o3 < 1,0632 < 1.

Let q- = (1 — 0621)/(0623 — 06210613) and qd+ = (1 — 0612)/(0613 — 0(120(23) be the third
components of Q_ and Qy, and p_ = (1 — 031)/(1 — oy3031) and p; = (1 — a3;)/
(1 — ap3i32) be the third components of P- and P, (see Fig. 1), respective-
ly. And we use the symbol I(a ~ b) = (a,b) if a< b, ={a} if a=b, = (b,a)
if b<a Next we assume that 1 —op30 >0 and 1 — oy >0 for any
wel(p_ ~p;) (see Fig. 7). That is,

(H3) max{p_,p;} <min{l/oy3, 1/o03}

is assumed. Finally we assume the one of the following three conditions
depending on the relation between oy, o3, %21, 023:
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Fig. 1. Null sets of fi, /> and g¢.

(H4-a) I(p- ~py) <= (q-,q+) when max{on;, /o) < on3/o3;
(H4-b) I(p_ ~p+) c (q+,q_) when OC23/0613 < min{oczl, 1/0!12};
(H4-c) max{p_,p+} <min{q_,q+} when 1/o1r < o3/o3 < oz1.

The term (H4) is used simply in a sense that any condition of the above three is
taken.

Under the assumptions (H2) ~(H4), the equilibrium states P- and P, are
both asymptotically stable in (1.3) (Fig. 1 corresponds to the case satisfying
(H2), (H3) and (H4-a)). We fix a; (i,j=1,2,3,i # j) arbitrarily to satisfy
(H2)~(H4) and for these ajy, 013,003, 031,23, define an interval of oy, say
J = (a1, 1), such that any oy € J satisfies (H2) ~(H4).

In this sitvation, let us consider travelling front solutions of (1.3) con-
necting two stable states P.. That is, introducing the travelling coordinate
z = x + ¢&0t, such solutions satisfy the following ordinary differential equations

&?Du.. — ebu. + f(u,0) =0
v, —&ebv, + g(u,v) =0
(w,0)(—0) = P, (u,0)(+o0) = Py

» Z€R (1.4)
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0(c)

Fig. 2. Global branches of stable travelling front and back solutions. Velocity 6(¢) versus as;.

We write these solutions P~ — P, symbolically, depending on the boundary
conditions of (1.4). By using the geometric or topological singular pertur-
bation method, Miller shows that (1.3) has a travelling front solution P~ — Py
in [13] and this is stable in [14]. Similarly we can study the existence and
stability of travelling back solutions P, — P_. Under the assumptions
(H1)~(H4), we obtain the following global branches of stable travelling front
and back solutions with the velocity ¢0(e) with respect to the parameter o) € J
(see Fig. 2).

At (on1,0(¢)) = (d21,0), the stable travelling front and back solutions with
the same zero velocity coexist. When oy increases from dj), there are also two
travelling wave solutions, the front and back solutions. But the sign of their
velocities are different. By the aid of numerical simulations, we make such
travelling wave solutions colide each other in Fig. 3, Fig. 4, Fig. 5. This
simulation corresponds to the invension problem of the u, (resp. u;) species
from the both side on the locally stable state P_ (resp. P.). Note that the
parameters in Fig. 3, (Fig. 4, Fig. 5) satisfty (H4-a) ((H4-b), (H4-c)), respecti-
vely. In Fig. 3 and Fig. 4, it seems that the travelling front and back solutions
are blocked by a stable standing pulse solution. Then, what happens in Fig. 5?
It seems that they annihilate and then recover the stable equilibrium state P_.
In spite of the fact that the branches of travelling wave solutions in each case
have the same structure as in Fig. 2, where does this difference come from?

Motivated by the above question, we carefully study the existence and
stability of standing pulse solutions (i.e., stationary solutions) of the problem
(1.3) with conditions (u,v)(z, +c0) = P.. We write these solutions P. — P_
symbolically. Quite similarly, we can consider standing pulse solutions
P, — P, too. Under the assumptions (H1)~(H4), we show the global exis-
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U1(t,X)

0

Fig. 3. Numerical solutions of (1.3) with e=0.01, a =b=d =1.0. Travelling front and back
solutions collide and are blocked by a stable standing pulse solution when o, = 1.3, o3 = 0.7,
o] = 1.04, 03 = 0.8, o3 = 0.8, o3 = 0.5.

tence and stability of standing pulse solutions, which bifurcate from the points
where travelling front and back solutions with zero velocity coexist. The
direction of bifurcated solutions and their stability properties do depend on

. o0 . T
the both signs of p_ —p, and o of Lemma 2.5. Since these situation is

complicated, we sum up them in Fig. 6 (see Theorems 3.9 and 4.13 for details).
Using the parameters in Fig. 3, we can calculate p_ = 0.455.., p, = 0.833.,

00
a1 =1.03.. and o3 — a3 <0. Then by Lemma 2.5, we find that %< 0.
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U1(t,X)

35000
30000

Fig. 4. Numerical solutions of (1.3) with ¢ =0.01, a=b=4d =1.0. Travelling front and back
solutions collide and are blocked by a stable standing pulse solution when o, = 0.9, o3 = 0.8,
o] = 1.5, 3 = 0.5, 3] = 0.75, 03 = 0.8.

Thus, Fig. 3 corresponds to the case (a) in Fig. 6 and shows the existence of
a stable standing pulse solution P. — P_. Similarly we can check the fol-
lowing by using the parameters in each case: Fig. 4 does to the case (d) in
Fig. 6 and shows the existence of a stable standing pulse solution P. — P_.
On the other hand, Fig. 5 does to the case (b) in Fig. 6. For the parameters in
Fig. 5, there exists only an unstable standing pulse solution P, — P,. With the
aid of these results, we may understand the above numerical simulations as
follows: Travelling front and back solutions are blocked by stable standing
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U1(t,X)

v (t,x)

Fig. 5. Numerical solutions of (1.3) with ¢=0.01, a=b=d =1.0. Travelling front and back
solutions collide and annihilate when o1, = 1.3, o13 = 0.8, a1 = 2.2, 03 = 0.7, 031 = 0.8, a3, = 0.5.

pulse solutions P~ — P_ in Fig. 3 and Fig. 4. But there are no stable standing
pulse solutions P~ — P_ in Fig. 5. Then (uy,uy,v)(,x) decays to the one of
the stable equilibrium states, P_, as t — oo.

The problem (1.4) can be rewritten as an equivalent six-dimensional
dynamical system

d
EVZF(V;S;OQ],H), xeR (L.5)

for V = (uy, euy ,un, €Uz ,0,0x). When (aa1, 0) = (d21,0), (1.5) has two hetero-
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B(e) d(e)

(c) (d)

Fig. 6. Global bifurcation diagrams of standing pulse solutions. Velocity 0(¢) versus o;. The
symbols S and U stand for a stable branch and an unstable one, respectively. (a) p_ < p, and
a0, ., . a0, . a0
%(w 5 d21) < 0; (b) p- <p. and %(w ,821) > 0; (¢) pr <p_ and p

w(w*,&zl) <0; (d) py <p-

and %(w*,&ﬂ) > 0.

clinic orbits from P_ = ([P_],,0,[P-],,0,p_,0) to P, = ([P];,0,[P:],,0,p+,0)
and P, to P_ forming a loop which is called a heteroclinic loop, where [P, |, is
the i-th component of P,. Under this situation, Kokubu et al [12] show the
bifurcation of homoclinic orbits with respect to P_ or P, which correspond to
standing pulse solutions P~ — P_ or P, — P,. And Nii [16] gives the stability
criterion of these standing pulse solutions by using stability index of homoclinic

. . e . . a0
orbits. This stability index is related to the signs of p_ —p, and EP But

their results are local theory on a small neighborhood of (¢1,60) = (421,0). To
get a global information of the above bifurcated standing pulse solutions, we
use the singular perturbation method here.

