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ABSTRACT. Suppose that f: X — Y is a map between spectra and E>(X),F>(Y) are
E>-terms of the E-, F-Adams spectral sequences for X, Y, respectively. We shall give
conditions for f, : E»(X) — F»(Y) such that f.:m(X)— n,(Y) is monomorphic or
epimorphic.

1. Introduction

Let f: X — Y be a map of spectra. In this paper, we argue conditions
such that the homomorphism f, : 7,(X) — 7,(Y) is monomorphic or epimor-
phic by using the Adams spectral sequences. Let 1: E — F be a map of ring
spectra. Then we have the E- and F-Adams spectral sequences {E/(X)} and
{F>'(Y)} abutting to n,_,(X) and 7,_,(Y), respectively, and a homomorphism
Siod AEN(X)} = {F>(Y)}. We denote

ZEY'(X)={xe E>(X)|x converges to some element of 7.(X)},

ZFP'(Y)={ye F>'(Y)|y converges to some element of 7.(Y)}.

Our main theorems are the following.

THEOREM 1.1. Suppose that {ES"™™(X)} converges to n,(X). Fix an
integer t. We assume the following:
i) There exists an integer so(t) such that E5™(X) =0 for s> so(2).
i) fiolde:ZEy™(X)— ZFy"™(Y) is monomorphic for 0 <s < so(t).
i) fiol,: EyTTN (X)) — EPTYN(Y) s epimorphic for 0 < s < so(t) — 2.
Then f.:m(X) — n,(Y) is monomorphic.

THEOREM 1.2.  Suppose that {F>'"*(Y)} converges to mn,(Y). Fix an
integer t. We assume the following:
i) There exists an integer s,(t) such that F3'™(Y) =0 for any s> si(t)
i) fiols:ZEy™(X) — ZFy"™(Y) is epimorphic for 0 <s < s().
Then f. :n/(X)— n,(Y) is epimorphic.
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If E.E is flat, then E5'(X) = Exty'z(E.,E.(X)). But we argue in the
general cases. As an application of the main theorems, consider the local-
izations LgX and LpX. The ring map A induces a map L, : LgX — LpX.
We apply the main theorems to L;. We define a spectrum E by a cofibration
S°" E 5 E for a unit nt of E and E" =EA--- AE (n-times). Consider
the edge homomorphism ¢ : 7,(X )—>F20”(X ). This is induced from the
Hurewicz homomorphism 7,(X) — Fi(X).

THEOREM 1.3.  Suppose that {E¥'*(X)} converges to n,(LgX). Fix an
integer t. We assume the following:
1) There exists an integer so(t) such that E5™(X) =0 for s> so().
i) FPMTTHEAETAX) =0 for 0<s<so(t)—r.
i) ¢ mu(EAE AX) — Fy"“"(EAEAX) is monomorphic for s < sy(t)
and u =t, and epimorphic for s < sy(t) and u=1t+ 1.
Then L, :n,(LgX) — n,(LpX) is monomorphic.

THEOREM 1.4. Suppose that {E*"*S(X)} and {F>"(X)} converge to

m(LgX) and n,(LpX ), respectively.  Fix an integer t. We assume the following:

i) There exists an integer s(f) such that F»"(X)=0=ZE"™""(X) for

any s > s1(1).

i) Fy"™(EANE"'AX)=0 for 0<s<s(t)—r+1L

i) ¢ mu(EAEAX) = Fy"“"(EAEAX) is monomorphic for s<
s1(t)+ 1 and u=1t—1, and epimorphic for s < s(¢t)+1 and u=1.

Then L;, :n,(LgX) — n,(LpX) is epimorphic.

COROLLARY 1.5. Suppose that E.(E) and E.(X) are flat over E.(S°),
F.(F) is flat over F.(S°), Exty:(F., F.(E)) = 0 for 0 < s < sy and ¢" n(E) —
Extg;}(FwF* (E)) is isomorphic. Moreover we assume that {E®™*(X)} and
{F>"3(X)} converge to n,(LgX) and n,(LrX), respectively.

Fix an integer 1. If Exty's*(E.,E.(X)) =0 for s > s, then Ly, : m,(LgX)
— n(LpX) is monomorphic. If Exty'*(F., F.(X)) = 0 = Exty 3™ (E., E.(X))
for s>s0—1 then L, :n,(LgX) — n,(LrX) is epimorphic.

For our purpose, we review the theory of the Adams spectral sequence in
§2 and compare two Adams spectral sequences in §3. Theorems 1.1-1.4 and
Corollary 1.5 are proved at §3. In this paper, we work in the stable homotopy
category.

