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ABSTRACT. The aim in the present paper is to give a weighted version of Koskela
[Ark. Mat. 37 (1999), 291-304] concerning removable sets for Sobolev functions.

1. Introduction

Let R" (n > 2) denote the n-dimensional Euclidean space. We will often
write a point xeR” as x = (x’,x,), where x’' = (xi,...,x,_1) €eR"" and
x, € R!. We use the notation #* to denote the a-dimensional Hausdorff
measure.

Recently Koskela [6] studied removable sets for Sobolev spaces W'7(Q).
If EcR" is a closed set with #"(E) =0, then we say that E is removable
for Wlr(R") if WLP(R'\E) = W!P(R") as sets.

Now suppose EcR" ! ={x=(x",x,)eR":x,=0}. If #"Y(E)=0,
then it is clear that E is removable for W!”(R"). Koskela [6] gave examples
of E such that #" '(E) >0 and E is removable for W'?(R"). Our aim in
this paper is to extend his results to weighted Sobolev spaces. When E is
restricted to subsets of R""!, we consider the weights of the form p(x)*, where
p(x) denotes the distance of x from the hyperplane R"!, that is, p(x) = |x,|
for x = (x',x,) e R".

For p>1 and —1 <a < p—1, let u, be the Borel measure

dp,(x) = p(x)"dx = |xa| "dlx,

where x = (x’,x,) € R" and dx denotes the usual Lebesgue measure.

Let Q be an open set in R”, and let W'7(Q;u,) denote the weighted
Sobolev space of all functions ue L?(Q;u,) whose distributional gradient,
denoted by Vu = (0 u,...,0,u), belongs to LP(2;u,). If E is a relatively
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closed subset of @ with u,(E) =0, then we say that E is removable for
whe(Q;p,) if
WP (Q;u,) = WP (Q\E; )

as sets. As in Koskela [6], E is removable for W!?(Q;u,) if and only if each
function u e W1P(Q\E;u,) satisfies

J uaj(pdx:—J @Oju dx for all pe C*(Q) and 1 <j<n, (1)
O\E O\E

where C () denotes the space of infinitely differentiable functions with com-
pact support in Q.

Let B(x,r) denote the n-dimensional open ball centered at x with radius r.
When 1 < p <n, we say that E < R"! is p-porous, if for #" '-ae. xe E
there exist a sequence of positive numbers {r} tending to zero, a number
g>n—p and a positive constant C (depending on x) such that B(x,r)N
(R"\E) includes a set G; of diameter R, satisfying

(i) #2(G;) = CR!; and

(i) R; > crimV/p)
for all i. Here #'(E) denotes the s-dimensional Hausdorff content of E,
that 1is,

0
A (E)=inf)y_p},
i=1

where the infimum is taken over all countable covers of E by balls B; of radius
p;- Notice that if E is p-porous in the sense of Koskela [6], then E is p-porous
in our sense, because (i) holds for ¢ such that g=n—1 when l < p<n-—1
and ¢=1 when n—1< p<mn. In his definition of porosity, the equality
p =n— 1 should be put in the first case to complete the proof of [6, Theorem
3.2]. For properties of p-porous sets, we refer the reader to the paper by
Koskela [6].
Our main result is the following.

THEOREM 1. Let —1<a<p—1 and 1 <p<n+oa If E is (p—a)-
porous, then E is removable for W'-P(R";u,).

Our result gives a weighted version of Koskela [6, Theorem A], where
he considered Riesz decomposition of Sobolev functions and applied bound-
ary limit result for p-harmonic functions. (His proof of [6, Theorem 3.2,
p. 299-300] seems to use nontangential limit result instead of tangential
one.) In the present paper we first study tangential limits of certain in-
tegral averages for Sobolev functions, in order to complete the proof of
Theorem 1.
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We also treat the case p > n+ o after finishing the proof of Theorem 1.
In case p =n+ a, condition (ii) of porosity will be changed to

(ii') R;> Crexp(—r"" D172y,

For recent work on removable singularities for quasiconformal mappings,
see also Kaufman-Wu [4] and Wu [11].

Finally we would like to express our hearty thanks to the referee for his
valuable comments.

2. Tangential limits of integral averages

Throughout this paper, let M denote various positive constants inde-
pendent of the variables in question.