In §2, we give the basic results for outer and inner approximate solu-
tions, which plays an important role in the proof of the existence and stability
of standing pulse solutions. In §3, we show the existence of standing pulse
solutions of (1.3) by using the analytical singular perturbation method. In
§4, applying the SLEP method developed by Nishiura and Fujii [17], we study
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the stability properties of the above solutions. In §5, we give a few com-
ments.

Finally we should note the work by Mimura and Fife [15], which discuss
the same system on a finite interval. They show that the stationary solutions
of (1.1) exhibit spatial segregation, though two competing reaction-diffusion
systems never do such phenomena. Their results are on the approximate
solutions and not completed by virtue of technical difficulty. But their work
contributes greatly to solve it completely and give us a clue to analyze our
problem.

We use the following function spaces. Let ¢ and ¢ be positive numbers

and 0 <s< 1. Let
(8%)1/!()6) < oo}7

C200,1] = {ue C2[0,1] [u(0) = 0 = u(1)},
- oo},

(8E> u(x)
X2, Re) = {ue X} (R:) [u(0) =0},

BC(R.) = the set of the bounbed and uniformly continuous

functions defined on R,

2

c7o,1) = {“ e C’[0,1] ‘ ||”Hc,2[0,1] = Z sup
' i=0 x€[0,1]

2
X7 (Ry) = {u e CP(R4) | ullyz v,y =D sup e
i=0 YER:

Hp(R.) ={ue H'(R.)|u(0) =0},  Hy(R.)={ueH'(R.)|ux(0) =0},
H*(R.,) = the interpolation space [H'(R.),L*(R,)]

1—s
(H*)” (R.) = the dual space of H*(R.,),

(H)#(R) = the dual space of H!(R),

*

where « = D or N.

2. Preliminary

We can get the same results as that in [13], [14] by using the analytical
singular perturbation method. Here we will give the only parts of that we
have need in our analysis. Two types of approximate equations, the outer and
the inner approximate equations, give us an important information for the
existence and stability of travelling wave solutions. First, let us consider the v-
component of the outer approximate equations.
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Vo +g(1—opV=,0,V")=0, zeR_
Vi4+9(0,1—anV™, V) =0, zeRy (2.1),
V(=) =p_, V*(0) =0, V' (+x) =p;.

To avoid a trivial solution for (2.1),, we assume p_ # p, and fix w e I(p_ ~ py)
arbitrarily. For these equations, we have the following lemma:

LemMmA 2.1. Under (H2), there exists w* € I(p_ ~ py) such that (2.1)4
with @ = w* have monotone increasing (resp. decreasing) solutions V=°(z;w*
satisfying V.=°(0;0*) = V.H0(0;w0*) when p_ < p, (resp. pr <p_).

The proof is easily achieved by using phase plane method. So we omit it.

Note that w* does not depend on o) € J. Using these solutions, we can
describe the outer approximate solutions of (1.4), which approximate an exact
solution away from a layer position.

Next, let us consider the inner approximate equations, whose solutions
approximate an exact solution in a neighborhood of the layer position.

Dug: — Oue + f(ﬁ,w) =0, ¢eR
i (0) =p (2.2)
u(—o0) = (1 — o3m,0),0(4+00) = (0,1 — ap3).

Fix f€ (0,1 — oj30) arbitrarily. Under the assumptions (H3) and (H4), (2.2)
becomes a bistable system (see Fig. 7). Then we have the following lemma:

u
@ stable equilibrium point
\ O unstable equilibrium point
e 1-0,0
N
1-0,50 -
([ u
g ~ 1
f2= 0 f1 = 0

Fig. 7. Isoclines of fi(a,i,w) =0 and fo(i), i, ) =0.
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Lemma 2.2 (Kan-on [7]). For any wel(p- ~p.) and any o €J,
there exists 0 = 0(w, o) such that (2.2) has a strictly monotone positive so-
lution W(&; w, 001) = (i1, i2) (& @, 001) with iy, ¢(& 0, 001) <0, i, (&, 001) > 0.

Furthermore there exists dy € J such that 0(w™*,ds) = 0.

ReEMARK 2.3. Kan-on [7] shows that for any fixed welI(p_ ~ p;),
there exists oy € J satisfying 0(cw, ;) =0 as in Lemma 2.2. But we can
show that for any fixed oy € J, there exists w = w(oy) € [(p— ~ p) satisfy-
ing O(w(oa1),01) =0 by using the same method as in [7]. We note that
w* = 60(5(21).

When we define the linearized operator of (2.2) around u(¢;w,ar;) by
L(p) = Dpe: — &Pg + fup,

we know that L(uz) =0. The adjoint operator of L, say L*, is defined by
L*(p) = Dpe: + épg + ‘fup,

where ‘A stands for the transpose of a matrix 4. For this operator, Kan-on
and Yanagida [11] show that

Lemma 24. Any non-trivial bounded solution p*(&) = (pf,p;)(&) of
L*(p) = 0 satisfies p{(E)p;(E) <0 for all £eR.

By virtue of this lemma, we know the dependency of 0 on w and o;.

LeEMMA 2.5. O(w,an1) is a smooth function of w € I(p— ~ py) and o € J
and satisfies

20 |7 Aaousin p; + bapsity p3 ydé&

—(w,01) = -5 ———— :
Lm{ul,élﬁ + i ¢ p5 Hd<

00 b [“ mmpid

——(w,001) = —— 7J“,wit1uzf72 i <0.

dan1 Jo A ept + i, ep3 &

Furthermore the following relation also holds:

00 B o3 = b (o3 —o3) 0S
30 ) = T30 ) MO 1 e 047
oS . L
where I > 0 (see the Appendix for the definition of S).

The proof is given in the Appendix.
Note that &, is determined by the relation 9(@*,&21) =0. The sign of



98 Hideo IKEDA

o0 X .
%(w*,om) changes depending on the values o3 and op;. Then we must

consider the following two cases on the next lemma:

.0 . . . .
LEmmMa 2.6. If %(w*,a21)<0, for any fixed day > op > Q1 (resp.

Uy < o1 < a1 ), there exists w® < w* (resp. @° > w*) such that (2.2) with 0 = 0
and o = ° has a unique strictly monotone solution W(&) = (i), (&) satisfying

i1,6(8) <0, iy ¢(E) >0 for £ R, Conversely if%(a)*,&z]) > 0, for any fixed

ty < Oy < Oy (resp. oy > a1 > dp1), there exists w° < w* (resp. @’ > w*)
such that (2.2) with 0 =0 and o = »° has a unique strictly monotone solution
(&) = (ty, ) (&) satisfying iy (&) <0, (&) >0 for EeR.

The proof is given in the Appendix.
00 . . :
Though %(w*,&n) # 0 is necessary to show the existence of standing

. . 00 . . .
pulse solutions (see §3), the sign of a—(a)*,oczl) plays an important role in the
stability of them (see §4). @

3. Standing pulse solutions

We study the existence of standing pulse solutions for any fixed
op1 € J. Here we suppose that p_ < p,. For the other case p. < p_, we will

. . . 00 ) .
give some comments if we need. First, we assume that a—(w*,ocgl) <0 (ie.,
(¢3)

20 . . .
%(w(ocz]),oczl) <0 for any oy €J). By using the analytical singular per-

turbation method, we construct standing pulse solutions of the problem

&?Du,, + f(u,0) =0
Uxx + g(u,0) =0
(0,0)(£0) = P-.

, xeR

(3.1)

In order to find standing pulse solutions of (3.1), using the symmetry of them,
we can rewrite (3.1) equivalently as follows:

&’ Duy, + f(u,0) = 0
Uxx +g(u,0) =0
(uy, v,)(0) =0, (u,v)(00) = P_.

5 XER+ (32)

Suppose that a standing pulse solution of (3.2) has an internal transition layer
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0.7

o.af

o3|

oz|

u4(x) ,,,,,,,,,,,,,,,,,,,,,,,,,,,

ol u,(x)

Fig. 8. Spatial profiles of a standing pulse solution (u;,us,v)(x;¢) of (3.1).