2. The Adams spectral sequences

Let E be a ring spectrum with unit #£: S — E. Consider a cofibering
E nE _
s°%, £ E and the boundary homomorphism 0% : 7, (EAX) — m(S° A X).
For a spectrum X, we denote
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XE=E'AX (E*=En---AE) and cofibrations

E ~E
0 E E N E
SOAXFL EAXFL XE

2.1)
The boundary homomorphisms 0% : 71 (X2 ) — m(X[F) define the Adams
filtration

Teas (X)) = M1 (X)) = - = (X)) = m(X). (22)

Then we have the E-Adams spectral sequence {E»'(X),df:ES'(X)—
EstrH=1(x)}. The E; and E, terms are as follows:

nf E
)= m(EAXC ),

~FE
EN(X)=m(EAXE) = E(XE), df :m(EAXE) S n(XE &

s+1
Ey'(X) = Kerd[/Im df.
By definition, Im[yf:n,(XF) — n(EAXE) =Kerdf and Ker[if:
m(EAXE) — m(XE))] > Imdf, and so we have homomorphisms
PEm(XE) - B, E B0 —m(XE). (23)

REMARK 2.1. If E.E = E.(E) is flat over E, = E,(S), then E'(X) =
Exty'p(E,, E.(X)) and the homomorphism 5% : 7,(XF) — Ey'(X) is the com-
position of the Hurewicz homomorphism ¢” : n,(XF) — Homj, 4(E., E.(XE)
and the coboundary homomorphisms

Homj, ;(E., E.(X[])) — Exty p(E., E.(XE))) = - = Extpp(E., E.(X)).
We use notation
ZEy'(X) ={xe Ey'(X)|dfx =0 in E-term for any r}  and
ZES'(X) = Imfy” : m(XF) — E'(X)] = ZEJ'(X).

REMARK 2.2.  We notice that ZE,'(X) depends on the Adams resolution
(2.2). Let f:X — Y be a map such that f. : Ey'(X) — Ey'(Y) is isomor-
phic. Then f.:ZEy'(X)— ZEy'(Y) is isomorphic, but f, : ZEy'(X) —
ZEy'(Y) is not so. For example, consider the E-localization map X — LgX.
If X is E-prenilpotent then {E>'(X)} converges to n.(LgX) and, by [2],

E3'(X)=Ey'(LgX)  and
ZEy'(X)=ZEy'(LgX) = ZEy'(LgX) > ZEy'(X). (2.4)
The following lemma holds by definition (see [4]).

LemMA 2.3. i) xyem(XE) satisfies nE(x,) =0e Ey'(X) if and only if
there are elements xg. i G”r+1(X£1) and ws,len,(E/\Xﬁl) with xg =
0F(xs41) + 77, (ws1).
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ii)

ii)

i)

iv)
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wen(EAXE) satisfies dEw =0 if and only if there exists an element
Xyr2 € Tt (X)) with 7E(w) = 0% (x512) € m(XE)).

The following is a well-known fundamental result.

ProposiTioN 2.4. 1) xE e ES'(X) converges to xen,_(X) if and only
if there exists an element xse€n/ (XE) such that xF=nE(x;) and
(05)'(x;) = x.

yE =dF(xF) in E-term for x* e Ey'(X) and y* e E*""""N(X) if and
only if there exists an element y.,€my,(XE,) such that 7f(xt) =
(05) (ysrr) and nE(yr) = yE

ZEy'(X) < ZEy'(X). Especially, ZEy'(X) = ZEy'(X) if and only if
{ES"(X)} converges to m;_s(X).

If {ES(X)} converges to m;—(X) and there exists an integer s(t) such that
EST(X) =0 for s> s(t), then

Im{(0%)" : ms(XE) = m(X)} =0 for s> s(2).

DEFINITION 2.5. Let {dfx%} < ES*™"""""1(X) be a subset consisting of

elements y% satisfying the above proposition ii) for an element x” e Ezs’t(X ).

ii)

i)

iv)

COROLLARY 2.6. i) {dfxE}=df(xE) and {dF0} = U {df xE}
xEe B (x)

(0eEy'(X)). 1If dE(xE) #0 in E,-term, then {df xt} = &.

If yE yEe{dExE} for xEeEy'(X), then there exists an element

0F € 5"V V(X)) such that yE — yF e {dF 0%},  Moreover if yE # yE,

then there exists an element 0F # 0 e Ey™ "™ (X) (1 <a <r—2) such that

ylE B yf € {dl€ﬂe}

{dExE}Y 50 if and only if {dE xE} # &. Hence xf e ZEy'(X) if and

only if {dfxE} 50 for any r>2.

