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Abstract. A complete surface of constant mean curvature 1 (CMC-1) in hyperbolic 3-

space with constant curvature �1 has two natural notions of ‘‘total curvature’’—one is

the total absolute curvature which is the integral over the surface of the absolute value of

the Gaussian curvature, and the other is the dual total absolute curvature which is the

total absolute curvature of the dual CMC-1 surface. In this paper, we completely

classify CMC-1 surfaces with dual total absolute curvature at most 4p. Moreover, we

give new examples and partially classify CMC-1 surfaces with dual total absolute cur-

vature at most 8p.

With the developments of the last decade on constant mean curvature 1

(CMC-1) surfaces in hyperbolic 3-space H 3 (the complete simply-connected 3-

manifold of constant sectional curvature �1), and with so many examples now

known, it is a natural next step to classify all such surfaces with low total

absolute curvature.

As CMC-1 surfaces in H 3 share quite similar properties with minimal

surfaces in Euclidean 3-space R3, let us first comment that the total absolute

curvature of a minimal surface in R3 is equal to the area (counted with mul-

tiplicity) of the Gauss image of the surface, and that complete minimal surfaces

in R3 with total curvature at most 8p have been classified. (See Lopez [6] and

also Table 2.) Furthermore, as the Gauss map of a complete conformally

parametrized minimal surface is holomorphic, and has a well-defined limit at

each end when the surface has finite total curvature, the area of the Gauss

image must be an integer multiple of 4p.

The question of classifying low total curvature CMC-1 surfaces in H 3 is

analogous—however, unlike minimal surfaces in R3, CMC-1 surfaces in H 3

have two Gauss maps: the hyperbolic Gauss map G and the secondary Gauss

map g. So there are two ways to pose the question in H 3, with two very
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di¤erent answers. One way is to consider the true total absolute curvature,

which is the area of the image of g, but since g might not be single-valued on

the surface, the total curvature might not be an integer multiple of 4p. This

allows for many more possibilities and makes the problem more di‰cult than

for minimal surfaces in R3. The authors take up this question in a separate

paper [13].

The second way, which is the theme of this paper, is to study the area of

the image of G, which we call the dual total absolute curvature, as it is the true

total curvature of the dual CMC-1 surface (which we define in Section 1) in H 3.

This way has the advantage that G is single-valued on the surface, and so the

dual total curvature is always an integer multiple of 4p, like the case of mini-

mal surfaces in R3. Furthermore, the dual total curvature satisfies not only

the Cohn-Vossen inequality, but also the hyperbolic analogue of the Osserman

inequality (which cannot be said about the true total curvature) [19, 23] (see

also (2.1) in Section 2). So the dual total curvature shares more properties

with the total curvature of minimal surfaces in R3, motivating our interest in it.

In this paper, we classify CMC-1 surfaces with dual total absolute cur-

vature at most 4p, and we go much of the way toward classifying CMC-1 sur-

faces with dual total absolute curvature at most 8p (as a first step to a full

classification of the 8p case). In Section 1, we give a summary of the results,

and in Section 2 we give preliminaries for the latter sections. The classification

of CMC-1 surfaces with dual total absolute curvature less than or equal to 4p

is given in Section 3. Surfaces with dual total absolute curvature 8p are dis-

cussed in Section 4—and there we find new examples, we classify certain cases,

and we show nonexistence in certain other cases. In Section 5, from defor-

mations of corresponding minimal surfaces in R3, we produce two classes of

new CMC-1 surfaces with dual total absolute curvature 8p. For the readers’

convenience, we attach Appendix A to explain the computation of log-term

coe‰cients of second order linear ordinary di¤erential equations with regular

singularities.
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1. Summary of the results

To state our results precisely, we begin with some notations. Let

f : M ! H 3 be a complete conformal CMC-1 immersion of a Riemann surface

M into H 3. By Bryant’s representation formula, there is a holomorphic null

immersion F : ~MM ! SLð2;CÞ such that f ¼ FF �, where ~MM is the universal
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cover of M and F � ¼ tF . (‘‘null’’ means detðF�1 dF Þ ¼ 0.) Here, we con-

sider H 3 ¼ SLð2;CÞ=SUð2Þ ¼ faa� j a A SLð2;CÞg [1, 15]. We call F the lift of

f , and F satisfies

dF ¼ F
g �g2

1 �g

� �
Q

dg
ð1:1Þ

on ~MM, where g (the secondary Gauss map) is a meromorphic function defined

on ~MM and Q (the Hopf di¤erential ) is a holomorphic 2-di¤erential on M.

Then the induced metric ds2 and complexification of the second fundamental

form h are

ds2 ¼ ð1þ jgj2Þ2 Q

dg

����
����
2

; h ¼ �Q�Qþ ds2:

By (1.1), the secondary Gauss map satisfies

g ¼ � dF12

dF11
¼ � dF22

dF21
; where F ðzÞ ¼ F11ðzÞ F12ðzÞ

F21ðzÞ F22ðzÞ

� �
:

The map g is determined uniquely up to a Möbius transformation g 7! a ? g by

a A SUð2Þ, where, for general a ¼ ðaijÞ A SLð2;CÞ, we denote

a ? g :¼ a11gþ a12

a21gþ a22
:

The hyperbolic Gauss map G of f is defined by

G ¼ dF11

dF21
¼ dF12

dF22
;

which can be interpreted as stereographic projection of the endpoints in the

sphere at infinity of H 3 of the oriented normal geodesics emanating from the

surface. In particular, G is a meromorphic function on M.

The inverse matrix F�1 is also a holomorphic null immersion, and pro-

duces a new CMC-1 immersion f # ¼ F�1ðF�1Þ� : ~MM ! H 3, called the dual of

f [19]. The induced metric ds2# and the Hopf di¤erential Q# of f # are

ds2# ¼ ð1þ jGj2Þ2 Q

dG

����
����
2

; Q# ¼ �Q:ð1:2Þ

So ds2# and Q# are well-defined on M itself, even though f # might be defined

only on ~MM. This duality between f and f # interchanges the roles of the

hyperbolic Gauss map G and secondary Gauss map g. In particular, one has

dF � F�1 ¼ �ðF�1Þ�1
dðF�1Þ ¼ G �G2

1 �G

� �
Q

dG
:ð1:3Þ

Hence dFF�1 is single-valued on M, whereas F�1 dF generally is not.
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Since ds2# is single-valued on M, we can define the dual total absolute

curvature

TAð f #Þ :¼
ð
M

ð�K #ÞdA#;

where K # ða 0Þ and dA# are the Gaussian curvature and area element of ds2#,

respectively. As

ds2# :¼ ð�K #Þds2# ¼ 4 dGdG

ð1þ jGj2Þ2
ð1:4Þ

is a pseudo-metric of constant curvature 1 with developing map G, TAð f #Þ is

the area of the image of G on CP1 ¼ S2. The following assertion is important

for us:

Lemma 1.1 ([19, 22]). The Riemannian metric ds2# is complete (resp. non-

degenerate) if and only if ds2 is complete (resp. nondegenerate).

So from now on, we suppose f is complete and has TAð f #Þ < þy. By

Lemma 1.1, the conformal metric ds2# is complete. As TAð f #Þ < þy, M is

biholomorphic to a compact Riemann surface Mg of some genus g with finitely

many points excluded [8, Theorem 9.1]:

M ¼ Mgnfp1; . . . ; png ðp1; . . . ; pn A MgÞ:ð1:5Þ

The points pj are called the ends of the immersion f .

If G has an essential singularity at any end pj, then TAð f #Þ ¼ þy,

since TAð f #Þ is the area of GðMÞ in CP1 ¼ S2. Since we have assumed

TAð f #Þ < þy, G is meromorphic on all of Mg. In particular, TAð f #Þ ¼
4p deg G A 4pZ.

Since the dual immersion has finite total curvature, the Hopf di¤erential

Q# ¼ �Q can be extended to Mg as a meromorphic 2-di¤erential [1, Prop-

osition 5]. Let

dj ¼ ordpj Q ¼ order of Q at the end pj

for each j ¼ 1; . . . ; n. We say that f is a surface of type Gðd1; . . . ; dnÞ if

M ¼ Mgnfp1; . . . ; png and Q has order dj at each end pj. We use G because

it is the capitalized letter corresponding to g, the genus of Mg. For instance,

the class Ið�4Þ (resp. Oð�2;�3Þ) means the class of surfaces of genus 1 (resp.

genus 0) with 1 end (resp. 2 ends) so that Q has a pole of order 4 at the single

end (resp. a pole of order 2 at one end and order 3 at the other). Then our

results are shown in Table 1. In the table,
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. classified means the complete list of the surfaces in such a class is

known (and this means not only that we know all the possibilities for

the form of the data ðG;QÞ, but that we also know exactly for which

ðG;QÞ the period problems of the immersions are solved).

Table 1. CMC-1 surfaces in H 3 with TAð f #Þa 8p. (The corresponding results for minimal

surfaces in R3 are shown in Table 2.)

Type TAð f #Þ Reducibility Status c.f.

Oð0Þ 0 H3-reducible classified0 Horosphere

Oð�4Þ 4p H3-reducible classified Duals of Enneper cousins

[10, Example 5.4]

Oð�2;�2Þ 4p reducible classified Catenoid cousins and warped

catenoid cousins with embedded

ends [1, Example 2], [15], [13]

Oð�5Þ 8p H3-reducible classified Theorem 4.14

Oð�6Þ 8p H3-reducible classified Theorem 4.14

Oð�2;�2Þ 8p reducible classified Double covers of catenoid cousins

and warped catenoid cousins with

m ¼ 2 in [15, Theorem 6.2], [13]

Oð�1;�4Þ 8p H3-reducible classified0 Theorem 4.13

Oð�2;�3Þ 8p H1-reducible classified Theorems 4.11, 4.12

Oð�2;�4Þ 8p H1-reducible

H3-reducible

classified

classified

Theorem 4.9

Theorem 4.10

Oð�3;�3Þ 8p reducible existence Proposition 4.8

Oð�1;�1;�2Þ 8p H3-reducible classified0 Theorem 4.7

Oð�1;�2;�2Þ 8p H1-reducible

H3-reducible

classified

classified

Theorem 4.5

Theorem 4.6

Oð�2;�2;�2Þ 8p irreducible

H1-reducible

H3-reducible

classified

existenceþ

existenceþ

[20, Theorem 2.6]

Example 4.3

Example 4.4

Ið�3Þ 8p unknown

Ið�4Þ 8p existence Proposition 4.2

Ið�1;�1Þ 8p unknownþ Proposition 4.1

Ið�2;�2Þ 8p existence Genus 1 catenoid cousins [9]
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. classified 0 means there exists a unique surface (up to isometries of H 3

and deformations that come from its reducibility).
. existence means that examples exist, but they are not yet classified.
. existenceþ means that all possibilities for the data ðG;QÞ are determined

in this paper, but the period problems are solved only for special cases.
. unknown means that neither existence nor non-existence is known yet.
. unknownþ means that all possibilities for the data ðG;QÞ are determined

in this paper, but the period problems are still unsolved.