0t

X

99

at x =1 (see Fig. 8), divide R into two parts I} = [0,7] and I, = [, 0) and

write (3.2) as

&’ Duy, +f(u,0) = 0

Uxx + g(u,v) =0

(uxa Ux) (O) =0, (ll,

and

&’ Duy, +f(u,v) =
Uxx + g(u,v) =0

xeh

)

v)(7) = (f,v,0)

0
, xebh

(1,0)() = (B,v,0), (u,0)(0) = P-.

(3.3)
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Here we fix f arbitrarily in the interval (0,1 —a;30°). The width of this
interval corresponds to a transition of the u;-component in a neighborhood of
x=1. Then we define 7,v and @ by the relations u;(7) = f,u>(t) = v and
v(t) = w, respectively. First, we fix 7,v,» suitably and solve the problems
(3.3) and (3.4), separately. Second, we determine t,v,® as functions of ¢
to match these solutions of (3.3) and (3.4) smoothly. Then we will get the
standing pulse solutions of (3.1).

3.1. On solutions of the problem (3.3)

Using the transformation y = x/t, we have

&’ Duy, + *f(u,v) = 07 ye(.1)

vy + 2g(u,v) = 0 (3.5)
(uy,2,)(0) =0, (u, 0)(1) = (B, v, ).
Putting ¢ = 0 approximately, we have
f(u,v) =0
vy + 2g(u,0) =0, ye(0,1) (3.6)

v,(0) =0,v(1) = w.

Since we are interested in a solution connecting two different branches of
f(u,0v) =0, we solve the first equation as u= (uj,up) = (0,1 — op3v). Thus
(3.6) can be reduced to

{ Uy + ng(o, l —osv,v) =0, ye(0,1)

v,(0) = 0,0(1) = w. (3.7)

For this equation, we easily know the following:

LemMma 3.1. For any x satisfying p— < k < p,, put

‘[:T(K,w):J dt > 0.

» \/2 °9(0,1 — ap3s, 5)ds

Then (3.7) with v(0) =K has a unique strictly monotone decreasing solution
V(y;k,0) € ClzﬁN[O, 1] which satisfies

J : & = t(r, )y,
V() \/ZL" g(0,1 — 0235, 5)ds

di V(l;k,0) =—1(k, a))\/ZJ g(0,1 — o35, 5)ds. (3.8)
y w
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Moreover V(y;k,w) is uniformly continuous with respect to k and w in the
C1 y10,1]-topology.
Then
Z/IIZU](y;K,Cl)):O, u2:Uz(y;K,CO)Zl—O(Z;V(y;K,CO), U:V(y;K,CI))

is an outer approximation of (3.5). Since U(y;x,w) = (Uj, U2)(y;k,®) does
not satisfy the boundary condition of (3.5) at y =1, we remedy this in a
neighborhood of y = 1. For this purpose, we introduce the stretched variable
E=(y—1)/e. Put

&

_ 1 _ 1
) = Uiswo) +a(20) o) = Vo) +20(2 )
and substitute this into (3.5). Letting ¢ =0, we have

D + (i1, 1 — a3 + ity ) = 0

bee + gl 1 — a3 + i, ) — 2g(0, 1 — 30, w) =0’
(@, 5)(—=00) =0,0:(—00) =0

u(0) = (f,v -1+ unw).

EeR_
(3.9)

From Lemma 2.6, we know that there exists @® = (o) € (p_,p+) such that
the problem

Du:: +f(,0°) =0, ¢eR
i(—o0) = (1 —o30°,0),4,(0) =
fl(OO) = (0, 1— 0623600)

has a unique strictly monotone solution u(&) = (&, #,)(&) satisfying @ (&) < 0,
(&) >0 for ¢eR. Put v =i(0). Let p*(¢) = (p,p;)(E) be any non-
trivial bounded solution of the adjoint equation Dp;:: + ‘fup = 0, where f, is
the linearized matrix of f(u,’) around @. From Lemma 2.4, we find that
pi(&)p;(¢&) <0 for all £eR. Then we know that

Lemma 3.2, When (w,v) are sufficiently close to (w°,V°), the problems

~§t f( ) :07 éeRi
u(—ow0) = (1 — o130, 0), fli(()) = (p,v) (3.10)
U (o0) = (0,1 — apw)

have unique strictly monotone solutions u= (&; w, v) (ait 4 ) (& w,v) such that
(i) #i:(&w,v) <0, 45 :(&,v) >0 and 8+ (& 0°,v°) =u(¢) for EeRy,
(ii) @t (&w,v) are uniformly continuous with respect to (w,v) in the
(X27 (R.))?-topology for some o > 0,
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J __ 0.0 0 0 .0y, *
(iif) %ulji(();co v )f%ulvé(o;w ,v) ppi(0)
a 0 o0y 0 . 0 oyl «
+d %uzyé(O;w v )_%uz,f(o;w V") ¢p5(0)

= |t @i @) + brasin @3 )1,

— 0

. o 0. )
(iv) {Eulvé(O;wO,vO)—5@5(0;0)0,\/0)}1)1(0)
0 0.0y 0~ 0 0y |,
+d auzﬁé(o;w Y )‘5”2,5(03@ ) pp;5(0) = 0.

The proof is stated in the Appendix.
Therefore we know a solution of (3.9) as follows:

ﬁl (67 K,Q, V) = QT(_T67 , V), l’_l2(é7 K,w, V) = ﬁ;—(_féa , V) -1 + o3,

4 n
(& e, m,v) = —sz J {g(@1, 1 — o3 + iz, @) — g(0, 1 — ox30, w) }dsdy.

Let x° be an arbitrarily fixed number in (p_,p,) and put 45 = {(x,w,v) €
R? || — k% + |w — @°| + |v = v*| <} for a small positive 6. For any p =
(1c,w,v) € As, we seek an exact solution (u,v) of (3.5) of the form

u=U(yir, ) + 0<y>a(y ! ;p) T r(y;2) — bs(y;e)

(3.11)
-1
o= Viimo)+ 200 {o(25 i) = o0i0) | + (50,
where b = /(0,03) and 6(y) € C*[0,1] satisfies
0(y)=0,0< <1- 9()—1§< <1 0<0()<11< <§
y_7—y—2a y_74—y—7 = y—az—y—4

Substituting (3.11) into (3.5), we define the following operator for (r,s):

2 2
T(r,s;¢,p) = (8 Duy, + <4 (u, U)>

Uyy + 729 (u, v)

with the boundary conditions
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(ry,5,)(0s¢) = (r,5)(1;¢) = 0.

T(r,s;¢,p) is the differential operator from }Z[O, 1] x (0,&) x 45 into Z[0, 1],
where
Y[0,1] = C2 [0, 1] x C2y[0,1] x €2 [0, 1],

Z[0,1] = C°0,1] x €°[0,1] x C°[0,1].
It is apparent that (3.5) is equivalent to solve T =0 in )Z[O, 1].

LemMmA 3.3. There exist & >0, o9 >0 and K >0 such that for any
€(0,&) and p € As,, T(r,s;¢,p) has the following properties:
(i) 11m IT(0,05¢,p)|| z0,1) = O uniformly in p e Ay,

(ii) For any (ry,s1),(r2,8) € Y[O 1],

L SR
a(l’,S) 1,51,& P a(r,s) 2,82;€ P

7,0, 1]— [0, 1]
= K||(l‘1,S1) (l‘z,Sz)H v,0,1)

where 0T/0(r,s) is the Fréchet derivative of T with respect to (r,s);

(%)1 (0,0;¢,p)

Moreover (1)—(iii) also hold for 0T/dx, 0T /0w and 0T/0v instead of T.

