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ABSTRACT. Let FE(2) denote the Johnson-Wilson spectrum with homotopy
groups m.(E(2)) = Z3)[v1,v2,v5']. Then the mod 3 Moore spectrum V(0) satisfies
E(2),(V(0))=E(2),/(3). We call a spectrum M generalized (E(2)-local) Moore
spectrum if it satisfies E(2),(M) = E(2),/(3) = E(2),(V(0)) as an E(2), E(2)-comodule.
We see that the Toda spectrum 22! V/(11) is an example (cf [10]) other than the Moore
spectrum V'(0). Here we introduce other generalized Moore spectra and determine the
homotopy groups of them.

1. Introduction

Let ¥, denote the stable homotopy category of p-local spectra for a
prime p, and E(n) e ¥, denote the Johnson-Wilson spectrum characterized
by the homotopy groups 7.(E(n)) = E(n), = v,'Z,)[v1,02,...,0.) = v,'BP, =
v, 'Z< »v1,v2,...]. Here, BP denotes the Brown-Peterson spectrum. We
denote L, : ¥, — ¥, as the Bousfield localization functor with respect to
E(n). We write %, as the image of L,. We call a spectrum X € %), invertible
if there exists a spectrum Y such that X A Y = L,S for the sphere spectrum
S. Then Hovey and Sadofsky [6] showed that the collection of isomorphism
classes of invertible spectra forms a group, which is called the Picard group
of %, and denoted by Pic(.%,). We call an invertible spectrum X strict if
HQy(X)=1Q, and proper if X is strict and X # L,S. The strict invertible
spectra define the subgroup Pic(%,)° < Pic(%,). Hovey and Sadofsky also
showed Pic(.%,) = Pic(%,)" ® Z, which means that an invertible spectrum is
isomorphic to a suspension of a strict one.

In [6] and [10], it is shown that a spectrum X € %, is strict invertible if and
only if E(n) (X)=E(n), = E(n),(S) as an E(n) E(n)-comodule. We gener-
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alize this. We call X € %, a generalized (E(n)-local) k-th Smith-Toda spec-
trum if E(n),(X) = E(n),/(p,v1,...,vx) as an E(n), E(n)-comodule. In par-
ticular, the point spectrum * is a generalized k-th Smith-Toda spectrum for
k > n, and the E(n)-localization of the k-th Smith-Toda spectrum V(k) is a
generalized one if V' (k) exists. Note that the 0-th Smith-Toda spectrum 77(0)
is the mod p Moore spectrum, which is a cofiber of p: S — S. So we call a
generalized 0-th Smith-Toda spectrum a generalized (E(n)-local mod p) Moore
spectrum, which exists for any n > 0 and any prime p. A generalized (—1)-st
Smith-Toda spectrum X is an invertible spectrum as above. Let 77, (k) denote
the collection of the isomorphism classes of generalized k-th Smith-Toda
spectra in %,. In particular, 7;(—1) = Pic(%,)° and 7;(k) = {x} if k > n.
Strickland shows that if X has a finitely generated E(n),-homology, then X is a
small object in %,. (See Theorem 2.1.) This shows that 7,,(k) is also a set.
In [21] and [20], Yosimura, Yokotani and the second author showed the
existence and uniqueness of a generalized Smith-Toda spectrum L,V (k) if
k <n and n*>+n < 2p.

ProposiTION 1.1 ([21], [20], [6]). If n> +n < 2p, then ¥,(k) = {L,V (k)}.
In particular, if n> +n < 2p, then each generalized mod p Moore spectrum is
nothing but the E(n)-localization of the mod p Moore spectrum.

In the same manner as the sphere spectrum acts on any spectrum, Pic(‘i-fn)0
acts on 7;,(k) by xv=[XAV] for x=[X]ePic(Z,)" and v=[V]e ¥;(k).
Since a generalized Smith-Toda spectrum V' is small, the Spanier-Whitehead
dual D defines an action on 7;,(k) by D.(V) = XDV = x*™F(y, L,S) with
D.D.(V)=V. Here, v(n)=> 1 ,2p* —1). Indeed, E(n),(DV) = En)*(V)
=E(n),/(p,v1,...,v). Note that D.(V(k)) =L,V (k) for the Smith-Toda
spectrum V(k) if it exists. Let Pic(%,)’{V} denote the orbit of V:
{[VAX]:XePic(¥,)"}. Hereafter, we write V € ¥, (k) for [V]e ¥, (k).

CoNJECTURE A. For V e ¥;(k), Pic(£){D.(V)} = Pic(Z£,){V}.

This is true if kK = —1.