Any class and type of reducibility not listed in Table 1 cannot contain sur-

faces with TAð f #Þa 8p. For example, any irreducible or H3-reducible sur-

face of type Oð�2;�3Þ must have dual total absolute curvature at least 12p.

(See Section 2 for the definitions of irreducibility, H1-reducibility, and H3-

reducibility.)

2. Preliminaries

Before we begin proving the results, we prepare some fundamental pro-

perties and tools, which will play important roles in the latter sections.

Table 2. The classification of complete minimal surfaces in R3 with TAa 8p

([6]), for comparison with Table 1.

Type TA The surface c.f.

Oð0Þ 0 Plane

Oð�4Þ 4p Enneper’s surface

Oð�5Þ 8p [6, Theorem 6]

Oð�6Þ 8p [6, Theorem 6]

Oð�2;�2Þ 4p

8p

Catenoid

Double cover of the catenoid

Oð�1;�3Þ 8p [6, Theorem 5]

Oð�2;�3Þ 8p [6, Theorem 4, 5]

Oð�2;�4Þ 8p [6, Theorem 5]

Oð�3;�3Þ 8p [6, Theorem 4]

Oð�1;�2;�2Þ 8p [6, Theorem 5]

Oð�2;�2;�2Þ 8p [6, Theorem 5]

Ið�4Þ 8p Chen-Gackstatter surface [6, Theorem 5], [2]
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Analogue of the Osserman inequality. The second and third authors showed

[19]:

1

2p
TAð f #Þb�wðMÞ þ n ¼ 2ðgþ n� 1Þ:ð2:1Þ

Moreover, equality holds exactly when all the ends are properly embedded:

This follows by noting that equality is equivalent to all ends being regular and

embedded ([19]), and that any properly embedded end must be regular (proved

recently by Collin, Hauswirth and Rosenberg [4]).

Formulas for TAð f #Þ. Let m#
j A Z be the branching order of G at the end pj

for each j ¼ 1; . . . ; n. Since G is a ðm#
j þ 1Þ-to-1 mapping in a neighborhood

of pj,

m#
j a deg G � 1 ¼ 1

4p
TAð f #Þ � 1:ð2:2Þ

The umbilic points of f are the zeroes of Q ¼ �Q#, which are also the

umbilic points of f #. Moreover, the order of Q equals the branching order of

G at each point in M, since ds2# in (1.2) is non-degenerate. Let q1; . . . ; qk be

the umbilic points of f and set

xl :¼ ordql Q ¼ ½the branching order of G at ql � ðl ¼ 1; . . . ; kÞ:ð2:3Þ

The pseudometric ds2# in (1.4) is said to have order b at p if it is asymptotic

to jz� zðpÞj2bdzdz, where z is a complex coordinate around p. Then the

branching order of G is equal to the order of the metric ds2# in (1.4), the

Gauss-Bonnet theorem implies that

1

2p
TAð f #Þ ¼ wðMgÞ þ

Xn
j¼1

m#
j þ

Xk
l¼1

xl ;ð2:4Þ

where wð�Þ is the Euler characteristic. (This also follows from the Riemann-

Hurwitz formula, since Mg is a branched cover of S2 via the map G.)

Since Q is a meromorphic 2-di¤erential, the total order of Q satisfies

Xk
l¼1

xl þ
Xn
j¼1

dj ¼ �2wðMgÞ:ð2:5Þ

By (2.4) and (2.5), we have

1

2p
TAð f #Þ ¼ �wðMgÞ þ

Xn
j¼1

ðm#
j � djÞ ¼ 2g� 2þ

Xn
j¼1

ðm#
j � djÞ:ð2:6Þ
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Completeness of the metric ds2# at pj implies m#
j � dj b 1. However, the case

m#
j � dj ¼ 1 cannot occur ([19, Lemma 3]), so

m#
j � dj b 2:ð2:7Þ

E¤ects of transforming the lift F . Here we consider the change F̂F ¼ aFb�1 of

the lift F , where a; b A SLð2;CÞ. Then F̂F is also a holomorphic null immer-

sion, and the hyperbolic Gauss map ĜG, the secondary Gauss map ĝg and the

Hopf di¤erential Q̂Q of F̂F are given by (see [17])

ĜG ¼ a ? G; ĝg ¼ b ? g; Q̂Q ¼ Q:ð2:8Þ

In particular, the change F̂F ¼ aF moves the surface by a rigid motion of

H 3, and does not change g and Q. By choosing a suitable rigid motion

a A SLð2;CÞ of the surface in H 3, we shall frequently use the following change

of the hyperbolic Gauss map to simplify its expression:

ĜG ¼ a ? G ¼ a11G þ a12

a21G þ a22
; ðaijÞi; j¼1;2 A SLð2;CÞ:ð2:9Þ

The Schwarzian derivative relation. A direct computation implies that the sec-

ondary Gauss map g depends on G and Q as follows ([15]):

SðgÞ � SðGÞ ¼ 2Q;ð2:10Þ

where

SðgÞ ¼ g 00

g 0

� �0
� 1

2

g 00

g 0

� �2" #
dz2 0 ¼ d

dz

� �

is the Schwarzian derivative of g. Here, z is a complex coordinate of Mg.

SU(2)-monodromy conditions. Here we recall from [10] the construction of

CMC-1 surfaces with given hyperbolic Gauss map G and Hopf di¤erential Q,

which will play a crucial role in this paper. Let Mg be a compact Riemann

surface and M :¼ Mgnfp1; . . . ; png. Let G and Q be a meromorphic function

and meromorphic 2-di¤erential on Mg. The pair ðG;QÞ must satisfy the fol-

lowing two compatibility conditions:

For all q A M; ordq Q is equal to the branching order of G; andð2:11Þ

for each end pj; m
#
j � dj b 2:ð2:12Þ

The first condition implies that the metric ds2# is (and hence ds2 is also, by

Lemma 1.1) non-degenerate at q A M. The second condition implies that the

metric ds2# is complete (and hence ds2 is also, again by Lemma 1.1) at pj A Mg

ð j ¼ 1; . . . ; nÞ.
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For such a pair ðG;QÞ, a solution g of equation (2.10) has singularities

at the branch points of G (umbilic points or ends) and the poles of Q (ends).

However, regardless of whether q A M is a regular or umbilic point, ds2# and

Q# as in (1.2) give a (non-degenerate) Riemann metric and holomorphic 2-

di¤erential in a neighborhood Uq HM of q. Then, by the fundamental the-

orem of surfaces, there exists a CMC-1 immersion f # of Uq into H 3 with

induced metric ds2# and Hopf di¤erential Q#. So the hyperbolic Gauss map

g of f #, which is a solution of (2.10), is a well-defined meromorphic function

on Uq. Since the solution of (2.10) is unique up to Möbius transformations

g 7! a ? g ða A SLð2;CÞÞ, for any solution g of (2.10) defined on the universal

cover ~MM of M, there exists a representation

rg : p1ðMÞ ! PSLð2Þ such that g � t�1 ¼ rgðtÞ ? g

for each covering transformation t A p1ðMÞ.
We now consider when the dual f ¼ ð f #Þ# (with data ðG;QÞ) of f # is

well-defined on M. Choosing F so that F�1 is a lift of f # (and then also

ðF�1Þ�1 ¼ F is a lift of ð f #Þ# ¼ f ), and noting that the representation rg :

p1ðMÞ ! PSLð2;CÞ can be lifted into SLð2;CÞ [10], (2.8) implies

F�1 � t�1 ¼ rgðtÞF�1ð2:13Þ

for each t A p1ðMÞ. Thus

f � t�1 ¼ ðF � t�1ÞðF � t�1Þ� ¼ FðrgðtÞÞ
�1ððrgðtÞÞ

�1Þ�F �;ð2:14Þ

and so f is well-defined on M if rgðtÞ A SUð2Þ for all t A p1ðMÞ. This is

the crux of the following Lemma 2.1. Before stating this lemma, we need a

definition:

Definition 1. A CMC-1 immersion f : M ! H 3 is reducible if

frgðtÞgt A p1ðMÞ are simultaneously diagonalizable (i.e. if there exists a P A
PSLð2;CÞ such that PrgðtÞP�1 is diagonal for all t A p1ðMÞ). If f is not

reducible, it is called irreducible. When f is reducible, it is either H3-reducible

or H1-reducible [10], and f is called H3-reducible if frgðtÞgt A p1ðMÞ are all the

identity, and is called H1-reducible otherwise.

Clearly f is H3-reducible if and only if the lift F itself is single-valued on

M, by (2.13). The name H1-reducibility (resp. H3-reducibility) comes from

the fact that the surface has exactly a 1 (resp. 3) dimensional deformation

through surfaces preserving G and Q and the mean curvature, which is iden-

tified with the 1 (resp. 3) dimensional hyperbolic space H1 (resp. H3) [10].

On the other hand, if f is irreducible, f has no deformation preserving mean

curvature and ðG;QÞ (see [17, 10]).
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Lemma 2.1 ([17]). Let G and Q be a meromorphic function and a mer-

omorphic 2-di¤erential on Mg satisfying (2.11) and (2.12). Assume g is a

solution of (2.10) such that the image of rg lies in PSUð2Þ. Then there exists a

complete CMC-1 immersion f : M ! H 3 with hyperbolic Gauss map G, Hopf

di¤erential Q, and secondary Gauss map g.

If f is irreducible, then f is the unique surface with data ðG;QÞ. If f is

H1-reducible (resp. H3-reducible), then there exists exactly a 1 (resp. 3) param-

eter family of CMC-1 surfaces with data ðG;QÞ.

In the case that M is of genus g ¼ 0 with at most two ends, f is reducible,

as the fundamental group is commutative. More generally, for the case g ¼ 0

with n ends, by Lemma 2.1 and the theory of linear ordinary di¤erential equa-

tions (see Appendix A), we have:

Proposition 2.2. Let M0 ¼ C U fyg and M ¼ M0nfp1; . . . ; png with

p1; . . . ; pn�1 A C . Let G and Q be a meromorphic function and a meromorphic

2-di¤erential on C U fyg satisfying (2.11) and (2.12). Consider the linear ordi-

nary di¤erential equation

d 2u

dz2
þ rðzÞu ¼ 0;ðE:0Þ

where rðzÞdz2 :¼ ðSðGÞ=2Þ þQ. Suppose nb 2, and also dj ¼ ordpj Qb�2

and the indicial equation of (E.0) at z ¼ pj has the two roots l
ð jÞ
1 ; l

ð jÞ
2 and log-

term coe‰cient cj , for j ¼ 1; 2; . . . ; n� 1.