<XK.
Z[0, 11— ¥[0,1]

(iif) ‘

The proof is stated in the Appendix.
Thus, applying the implicit function theorem [1, Theorem 3.4] to

T(r,s;¢,p) =0, (3.12)
we have the following lemma:

LeEmMMA 3.4.  There exist &y > 0 and oy > 0 such that for any € € (0,&) and
p € As,, (3.12) has a unique solution (r,s)(e,p) € IZ[O, 1].  Moreover (r,s)(e, p),
0(r,s)/0xc(e, p), O(r,s)/0w(e,p) and O(r,s)/0v(e, p) are uniformly continuous with
respect to (g,p) € (0,&) x As, in the I%[O 1]-topology and satisfy

1,9) (&) ) = 0(1)
o(r, ) /2n(e, p>|| = o(1)
o(r, )2 p) omzom
10(0,8)/0v(e, )., = 0(1)

as ¢ | 0 uniformly in p e As,.
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To emphasize that U, V' u,d,r,s and b are constructed on the interval I,
we write them as UM, 70 a® 51 ¢ ) and bV, respectively. Thus, we
have a solution (uV,v)(x;&;x,0,v) of (3.3) on I; = [0,1], which takes the
form

ul (x; 6550, 0,v) = UW (E;K, a)) + 9(f)ﬁ<l) (x — T;K,w, v)
T T et

H(l)(f;g; K,ww) _ b<1>s<1>(§;g; K,w,v)
T T

_ (3.13)
(1) (e o _ (. 20(\ 50 (X1,
o\ (x5, 0,v) =V (T,fc,a)) +¢& 9(T>{v ( p ,K,w,v)
_ M- m(x. .
D (O,K,w,v)} + s (T,s,lc,w,v>,
where 7 = 1(k, ®).
3.2. On solutions of the problem (3.4)
Using the transformation y = x — 7, we have
2
e’ Duy, +f(u,0) =0
, eR
vy 4+ g(u,v) =0 reRs (3.14)
(u,0)(0) = (B,v,), (w,v)(0) = P_.
Put ¢ = 0 approximately. We have
f(u,0) =0
vy +g(u,v) =0, yeRy (3.15)

v(0) = w,v(0) =p_.

Since we are interested in a solution connecting two different branches of
f(u,v) =0, here we solve the first equation as u= (uy,uy) = (1 — o130,0).
Thus (3.15) can be reduced to

{vyy +9(1 —ou30,0,0) =0, yeR, (3.16)

v(0) = w,v(0) =p_.

By virtue of the phase plane analysis, we know that (3.16) has a unique strictly
monotone decreasing solution V(y;w) satisfying

(V(y;w) —p-) e X} | (R),



Standing pulses of 3-component systems 105

y.
diyV(O; W) = —\/ZJ g(1 — ay3s,0,5)ds, (3.17)

(6]

where 0. = /1 —a3;. Moreover V(y;w) is uniformly continuous with respect
to w in the X?>  (R,)-topology. Then

[
up = Ui(yio) =1-oa3V(y;m), uy = Ur(y;6,0) =0, v="V(y;w)
is an outer approximation of (3.14). Since U(y;w) = (U, U)(y;w) does

not satisfy the boundary condition of (3.14) at y =0, we remedy this in a
neighborhood of y =0. Introduce the stretched variable & = y/e, put

_() [y
u(y) =U(y;o) + u(;)v v(y) =V(y;w)+ szv(g)
and substitute this into (3.14). Letting ¢ =0, we have

Dl_léé +f(1 — a3 + 17!1,1/72760) =0

vee + 9(1 — apw + iy, i, w) — g(1 — og30,0,w) =0,
u(0) = (f— 1 + a3, v)

(@,9)(c0) = 0,:(c0) = 0.

¢eRy

From Lemma 3.2, we know that
7'_11 (57 , V) = ﬁ;(_ia @, V) - 1 + o130, 7/_12 (éa , V) = ﬁ;(_éa , V),

0 (oo
o(Go) = = || ol — s+ 0, m.0) — g1 = 2130, 0.0)
¢ I

Put X5 = {(w,v) e R?||w — &°| + |v —°| < &} for a small positive . For any
n = (w,v) e s, we seek an exact solution (u,v) of (3.14) of the form

u="U(y0)+ ﬁ(% ; n) +r(y;e) —bs(y;e)

_ . 2) = X = 0V=(N). .
o= Vs +2{o(257) — P50} + (03

where b = /(ay3,0) and o is any fixed number satisfying 0 < o < g,.
Substituting this into (3.14), we define the following operator for (r,s):

&’ Duy, + f(u,v) )

T . =
(F,552,7) ( N

with the boundary conditions

(r,5)(0;¢) = (r,s5)(00;¢) = 0.
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T(r,s;¢,7) is the differential operator from I%T_S(R+) x (0,&) x X5 into Zy(R),
where

Y, (R) = X7 (R)x X7 (Ry) x X7, (Ry),
Z;(Ry) = Xﬁl(RQ x X<9,1(R+) X X(?,l(R+)~

It is apparent that (3.14) is equivalent to solve T = 0 in I?“(RQ. Noting that

the lemma similar to Lemma 3.3 holds for this operator T, we get the following
lemma:

LEmMMA 3.5. There exist & and &y such that for any ¢e(0,&) and
neXs,, T =0 has a unique solution (r,s)(e, ) € }O’M(R+). Moreover (r,s)(e, ),
a(r,s)/0w(e,n) and O(r,s)/0v(e,m) are uniformly continuous with respect to
(e,m) € (0,80) x Zs, in the 1%778(R+)-t0p010gy and satisfy

1)@ g, = o)
1o, 9)/(E Dl ;)=o)

||6(l‘, S)/av(& 7'[)”)3 Ry 0<1)

as ¢ | 0 uniformly in neZs,.

To emphasize that U, V' u,d,r,s and b are constructed on the interval I,
we write them as U?, V@ 4@ 2 @ @ and b?, respectively. Thus, we
have a solution (u®,v@)(x;e;x,m,v) of (3.4) on I, = [r, ), which takes the

form

_ 3.18
VP (x;8,0,0) = VO (x — 1, 0) + 82{17(2) (x T;w, v) (3.18)

— ¢ o2) (0; w, v)} + s (x - 1;80,v),

where 7 = (i, w).

3.3. On solutions of the problem (3.2)

Finally we construct solutions of (3.2) on the interval R, matching
D M) (x; 81,0, v) and (@?,v?)(x; e 5, v,w) at x = 7 = 7(k,w) in C'-sense.
For this purpose, we define three functions @, ¥ and Q2 by
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d d
D(g;Kx,0,v) = ad—u(ll>(‘c; &K, m,V) — ed—u<12)(r; &1, ,V)
X X

V(g K, m,v) = sauél)(r; &K, W, V) — eauf)(f; &1, 0, V) (3.19)
d
Qg r,m,v) = Ev(l)(r;s, K, m,V) — av(z)(r; &1, 0, V)

and determine x, w and v as functions of ¢ such that
D(g;x,0,v) = Vg K, 0,v) = Qg 1,w,v) = 0. (3.20)

Setting E as E = {(¢,k,w,v) |e € (0,¢), (k,w,v) € 45, }, we know from Lemmas
3.4 and 3.5 that @(gx,w,v), V(e Kk, m,v) and Q(e x, w,v) are uniformly con-
tinuous in E. Therefore, @, ¥ and 22 can be continuously extended so as to
be defined for E. Setting ¢ =0 in (3.19), we put

Dy (1, 0,v) = D(0; 1, 0,v), Po(rc,w,v) = P(0;1,w,v), ok, w,v) = Q(0; Kk, w, v).

Then we easily find that

1 - __
D (Kk,m,v) = ;QE%E(O; K, @, V) — a§22(07 w,v) = —ulfé(O; w,v) + 1ty (0;0,v)
1 - __
Y (k,m,v) = ;ﬁg{)é(o;zc,w, v) — L‘t(f)é(();w, v) = —uzé(O;w, V) + iy (0;0,v)
O _1 (1. 7 @(0:
()(K,CO,V)—; y ( ,K,CO)_ y ( ,(I)).