If (05) N (x,) # 0 and (85) (x;) =0 for x, e n(XE) and 2 <r <'s, then

there exists an element y* # 0 e Ey """\ (X) such that {dFy"} 3 nE(xy).

Consider another ring spectrum F with unit 7 :S° — F and a ring

map A: E — F. We have cofiberings X/ — FA X/ — X[, and the Adams
spectral sequence {F>’(X)} abutting to 7,_¢(X). Then A induces maps g =
id: X — X, : XF — XF inductively by the commutative diagrams:

E ~E
XSE ’7—} E/\XYE 17—> Xs]il

Axl Ml zl (2.5)

F 1 F 1 F
X, —— FAX] —— A/SH.
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Hence we have a homomorphism A, : {ES'(X)} — {F>'(X)} between spectral
sequences.

We notice that 7 : F.(XF) — F.(E A XE) is monomorphic by the inverse
map FAEAXE - FAFAXE — FAXE. Consider the following conditions
for some integers a > 0, b:

Ep5 T EAXE) =0 for 0<s<a—r (2.6)
oF =nf i EAXE) — B} (EAXE)
is monomorphic for s < a, t =5b and epimorphic for s <a, t=5b+ 1.
Then we have [4, Theorem 3.5].
THEOREM 2.7. For integers a > 0 and b satisfying (2.6), the following holds:
) 4o Ey™(X) — FE™(X) is monomorphic for s<a and t="5b and epi-
morphic for s <a and t=b+ 1.
i) A ZEY(X) — ZEST(X) s isomorphic for s < a and epimorphic for
s=a+ 1

3. Comparison of two Adams spectral sequences

In this section, we compare two Adams spectral sequences and prove
Theorems 1.1, 1.4 and Corollary 1.5.

Let f:X — Y be a map between spectra and 4: E — F a ring map
between ring spectra. Inductively, we have maps fo=f: X — Y, f;: XF —
YF by the commutative diagrams:

g 1 g _0* g E
XE " EnX XE, IX,
f.xl ZAf.l f&ll Efsl
n* a o
YYF — FA Y\'F Yfil 2 YSF'

Then we have a homomorphism f o, : {Ey'(X)} — {Fy'(Y)} between
spectral sequences.
Now we prepare the following.

Lemma 3.1. i) Let x,en (XF) and yy1 €mni(Y[,) be elements with
S0 8(x) = (0")2pesr. If food: ZES'(X) — ZF'(Y) is monomor-
phic, then there exists an element xg;1 € n,+1(X£rl) with (6E)2x5+1 =oFx,
i) Let xeqemp (X)) and yeeng(Y),) be elements with fi_1, o0
(05 (xe11) = (072 ysir. If fiodu: ESN(X) — F7V(Y) s epimorphic,

then there exists an element x|, € ny (X)) such that

s+1

(6E)2x;+1 = (aE)ZxSH and S0 aE(x;H) = 8F}’s+1~
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PrOOF. i) By 0% (fixy — ¥ ys1) =0, we have ven,(F A YF ) with
j-;‘*xs = aFstrl + ﬁfu (31)

Then fi.(nEx,) =nf oyl (v) =dfv, and so f.o.(nfx,) =0€e ZF;'(Y). By
the assumption, nfx;=0e ZE;'(X). By Lemma 2.3 i), we have elements
Xor1 €1 (XE)) and wem(EAXE,) with x,=0"(x,1) +7F(w). Hence
(6E)2xs+1 = 0Fx,.

ii) By (07)*(fis1:Xse1 — ys41) =0, we have v e, (F A YF,) with

Jswo aE(strl) = aFyHI + ’75” (3.2)

By df'v=n¥ o7jfv =0 and the assumption, we have an element w € E; "'(X)
with f, 0 A.(w) =ve F;""'(Y). Then

nEonfw=dfw=0 and S oqiEw =qfv,

!

and so we have x’em.i(XE,) with 0°x' =7fw. Now we take x/ =

s+1
Xg41 — x'. Then
(0F)*xl,, = (0F)’x,1  and
Jsx 0 6E(x;+1) = 5Fys+1 + ’75” — fwo ﬁfw = aFys+l~ Ll

We use this lemma inductively. By the statements i), ii) applied for s+ i
instead of s with 0 <i<n—2, we can define elements Xg 1, Xg12,...,Xsin_1
inductively with

(aE)zx‘v+i+1 = 6Exs+,» and fx+i* © (aE)z(striJrl) - (aF)niinrn

and finally by the statement i) for i = n — 1, we have the desired element x;,, in
the following corollaries.