(1) Suppose that l
ð jÞ
1 � l

ð jÞ
2 A Zþ and cj ¼ 0 for ja n� 1. Then there is

exactly a 3-parameter family of complete conformal CMC-1 immer-

sions of M into H 3 with hyperbolic Gauss map G and Hopf di¤erential

Q. Moreover, such surfaces are H3-reducible.

(2) Suppose that l
ð jÞ
1 � l

ð jÞ
2 A Zþ and cj ¼ 0 for ja n� 2, and that

l
ðn�1Þ
1 � l

ðn�1Þ
2 A RnZ. Then there exists exactly a 1-parameter family

of complete conformal CMC-1 immersions of M into H 3 with

hyperbolic Gauss map G and Hopf di¤erential Q. Moreover, such

surfaces are H1-reducible.

Here we denoted by Zþ the set of positive integers.

The ordinary di¤erential equation (E.0) has also been applied in [7] for

constructing certain classes of H3-reducible CMC-1 surfaces.

Proof. The general theory of Schwarzian derivatives shows ([21, Chapter

4]) that for a linearly independent pair u1; u2 of solutions of (E.0), the func-

tion g :¼ u1=u2 satisfies (2.10). Conversely, any function g satisfying SðgÞ ¼
2rðzÞdz2 is obtained in this way.
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If l
ð jÞ
1 � l

ð jÞ
2 ¼ m A Zþ and cj ¼ 0, then there is a fundamental system of

solutions of (E.0) in a neighborhood of pj of the form

u1 ¼ ðz� pjÞl
ð jÞ
1 j1ðzÞ; u2 ¼ ðz� pjÞl

ð j Þ
1

�mj2ðzÞ;ð2:15Þ

where j1ðzÞ and j2ðzÞ are holomorphic and nonzero at z ¼ pj. Then g :¼ u1=u2
satisfies

g � t�1
j ¼ 1 0

0 1

� �
? g;ð2:16Þ

where tj is the covering transformation which corresponds to a small loop

around z ¼ pj, implying rgðtjÞ ¼ identity. So for case (1), we have rgðtjÞ ¼
identity for all j ¼ 1; . . . ; n� 1, and therefore also for j ¼ n, which implies that

g is a meromorphic function on C U fyg. By Lemma 2.1, there exists a con-

formal CMC-1 immersion fa on M with the secondary Gauss map a ? g for all

a A SLð2;CÞ. If a A SUð2Þ, then fa coincides with fidentity by (2.14), so we have

that the 3-parameter family ð f½a�Þ½a� A SLð2;CÞ=SUð2Þ are complete conformal CMC-1

immersions with hyperbolic Gauss map G and Hopf di¤erential Q.

We remark here that if l
ð jÞ
1 � l

ð jÞ
2 ¼ m A Zþ and cj 0 0, then the mon-

odromy matrix rgðtjÞ defined by g � t�1
j ¼ rgðtjÞ ? g is not diagonalizable and is

not even in SUð2Þ. So any CMC-1 immersion on ~MM (with G and Q) cannot

be well-defined on M when some cj 0 0.

Next we consider case (2), that is l
ðn�1Þ
1 � l

ðn�1Þ
2 B Z. There exists a fun-

damental system of solutions of (E.0) of the form

u1 ¼ ðz� pn�1Þl
ðn�1Þ
1 j1ðzÞ; u2 ¼ ðz� pn�1Þl

ðn�1Þ
2 j2ðzÞ;ð2:17Þ

where j1ðzÞ and j2ðzÞ are holomorphic and nonzero at z ¼ pn�1. When tn�1

is the covering transformation induced from a small loop about z ¼ pn�1, g :¼
u1=u2 satisfies

g � t�1
n�1 ¼

epiðl
ðn�1Þ
1

�l
ðn�1Þ
2

Þ 0

0 epiðl
ðn�1Þ
2

�l
ðn�1Þ
1

Þ

" #
? g:ð2:18Þ

In particular, rgðtn�1Þ A SUð2Þ. On the other hand, in the proof of (1), we

have seen that rgðtjÞ ¼ identity for j A ð1; . . . ; n� 2Þ. Hence rgðtjÞ A SUð2Þ
and are diagonal matrices for all j A ð1; . . . ; nÞ, and we are in the H1-reducible

case. Note that this remains true when g is replaced by

sgðzÞ ¼ aðsÞ ? g; where aðsÞ :¼
ffiffi
s

p
0

0 1=
ffiffi
s

p
� �

; with s A Rþ;

where Rþ is the set of positive reals. So we have a one-parameter family of

complete conformal CMC-1 immersions with hyperbolic Gauss map G and
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Hopf di¤erential Q and secondary Gauss maps sg for s A Rþ. (s1g and s2g

for s1 0 s2 will not produce equivalent surfaces, as aðs1Þðaðs2ÞÞ�1 B SUð2Þ.)
Furthermore, Lemma 2.1 implies there is only a one-parameter family of CMC-

1 immersions with data ðG;QÞ. r

By (1.3), we have

ðF�1Þ�1
dðF�1Þ ¼ g# �g#2

1 �g#

� �
o#;

where

g# ¼ G; o# ¼ � Q

dG
:

By Lemma 2.1 of [15] (replacing F with F�1), we have that X ¼ F21ðzÞ;F22ðzÞ
satisfies the equation

X 00 � ðlogðôo#ÞÞ0X 0 þ Q̂QX ¼ 0;ðE:1Þ#

and Y ¼ F11ðzÞ;F12ðzÞ satisfies the equation

Y 00 � ðlogðG2ôo#ÞÞ0Y 0 þ Q̂QY ¼ 0;ðE:2Þ#

where QðzÞ ¼ Q̂QðzÞdz2 and o# ¼ ôo#ðzÞdz. (We call them (E.1)# and (E.2)#

because they are the dual versions of equations (E.1) and (E.2) in [15].) These

two equations have been shown in [23] as a modification of the corresponding

equations in [15]. As we will see later, equations (E.1)# and (E.2)# are some-

times more convenient than equation (E.0) for solving monodromy problems.

In fact, we will have use for the following lemma:

Lemma 2.3. Let G and Q be a meromorphic function and a holomorphic 2-

di¤erential on D� ¼ fz A C ; 0 < jzj < 1g such that the metric ds2# defined by

(1.2) is positive definite on D� and complete at 0. Assume ordz¼0 Qb�2 and

Q is not identically zero. Then the following three conditions are all equivalent.

(1) The di¤erence of the solutions of the indicial equation of (E.1)# at

z ¼ 0 is a positive integer and the log-term coe‰cient of (E.1)#

vanishes.

(2) The di¤erence of the solutions of the indicial equation of (E.2)# at

z ¼ 0 is a positive integer and the log-term coe‰cient of (E.2)#

vanishes.

(3) The di¤erence of the solutions of the indicial equation of (E.0) at z ¼ 0

is a positive integer and the log-term coe‰cient of (E.0) vanishes.

Proof. The hyperbolic Gauss map of the dual surface f # ¼ F�1ðF�1Þ� is

equal to the secondary Gauss map g of f ¼ FF �. Thus conditions (1) and (2)
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are equivalent to the condition that g is single valued at z ¼ 0, by Lemma 2.2

of [15]. On the other hand, as seen in the proof of Proposition 2.2, condition

(3) is also equivalent to the condition that g is single valued at z ¼ 0. r

Here is a natural place to include the next lemma, which we shall use in the

sequel [13], to this paper.

Lemma 2.4. With the same assumptions as in Lemma 2.3, the following

three conditions are all equivalent.

(1) The di¤erence of the solutions of the indicial equation of (E.1)# at

z ¼ 0 is a real number.

(2) The di¤erence of the solutions of the indicial equation of (E.2)# at

z ¼ 0 is a real number.

(3) The di¤erence of the solutions of the indicial equation of (E.0) at z ¼ 0

is a real number.

Proof. We write

GðzÞ ¼ zmĜGðzÞ; o#ðzÞ ¼ znôo#
0 ðzÞdz;

where ĜG and ôo#
0 are nonzero and holomorphic at z ¼ 0, for some integers m

and n.

If ordz¼0 Q ¼ �2, so mþ n ¼ �1 and Q ¼ ðyz�2 þ � � �Þdz2 for some y0 0,

then the di¤erence of the solutions of the indicial equations is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 4y

p
in all

three cases, hence the three statements are clearly equivalent.

If ordz¼0 Qb�1, then the indicial equation in the first case (resp. second

case, third case) is

tðt� 1Þ � nt ¼ 0; resp: tðt� 1Þ � ð2mþ nÞt ¼ 0; tðt� 1Þ þ 1� m2

4
¼ 0

� �
:

Hence the di¤erence of the roots is jnþ 1j (resp. j2mþ nþ 1j; jmj), and so all

three statements hold. r

3. The classification of surfaces with TAð f #Þa 4p

We begin our consideration of classification with this simple case:

Theorem 3.1. A complete CMC-1 immersion f with TAð f #Þa 4p is con-

gruent to one of the following:

(1) a horosphere,

(2) an Enneper cousin dual, ðg;QÞ ¼ ðtan
ffiffiffi
y

p
z; y dz2Þ ðy A Cnf0gÞ,

(3) a catenoid cousin,

ðg;QÞ ¼ azm;
1� m2

4z2
dz2

� �
ða A Rþ; m A Rþnf1gÞ;
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(4) a warped catenoid cousin that has a degree 1 hyperbolic Gauss map,

ðg;QÞ ¼ azl þ b;
1� l2

4z2
dz2

� �
ða; b A Cnf0g; l A Zþnf1gÞ:

Proof. Since TAð f #Þ A 4pZ, we need to consider only the cases

TAð f #Þ ¼ 0 and 4p. If TAð f #Þ ¼ 0, then the hyperbolic Gauss map is con-

stant, so (1.4) implies K # 1 0. Thus f # is a totally umbilic CMC-1 immer-

sion, so both f # and f are horospheres. So we consider the remaining case

TAð f #Þ ¼ 4p. Then G is meromorphic of degree 1 on Mg, which implies

g ¼ 0. Hence we may choose M0 ¼ C U fyg, and by (2.9), we may assume

G ¼ z. Since G has no branch points, (2.3) implies there are no umbilic

points, and (2.2) implies

m#
j ¼ 0ð3:1Þ

at each end pj. By (2.6) and (3.1) and the fact that g ¼ 0, we have

2 ¼ 1

2p
TAð f #Þ ¼ �2�

Xn
j¼1

dj:ð3:2Þ

By (2.7), we have 2b�2þ 2n, so n ¼ 1 or 2.