First we determine (x° @° v%) to satisfy (®o(x? ?1°), (k@ v?),

Qo(xk% 0, 1%)) =0. Note that @Py(x,w,v) and ¥y(x,w,v) are independent
of x. In fact, ®® and v have been determined to satisfy @y(x°,° %) =0
and (k% 0° %) =0 (see Lemma 3.2). Then x° is defined by the relation
Qo(x%, °,1%) = 0 as follows: By virtue of (3.8) and (3.17), 2o(x°,w°, %) =0
is equivalent to the relation

KO

y
J g(1 — 0y35,0,5)ds = J g(0, 1 — a3, 8)ds. (3.21)

Recall that o* € (p_,p;) is defined by the relation
P- P+
J g(1 — a135,0, 5)ds = J g(0, 1 — o235, 5)ds

w* w*

(see Lemma 2.1). If ®° > w*, we can not find a value x° € (0°,p, ) satisfying
the relation (3.21). Conversely, if ®® < w*, we see that there exists k* € (0°, p.)
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_ y=9(0,1 -0235,5)

y=g(1-a,,,0,s)

Fig. 9. Relation between o*,x” and o°.

satisfying (3.21) (see Fig. 9). Note that the relation oy > d»; must be satisfied
in order that @’ < w* holds. Moreover the following relation holds:

o0
ok

_ Q(Oa 1- OC23K07 KO)
\/2 LZ(? g(0,1 — ap3s, 5)ds

REMARK 3.6. From the point of view of the singular perturbation
method, we could say the following: If @’ > w*, we may construct inner
approximate solutions of standing pulse solutions (see Lemma 2.6), but we
can not do outer approximate solutions.

(K%, @, v0) < 0.

REMARK 3.7. When p, < p_, «° should satisfy the relation ©® > w* so
that there exists x° e (p, ") satisfying (3.21).

On the other hand, Lemma 3.2 says that

det{ia(%’ ) (x°, ", vo)}

0w, V)
0¥ oo . S X
— —TVO(KO,COO,VO)J {aonsd; pi + boxsiiap; }d&/pi (0).

This implies that

(D@0, ¥0,2) 0 0 oyl _ 20, 0 0 0 (Do, %) . o o 0
det{ 0(k,m,v) (K", 0" V") b = o (”, ", v°) - det (@, 7) (", 0", )

¥ e ~x ~ % *
a—vo(’fo,wo, v0) J {aosiy py + bzl p; }dS/py (0).

092
= - (K07 CO07 vo)

Ok
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0 0
Here we used the relation &(po(Ko,wo, ) =0 and P (%, 0’ v0) = 0.
oY 0¥
Furthermore it holds that a—vO(KO,a)O, V) #£0. If 6—1)0(K0,a)0, ) =0,
oD NN C
a—vo(;co,wo, %) = 0 also holds by the relation (iv) in Lemma 3.2. This implies

that the problem
L(p)=0, (R
{ p(0) =(0,1), p(o0)=0
has a solution p(&) = '(p;,p,)(¢) on R and it is represented as

p(&) = Cus(¢), <¢eR

for some C #0. But at £=0, this relation does not hold. This is a

- oY
contradiction. Then we have —O(Ko,wo,vo) #0. We already assume

ag ov

.00
%(w*,&zl) <0, that is, %(wo,azl) < 0. Then we have

+00 +o0
wn [ gt debom | mps de #0

—0 —0
(see Lemma 2.5). Therefore we can apply the implicit function theorem [1,
Theorem 4.3] to (3.20) and have

LemMma 3.8. There is & > 0 such that for any ¢ € [0,&), there exist k(g),
w(e) and v(e) satisfying

D(g;x(e),w(e),v(e)) = V(e r(e),w(e),v(e)) = Qe x(e), w(e),v(e)) =0

and
I =« i =’ i =’
SILI})I K(e) =K’ alﬂ[)l w(e) =w’, :1%1 vie) =v
o0 We can get the same result as in Lemma 3.8 for the case that
%(a)*,&m) > 0. Then we have the following theorem:
THEOREM 3.9.  Suppose that p_ < p. (resp. p1 < p—). Under the assump-

tions (H1)~(H4), we consider the following two cases: (I) %(w*,&zl) <0

and ) > ap) > Oy (resp. op < o1 < dp1), and (1) %(w*ﬁm) >0 and
Oy < 01 < Qo1 (resp. Ay > oy > A1 ). For the both cases (1) and (11), there is

& > 0 such that for any ¢ € (0, &), (3.1) has a standing pulse solution (u,v)(x;e),
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which is symmetric with respect to x = 0 and has the form (3.13) on [0,7(¢)] and
(3.18) on [t(g),0) for kK =K(e), v =w(e), v=1(e), T =1(e) = 1(k(e), w(e)).

CoOROLLARY. We assume that (H1)~(H4). If p_ <p,, standing pulse
solutions bifurcate globally to the right-hand (resp. left-hand) side along the oy;-

axis at (621,0) in the oy — 0 plane when %(w*,&m) <0 (resp. >0). Con-

versely, if py < p_, standing pulse solutions bifurcate globally to the right-hand

(resp. left-hand) side along the oyi-axis at (dy1,0) when 60—0(60*,&21) >0 (resp.
<0) (see Fig. 6). @

4. Stability of standing pulse solutions

Here we will study the stability of the standing pulse solutions. We
suppose that p_ <p,. We will give some comments for the other case
pr <p_ if we need. Let us consider the following linearized eigenvalue
problem of (3.1) around (u,v)(x;é¢):

{iw:aszxx‘+fj(x)w+vf§(x)y LR @1
2y = Yxx + gy(x) - W+ gy (x)y

and (w, y)(x:&;2) € (BC(R))*, where w = "(wi,w2), u="(ui,u), £ ="(/i,/2),

o (fn ) 6(50) (), o)
) (fzul(“(x%ﬁ)av(x;g)) fzuz(ll(x;e)w(x;s)))’

and the other functions f;(x), gi(x) and gi(x) are similarly defined. - means
the usual inner product in R%.  For our purpose, it is enough to examine the
distribution of isolated eigenvalues of (4.1), because the essential spectrum of
the above linearized operator is not dangerous and linear stability implies
nonlinear stability (see [2]).

By virtue of the symmetry of the standing pulse solution, the eigenvalue
problem (4.1) on R is decomposed into an equivalent pair of the following
eigenvalue problems on R, say, (4.2)p and (4.2)y:

w = e?Dw,, + i (x)w + 5 (x) y

e e s x€R+
Ay = Yux + gu(x) - WHgi(x)y (42)
w(0) =0,w(c0) =0 b

¥(0) =0, y(0) =0

and
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aw = &2 Dwy, + £ (x)w + £(x) y
Ay = yex + g4(x) - W+ g (x)y (4.2)
w,(0) =0,w(c0) =0 N
yx(0) =0, y(0) =0

, xeRy

(This equivalence is proved in the Appendix). Then it suffices for us to
analyze the both eigenvalue problems (4.2)p and (4.2)y. Suppose that there
is an isolated eigenvalue A€ Cy ={AeC|Re A > —dy} (dy > 0) of (4.2)p or
(4.2)y with the corresponding eigenfunction (w, y)(x;&; 4) € (BC(R4))?. Then
(w,y) must decay with the exponential order as x — oo by (H2), (H3) and
(H4). This guarantees us to impose the boundary conditions (w, y)(o0;& 1) =0
in (42)p and (4.2)y.

4.1. Eigenvalue problem (4.2),

We define the operators L§, and Lj;" by
Liyw = &> DwW,y + fi()w and Ly'w = &2Dwy, + fi(x)w

with the boundary condition w(0) =0 on R, respectively. Let {{P ¢P°
(resp. {¢P*, ¢P=*1) be eigenpairs of the eigenvalue problem

Ly =104, xeRy Lp'¢"={"¢",xeRy
#(0)=0 resp. { ¢*(0) =0
¢a ¢x7¢xx EBC(R+)’ ¢*a¢;7¢jx GBC(R+)7

where {4} and {p”%*} are normalized as ||¢,?""’||L2(R+> =1 and
@52 my =1 (n=0,1,2,...). Assume that  Re(>" < Re()’
(n>1). Then we easily find that

=00 (n=0).
Hereafter we use the symbol 7° in place of 7(x°, w?).