LeMMA 3.2. Let x en,(XxE) and  ygi, en,ﬂ(Ysﬁn
fite 0 0E(xy) = (07" ygin.  We assume the following:
i) fioldi: ZES(X) — ZET(Y) is monomorphic for 0 <i<n— 1.
i) fiod,: EyTTNY(XY = BSYTNY(Y)Y s epimorphic for 0 <i<n—2.

Then there exists an element Xy, € an(Xﬁn) such that
1 2 2
(aE)n+ Xst+n = aExs and fs+n72* o (aE) (x‘\drn) = (aF) Vs+n-
Moreover, if f. o, : Ey™" "N (X)) — EJT"25N (YY) s epimorphic, then we

can take the above xg,, such that fi i, 1.0 0% (Xgn) = M yein

) be elements with

COROLLARY 3.3. Let xE be an element of Ey'(X). We assume the
following:
D) fiod : ZESTTTNX) = ZFESTTNT(Y) is monomorphic for 2 < i <1 — 1.
i) foode: ESTVTN(X) — YY) s epimorphic for 1 <i<r—3
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Under these conditions, if {df(f. o 2.(xE))} # &, then {dF(xE)} # &.
Moreover, if f, ol : Ey7 2" 2(X) — FJ7"2"2(Y) is epimorphic, then
the induced map f. o, : {dExE} — {dF(f. o 2.(xE))} is surjective.

ProoF. For any y*e{df(f.ol.(xF))} c B (Y), we have an
element yg, € o1 (YY) with
ﬁf(f* © l*(xE)) = (6F)r_]ys+r and ﬂfys-&-l‘ = yF
by Definition 2.5. On the other hand, we have an element x,, € n,+1(X£2)
with 0fx,, = 75xf by Lemma 2.3 ii). These imply that

Ssr1x0 aExs+2 = fsr1: 0 ﬁfxE = ﬁf(f* © l*(xE)) = (aF)r_IJ’Hr-

By Lemma 3.2, we have an element x,,, € nH,,,l(Xﬁrr) with
T Xy = 0" X0 = nex an S4r—2% © Xstr) = O ) Vstr-
(aE)l 1 aE E_E d f (aE>2( ) (—\F)Z
Hence nExs., € {dExE}. Moreover, it fiod o E3TTRTHX)
FSPRM2(Y)is epimorphic  then  fiy, .0 6E(xs+,)1: Fyerr, and so
Jf«o i*(”/fxsﬂ) = 775 o er*(XHr) = nfyHr = yF € FZHV’HF (Y) [

COROLLARY 3.4. For a map f:X — Y and two integers t,s, we assume
the following:
i) There exists an integer ro(s,1) < oo such that ZEy™"""'(X)=0 for

r > ro(s, 1).
i) fiod: ZESTTNX) = ZESTTN(Y) is monomorphic for any 2 < r <
V()(S, l).

iil) fiod: E57N(X) — FV(Y) is epimorphic for 0 < r < ro(s,t) — 2.
Then the induced homomorphism f, o i, : ZEy'(X) — ZF,"'(Y) is epimorphic.

Proor. Take any element y* e ZF,"'(Y). By the assumption iii) for
r=0, we have xf € E3'(X) with £, o 2,(xE) = . We notice that {dfyF}
& for any r > 2 by Corollary 2.6 iii). Then Corollary 3.3 implies {dFxf} #
& for r=ro(s,7) + 1. Now if {dExE} # & for r > ro(s, 1) then {dExE} = {0}
by the assumption i), and so {df,x*} # & by Corollary 2.6 iii). By
induction, we see that {dfxf} 50 for any r>2. Hence xfe ZE)'(X) by
Corollary 2.6 iii). We complete the proof of this corollary. O

Now we prove Theorems 1.1 and 1.2.