The case n ¼ 1. In this case, (3.2) implies d1 ¼ �4. We may put the end at

p1 ¼ y, and then Q has a single pole of order 4 at y and no zeroes. Thus

Q ¼ y dz2 for some y A Cnf0g.
A CMC-1 surface in H 3 with secondary Gauss map g ¼ z and Hopf

di¤erential Q ¼ y dz2 is called an Enneper cousin [1]. So a surface with data

ðG;QÞ ¼ ðz; y dz2Þ is the dual of an Enneper cousin [10, Example 5.4]. (Recall

that dualizing switches the two Gauss maps, and changes the Hopf di¤erential

only by a sign.)

The case n ¼ 2. In this case, (3.2) becomes 4 ¼ �d1 � d2. Then dj ¼ �2

ð j ¼ 1; 2Þ, by (2.7). Hence the immersion f is a CMC-1 surface of genus 0

whose two ends must both be regular [15], and this type of surface is classified

in [15]. In particular, f is in the case m ¼ 1 of Theorem 6.2 in [15]. So the

surface is either a catenoid cousin [1, Example 2] or a warped catenoid cousin

with embedded ends (the case m ¼ 1 in Theorem 6.2 in [15]). r

The warped catenoid cousins are described in detail in [13].

4. Surfaces with TAð f #Þ ¼ 8p

We now assume f has TAð f #Þ ¼ 8p. Then, by (2.6) and (2.7),
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6 ¼ 2gþ
Xn
j¼1

ðm#
j � djÞb 2ðgþ nÞð4:1Þ

holds. Thus the possible cases are

ðg; nÞ ¼ ð0; 1Þ; ð0; 2Þ; ð0; 3Þ; ð1; 1Þ; ð1; 2Þ; and ð2; 1Þ:

Since TAð f #Þ ¼ 8p, G is meromorphic on Mg of degree 2. Hence (2.2)

implies

m#
j a 1 ð j ¼ 1; 2; . . . ; nÞ;ð4:2Þ

and at each umbilic point ql ,

xl ¼ 1 ðl ¼ 1; 2; . . . ; kÞ:ð4:3Þ

The case ðg; nÞ ¼ ð2; 1Þ. Since equality holds in (2.1), the single end p1 is

embedded. By (4.1), m#
1 � d1 ¼ 2. Thus the possible cases are

ðm#
1 ; d1Þ ¼ ð0;�2Þ or ð1;�1Þ;

by (4.2). If ðm#
1 ; d1Þ ¼ ð0;�2Þ, the end p1 is of type I in the sense of [11],

so the flux about this end does not vanish [11, Proposition 2]. If ðm#
1 ; d1Þ ¼

ð1;�1Þ, then, since the end is embedded, Corollary 5 in [11] implies that the

flux about the end again does not vanish. But non-vanishing flux at a single

end contradicts the balancing formula [11, Theorem 1], so the case ðg; nÞ ¼
ð2; 1Þ does not occur.

The case ðg; nÞ ¼ ð1; 2Þ. In this case, (4.1) implies 4 ¼ ðm#
1 � d1Þ þ ðm#

2 � d2Þ.
By (2.7), we have m#

j � dj ¼ 2 for j ¼ 1; 2. Hence (4.2) implies

ðm#
j ; djÞ ¼ ð0;�2Þ or ð1;�1Þ ð j ¼ 1; 2Þ:

Assume d1 ¼ �2 and d2 ¼ �1. Then, by the transformation (2.9) if nec-

essary, we may assume the hyperbolic Gauss map has a zero or pole at each

end. In this case, the end p1 is regular of type I, and p2 is regular of type II in

the sense of [11], contradicting Theorem 7 in [11]. Hence this case is impos-

sible, leaving the two remaining possibilities:

ðm#
1 ; d1Þ ¼ ðm#

2 ; d2Þ ¼ ð0;�2Þ;ð4:4Þ

ðm#
1 ; d1Þ ¼ ðm#

2 ; d2Þ ¼ ð1;�1Þ:ð4:5Þ

For the case (4.4), the first author and Sato [9] constructed a one-parameter

family of ‘‘genus one catenoid cousins’’. Note that such surfaces cannot exist

as minimal surfaces in R3, by Schoen’s result [14].

CMC-1 surfaces of low total curvature I 35



Surfaces of type Ið�1;�1Þ. For the case (4.5), we can determine the can-

didates of ðG;QÞ explicitly as follows (however, the period problem is unsolved

and no example is known):

Proposition 4.1. Let M1 ¼ C=G , where G is a lattice on C , and assume

there exists a CMC-1 immersion f : M1nfp1; p2g ! H 3 with TAð f #Þ ¼ 8p of

type Ið�1;�1Þ. Then, after a suitable rigid motion of H 3, there exists a

generating pair fv1; v2gHC of G such that the hyperbolic Gauss map G and

Hopf di¤erential Q of f are given by

G ¼ }ðzÞ; QðzÞ ¼ y
sðz� v1=2Þsðz� v2=2Þ
sðzÞsðz� ðv1 þ v2Þ=2Þ

dz2 ðy A Cnf0gÞ;ð4:6Þ

Fig. 1. Two CMC-1 trinoids in H 3, which are surfaces of type Oð�2;�2;�2Þ, and a genus 1

catenoid cousin, which is a surface of type Ið�2;�2Þ, shown in the Poincaré model of H 3.

Only one of two congruent pieces of the right-most two surfaces is shown, and the other half of

each surface is the reflection (in the plane containing the boundary curves seen here) of the piece

shown.

Rossman, Umehara, Yamada36



where }ðzÞ is the Weierstrass }-function and s is the entire function defined by

sðzÞ :¼ z
Y

v AGnf0g
1� z

v

� �
exp

z

v
þ z2

2v2

� �� �
:

Proof. In this case, the hyperbolic Gauss map G is of degree 2.

Without loss of generality, we may assume that z ¼ 0 is an end of the surface.

Moreover, by (2.9) we may assume that z ¼ 0 is a pole of G. As z ¼ 0 is a

branch point of G (since m#
j ¼ 1), G has a pole of order 2 at z ¼ 0. Up to a

constant multiple and an additive constant, the function }ðzÞ is uniquely

characterized as a degree 2 meromorphic function on C=G with a pole of order

2 at the origin [5]. Thus we have GðzÞ ¼ c}ðzÞ þ b, and we can normalize

c ¼ 1 and b ¼ 0, by (2.9).

Suppose fv1; v2g generates G . Then the branch points of } are 0, v1=2,

v2=2 and ðv1 þ v2Þ=2 modulo G, which are the ends and umbilic points. We

assume 0 and ðv1 þ v2Þ=2 are the ends. (If v1=2 is an end, for example, we

may change the generator G to f~vv1 ¼ v1 � v2; ~vv2 ¼ v2g.) Thus the umbilic

points are v1=2 and v2=2.

Next we find the Hopf di¤erential QðzÞ ¼ qðzÞdz2, using the following fact:

Fact ([5]). Let a1; . . . ; an and b1; . . . ; bn be points in C such that aj 0 bk
ðmod GÞ, j; k A f1; . . . ; ng, and

Pn
j¼1 aj ¼

Pn
k¼1 bk ðmod GÞ. Then

f ðzÞ :¼ y
sðz� a1Þ . . . sðz� anÞ
sðz� b1Þ . . . sðz� bnÞ

ðy A Cnf0gÞ

is a meromorphic function on C=G such that fa1; . . . ; ang (resp. fb1; . . . ; bng) are

the set of zeroes (resp. poles), i.e. the divisor of f is a1 þ � � � þ an � b1 � � � � � bn.

Conversely, any elliptic function on C=G with the same divisor is of this form.

The meromorphic function qðzÞ should have poles of order 1 at z ¼ 0,

ðv1 þ v2Þ=2 (ends) and zeroes of order 1 at z ¼ v1=2; v2=2 (umbilic points).

Thus QðzÞ can be written as in (4.6). r

The case ðg; nÞ ¼ ð1; 1Þ. By (4.1) and (4.2), we have two possible cases:

ðm#
1 ; d1Þ ¼ ð0;�4Þ or ð1;�3Þ:

The second of these cases (the Ið�3Þ case) is still unknown, but for the first case

Ið�4Þ, the following proposition provides examples, proven (in Section 5) by

deforming from a complete minimal surface in R3 of genus 1 with one end

satisfying d1 ¼ �4.

Proposition 4.2. By deforming the Chen-Gackstatter surface in R3 [2], one
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obtains a one-parameter family of CMC-1 surfaces of type Ið�4Þ with dual total

absolute curvature 8p.

The case ðg; nÞ ¼ ð0; 3Þ. Here, (4.1) and (2.7) imply m#
j � dj ¼ 2 for j ¼ 1; 2; 3.

Moreover, (2.5) implies d1 þ d2 þ d3 a�4. So (4.2) implies that the possi-

bilities are:

Type Oð�2;�2;�2Þ : ðd1; d2; d3Þ ¼ ð�2;�2;�2Þ and ðm#
1 ; m

#
2 ; m

#
3 Þ ¼ ð0; 0; 0Þ;

Type Oð�1;�2;�2Þ : ðd1; d2; d3Þ ¼ ð�1;�2;�2Þ and ðm#
1 ; m

#
2 ; m

#
3 Þ ¼ ð1; 0; 0Þ;

Type Oð�1;�1;�2Þ : ðd1; d2; d3Þ ¼ ð�1;�1;�2Þ and ðm#
1 ; m

#
2 ; m

#
3 Þ ¼ ð1; 1; 0Þ:

In each case, equality holds in (2.1), so all ends are embedded. Since the

genus of the surface is 0, we can set M0 ¼ C U fyg.

Surfaces of type Oð�2;�2;�2Þ. Such surfaces have three embedded ends

with dj ¼ �2 ð j ¼ 1; 2; 3Þ, and the irreducible ones are classified in [20, Theo-

rem 2.6]. So here we consider the reducible case.

We may set p1 ¼ 0, p2 ¼ 1 and p3 ¼ y. By (2.5) and (4.3), there are two

distinct umbilic points q1 and q2 of order 1. Then the Hopf di¤erential Q

must have simple zeroes at q1 and q2 and poles of order 2 at 0; 1 and y.