Lemma 4.1, {{P°) satisfy the following properties:
(i) Re()®=eLP(e) and Im ()" = o(c) as & — 0, where

LP(0) = _g_f;(wo’“ﬂ) JTO g(U“)(TX—O;KO,wO), V(l)(%;K(),wg)>dx.
0

(i) There are gy > 0 and dy > 0 such that Re Cf”’ < —dy for any ¢ € (0,¢)
and n > 1.
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We can prove this in a way similar to that of Lemma 1.4 in [17], so we
omit it.

Applying the SLEP method which is developed by Nishiura and Fujii [17],
we will calculate the distribution of isolated eigenvalues of (4.2)p. Let X%
be the set of all eigenvalues of (4.2)p for e € (0,&). The following lemma is
needed for this procedure.

Lemma 4.2 (17, Lemma 2.1]). (F ¢ % for g€ (0,¢).

By virtue of Lemmas 4.1 and 4.2, we can solve the first equation of (4.2)p
with respect to w for e Cy N2

w=(Lj—2)" (~f}y).
Let Pj be the projection operator onto the eigenspace {qﬁé) 1

PS() = <oty Dy
and decompose (L§ — )" into two parts
. _ 1 . .
(Lh =27 ()= T;PD(') +(Lh = D',
0 - (]

Then we know that there exists a positive constant M satisfying

LD = D — 2w, < M

for any ¢€(0,¢), A€ CyqNZ5. w is represented explicitly as

<f£y, D,s,*> . .
W= -y = (L) = 2) (E). (43)
Di_j
Substituting (4.3) into the second equation of (4.2)p, we have the
eigenvalue problem with respect to y e H)(R,):

LEEyge

i 9o b0 —gu(Ly — D' (Ey) +gly =4y,  xeR.. (44)
D _

XX

The core of the SLEP method consists of the following two key lemmas, which
characterize the asymptotic behaviours of the second and the third terms of the
left-hand side of (4.4).

LemMA 4.3 (The first key lemma.) ([19, Theorem 2]). For any y e L*(Ry)
and any s e (0,1/2),

(L= () — (1= )7 (10)  as e —0

strongly in (H*)” (Ry)-sense and uniformly in )€ Cy,, where
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o (fun) funl)
&_<Mﬂ)ﬁdﬂ

(U(])(%;Ko,w(]), 245 (%;Ko,a)o)) xe [0,10]
T T

), £ = (i) fan(4)).

(U (x — 1%, VP (x — % 0°) xe[ w).
Moreover, the above convergence is uniform on a bounded set in Cq4 x L*(Ry).
Let Bs be a closed ball with center at the origin and radius 6 > 0 in C.

Lemma 4.4 ([17, Proposition 2.1]). Suppose that A is an eigenvalue of
(4.2)p which stays outside of Bs for small ¢. Then there exist positive constants
d* and g5 such that

Re L < —d* Jor 0 < e <egg,
where d* does not depend on 6 and ¢ € (0,¢5).

This lemma implies that if (4.2)p has an eigenvalue A € Cy+, 4 should tend
to 0 as ¢ - 0. In order to catch such eigenvalues, we give the following
lemma:

LemMA 4.5 (The second key lemma.) ([17, Lemma 2.3]). As ¢ — 0,

O

Ve dw
. I,
(11) %g; ! (?78 - 7[9(07 1 - 0623600,600) - g(l - 0613600,0,0)0)]510

in (H)) (R,)-sense uniformly for ) e Cgq., where 3,0 =(x —1°) is a Dirac’s
O-function at 1°.

REMARK 4.6. When p, < p_, the relation (ii) in Lemma 4.5 is replaced by

1 e D,e
%gu “Po
Let A=0(1) and A # O(¢) as ¢ — 0. Using the above two key lemmas,
we can easily show that this 1 is not an eigenvalue of (4.2)p. Then we can put
4= 2(e) = eu? and take the limit ¢ — 0 of (4.4) in (H})*(R,), and get the
singular limit eigenvalue problem (SLEP):
R
OLP(0) — uP

— [9(0,1 = a30°,0°) = g(1 — 0130°, 0, 0") 00

O — g0 0y + g0y =0,  ye H)(R.), (4.5)

where

. 00
[ (600, aZI)[g(Oa 1 - OC23600, wO) - g(l - OC13C()O, 0; w())]’

ow
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which is identical to the relation

¢y, 000

xx — 5 *y =0, H)(R , 4.
Yx; LD(O)_ﬂD670+det y 0 Y€ D( +) ( 6)

where
det* = gf - gg(f3)71f3 <0,
and 93 and g? are defined similarly to fl? and ff,) . Without loss of generality,

we can normalize the limiting eigenfunction y as (3,6, = p(z°) = 1. Then
(4.6) is equivalent to the following equations:

d? .. .
ﬁy(’) + del*y(l) =0, xel
yW(EY) =1=)y2("
1 i 4.7)
y0(0) =0,y (0) =0
d d c*
@0y () 0y =

for i =1,2, where I} = (0,7%), I, = (°, 0),
0

c* o _[g(ov 1 - 03 7w0) B g(l - 0613600,0,0)0)]

SO el G (Gt f ot

The first three equations of (4.7) do not depend on uP” and are closed by
themselves. We can easily solve them and express solutions y(()i>D(x) (i=1,2)
explicitly by using outer approximations in §3.1 and §3.2:

Yop(x) = V“’(T%;Ko,wo)/lé(”(l;xo,wo), xel,

Yip(x) = VP (x = %0 /KP(0;0°),  xeh
Then we have the next lemma.

LemMmA 4.7.  The singular limit eigenvalue problem (4.7) has a unique so-
lution (y(x),u?) = (yo.p(x),0) € H)(R,) x C such that y p(x) is smooth, non-
negative and convex in each of the subintervals Iy and I, (see Fig. 10).

To get an information of the dependency of u” on &> 0, we convert the
SLEP equation (4.5) into the equivalent transcendental equation. Let us in-
troduce the differential operator T D HY(RY) — (HY)* (RL);

2

d & & & &
T2 = = gLy — o) () = g+ en”. (48)
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@) _ @
y = y;j:l(x) y - yo’D(x) - yo’N(x)

e

0 To

Fig. 10. Spatial profiles of solutions y((){)D(x) and y(()':)N(x) (i=1,2) of (4.7) and (4.15), respec-

tively.

LemMma 4.8 ([17, Lemma 3.1], [18, Lemma 3.6]). There exists a positive
constant &y such that the differential operator 7;13’8 has a uniformly bounded
inverse Kﬁs C(H))” (Ry) — H)(R.) for any € (0,&), which is continuous on
e€0,e) and analytic on uP e C in the operator norm sense.