For a measurable function u on R”, consider the integral average over a
measurable set F with respect to gy,

up::[ud,ul: udu,
F

ol
:uzx(F) F
when 0 < p,(F) <. For £eR"™! y>1 and a >0, set

T,(¢a) ={xeR} : [x =& <ax,},

where R = {x = (x',x,) : x, > 0}. For a nonnegative measurable function f
on R” set

Ey(f) = {é eR™ :Timsup hy(r) " L(» () > 0}7

r—0

where /i, is a function on (0, o0) such that

() = rd if ¢ >0,
o(r) = (log(2 +r")N'"7 if g=0.

For a nonnegative measurable function f on R”, we define the Riesz
potential Uf by

U = | b=l r 00

The second author [8, 9, 10] investigated the various boundary limits of Uf
for f satisfying the weighted L”-condition:

| oy <oe. @
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We introduce the notion of the relative (p,o)-capacity cap, ,(-;€2) for an
open set Q = R". For a compact set K = Q, it is defined by

cap, ,(K; Q) = ian \Vul’du,,
' o)

where the infimum is taken over all functions # € C.°(€) such that u > 1 on K.
We extend the capacity cap, ,(-;€2) in the usual way (see [2, Chapter 2] and
[10, Section 6.7]). We say that a set E is of (p,a)-capacity zero if

cap, ,(ENQ;Q) =0 for every bounded open set Q.

We say that a property holds (p,a)-quasieverywhere, often abbreviated to
(p,a)-q.e., if it holds except on a set of (p,a)-capacity zero.

LemMmA 1. Let f be a nonnegative measurable function on R" satisfying (2).
Then

for ¢ >0 and cap, ,(Eo(f)) =0 in case p=n+o.

See [7, Lemma 4 and Corollary 2] for a proof of Lemma 1.
First we discuss the tangential limits of integral averages for Uf.

THEOREM 2. Let 1 <p<oo, —1<a<p—1and n—p+a=>0. Let f
be a nomnegative measurable function on R" satisfying (2). For y>1, set ¢ =
pn—p+a). If EeRNE/(S), then

lim f Uf () () = UF (&)
B(x,x,/2)

x—¢,xeT, (¢ a)
for every a > 0.

We refer to the following technical lemma [9, Lemma 4] needed for the
proof of Theorem 2.

LEMMA 2. Let a <0 and b> —1. If ¢ eR" and yeR’, then

j 12— 3|zl =
B(&,2|1E-y)\B(y,yu/2)

& — p| "0 4 patbtn sphen a4+ b +n # 0,
log(2|& — y|/yu) when a+b+n=0,

where M is a positive constant independent of & and y.
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ProoF oF THEOREM 2. We give the proof only in case p < n+ «; the case
p=n-+o is proved similarly. For xeR’ and ye B(x, x,/2), write

u () = |z = y["f(2)dz,
R™\B(E,2|E—y])

w(y) = iz =" "f(2)dz,
JB(&21E—y)\B,74/2)

us(y) = |z — ' (2)dz.
B(y,ya/2)

If ze R"\B(&,2|E — y|), then |z —¢&] < 2|z —y|, so that Lebesgue’s domi-
nated convergence theorem implies that

lim u,(y) = Uf ();
y=<

when Uf (&) = oo, we can apply Fatou’s lemma to obtain the above equality.
Hence

)4 n
x—&, xeRY

lim ][ ur(y)du,(y) = Uf(&).
B(x,x,/2)

By Hoélder’s inequality and Lemma 2 we have for y e B(x,x,/2)
1/p
ur(y) < J |z _y|ﬁ’(l—n)|zn|—ocli’/l7dz
B(é,2|§—y\)\3(y,y,,/2)
1/p
<] ) |2l dz
B(&,2¢-yl)

1/p
<M yj £ duz) |
B(&,2(1E-y))

Noting that x,/2 <y, < 3x,/2 and | —x|/2 < | —y| <3|&—x|/2 when ye
B(x,x,/2), we obtain

n(y) < M(xﬁ“j

B(&,3]¢—x])

1/p
f (Z)”WAZ)) :