Now we consider the generalized Moore spectra at the prime three. Then,
Proposition 1.1 says that the generalized mod 3 Moore spectrum is L,V (0)
if n<2. So we work in %. In [10], Kamiya and the second author
constructed a proper invertible spectrum P that generates a summand
Z./3 < Pic(#)" and a monomorphism from Pic(%)° to the direct sum of the
Adams-Novikov E,-terms P, _, E/""!(S), which is isomorphic to Z/3 @ Z/3
by [19]. The invertible spectrum P is constructed by defining a map f: P —
2L,V (1}) that induces the projection f. : E(2), — E(2),/(3). There is a
problem that asks whether or not there is another proper invertible spectrum
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Q, which corresponds to the other summand of E55 4(S). Since each E(2),-
homology sphere is an invertible spectrum by [10], X A 77(0) for each invertible
spectrum X is an example of generalized Moore spectra other than L,V(0).
We have no idea whether or not an invertible spectrum X is an E(2)-
localization of a finite spectrum, though X is a retract of E(2)-localization of
a finite spectrum [6]. There is another generalized Moore spectrum L,V (13)
(¢f. [10]) other than L,V(0), which is an E(2)-localization of a finite spectrum.
Here V/(11) is the Toda spectrum given in [22]. The construction is gener-
alized as follows: It is shown the existence of a map B'(®) : X195 — V(1) that
induces v} : BP, — BP./(3,v1) for i =0,1,5 (¢f. [12]). Since the order of B'()
is three, B') extends to B : X1 (0) — V(1). Let X'V, denote the
cofiber of BY). Then, L,V; e #5(0) for i =0,1,5. Note that ¥, = V(0) and
V=21 (1).

We have another construction: Let X be an invertible spectrum and
1y € mp(X) denote the element detected by 3gy € ES’O(X) = Z){gx}, and write
WX as the cofiber of 1y. In particular, WL,S® = L,V(0). Note that W does
not seem a good operation. Indeed, even though the Adams-Novikov dif-
ferentials ds on the generators of Ey" =Z/3 for WX AX’ and W(X AX')
agree for any strict invertible spectra X and X', these spectra are not always
homotopy equivalent. (If the Adams-Novikov differentials ds on the gen-
erators of E;),o = Z3) for invertible spectra X and X' agree, then they are
homotopy equivalent by [10].) For the proper invertible spectrum P e
Pic(.,%)o, we have WP/ for j >0. Here U/ for a spectrum U denotes the j-
fold smash product of U for j >0 and U’ = L,S. Note that WP?> =V, A P,
since P2 — Pl X2,V is a cofiber sequence [8]. It follows that
Pic(gz)O{WPz} :Pic(gz)O{Lz V1}. If the other proper invertible spectrum
Q exists, then we also have WQ, and 73(0) contains the orbit
Pic(#){WQ, W0?}. Put

73(0)° = Pic(%) Ly Vo, LaVi, Ly Vs, WP, (WQ, WQ? if they exist)}.
PrOPOSITION 1.2. 73(0)° = #3(0).

The size of Pic(%,)® = #;,(—1) has an upper bound, but we have no idea
about the size of 7},(k) for kK > 0. Indeed, an generalized k-th Smith-Toda
spectrum is not always a V(k)-module spectrum if k£ > 0.

CoNJECTURE B.  73(0)" = 75(0).

For the Spanier-Whitehead dual D, D(X) = X2 for an invertible spectrum

X (¢f [5], [10], Theorem 2.1), and we see that D, ((WX)AX)= WX AX,
. InNX o . DiAX)
since the dual of the cofiber sequence X — X* — (WX)AX is X —
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X2 - ZD((WX)AX). For Vi we also see that D,(L,V;) = L,V;. 1t follows
that D, (V) e Pic(%) {V} for V e 75(0)".

ProposiTioN 1.3.  If Conjecture B holds, then so does Conjecture A for
k=0.

In this paper, we determine the homotopy groups of all spectra in “//2(0)0
other than WQ' for i =1,2. The structure of the homotopy groups of L,U
for a spectrum U is more complicated than that of 7.(Lg)U). Here Lg(
denotes the Bousfield localization functor with respect to the second Morava
K-theory K(2). So we recall [14] the chromatic spectra M,U and N,U for a
spectrum U, which are defined inductively by

NoU = U, M,U = L,N,U and the cofiber sequence
N,U — M,U — N, U.