(4.4) with A = euP is rewritten as

(Y T
7;11)”6)}:_ (e OC,UD go by
D,

Then, applying the operator KHDD’E to this equation, we have

Ly 0 NG e
yZ—WKﬂDD (96 - 45" /V/e), (4.9)

which implies that y is a constant multiple of K ﬂDD""’(gfl . OD “/\/€), that is, for a
constant o

v =KD (gi - 404/ V) € H)(R.). (4.10)

Substituting (4.10) into (4.9), we see that a nontrivial solution y of (4.9) exists if
and only if u” satisfies the algebraic-like equation

D,e b D,e D, e, *
)P = (KB g ), 1), 4.11
e H < ub 9u \/(;' ’ v \/E ( )

Then we put
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C’D’S D,e D, ¢, x
D/, D.y_% D [ eDel & Po 90 _
F(u"e) = e u <KﬂD (gu —\/E ), f; NG > =0. (4.12)

Lemmas 4.1, 4.5 and 4.8 guarantee us to be able to take the limit ¢ — 0 in
(4.12). Thus the limiting equation is given by

FP (1”) = FP(1”;0) = LP(0) — u” + ¢* (K 5°0:0,6.0) = 0.
Note that K; 2;0 is independent of x” and

70

UD (0 00 (250 000 ) ax
<KD,()6 . o g 207 , 07
ub 00,0707 = [g(()’ 1 — O(23600,600) — g(l — 0513600,07600)}

We find that

o (1) = —u®,
dF,P
duP
Lemma 4.7. Applying a usual implicit function theorem to (4.12) at ¢ = 0, we
obtain that (4.12) has a unique solution u” = uP(e) satisfying u?(e) — 0 as
& — 0. That is, the linearized eigenvalue problem (4.2)p have an eigenvalue
/. = euP(¢) satisfying uP(g) — 0 as ¢ — 0. On the other hand, it is clear that

the linearized eigenvalue problem (4.2), has zero eigenvalue. Then they must
o o , A7

be identical. Moreover 4 =0 is simple by virtue of 7 9_(0) #0. Then we

1

D
have

which implies #,”(0) = 0 and

(0) # 0. This corresponds to the result in

LemmA 4.9. (4.2)p has only simple eigenvalue 2. =0 in Cgy-.

4.2. Eigenvalue problems (4.2)y and (4.1)

Under a minor change with respect to the boundary condition w,(0) =0,
we can get the results similar to Lemmas 4.1, 4.2, 4.3, 4.4, 4.5 and Remark 4.6
for the eigenvalue problem (4.2)y. That is, we find that if (4.2)y has an
eigenvalue 1€ C;- with a suitable d* > 0, 4 should be O(¢) as ¢ — 0. Then
we can put A= A(¢) = eu” and consider the limiting eigenvalue problem of
the third component of (4.2)y. So we will get the singular limit eigenvalue
problem (SLEP):

c*(y,0.0)

yxx—méro—gf,’(fff)*lf?erg?y:O? yeHy(R:), (413



Standing pulses of 3-component systems 117

where
00
¢ =2 (@°,001)[g(0. 1 = 130", ") — g(1 = 213", 0, ")
and
a0 3

X X
LY(0) = —%(wo,azl) JO g(U(l)(T_O;KO7wO>7 V(l)(E;KO,wO))d)Q
which is identical to the relation

C*<y7510> * 1
Vxx — LN(m—_IuNéf“ +det”y =0, yeHyRy). (4.14)

Without loss of generality, we can normalize the limiting eigenfunction y as
{(y,60) = p(z°) = 1. Then (4.14) is equivalent to the following equations:

2
ﬁy(i) + d@l‘*y<i> =0, xel
X

(%) = 1=y
(4.15)

for i = 1,2, where

c’ _ _[Q(O, 1 — 0623600,(1)0) — g(l — 0613600,0,0)0)]

LN(0) — uN J:)9<U(l)()§)7’€0 600) V(l)(j);Ko,w‘)))deruN/sz(wo,azl).

Here we note that LV(0) = L?(0). The first three equations of (4.15) do not

depend on u" and are closed by themselves. Then we can solve them. Let

the solutions y()(x) of (4.15) on I; as yé)N( ) (i=1,2). Applying a simple

. d d
comparison argument between (4.15) and (4.7), we have — y(() 3\,( % < e y(() )D( )

dx
and y((fz\,(x) = yé%(x) for xe I, (see Fig. 10). This implies that

d d d d
0> iy (e) = N () > 3 (") = (),

which means that
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* *

c c

A T

Then we have the next lemma.

LemMmA 4.10.  The singular limit eigenvalue problem (4.15) has a unique
solution (yo n(x), 1)) € HYy(Ry) x C such that yo n(x) is smooth, strictly
positive and convex in each of the subintervals I and L. Moreover uy <0

0
—(®,031) <0 (resp. >0).

. >0) wh
(resp. >0) when o

ReEMARK 4.11. When p, < p_, the assertion in Lemma 4.10 is replaced
as follows by Remark 4.6: The singular limit eigenvalue problem (4.15) has
a unique solution (yo n(x),x)) e HL(R;) x C such that yg y(x) is smooth,
strictly positive and convex in each of the subintervals /; and I,. Moreover

uY <0 (resp. >0) when @(C{)O,Oﬁzl) >0 (resp. <0).

0w
To see the dependency of u" on &, we can convert the SLEP equation
(4.13) into the following transcendental equation:

ézN,e v N,e N, e, *

FN( N.y— S0 N _ el e Po %0 _

T (1e) = It <Kﬂ.~ <gu \/§> f; 7 >—0, (4.16)
d2

where Kﬁ:a is the inverse operator of 7;’,\(8 = —ﬁ—i—g(j(Lfv—sﬂN)T(ff.)_

gé +eu™ (- Hy(Ry) — (HY)” (Ry)). We can take the limit ¢ — 0 in (4.16)

simillarly to that in §4.1. Thus the limiting equation is given by

o (1) = FN(u";0) = LY(0) — "V + (KN 510,6,0> = 0.

Note that K!‘?,/\:O is independent of xV and ) is determined by uy = L"(0)+
N

o N

Applying a usual implicit function theorem to (4.16) at ¢ = 0, we obtain that
(4.16) has a unique solution u" = p”(¢) satisfying u¥(e) — u) as ¢ — 0. That
is, the linearized eigenvalue problem (4.2)y have an eigenvalue 1 = eu® ()
satisfying 1V (g) — pl’ as ¢ — 0. Combining this with Lemmas 2.5, 2.6, 4.10,
we have

¢* (K 30,60, which implies that 7"(u)') =0 and

20 X :
Lemma 4.12. If %(w*,a21)<0, for any fixed oy satisfying oy >
a1 > Ga1, (4.2)n has only one negative eigenvalue A= eu™(e) in Cy4i. Con-

.00 . , .
versely if%(a)*, 1) > 0, for any fixed oy satisfying oy, < o1 < dai1, (4.2)y has

only one positive eigenvalue . = eu®(g) in Cy-.
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From Lemmas 4.9 and 4.12, we know that (4.1) has simple eigenvales
/=0 and /= eu™(e) in C4-, where the sign of u"V(g) depends on the sign of
20
%((0*,0221). Then we have our goal.

) THEOREM  4.13. Suppose that p_ <p, (resp. pi<p_). When
%(w*,&gl) < 0, the standing pulse solutions (u,v)(x;¢), which bifurcate to the
right-hand (resp. left-hand) side_ at (81,0), are asymptotically stable (resp.
unstable).  Conversely when %(w*7&21) >0, the standing pulse solutions
(u,v)(x;¢€), which bifurcate to the left-hand (resp. right-hand) side at (%1,0), are
unstable (resp. asymptotically stable) (see Fig. 6).

5. Concluding remarks

The result in Fig. 6 is different from that of two-component activator-
inhibitor systems, that is, the cases (b) and (c) in Fig. 6 are not appeared (see
[3], [4])- On the other hand, under a situation similar to Fig. 2, Kan-on shows
that for two-component systems like (2.2) there exist one parameter families of
two types of standing pulse solutions in [§8] and they are both unstable in [9].
The reader will find that the introduction of one more v species makes such
bifurcation phenomena become complex. We can also construct unstable
standing pulse solutions with a Neumann layer, which correspond to Kan-on’s
unstable solutions. Furthermore we can give a similar discussion to the above,
even if we choose o2 (> 0) as a bifurcation parameter.

Our results never give complete answer to the dynamics of the interaction
of travelling front and back solutions as shown in Fig. 3, Fig. 4 and Fig. 5.
We will discuss about such dynamics in [5].
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6. Appendix
Proof of Lemma 2.5

Differentiating (2.2) with 0 = 0(w, o) with respect to @, we find that

(@1, 0)(€) = (&, 001) stisfy
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(I1,¢5*é1{17§+f1,uﬂ1 +f1,uq2 = 7f‘1,w+é¢2ul,f feR

dql,éi - 092,5 +f2,uﬂl “"fluqu = _f2,w + 0(05’2,57 (A.l)
q1(—0) = —on3,q1(0) =0

q2(—0) = an;(oo) = —023.