Since & ¢ E,(f) and x2*" < M| — x|"? for xe T,(&, a), we see that

lim } wr(V)d —0.
x—¢,xeT,y(&a) ) B(x,x,/2) 2(y) IUM(y)
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Finally, we have by Holder’s inequality

} us(y)dp, ()
B(x,x,/2)

<, | ol sy
{z€B(x,5x,/4):z,>x,/4} B(x,x,/2)

< Mx) ™ J f(2)dz
{z€B(x,5x,/4):z,>x,/4}

1/p
<M xﬁ’”’“J f&)|za|%dz | .
B(&,3]¢—x])

We see that

lim } uz(y)du,(y) =0.
B(x,x,/2)

x—¢& xeT, (¢ a)
Now our theorem is proved.

We say that a function u is (p,®)-quasicontinuous in an open set G if for
given ¢ > 0 and bounded open set D = G, there exists an open set D’ such that
cap, ,(D'; D) < ¢ and u is continuous as a function on D\D'. We consider a
(p,a)-quasicontinuous function v on B(0, N) satisfying

J \Vo|’du, < . (3)
B(0, N)

In view of [7, Corollary 1], there exists a harmonic function # on B(0,N)
such that

- (x =) -Vo(y)
v(x) = w, JB(()’N) L dy + h(x) 4)

for (p,a)-q.e. xe B(0,N), where w, denotes the surface measure of dB(0,1).
For a nonnegative measurable function f on R”", set

F(f) = {é‘eR"l :J : € — 2" T"f (2)dz = oo}.

B(¢,

LEmMA 3. Let v be a (p,o)-quasicontinuous function on R" satisfying (3)
for all N >0. Then

cap, ,(F([Ve])) = 0.
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Further, if ¢ > max{0,n—p + a}, then
HUF(IVv|)) = 0.
See |7, Lemma 4] for a proof of the above lemma.

Now, using Theorem 2 and representation (4) of Sobolev functions, we
have the following result.

THEOREM 3. Let 1 <p<oo, -l <a<p—landn—p+o=>0. Letube
a (p,a)-quasicontinuous function on R’ satisfying

| Vald, < o0 (5)
R".NB(0,N)

for every N >0. For y>1, set q=ymn+o—p) If &€ R’H\(F(|Vﬁ|) U
E,(|Val)), then

x—¢& xeT, (¢ a)

lim ][ u(y)du,(y) exists and is finite
B(x,x,/2)

for every a >0, where @ is a (p,o)-quasicontinuous extension of

7', ) = u(x',x,)  for xeR,
o u(x',—x,) for xeR”".

In view of Theorem 3 and Poincaré’s inequality ([2]), we have the follow-
ing result.

CoroLLARY 1. Letl < p<m+oand -1 <a<p-—1. Ifuisaharmonic
function on R’} satisfying (5) for all N >0, then u has a finite limit at e
R\ (F(|Vi|) U E,(|Val])) along the sets T,(¢,a).

ReMark 1. If @ on B(0,N) is changed by the right side of (4) with
v=1u|B(0,N), then the limit in Theorem 3 is equal to a(¢) for &€ B(0,N)N
R\ (F(|Va|) U E,(|Vil])), where u|4 denotes the restriction of u to a set A.

REMARK 2. If ¢ > max{n+ « — p,0}, then
A UE(Val) UE (Vi) = 0.

Let Ec R"! and u be a (p, o)-quasicontinuous function in W'?(R"\E; u,).
Let u™ (resp. u~) be a (p,x)-quasicontinuous extension of u|R" (resp. u|R") to
R". Notice that E is removable for W7 (R"; x,) if and only if u* (&) = u= (&)
for #" '-a.e. &€ E. Consequently, the following result, which characterizes
the removable sets for W1 ?(R";u,), can be shown by using Theorem 3.

ProPOSITION 1. Let 1 < p<oo, -l <a<p—landn—p+oa>0. Then
E < R""! is removable for W'?(R"; u,) if and only if each (p,)-quasicontinuous
function ue WP (R"\E;pu,) satisfies



50 Toshihide FutaMURA and Yoshihiro MizuTta

lim } u(y)du,(y) = lim } u(y)d,
ot e Jan dp(y) = im R (V) ()

for #" -a.e. & € E and every a > 0, where X = (x', —x,) for x = (x',x,). Here
T a) = Tu-1)/nrap)(& a)

3. Removable sets for weighted Sobolev spaces

Our aim in this section is to prove Theorem 1. For this purpose, we
further need the following result.