Since all three m#
j ¼ 0, q1 and q2 are the only branch points of G. Also, Gðq1Þ,

Gðq2Þ, and GðyÞ are all distinct, because q1 and q2 are double points of G and

deg G ¼ 2. Then, by (2.9), we can set Gðq1Þ ¼ 0, Gðq2Þ ¼ y, and GðyÞ ¼ 1.

Thus G and Q are written as

G ¼ z� q1

z� q2

� �2
; Q ¼ y

ðz� q1Þðz� q2Þ
z2ðz� 1Þ2

dz2 ðy A Cnf0gÞ:ð4:7Þ

Example 4.3 (H1-reducible examples of type Oð�2;�2;�2Þ). For s A R

such that

�4
1þ 4sþ s2

1þ 10sþ s2
A RnZ;ð4:8Þ

let

q1 ¼
1þ 10sþ s2

4sð1� sÞ ; q2 ¼
1þ 10sþ s2

4ðs� 1Þ ; and y ¼ � 3

4q1q2
:ð4:9Þ

Consider (E.0) for rðzÞdz2 ¼ ðSðGÞ=2Þ þQ, with G and Q determined by (4.7)

and (4.9). Then the roots of the indicial equation of (E.0) at z ¼ 0 are

�1=2 and 3=2, so their di¤erence is 2 A Z, and one can check by (A.15) that

the log-term coe‰cient vanishes. Moreover, the di¤erence of the roots of the
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indicial equation at z ¼ 1 equals the value in (4.8). Hence, by (2) of Propo-

sition 2.2, there exists an H1-reducible CMC-1 immersion f : Cnf0; 1g ! H 3

with G and Q as in (4.7) and (4.9). Since each surface is H1-reducible (this

follows from the fact that the di¤erence of the roots of the indicial equa-

tion is an integer at z ¼ 0 and not an integer at z ¼ 1), there exists a one-

parameter family of CMC-1 surfaces for each s, with this G and Q. Thus,

we have found a 2-parameter family of H1-reducible CMC-1 surfaces of type

Oð�2;�2;�2Þ.

Example 4.4 (H3-reducible examples of type Oð�2;�2;�2Þ). For mb 2,

m A Z, let

q1 ¼
1

2
1þ 1ffiffiffiffi

m
p

� �
; q2 ¼

1

2
1� 1ffiffiffiffi

m
p

� �
; and y ¼ �mðmþ 1Þ:

Then a meromorphic function g on C U fyg such that

dg ¼ zm�1ðz� 1Þm�1ðz� q1Þðz� q2Þdz

satisfies equation (2.10) for G and Q as in (4.7). Since g is meromorphic,

rgðtÞ is the identity for all t A p1ðCnf0; 1gÞ, so Lemma 2.1 implies there

exists an H3-reducible CMC-1 immersion f : Cnf0; 1g ! H 3 whose hyperbolic

Gauss map, Hopf di¤erential, and secondary Gauss map are G;Q, and g,

respectively.

Surfaces of type Oð�1;�2;�2Þ. In this case, we will see that there is a 2-

parameter family of H1-reducible surfaces, and countably many H3-reducible

families. By (2.5), there exists one umbilic point of order 1. Without loss of

generality, we can set the ends to be ðp1; p2; p3Þ ¼ ð0; 1; pÞ ðp A Cnf0; 1gÞ and

the umbilic point to be q1 ¼ y. Then the Hopf di¤erential Q has a pole of

order 2 (resp. order 1) at z ¼ 1; p (resp. z ¼ 0) and has no zeroes on C , so it

has the form

Q ¼ y dz2

zðz� 1Þ2ðz� pÞ2
ðy A Cnf0gÞ:

By (2.3) and the fact m#
1 ¼ 1, G has branch points of order 1 at z ¼ 0 and y.

Then, by (2.9), we may assume G ¼ z2, because deg G ¼ 2. Consider the ordi-

nary di¤erential equation (E.0) with rðzÞdz2 ¼ ðSðGÞ=2Þ þQ. At the singu-

larity z ¼ 0, rðzÞ expands as

rðzÞ ¼ � 3

4

1

z2
þ y

p2
1

z
þ 2yðpþ 1Þ

p3
þOðzÞ:

Thus the di¤erence of the roots of the indicial equation of (E.0) at z ¼ 0 is 2.
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Then, by (A.15), the log-term coe‰cient of (E.0) at z ¼ 0 vanishes if and only if

y ¼ �2pðpþ 1Þ. Hence, if such a surface exists, G and Q are

G ¼ z2; Q ¼ �2pðpþ 1Þ
zðz� 1Þ2ðz� pÞ2

dz2 ðp A Cnf0; 1gÞ:ð4:10Þ

For G and Q as in (4.10), rðzÞ expands at the singularity z ¼ 1 as

rðzÞ ¼ �2pðpþ 1Þ
ð1� pÞ2

1

ðz� 1Þ2
þOððz� 1Þ�1Þ:

Then the roots of the indicial equation of (E.0) at z ¼ 1 are

l1 ¼ 2þ 2

p� 1
; l2 ¼ �1� 2

p� 1
:

So l1 � l2 A Z exactly when 4=ðp� 1Þ A Z. Then, by Proposition 2.2, we

have

Theorem 4.5. Let p A R such that p0 1 and 4=ðp� 1Þ B Z. Then there

exists a conformal H1-reducible CMC-1 immersion f : M ¼ C U fygnf0; 1; pg
! H 3 with TAð f #Þ ¼ 8p and hyperbolic Gauss map and Hopf di¤erential as in

(4.10). Moreover, all H1-reducible surfaces with TAð f #Þ ¼ 8p of type

Oð�1;�2;�2Þ are given in this manner.

The above discussion yields that all CMC-1 surfaces of type Oð�1;�2;�2Þ
are reducible. So it only remains to classify the H3-reducible case:

Theorem 4.6. Let rb 3 be an integer and p ¼ ðrþ 2Þ=ðr� 2Þ. Then

there exists a conformal H3-reducible CMC-1 immersion f : M ¼ C U fygn
f0; 1; pg ! H 3 with TAð f #Þ ¼ 8p whose hyperbolic Gauss map and Hopf

di¤erential are as in (4.10). Moreover, all H3-reducible surfaces with

TAð f #Þ ¼ 8p of type Oð�1;�2;�2Þ are given in this manner.

Proof. For given rb 3, there is a meromorphic function g on C U fyg
so that

dg ¼ zðz� pÞr�2

ðz� 1Þrþ2
dz;ð4:11Þ

since the right-hand side of (4.11) has no residue. One can check that

SðgÞ � SðGÞ ¼ 2Q when p ¼ ðrþ 2Þ=ðr� 2Þ. Hence, by Lemma 2.1, there

exists an H3-reducible CMC-1 immersion f : C U fygnf0; 1; pg ! H 3 with G

and Q as in (4.10) and secondary Gauss map g satisfying (4.11).

Conversely, let f : C U fygnf0; 1; pg ! H 3 be an H3-reducible CMC-1

immersion of type Oð�1;�2;�2Þ with TAð f #Þ ¼ 8p. Then G and Q are as
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in (4.10). Let m2 (resp. m3) be the di¤erence of the roots of the indicial

equation of (E.0) at z ¼ 1 (resp. z ¼ p) for such G and Q. Then we have

m2 ¼ j3þ ð4=ðp� 1ÞÞj and m3 ¼ j1þ ð4=ðp� 1ÞÞj. Since f is H3-reducible,

m2 and m3 are positive integers (so also 4=ðp� 1Þ A Z). We may assume

m2 bm3. (If not, we can exchange the two ends p and 1, by changing p and

z to 1=p and z=p. Using (2.9), we see that (4.10) is unchanged.)

Suppose that m2 ¼ m3 ¼ 1, then g is not branched at both 1 and p.

Noting that the branching orders of g and G are equal at any finite point of the

surface (this follows from equation (2.10)), we see that g has branch points

of order 1 at 0 and y and no other branch points. So g has degree 2 and

g ¼ a ? z2 for some a A SLð2;CÞ and so Q ¼ ð1=2ÞðSðgÞ � SðGÞÞ ¼ 0, which is

impossible.

Thus m2 b 2, and it follows that 4=ðp� 1Þ is a positive integer. By

setting r ¼ 2þ ð4=ðp� 1ÞÞb 3, we have

m2 ¼ 3þ 4

p� 1
¼ rþ 1; m3 ¼ 1þ 4

p� 1
¼ r� 1; and p ¼ rþ 2

r� 2
:

Thus G and Q are as in (4.10) with p ¼ ðrþ 2Þ=ðr� 2Þ. r

Surfaces of type Oð�1;�1;�2Þ. In this case, by (2.5), the surface has no

umbilic points. We set the ends ðp1; p2; p3Þ ¼ ð0; 1;yÞ. The Hopf di¤erential

is then

Q ¼ y dz2

zðz� 1Þ ; ðy A Cnf0gÞ:ð4:12Þ

The hyperbolic Gauss map G is a meromorphic function on C U fyg of degree

2 with branch points of order 1 at z ¼ 0 and z ¼ 1. Hence we may set

G ¼ z� 1

z

� �2
:ð4:13Þ

Theorem 4.7. Any complete CMC-1 immersion that is of type Oð�1;�1;

�2Þ with TAð f #Þ ¼ 8p is congruent to an H3-reducible CMC-1 immersion

f : M ¼ Cnf0; 1g ! H 3 with hyperbolic Gauss map and Hopf di¤erential

G ¼ z� 1

z

� �2
; Q ¼ �2 dz2

zðz� 1Þ :

Proof. Consider equation (E.0) for G and Q in (4.13) and (4.12) respec-

tively. Then the roots of the indicial equations of (E.0) are �1=2 and 3=2 at

both z ¼ 0 and z ¼ 1. By (A.15), the log-term coe‰cients at z ¼ 0 and at z ¼ 1

both vanish if and only if y ¼ �2. By Proposition 2.2, the corresponding 3-
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parameter family of CMC-1 immersions consists of immersions that are all

well-defined on M ¼ Cnf0; 1g and are H3-reducible. r

The case ðg; nÞ ¼ ð0; 2Þ. In this case, (4.1) and (2.7) imply that

ðm#
1 � d1; m

#
2 � d2Þ ¼ ð2; 4Þ or ðm#

1 � d1; m
#
2 � d2Þ ¼ ð3; 3Þ:

Then, by (4.2), all possibilities are:

Type Oð�2;�4Þ : ðd1; d2Þ ¼ ð�2;�4Þ and ðm#
1 ; m

#
2 Þ ¼ ð0; 0Þ;

Type Oð�2;�3Þ : ðd1; d2Þ ¼ ð�2;�3Þ and ðm#
1 ; m

#
2 Þ ¼ ð0; 1Þ or ð1; 0Þ;

Type Oð�1;�4Þ : ðd1; d2Þ ¼ ð�1;�4Þ and ðm#
1 ; m

#
2 Þ ¼ ð1; 0Þ;

Type Oð�1;�3Þ : ðd1; d2Þ ¼ ð�1;�3Þ and ðm#
1 ; m

#
2 Þ ¼ ð1; 1Þ;

Type Oð�3;�3Þ : ðd1; d2Þ ¼ ð�1;�3Þ and ðm#
1 ; m

#
2 Þ ¼ ð0; 0Þ;

Type Oð�2;�2Þ : ðd1; d2Þ ¼ ð�2;�2Þ and ðm#
1 ; m

#
2 Þ ¼ ð1; 1Þ:

Since the surface has genus 0, we can set M0 ¼ C U fyg and M ¼ C U fygn
fp1; p2g. Since p1ðMÞ is commutative, all surfaces of these types are reducible.