Multiply p; (&) (resp. p;(&)) to the first (resp. the second) equation of (A.1) and
integrate them on R, we have the relations

o0

| Uimaeri = frwarpilas = | (0uinc ~falpi e

— o0

o0

J_ 2mq105 — f1.mq2py]dE :J [0, — fr,0]p3 dE,

— o0

from which we directly have

o0 o0
o |l epi +iaepslde = | Uopi +Popsldz =0

-0 — 0
Since fi,, = —aoysiy and f3 , = —bopsitz, we have the first relation. Similarly
we can obtain

0

éom J [al,épik + alip;]dé - J [fl,ompl* +f2<,f121p§]df =0.

— o0 — o0

Noting that fi ., =0 and f,,, = —bu,i,, we have the second.
In equations (2.2) with @ =0, change the variable from ¢ to (=

—\/a(l — 06136())5 and set U; = L_ll/(l — 0613(,0), U, = bﬁz/(a(l — 0613(,0)). Then,

we have the system

U g+ SU L+ U(1-U - Cly) =0
dUs e + SUs r + Us(A — BU, — Us) =
(Ula UZ)(_OO) = (OvA)

(U, Ur)(0) = (1,0),

o0 C€R

where S =0//a(1 — apw), A=5b(1—apw)/(a(l —a3w)), B=boy/a and

C =aoyy/b. By virtue of Kan-on [7], we know that

oS 0S 0S
6—A>O, 673<0’ %>0
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Because of 0 = \/a(1 — a;30)S, we have

60_ \/6_10613 oS
W VOB g4 Sa(l = o) 2,
s Tl
0S8 b (uz —on3) 08
do a (] — o(130))2 04’

from which we have the third relation. Thus the proof of Lemma 2.5 is
completed.

Proof of Lemma 2.6

Note that 9(60(0621),0(2]) =0 for any o €J. Differentitating this with

A

ow

00621

0 - )
respect to oy, we find that — 6(w(oy;), 001) and (o21) have the same sign

0w
. 0 - .

for any oy €J by virtue of Lemma 2.5. If %0(60*,0(21) <0 (resp. > 0),
0 - 0
—O(w(021),021) < 0 (resp. > 0) and —w((xz]) < 0 (resp. > 0) for any oy € J.
0w doay
This implies that for &y > o) > d) (resp. oy < olpy < 5(21), we find
that o = w(o1) < 0(321) = @* (resp. ©° = w(az1) > w(dz1) = w*) when

0
%H(w*,o}zl) <0 (resp. > 0). Thus we have Lemma 2.6.

Proof of Lemma 3.2

We only show (iii) and (iv), because the others can be easily shown by a
phase plane analysis and the general theory of ordinary differential equa-
tions. Differentiating (3.10), with respect to w, we find that (¢{",¢5)(¢) =
0 4

20y (& w° V") satisfy

At e TSrwdi +/rwqs = =i
’ éeRi

dqu”g’ —'_fz,ulqli +4f2.,uzq%— = _f2,v

gy (—o0) = —a13,4i (0) = 0,4 (00) =0

qy (—=0) = 0,45 (0) = 0,43 (00) = —on3.
Note that fi , = —ao3i; (€) (resp. f>,, = —bunsiiz(¢)) and multiply pj (&) (resp.

p;(€)) to the first (resp. the second) equation of (A.2) and integrate them on
R., we have the four relations
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0 0
| Vinaari ~ fnaipilde = | asin(@p} ae

o0

41.:(0)p1 (0)
(0)p; (0) —

gt ()} L frowtip! fz,mqrp;}dé:—jo aasin (E)pt €
0 0

dq, :(0) +J fzﬁulql’pi—ﬁ,uzqipl*]dézj banziiy (E)p5 dE

dgs A(0) L Voudi 0} fl,mq;pﬂdé:—L bansiin(O)ps dE,

from which we directly obtain (iii). Next we show (iv). By the same way as

the above, (¢i°,q;)(¢) = a%ﬁi(é; ?,v°) satisfy the relations
qp,¢( J Urwda Pi = fouqy P21dE =0
g1 (0 J @3 Py = frudi p3]dE =0

0
dgy :(0)p3(0) — dp3 (0) + j o ph —froands p11dE = 0

dg (0)p3(0) — dp3 -(0) + j 0l P —frnd i]dE = 0.

These lead the relation (iv). Thus the proof of Lemma 3.2 is completed.

Proof of Lemma 3.3

(i) and (ii) are obvious. We show (iii) by using the same arguments as
that in [1] or [6]. The essential part of it is to show the uniform invertibility
dz
2
respect to (g p), where u? =U(y;x, @) + 0(y)u (y

2o {o(25

(10, Lemma 2.8]. If %, is not uniformly invertible, we can choose the se-
quence {(&n,p,,t,)} such that (e,,p,) — 0 as n — oo and

+Ha(u’, 09 : €24 [0,1] x €2 4[0,1] — €°[0,1] x C°[0, 1] with
-1
;p>, v =V (yr, o)+
1
;p) — ﬁ(O;p)}. We show this by the contradiction method in

of & ,= &2D

1= Ht ”Cz ><C2 < ”"%”w/’ut"”COXCO for n > 1.

Note that f,(u’(e,&),v%(e,)) — fu(u(é),w*) as n— oo uniformly on any
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compact set in R_ in the C%sense. Applying the Ascoli-Arzela theorem, we
can find that there exists t(&) satisfying

,%f = Diéé + fu (T, a)*)f =0, ¢eR_
f(O) =0
”E(é)”CZ(R,)xC‘Z(R,) =1

To lead the contradiction, we examine the behaviour of bounded solutions
satisfying %t=0 for e R_. Rewrite %t=0 into the first order four-

dimensional system %X:A(é)X. We know that A(—oo0) has four eigen-

values with two positive real-parts and two negative real-parts. This implies
that there are two independent solutions t;(¢) and t;(&) of Zpt = 0 satistying
t(—oo0) = 0 such that any bounded solution of %yt = 0 is represented as a linear
combination of t;(£) and t;(£). According to Kan-on [7], we can take
t1(&) = 0:(8) = (1.£(8),m2.¢(<)) and (<) = (121(S), (<)) with 121(¢) > 0 and
122(&) >0 for &€ (—0,0]. Then t(£) should be represented as

(&) = kit (&) + koo (&), Ee(—,0]

for constants k; and k, satisfying |ki|+ |k2] #0. On the other hand, by
E(O) =0, we have kltl(O) —‘rkztz(()) =0. Noting that ﬁ]}f(O)ﬁz,g(O) <0, we
conclude that k; = 0 = k,, which is a contradiction of the definition of k; and
kr. Thus the proof of Lemma 3.3 is completed.

Proof of the equivalence of (4.1) to (4.2)p and (4.2)y

Let A and V(x) = (w, y)(x) be an eigenvalue and its eigenfunction of (4.1),
respectively. V(—x) is also an eigenfunction associated with A of (4.1) since
the standing pulse solution (u,v)(x) is symmetric with respect to x = 0. Then
Vn(x) = V(x) + V(—x) (resp. Vp(x) =V(x)—V(—x)) satisfies (4.2)y (resp.
(4.2)p) with the same 4, unless Vy(x) = 0 (resp. Vp(x) = 0). Conversely, when
A and Vp(x) = (w,y)(x) be an eigenvalue and its eigenfunction of (4.1),,
V(x) = Vp(x)(x = 0), = —Vp(—x)(x < 0) is a solution of (4.1) with the same A.
Similarly when 4 and Vy(x) = (w, y)(x) be an eigenvalue and its eigenfunction
of (4.1)y, V(x) = Vy(x)(x = 0), = Vy(—x)(x < 0) is a solution of (4.1) with the
same A. This completes the proof.
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