ProoF OF THEOREM 1.1. Take any element xen,(X) with fi(x)=
0en,(Y). By the assumption ii) for s =0, nf(x) =0€ E.(X), and so we
have x; enm(XlE) with 6fx; = x. By Lemma 3.2, there exists an element
Xgo()41 € n,ﬂo(,)H(Xf(,)H) such that (GE)SO(I)H(xSO(I)H) = 0%x) = x. Hence
x =0 by Proposition 2.4 iv). ]
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ProOF OoF THEOREM 1.2. Take any element y #0ex,(Y). By the as-
sumption, we have an element y, e, (YY) such that (0%)’y,=y. We

N

assume that there is no element y' e, (YY) such that (0°) Y=y if
s’ >s. Then s < s;(f) by the assumption i) and Proposition 2.4 iv). By the
assumption ii), we have an element x; € 7, (XF) with

fiodu(nf(xy)) =nf(y,) e FP(Y),

and so there exists an element yg € ns+,+1(Ysi1) with (0% )zysﬂ =
oF{ys — fiu(x,)} by Lemma 2.3 iii). Inductively we can take elements
Vs € i (YD) for s <5’ <s1(¢) + 1 and xy € 70 (X)) for s <5’ < s1(7) such
that (07)%yy = 0" {yy_1 — fy_1.(xy_1)}. By the assumption i) and Proposi-
tion 2.4 iv), we see (6F)S‘(’)+l(ysl(,)+1) =0. Now

501 509 ,
LY @) () =D 4@ v = @5y}

s'=s s'=s

Hence f, is epimorphic. O

Finally, we prove Theorems 1.3 and 1.4.
The ring map A4: E — F induces a map L, : LgX — LpLgX = LpX and
maps between the E- and F-Adams spectral sequences

A AEM(X)) —— {FM(X)}
Ljodu :{EM(LEX)} —— {F(LrX)}
with
Ey'(X)=Ey'(LgX) and  F'(X)=F"(LrX).
We notice that
EY'(X) = ZEY'(X) > ZEY'(X)
l l J (3.3)
Ey'(LgX) > ZEy'(LgX) > ZEy'(LgX).
If {E}'(X)} converges to m.(LgX), then
ZEy'(X)=ZEy'(LgX) = ZEy'(LgX) o ZEy'(X). (3.4)

The same results hold for F,''(X) and Fy'(LrX).
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ProoF OF THEOREM 1.3. By Theorem 2.7 for a=sy(t), b=t the

monomorphic for s <s¢(f), u=1¢ and epimorphic for s < so(¢), u=1+ 1.
Hence L;. 0. : ZEy""(LgX) — ZF,>"™(LrX) is monomorphic for 0 <s <
so(f) and Ly, 0. : Ey N LeX) — Fy"™ " (LpX) is epimorphic for 0 <s <
so(t) —2 by (3.3). Now Theorem 1.1 implies this theorem. O

ProOF OF THEOREM 1.4. By Theorem 2.7 for a=s5(¢)+1, b=t—1,
the assumptions ii-iii) of Theorem 1.4 imply that 4, : E5 "™ (X) — F5"*"'(X)
is monomorphic for s <si(¢f)+1, u=t—1 and epimorphic for s <
si(f)+1, u=1t. We fix an integer s <s(f). Then A, : ZE;"™ " (x) -
ZE (X)) is monomorphic for 0 <r<s(f) —s+1 and Lj. o4, :
EyhI(X) — (X)) s epimorphic for 0 < r < sy(f) — s

By the assumption i) of Theorem 1.4, ZE;””,_I(X) =0 for s' > 51(¢)
+1, and so ZEy™"" N (X) =0 for r>s1(f) —s+ 1. Taking ro(s,t+s) =
51(f) —s+1 in Corollary 3.4, we see that i.:ZEy"™(X) — ZF ™ (X) is
epimorphic for s < s1(), and so is L. 0 A, : ZEy™(LgX) — ZF) "™ (LrX) by
(3.4). Now Theorem 1.2 implies this theorem. O

Proor oF COROLLARY 1.5. We have split exact sequences
0= E.(S°AE"AX) - E(EAE"AX) = E.(EAE"AX) — 0.

By induction on n, E,(E" A X) is flat over E,. Now, Ext; (F., F.(EAE" A X))
is a cohomology group of a cochain complex

{F.F ®, - ®p F.F Qp, F.(EAE"AX)}
={F.F ®p, -+ ®p, F.F ®p, F.(E) ® E.(E"AX)}.
Since F.F is flat,
Fy"(ENE"AX) =Extp o (F,,F.(EAE"AX))
= Ext; (F., F.(E)) ®p, E.(E"AX)

by Remark 2.1 (see [4, (3.8.7-9)]). Hence Fy""(EAE"AX) =0 for 0 <s<sp
and

¢" . (EAE"AX) — Extyp(F.,F.(EAE" A X))

is isomorphic. Now Theorems 1.3 and 1.4 imply this corollary. O
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