Surfaces of type Oð�3;�3Þ. There exists a minimal surface in R3 of class

Oð�3;�3Þ with total absolute curvature 8p [6]. The following is proven in

Section 5:

Proposition 4.8. By deforming the minimal surface of type Oð�3;�3Þ in

R3, one obtains a one-parameter family of CMC-1 surfaces of type Oð�3;�3Þ
with dual total absolute curvature 8p.

Surfaces of type Oð�2;�4Þ. In this case, by (2.5) and (4.3), such a sur-

face has two distinct umbilic points of order 1. We may set the ends to be

ðp1; p2Þ ¼ ð0;yÞ and the umbilic points to be ðq1; q2Þ ¼ ð1; qÞ, q A Cnf0; 1g, on
C U fyg. Then we may assume

G ¼ z� q

z� 1

� �2
; Q ¼ yðz� 1Þðz� qÞ

z2
dz2 ðy A Cnf0gÞ:ð4:14Þ

For such G and Q, the roots of the indicial equation of (E.0) at z ¼ 0 are

l1 ¼
1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4yq

p
Þ; l2 ¼

1

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4yq

p
Þ:

Then, by (2) of Proposition 2.2, we have
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Theorem 4.9. Let y A Cnf0g and q A Cnf0; 1g be complex numbers such

that ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4yq

p
A RnZ:

Then there exists a conformal H1-reducible CMC-1 immersion f : Cnf0g ! H 3

of type Oð�2;�4Þ with TAð f #Þ ¼ 8p whose hyperbolic Gauss map and Hopf

differential are as in (4.14). Moreover, allH1-reducible surfaces with TAð f #Þ ¼
8p of type Oð�2;�4Þ are given in this manner.

It only remains to consider the H3-reducible case:

Theorem 4.10. Let s A R such that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s

p
b 2 is an integer. Then there

exists at least 1 and at most
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s

p
conformal H3-reducible CMC-1 immer-

sions f : Cnf0g ! H 3 of type Oð�2;�4Þ with TAð f #Þ ¼ 8p whose hyperbolic

Gauss map and Hopf di¤erential are as in (4.14). Moreover, all H3-reducible

surfaces with TAð f #Þ ¼ 8p of type Oð�2;�4Þ are given in this manner.

Proof. For G and Q in (4.14), equation (E.1)# becomes

z2X 00 þ z 2þ 4z

1� z

� �
X 0 þ fyðz� 1Þðz� qÞgX ¼ 0:ð4:15Þ

By Lemma 2.3 and Proposition 2.2, it is enough to show that there exists data

ðG;QÞ such that the di¤erence of the roots of the indicial equation of (4.15) at

z ¼ 0 is an integer and the log-term vanishes.

The coe‰cients of (4.15) expand as

z 2þ 4z

1� z

� �
¼ z 2þ 4

Xy
j¼1

z j

( )
and

yðz� 1Þðz� qÞ ¼ yq� yð1þ qÞzþ yz2

for z su‰ciently close to 0. Assume the roots l1; l2 of the indicial equation of

(4.15) satisfy l1 � l2 ¼ m A Zþ. Then

s :¼ yq ¼ 1�m2

4
and l2 ¼ �mþ 1

2
ðmb 2Þ:ð4:16Þ

Let

mj ¼

1

jðm� jÞ
ð j ¼ 1; 2; . . . ;m� 1Þ

� 1

m
ð j ¼ mÞ

8>>><
>>>:

:
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Then by Proposition A.3 in Appendix A, the log-term coe‰cient c of (4.15) is

given by c ¼ am, where

a0 ¼ 1; a1 ¼ m1
1

4
ðmþ 1Þðm� 9Þ � y

� �
;

aj ¼ mj

" Xj�2

k¼0

ð4k � 2m� 2Þak

 !
þ yaj�2ð4:17Þ

þ 1

4
ðmþ 1Þðm� 9Þ � 4þ 4 j � y

� �
aj�1

#
ð j ¼ 2; . . . ;mÞ:

Hence aj is a polynomial in y of order j. We now define t0 ¼ 1, and we define

tj and uj for j ¼ 1; . . . ;m by the relations

aj ¼ tjy
j þ ujy

j�1 þ � � � ð j ¼ 1; 2; . . . ;mÞ:

It follows that tj ¼ �mj tj�1, and hence tm 0 0. Then, defining Lj :¼ uj=tj, we

also have

Lj ¼ Lj�1 �
ðmþ 1Þðm� 9Þ

4
� 4 j þ 4þ ð j � 1Þðm� j þ 1Þ

for j ¼ 2; . . . ;m. Since L1 ¼ �ðmþ 1Þðm� 9Þ=4, we have

Lm ¼
Xm
j¼2

�ðmþ 1Þðm� 9Þ
4

� 4 j þ 4þ ð j � 1Þðm� j þ 1Þ
� �

¼ m

12
ð49�m2Þ:

If the only roots of the polynomial

c ¼ tmy
m þ umy

m�1 þ � � � ¼ tmðym þ Lmy
m�1 þ � � �Þ ¼ 0

with respect to y are 0 and ð1�m2Þ=4 < 0, then it follows that Lm would be

nonnegative. However, Lm < 0 for all mb 8, hence this polynomial must

have some root y A Cnf0; ð1�m2Þ=4g, and then q ¼ ð1�m2Þ=ð4yÞ A Cnf0; 1g.
For this y and q, we have c ¼ 0, and thus we have at least one surface for each

mb 8. Since c is a polynomial of degree m in y, there are at most m roots,

and hence at most m surfaces.

For ma 7, one can check by explicitly computing the polynomial for c

that there is always at least one root y A Cnf0; ð1�m2Þ=4g. r

Surfaces of type Oð�2;�3Þ with m#
1 ¼ 0. Here, by (2.5), there exists only

one umbilic point of order 1. We set the ends to be ðp1; p2Þ ¼ ð1;yÞ and the

umbilic point to be q1 ¼ 0. We may assume
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G ¼ z2; Q ¼ yz dz2

ðz� 1Þ2
ðy A Cnf0gÞ:ð4:18Þ

Then the roots of the indicial equation of (E.0) at z ¼ 1 are

l1 ¼
1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4y

p
Þ; l2 ¼

1

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4y

p
Þ:

Hence, by Proposition 2.2, we have

Theorem 4.11. Let y A R such that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4y

p
A RnZ. Then there exists

a conformal H1-reducible CMC-1 immersion f : Cnf1;yg ! H 3 of type

Oð�2;�3Þ with TAð f #Þ ¼ 8p whose hyperbolic Gauss map and Hopf di¤erential

are as in (4.18). Moreover, all H1-reducible surfaces of type Oð�2;�3Þ with

ðm#
1 ; m

#
2 Þ ¼ ð0; 1Þ and TAð f #Þ ¼ 8p are given in this manner.

Now we will show that there are no H3-reducible surfaces of this type, by

showing that the log-term coe‰cient at z ¼ 1 of (E.1)# cannot be zero. With

the data as in (4.18), equation (E.1)# becomes

ðz� 1Þ2X 00 þ 2ðz� 1ÞX 0 þ yð1þ ðz� 1ÞÞX ¼ 0;

and so p0 ¼ 2, q0 ¼ q1 ¼ y, pj ¼ 0 for jb 1, and qj ¼ 0 for jb 2, where the

pj and qj are as defined in (A.3). Therefore, by Proposition A.3, we have

c ¼ �ym=ðm!ðm� 1Þ!Þ0 0.

Surfaces of type Oð�2;�3Þ with m#
1 ¼ 1. In this case, we set the ends to

be ðp1; p2Þ ¼ ð0;yÞ and the only umbilic point to be q1 ¼ 1. Then we may

assume

G ¼ z� 1

z

� �2
; Q ¼ yðz� 1Þdz2

z2
ðy A Cnf0gÞ:ð4:19Þ

Thus the roots of the indicial equation of (E.0) at z ¼ 0 are

l1 ¼
1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 4y

p
Þ; l2 ¼

1

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 4y

p
Þ:

So, by Proposition 2.2, we have

Theorem 4.12. Let y A R such that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 4y

p
A RnZ. Then there exists a

conformal H1-reducible CMC-1 immersion f : Cnf0g ! H 3 of type Oð�2;�3Þ
with TAð f #Þ ¼ 8p whose hyperbolic Gauss map and Hopf di¤erential are as in

(4.19). Moreover, all H1-reducible surfaces of type Oð�2;�3Þ with ðm#
1 ; m

#
2 Þ ¼

ð1; 0Þ and TAð f #Þ ¼ 8p are given in this manner.
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Now we will show that there are no H3-reducible surfaces of this type as

well, again by showing that a log-term coe‰cient cannot be zero. With G and

Q as in (4.19), equation (E.1)# becomes

z2X 00 � zX 0 þ yðz� 1ÞX ¼ 0;

and so p0 ¼ �1, �q0 ¼ q1 ¼ y, pj ¼ 0 for jb 1, and qj ¼ 0 for jb 2, where

the pj and qj are as defined in (A.3). Hence again, by Proposition A.3, we

have c0 0.