LemMA 4 (cf. [3, Theorem 5.9)). Let A be a subset of B(&,p) NR"™! with
EeR" VY and p>0. If g>n+o—p>0 and <1, then

HI(4) < ij V()| dg
B(&,2p)

for every (p,o)-quasicontinuous function ue WYP(B(E 2p);p,) such that
ulA=1 and upge , < p.

Proor. Fix a (p,a)-quasicontinuous function ue W2(B(&,2p); u,) with
u|A =1 and upge, <p. Since x € 4 is a Lebesgue point of u except for x in
a set £ = A whose Hausdorff dimension is at most n+ o — p (see [5, Theorem
3.5] and [10, Theorem 8.2.7]) and since ¢ >n+ o —p, we assume that each
point of A is a Lebesgue point of u. First we verify Lemma 4 when there is
a point y € A such that

|”(y) - ”B(y.,p)| < (1 _ﬁ)/z'

Then we have by Poincaré’s inequality (see [2])

(1=PB)/2 < |upy,p) — upe,p)l

1/p
<wf uuopldu < Mp( | wuran)
B(&,2p) B(¢&,2p)

which shows that
) < H2BER) <pt < My [yl
B(¢,2p)

Next we suppose that

lu(x) — upx,py| = (1 —p)/2

for each point x € A. Since every point of A4 is a Lebesgue point of u by our
assumption, we have by Poincaré’s inequality
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o0
(1 _ﬁ)/z < Z |uB(x,’2*/p) - MB(,‘C,Z*f*Ip)|
=0

o0
<M } ) ‘u - uB(x.,Z*f/))|d:usc
j=0 JB(x,27p)
% 1/p
< MZZ’fp 1 \Vuldu, | .
=0 JB(x,277p)

Since ¢ > n+ o — p, there exists a number j = j(x) such that

27p)" < Mp"HtP Vu| du,.
B(x.27p)

By a covering lemma, we can find a pairwise disjoint collection {B(x;, 1)},

for which x; € A, 1 =27")p and A < ()" B(x;,5r;). Hence we see that

o0

.
o = 3o < S| waa
=1 i=1 Xiy T

< ij Vuldp,,
B(¢,2p)

as desired.
Now we are ready to prove Theorem 1.

ProorF OoF THEOREM 1. Let u be a (p,a)-quasicontinuous function in
WiP(R"\E;u,). Let ut (resp. u~) be a (p,a)-quasicontinuous extension of
uR’, (resp. u|R") to R" as before Proposition 1. By Theorem 3 and Remark
2, there exists a set F = R""! such that #" '(F) =0 and

(i) JEB(x,x,,/z) u(y)du,(y) tends to u'(¢) as x — & with x e T(&,a),

(ii) JrB(x,—x,,/z) u(y)du,(y) tends to u (&) as x — ¢ with x e T(£,a)
for each ¢ e R"'\F and a > 0, where T(¢,a) as in Proposition 1. Consider
the set E={¢e E:u*(&) #u (£)}. To complete the proof, we have only to
prove

%nfl (E) =0,
with the aid of Proposition 1. For this it suffices to show that
lim sup rHJ Wu(x)|Pdp, (x) > 0 (6)
r—0 B(&,r)

for #" 'ae. &eE\F.
Fix £ € E\F. Since u*(&) # u~ (&), by considering affine transformations,
we assume that " (&) = 0 and u (£) = 1. Further, we assume that the (p — a)-
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porosity condition holds for & Let 1, ¢, G; and R; be retained from the
definition of (p — a)-porosity for E at &, and take & € R""' N B(&, ;) such that
G; < B(¢;,R;). We may assume that v > 1/2 in a set 4; = G; with #1(4;) >
H1(G;)/2; otherwise, consider the function 1 — u(x’, —x,).

First suppose ”g(cf,-‘R,-) <1/4. Since ut >1/2 (p,a)-q.e. on A; and g >
n+a—p, it follows from Lemma 4 that

ALY < MR | (0,
B(&i,2R))

Then, since #1(A;) > #(G;)/2 > CR!/2, we have

| et o, = aRy )
B(&,2R)

Next suppose iy p, > 1/4 for large i. Since fp ., u(y)du,(y) tends
to zero as x — ¢ along T'(&, a) for every a > 0, condition (ii) of (p — o)-porosity
implies that ”;(y,',Ri) < 1/8 with y; =¢&;+(0,...,0,2R;) for sufficiently large i.
Then we have by Poincaré’s inequality

I
8

IA

s
U R) ~ UB(yiR)

A
<

f U™ = ug, 3p,ld,
B(&,3R;)

1/p
sMRi(][ |Vu+(x)|”d,u“> ,
B(&i,3R))
so that

J \Vut (x)|Pdu, = MRI™*7P. (8)
B(&,3R))
Using (7), (8) and R; < 2r, we obtain
1 _
J Vu(x)|Pd, > ,J Vut ()| dp, = MR 7.
B(ET) 2 ), 3r)
Hence it follows from condition (ii) of (p — o)-porosity that
J Vu(x)|Pdp, > M.
B(&,Tn)

This implies that (6) holds at £&. Now Theorem 1 is completely proved.

REMARK 3. We can construct a (p — a)-porous set £ < [0,1]""" such that
E is not removable for W19(R" u,) when ¢ < p as in Koskela [6].
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4. The case p>n+a

For later use, we need the following result, which can be obtained with a
slight modification of the proof of Theorem 2.

PROPOSITION 2. Let 1 < p<oo, a=p—n>—1 and [ be as in Theorem
2. For y>0, set g=y(n—14+0a). If e R”*I\Eq(f), then

Jim f Uf (3)diy(v) = UF(€)
(V Yn/2)

x—éxeV(éa) ) p
for every a >0, where
Vy(&,a) ={xeR : [x =& exp(—1/|x = &|") < ax,}.
Proor. For xeR’ and ye B(x,x,/2), write

Uf(y) =w(y) +ua(y) +us(p)

as in the proof of Theorem 2. In view of the estimates of u; and u3 in the
proof of Theorem 2, we have

im ) = @
x—¢, xeRY B(x,x,/2)

and

x—¢,xeRY ) p

tim | w(d(n) =0
(x,x,/2)

By Holder’s inequality and Lemma 2 we have for y e B(x,x,/2)

1/p
w(y) < j —ﬂ“lma|””ﬂ>
B(&,2[E-y)\B(,yx/2)

1/p
2)P|z,|*dz
B(¢,2[¢ )\

1/p
M< log(2|& — y|/yn))"™ f(Z)pdﬂa(Z)> :

B(&,2¢-y)

Hence we obtain

1/p
M<10g 6/& — x| /xn))"" f(Z)”dua(Z)> :

B(¢,31¢—x])

Since ¢ ¢ E,(f) and (log(6|¢ — x|/x4))"™ "< M|E— x| for xe V(¢ a), we
see that
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lim ][ w(y)du,(y) =0.
x—& xeV(&a) JB(x, x,/2) ()i ()

The proof of the proposition is now completed.

Using Proposition 2 and representation (4) of Sobolev functions, we have
the following results.

PROPOSITION 3. Let 1 < p < oo, =p—n > —1 and u be as in Theorem 3.
For >0, set ¢=7y(n—1+0a). If EeR"N\(F(|Va|)UE,(|Va])), then

lim ][ u(y)du,(y) exists and is finite
B(x,xn/2)

x—¢& xe V(éa)
for every a > 0.

PROPOSITION 4. Let 1 < p<oo and a=p—n>—1. Then EcR" " is
removable for WP (R",u,) if and only if each (p,«)-quasicontinuous function
ue WHP(R'\E; u,) satisfies

lim f u(y)dpm(y)=  lim ][ u(y)dp,(y)
B(x,x1/2) B(x, —x,/2)

x—&¢ xeV(&a) x—¢& xe V(& a)
for #" '-a.e. € E and every a>0. Here V(¢ a) = Vin1)/(n—1+2) (&, @).
As in the proof of Theorem 1, we obtain the following result.