Surfaces of type Oð�1;�4Þ. We set the ends to be ðp1; p2Þ ¼ ð0; 1Þ and

the single umbilic point to be q1 ¼ y, then we may assume

G ¼ z2; Q ¼ y dz2

zðz� 1Þ4
ðy A Cnf0gÞ:ð4:20Þ

The roots of the indicial equation of (E.0) for such G and Q at z ¼ 0 are 3=2

and �1=2. Then, by Lemma A.15, the log-term coe‰cient at z ¼ 0 vanishes if

and only if y ¼ �4. Thus

Theorem 4.13. Any complete CMC-1 immersion of type Oð�1;�4Þ with

TAð f #Þ ¼ 8p is congruent to an H3-reducible CMC-1 immersion f : M ¼ C U
fygnf0; 1g ! H 3 with hyperbolic Gauss map and Hopf di¤erential

G ¼ z2; Q ¼ �4 dz2

zðz� 1Þ4
:

Surfaces of type Oð�1;�3Þ. In this case, there are no umbilic points, by

(2.5). Then, if we set the ends to be ðp1; p2Þ ¼ ð0;yÞ, we may assume

G ¼ z2; Q ¼ y

z
dz2 ðy A Cnf0gÞ:

The roots of the indicial equation of (E.0) at z ¼ 0 are 3=2 and �1=2, and the

log-term coe‰cient vanishes if and only if y ¼ 0, by (A.15). So this case is

impossible.

Surfaces of type Oð�2;�2Þ. This is the case of genus zero CMC-1

surfaces with 2 regular ends. Such surfaces are completely classified in [15,

Theorem 6.2] see also [13, Theorem 2.1]. As seen in [13], a complete CMC-1

immersion f : Cnf0g ! H 3 is an m-fold cover of a catenoid cousin, or a

warped catenoid cousin with

g ¼ m2 � l2

4l
zl þ b; o ¼ z�l�1 dz ðl;m A Zþ; l0m; bb 0Þ:ð4:21Þ
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(Here, we use ‘‘m’’ instead of the ‘‘d’’ in [13], following the notation of [15].)

In both of these two cases, the degree of the hyperbolic Gauss map G is m.

Hence a complete CMC-1 surface with TAð f #Þ ¼ 8p is a double cover of a

catenoid cousin, or a warped catenoid cousin with m ¼ 2 in (4.21).

The case ðg; nÞ ¼ ð0; 1Þ. In this case, we can set M ¼ C . Since M is simply

connected, we have no period problem. By (4.1) and (4.2), d1 ¼ �5 or �6.

For the case of Oð�5Þ, there is one umbilic point, which we may suppose

is at q1 ¼ 0. By (4.1), we have m#
1 ¼ 1, so we may assume

G ¼ z2; Q ¼ yz dz2 ðy A Cnf0gÞ:ð4:22Þ

For the case of Oð�6Þ, there are two umbilic points of order 1. Without

loss of generality, we can set them to be ðq1; q2Þ ¼ ð0; 1Þ. So, since m#
1 ¼ 0, we

may assume

G ¼ z� 1

z

� �2
; Q ¼ yzðz� 1Þdz2 ðy A Cnf0gÞ:ð4:23Þ

Theorem 4.14. A CMC-1 surface of genus zero with one end such that

TAð f #Þ ¼ 8p is congruent to an immersion f : C ! H 3 with hyperbolic Gauss

map and Hopf di¤erential as in (4.22) or (4.23). Moreover, such a surface is

H3-reducible.

5. Deformation of minimal surfaces to CMC-1 surfaces

In this section, we prove Propositions 4.2 and 4.8. For this, we will need

a method from [10] that produces a 1-parameter family of CMC-1 surfaces in

H 3 from a corresponding minimal surface in R3, so we describe that method

first.

We start with a complete minimal surface f0 : M ! R3 of finite total

curvature. We require the immersion to be symmetric in the following sense,

a condition that generically eliminates virtually all minimal surfaces, but elim-

inates none of the better known surfaces, which all have symmetries:

Symmetry condition: There is a disk DHM so that f0ðDÞ is bounded by

non-straight planar geodesics.

If f0 is symmetric with respect to a disk D, then f0ðDÞ generates the full sur-

face by reflections across planes containing the boundary planar geodesics of

qf0ðDÞ, by the Schwarz reflection principle [8]. Since the surface has finite

total curvature, it is shown in [10] that the boundary qf0ðDÞ is contained

entirely in only either one plane P1, or in two intersecting planes P1;P2, or
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in three planes P1;P2, and P3 in general position. Let the boundary planar

geodesics of f0ðDÞ contained in Pj be called Sj;1;Sj;2; . . . ;Sj; dj ( j ¼ 1; . . . ; s, for

s ¼ 1; 2 or 3).

We now define non-degeneracy of the period problems. Let d be the

number of Sj; l minus the number of planes (d ¼ d1 þ d2 þ d3 � 3 if s ¼ 3, d ¼
d1 þ d2 � 2 if s ¼ 2, and d ¼ d1 � 1 if s ¼ 1).

Nondegeneracy condition: There exists a continuous d-parameter family of

minimal disks f0; nðDÞ (where n lies in a small neighborhood of the origin
~00 A Rd) such that

(1) f0;~00ðDÞ ¼ f0ðDÞ.
(2) qf0; nðDÞ ¼ 6s

j¼1
ð6dj

l¼1
Sj; lðnÞÞ holds, and each Sj; lðnÞ is a planar

geodesic lying in a plane Pj; lðnÞ parallel to Pj.

(3) Letting Perj; lðnÞ ð j ¼ 1; . . . ; s; l ¼ 2; . . . ; djÞ be the oriented distance

between the plane Pj; lðnÞ and Pj;1ðnÞ, the map from n in Rd to

ðPerj; lðnÞÞ in Rd is an open map onto a small neighborhood of ~00 A Rd.

Reflecting the minimal disk f0; nðDÞ along its boundary, f0; n is extended as a

minimal immersion f0; n : ~MM ! R3, where ~MM is the universal cover of M. We

denote by Gn and Qn the Gauss map and the Hopf di¤erential of the minimal

surface f0;m, respectively. Then by solving the equation (1.3) with G ¼ Gn and

Q ¼ cQn ðc A RÞ, we have a CMC-1 imersion fc; n ¼ FF � : ~MM ! H 3 with the

hyperbolic Gauss map Gn and the Hopf di¤erential cQn. If f0; n satisfies the

above conditions, one can take a one parameter family n ¼ nðcÞ (jcj < e for

Fig. 2. Genus 0 and genus 1 Enneper cousin duals. Each surface has a single end that triply

wraps around its limiting point at the south pole of the sphere at infinity. These surfaces are of

type Oð�4Þ and Ið�4Þ, and have TAð f #Þ ¼ 4p and TAð f #Þ ¼ 8p. In both cases only one of four

congruent pieces (bounded by planar geodesics) of the surface is shown.
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su‰ciently small positive number e) such that fc; nðcÞ are CMC-1 immersion of

M into H 3. Namely,

Theorem 5.1 ([10]). If the minimal immersion f0 is symmetric and non-

degenerate, then there exists a one-parameter family fc of CMC-1 immersions

of M into H 3 such that the hyperbolic Gauss map (resp. the Hopf di¤erential) of

each fc coincides with the Gauss map (resp. a constant multiple of the Hopf

di¤erential) of f0; n for some n A Rd.

We now consider two applications of this theorem:

Existence of surfaces of type Ið�4Þ with TAð f #Þ ¼ 8p. We construct a de-

formation of the Chen-Gackstatter minimal surface defined on the elliptic

curves

M1ðn1Þ ¼ fðz;wÞ A ðC U fygÞ2 jw2 ¼ zðz� 1Þðzþ n1Þg ðn1 A RþÞ;

with the point p1 corresponding to z ¼ y removed (p1 will be the single end of

the surfaces). Let

g ¼ n2w

z
; o ¼ z dz

w
ðn2 A RþÞ:

We choose the fundamental pieces of the surfaces to be the images under the

Weierstrass representation

Re

ð z
z0¼0

ðð1� g2; ið1þ g2Þ; 2gÞoð5:1Þ

of the half sheets

fðz;w1w2w3Þ A M1ðn1Þ j z A C ; ImðzÞb 0;w2
1 ¼ z;

w2
2 ¼ z� 1;w2

3 ¼ zþ n1; argðwjÞ A ½0; pÞ; j ¼ 1; 2; 3g:

The fundamental pieces are bounded by four planar geodesics, two of which

lie in planes parallel to the x1x3-plane and two of which lie in planes

parallel to the x2x3-plane. Thus d ¼ 2. Note that the period problem is

solved, and the Chen-Gackstatter surface is produced, if n1 ¼ 1 and n2 ¼
ffiffiffiffi
B

p
,

where

B :¼
ð1
0

x dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� x2Þ

p
 !, ð1

0

ð1� x2Þdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� x2Þ

p
 !

¼
2G 3

4

	 

G 7

4

	 

G 1

4

	 

G 5

4

	 
 F 0:68542:

The oriented distance functions (between the two pairs of parallel planes con-

taining boundary curves of the fundamental pieces) are given by
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Per1ðn1; n2Þ ¼
ð1
0

ð1� n22x
�1ð1� xÞðxþ n1ÞÞ

ffiffiffi
x

p
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� xÞðxþ n1Þ
p ;

Per2ðn1; n2Þ ¼
ð1
0

1� n1n
2
2x

�1ð1� xÞ xþ 1

n1

� �� � ffiffiffiffiffi
n1

p ffiffiffi
x

p
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� xÞðxþ ð1=n1ÞÞ
p :

To see that the period problem is nondegenerate, it is su‰cient to check

that the Jacobian matrix ðqðPer1;Per2Þ=qðn1; n2ÞÞ has nonzero determinant at

ðn1; n2Þ ¼ ð1;
ffiffiffiffi
B

p
Þ. It is easy to check that jq Per1=qn2j ¼ jq Per2=qn2j0 0 at

ðn1; n2Þ ¼ ð1;
ffiffiffiffi
B

p
Þ. We have

q Per1
qn1

����
ðn1; n2Þ¼ð1;

ffiffiffi
B

p
Þ
¼
ð1
0

xþ Bð1� x2Þ
2ðx� 1Þð1þ xÞ2

ffiffiffi
x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
dx;

q Per2
qn1

����
ðn1; n2Þ¼ð1;

ffiffiffi
B

p
Þ
¼
ð1
0

�xðxþ 2Þ þ Bð2þ 3xÞð1� x2Þ
2ðx� 1Þð1þ xÞ2

ffiffiffi
x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
dx:

These integrals can be expressed in terms of elliptic integrals and the Gamma

function, and we have

q Per1
qn1

����
ðn1; n2Þ¼ð1;

ffiffiffi
B

p
Þ
F�0:844;

q Per2
qn1

����
ðn1; n2Þ¼ð1;

ffiffiffi
B

p
Þ
F�0:354:

Hence

q Per1
qn1

����
����0 q Per2

qn1

����
����

holds at ðn1; n2Þ ¼ ð1;
ffiffiffiffi
B

p
Þ. Thus the determinant of the Jacobian is nonzero,

and the period problem is nondegenerate. Hence Theorem 5.1 implies exis-

tence of associated CMC-1 surfaces in H 3 of type Oð�4Þ. Furthermore, as

Theorem 5.1 also implies that the hyperbolic Gauss maps will be n2w=z, these

surfaces have dual total absolute curvature 8p.