THEOREM 4. Let 1 < p < oo and o =p —n> —1. Suppose that E = R"!
satisfies for #" '-a.e. x e E there exist a sequence of positive numbers {r;}
tending to zero, a number q >0 and a positive constant C such that B(x,r;) N
(R"\E) includes a set G; of diameter R; satisfying

(i) A#1(G;) > CR!; and

(i) R; > Cry exp(—r" /172
for all i. Then E is removable for W'-?(R";u,).

ProOF. Let u be a (p,a)-quasicontinuous function in WP (R"\E;uw,).
Let u™ and u~ be as before Proposition 1. By Proposition 3 and Remark 2,
there exists a set F < R"! such that #" '(F) =0 and

(1) fp0r 2 u(r)du,(p) tends to u*(&) as x — ¢ with xe V(& a),

(i) fp /2 u(r)du,(p) tends to u™ (&) as x — ¢ with X e V(& a)
for each ¢ e R"'\F and a > 0, where V(¢,a) as in Proposition 4. Consider
the set E={leE:u" (&) #u (£)}. To complete the proof, we have only
to prove

A" YE) =0,
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with the aid of Proposition 4. For this we show that

lim supJ V() Pl (x) > 0 9)
0 JBEn
for #" '-a.e. ée E\F, which is a statement stronger than (6).

Fix ¢ € E\F. Since u*(&) # u~ (&), by considering affine transformations,
we assume that " (&) =0 and u (&) = 1. Further, we assume that the condi-
tion holds for &. Take & e R"'NB(&,r,) such that G; = B(é;, R;). We may
assume that u > 1/2 in a set 4; = G; with A1 (A4;) = #1(G;)/2; otherwise, con-
sider the function 1 — u(x’, —x;,,).

First suppose ”;(é,».,R,-) < 1/4. Since u™ >1/2 (p,a)-q.e. on A; and ¢ > 0,
as in the proof of Theorem 1, we have

J Vut ()| dy, = M. (10)
B(&i,2R))

Next suppose ug(éhRf) > 1/4 for large i. Since jfB(x’x”m u(y)du,(y) tends
to zero as x — ¢ along V(&,a) for every a > 0, condition (ii) implies that
ug(}>f.,R;) <1/8 with y; =& +(0,...,0,2R;) for sufficiently large i. Then we
have by Poincaré’s inequality

1
+ +
g < Up(c.R) ~ UB(yiR)
= ][ " =t 3m Lty
B(&,3R))

1/p
SMR,(][ |Vu+<x>|”dum> 7
B(&,3R))

so that

J Vut ()| dy, > M. (1)
B(&;,3R;)

Using (10), (11) and R; < 2r;, we obtain
1
| wurde = 5[ e ol =
B(&,Tr) 2 B(&;,3R))
This implies that (9) holds at £&. Now Theorem 4 is completely proved.

REMARK 4. If E < R""! has empty interior (in R""!), then E is remov-
able for W'7(R";u,) whenever p >n+ o This immediately follows from
[1, Lemma 2.5 (1)], [2, Theorem 4.12] and the next proposition.
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PROPOSITION 5. Let ue WU'“P(R%u,) be a (p,a)-quasicontinuous func-

tion on R". If p>n+o, then ulR" is Holder continuous with exponent
(p—n—oa)/p on R\,

Proor. In this proof, we identify x’ € R"™! with (x/,0) e R”. In view of
[5, Theorem 3.5] or [10, Theorem 8.2.7], we see that every point of R"!
is a Lebesgue point of u. For x/,y" e R"! with r =[x’ —y’|, set Bj(x') =
B(x',27r) and B;(y') = B(y',27r). Using the triangle inequality and Poin-
caré’s inequality we see that

. /p
< 2n( | waran,
‘- B/'()C’)
0 1/p
< Mrl—(n+o:)/p Z 2—.7(1—(”+“)/l’) (J |Vu|pd/l“)
=0 K

1/p
SMr1_<””)/”<J |Vu|”d,ua) :
Rn

In the last inequality, we used the assumption that p > n+ a. Moreover,

|y () — Uny(y)| < oy = B (v)| + B (x) — gy ()]

< M} |u — u371<x/>|d,u“
B

1/p
< Mr(} |Vu|pd,u%>
Bq(.\”)

< M0l (J

n

1/p
vuld,)

Consequently, we have
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1/p
(') =y < ' == ([l

all x’,y" e R""!. Thus Proposition 5 is proved.
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