Existence of surfaces of type Oð�3;�3Þ with TAð f #Þ ¼ 8p. Let M ¼
C U fygnf0;yg and

g ¼ 2z2 þ 2az� a2 � 1

2ðzþ 1Þ þ n; and o ¼ ðzþ 1Þ2

z3
dz;ð5:2Þ

where a; n A R.

When n ¼ 0, the Weierstrass representation (5.1) determines a minimal

immersion f0 : M ! R3 with finite total curvature of type Oð�3;�3Þ ([6,

Theorem 4]). For the metric to be nondegenerate at z ¼ �1, we must assume

a0�1G
ffiffiffi
2

p
.
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Since the Hopf di¤erential Q ¼ o dg satisfies QðzÞ ¼ QðzÞ, these minimal

surfaces each have two planar geodesics that are the images of the positive and

negative real axes of C under the Weierstrass representation (5.1), and their

fundamental pieces are the images of the upper half plane of C under (5.1).

The two planar geodesics comprise the boundaries of each of the fundamental

pieces, and both lie in planes parallel to the x1x3-plane, since g is real-valued

on the real axis. So d ¼ 1, and the oriented distance between the two planes

containing the two geodesics is

PerðnÞ :¼ Re 2pi Res
z¼0

ið1þ g2Þo
� �

¼ �2pnð2þ 2aþ nÞ;

so d PerðnÞ=dn is non-vanishing at n ¼ 0 when a0�1. Thus Theorem 5.1

implies existence of a 1-parameter family of CMC-1 surfaces of type Oð�3;�3Þ
in H 3 for each a0�1;�1G

ffiffiffi
2

p
with dual total absolute curvature 8p (as g

has degree 2).

Appendix A.

Here we review some elementary facts in the theory of linear ordinary

di¤erential equations. Define a di¤erential operator

L½u� :¼ z2u 00 þ zpðzÞu 0 þ qðzÞu 0 ¼ d

dz

� �
:ðA:1Þ

In this note, we shall consider the solution of the ordinary di¤erential equation

with a regular singularity at the origin:

L½u� ¼ 0;ðA:2Þ

where

pðzÞ ¼
Xy
j¼0

pjz
j; qðzÞ ¼

Xy
j¼0

qjz
j:ðA:3Þ

It is well-known (and we will see it in this appendix) that (A.2) has two linearly

independent solutions fX1;X2g of the form

X1 ¼ zl1
Xy
j¼0

h1; jz
j; X2 ¼ zl2

Xy
j¼0

h2; jz
j

 !
þ cX1 log z;

where h1;0 0 0 and h2;0 0 0, and where l1 and l2 are given by

l1 ¼
1

2
ð1� p0Þ þmf g; l2 ¼

1

2
ð1� p0Þ �mf g;ðA:4Þ

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� p0Þ2 � 4q0

q
:
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The coe‰cient c is called the log-term coe‰cient of di¤erential equation (A.2),

which may be nonzero only when l1 � l2 A Z.

We shall give a method for computing the coe‰cient c. First, we shall

describe two linearly independent solutions X1;X2 as a formal power series. If

we find a solution of (A.2) as a formal power series, a well-known existence

theorem from the theory of ordinary di¤erential equations says that it will

converge in a su‰ciently small neighborhood of the origin [3]. So the formal

treatment is su‰cient for the computation of c.

For a complex variable l, define rational functions zjðlÞ for non-negative

integers j as

z0ðlÞ ¼ 1; and zjðlÞ ¼ � 1

jðlþ jÞ
Xj�1

k¼0

rj;kðlÞzkðlÞ ð j ¼ 1; 2; . . .Þ;ðA:5Þ

where

jðtÞ ¼ tðt� 1Þ þ tp0 þ q0; rj;kðlÞ ¼ ðlþ kÞpj�k þ qj�k;

and we set

XðlÞ :¼ zl
Xy
n¼0

znðlÞzn:ðA:6Þ

Applying the operator L to XðlÞ, we have

L½XðlÞ� ¼ zl jðlÞ þ
Xy
j¼1

jðlþ jÞzjðlÞ þ
Xj�1

k¼0

rj;kðlÞzkðlÞ
 !

z j

( )
¼ zljðlÞ.ðA:7Þ

The quadratic equation

jðtÞ ¼ tðt� 1Þ þ tp0 þ q0 ¼ 0ðA:8Þ

is called the indicial equation of the equation (A.2), and we denote the solutions

of (A.8) by l1 and l2.

First, we consider the case l1 � l2 B Z. In this case, jðll þ jÞ0 0

ðl ¼ 1; 2Þ for any positive integer j, and then zjðllÞ ðl ¼ 1; 2Þ in (A.5) are all

well-defined. Moreover, by (A.7), X1 :¼ X ðl1Þ and Xðl2Þ are linearly inde-

pendent solutions of (A.2).

Next, assume m :¼ l1 � l2 is a non-negative integer. Since jðl1 þ jÞ0 0

for any positive integer j, X1 :¼ X ðl1Þ is a well-defined power series and a

solution of (A.2).

The case m ¼ 0. Assume l1 ¼ l2. Since jðl1 þ jÞ0 0 for any positive

integer j, l ¼ l1 is not a pole of zjðlÞ for each j. Hence
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zjðl1Þ and
q

ql

����
l¼l1

zjðlÞ ð j ¼ 0; 1; 2; . . .Þ

are well-defined. Let

X2 :¼
q

ql

����
l¼l1

X ðlÞ ¼ zl1
Xy
n¼0

q

ql

����
l¼l1

znðlÞ
 !

zn þ X1 � log z:ðA:9Þ

Proposition A.1. If m ¼ l1 � l2 ¼ 0, X2 in (A.9) is a solution of (A.2).

Moreover, the log-term coe‰cient of (A.2) never vanishes.

Proof. It is enough to show that X2 is a solution of (A.2). In fact, by

(A.7),

L½X2� ¼
q

ql

����
l¼l1

L½X ðlÞ� ¼ zl1
q

ql

����
l¼l1

jðlÞ þ zl1jðl1Þ log z ¼ 0;

because jðlÞ ¼ ðl� l1Þ2. r

The case m > 0. Assume m ¼ l1 � l2 is a positive integer. Since jðtÞ ¼
ðt� l2 �mÞðt� l2Þ, jðl2 þ jÞ does not vanish for each positive integer j,

except for j ¼ m. Then zjðlÞ has no pole at l ¼ l2 for j ¼ 1; 2; . . . ;m� 1,

and may have a pole of order one at l ¼ l2 for jbm. Hence

lim
l!l2

fðl� l2ÞzjðlÞg and
q

ql

����
l¼l2

½ðl� l2ÞzjðlÞ�

are well-defined. Moreover,

lim
l!l2

fðl� l2ÞzjðlÞg ¼ 0 ð j ¼ 1; 2; . . . ;m� 1ÞðA:10Þ

holds. Let

xj :¼ lim
l!l2

fðl� l2Þzmþ jðlÞg ð j ¼ 0; 1; 2 . . .Þ

and set c :¼ x0 ¼ liml!l2fðl� l2ÞzmðlÞg. Then by (A.5) and (A.10), we have

x0 ¼ c and xj ¼
�1

jðl2 þmþ jÞ
Xj�1

k¼0

rj;kðl2 þmÞxk ð j ¼ 1; 2; . . .Þ:

Comparing this with (A.5), we have xj ¼ czjðl1Þ ð j ¼ 1; 2; . . .Þ, because l1 ¼
l2 þm.

Let

X2 :¼
q

ql

����
l¼l2

½ðl� l2ÞXðlÞ�:ðA:11Þ
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Then by (A.10), we have

X2 ¼ zl2
Xy
j¼0

xjz
jþm

 !
log zþ zl2

Xy
j¼0

q

ql

����
l¼l2

fðl� l2ÞzjðlÞgz j

¼ c log zX1 þ zl2
Xy
j¼0

q

ql

����
l¼l2

fðl� l2ÞzjðlÞgz j:

Proposition A.2. If m ¼ l1 � l2, is a positive integer, X2 in (A.11) is a

solution of (A.2). Moreover, the log-term coe‰cient c of (A.2) is given by

c :¼ x0 ¼ lim
l!l2

fðl� l2ÞzmðlÞg:ðA:12Þ

Proof. By (A.7),

L½X2� ¼ lim
l!l2

q

ql
ðzlðl� l2ÞjðlÞÞ ¼ 0;

because jðlÞ ¼ ðl� l1Þðl� l2Þ. r

We have established the following recursive formula for c, which follows

immediately from equation (A.12):

Proposition A.3. If the di¤erence m of the roots of the indicial equation of

(A.2) is a positive integer, then the log-term coe‰cient c is

c ¼ � 1

m

Xm�1

k¼0

ððl2 þ kÞpm�k þ qm�kÞak;ðA:13Þ

where a0 ¼ 1 and

aj ¼
1

jðm� jÞ
Xj�1

k¼0

ððl2 þ kÞpj�k þ qj�kÞak ð j ¼ 1; 2; . . . ;m� 1Þ:

Proof. Since jðtÞ ¼ ðt� l2Þðt� l2 �mÞ, jðl2 þ jÞ0 0 for j ¼ 1; . . . ;

m� 1 and then aj ¼ zjðl2Þ ð j ¼ 1; . . . ;m� 1Þ is well-defined. Hence, by

(A.12),

c ¼ lim
l!l2

fðl� l2ÞzmðlÞg

¼ lim
l!l2

�ðl� l2Þ
ðlþm� l2Þðl� l2Þ

Xm�1

k¼0

rm;kðlÞzkðlÞ

¼ � 1

m

Xm�1

k¼0

ððl2 þ kÞpm�k þ qm�kÞak:

This completes the proof. r
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Thus, in the case that pðzÞ ¼ 0 and m ¼ 1; 2, or 3, the solutions of

z2u 00ðzÞ þ qðzÞuðzÞ ¼ 0 have no log-term if and only if

q1 ¼ 0 ðm ¼ 1Þ;ðA:14Þ

q2 þ ðq1Þ2 ¼ 0 ðm ¼ 2Þ;ðA:15Þ

q3 þ q1q2 þ
1

4
ðq1Þ3 ¼ 0 ðm ¼ 3Þ;ðA:16Þ

where qðzÞ ¼
Py

j¼0 qjz
j, as in (A.3).
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