Then the homotopy groups 7.(Lk)U) are closely related with 7, (M,U), and
the structure of 7.(M,U) is less complicated than that of n,(L,U). Thus we
consider 7, (M, U) instead of 7, (L,U). In [17], the homotopy groups 7.(M>V})
for the mod 3 Moore spectrum ¥y = V' (0) are determined by use of the E(2)-
based Adams spectral sequence. The E,-term of it is a direct sum of modules
A, B;, and B;, and the homotopy groups are a direct sum of A, Bj, and B,.
Here, EJ denotes the permanent cycles of B;. By use of the decomposition of
the E>-term, we obtain the homotopy groups in [8]:

T (MyVoAPXY = A® v *B,®v)*B,  and
. (MaV) = A D U%B?, ® vgl?,.
Note that vJB; = B;. These make us to predict the following theorem:
THEOREM 1.4. 7.(MoViAPK) =A@ v%*"ﬁh &) v§*3"}§,.

These~resu1ts letN us ask if there is a spectrum Uy such that n,.(Uy) =
A® S *B, ®v3*B,. The elements of the orbit Pic(£)"{WP} give the
affirmative answer.

THEOREM 1.5. 7. (MyWP A PMY) = 4 @ 0§ By, @ v3 3B,
For Vs, we have
THEOREM 1.6. 7. (M3 Vs A P¥) = A @ v3 B, @ v) B,

REMARK. 7, (M, Vs) = n.(MyWP A P?), while L,Vs% WPAP? by
Lemma 5.3.
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ReMark. If Q exists, then the homotopy groups 7.(M,WQ) agree with
none of above (¢f [9]).

This paper is organized as follows: In the next section, we include the
result of Strickland. In section 3, we consider a decomposition of the E(2)-
based Adams FE,-term, which plays a crucial role to determine the homotopy
groups. Sections 4 and 5 are devoted to define the generalized Moore
spectrum, and to show some properties of them, which show Proposition 1.2.
In section 6, we prove Theorems 1.4 and 1.5. Theorem 1.6 is proved in
section 7.

The authors would like to thank the referee not only for suggesting them
to add the basic facts on generalized Smith-Toda spectra but also introducing
the result of Strickland. The authors would also like to thank Neil Strickland
who kindly allow them to include his result in this paper.

2. Some results on generalized Smith-Toda spectra

Let BP and E(n) denote the Brown-Peterson and the n-th Johnson-Wilson
spectra, respectively, at a prime p. We write %, as the stable homotopy
category consisting of E(n)-local spectra. Then BP,BP = BP,[t|,2,...] has a
structure of a Hopf algebroid over BP, = n.(BP) = Z,)[v1,v2,...]. Besides, it
induces a Hopf algebroid structure on E(n), E(n) over E(n),, since E(n),E(n) =
E(n), ® gp, BP.BP @pp_E(n), for E(n), = v,'Z,v1,v2,...,04] = v, BP..

We consider the FE(n)-based Adams spectral sequence E/(U) for
computing the homotopy groups 7z.(L,U) of a spectrum U. The E,-term is
isomorphic to the Ext group

Ezw(U) = Eth(tn)*E(n)(E(”)*a E(n),(U))
of E(n),E(n)-comodules.

The k-th Smith-Toda spectrum V(k) is a spectrum with BP.(V(k)) =
BP./(p,v1,...,vr). If k<4, then the Smith-Toda spectrum exists if and
only if 2k < p (cf. [23], [13]). We call a spectrum V' a generalized (E(n)-local)
k-th Smith-Toda spectrum if E(n) (V)= E(n),/(p,v1,...,0x) as an E(n) E(n)-
comodule. The E,-term E; (V) of the E(n)-based Adams spectral sequence
agrees with the E,-term ES(V(k)) if V(k) exists. We write 75,(k) as the
collection of isomorphism classes of generalized k-th Smith-Toda spectra.
Then

#(1k) =1 if i +n<2p

by [21] and [20].
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Since E(n), (V) is finitely generated, we see that 7;,(k) is a set by [5, Th.
2.1.3] and a theorem of Strickland:

THEOREM 2.1 (N. Strickland). If E(n),(X) is finitely generated, then X is
small in the E(n)-local category.

Proor. Let E be an S-algebra such that E ~ E(n), whose existence is
certified in [2]. (A. Lazarev also has another argument.) Let ¥x denote a full
subcategory consisting of spectra Z such that the natural map

@B, ZAYi] - {X7Z/\\i/yi]

1

is an isomorphism for all families { Y;} of E-local spectra. Then, € is a thick
subcategory. Note that X is small if L,S € @y. Since E, is a ring of finite
global dimension and E,(X) is finitely generated, E A X has a finite resolution
by finitely generated free modules in the derived category Zg as in [I,
Chap. IV], and hence EA X is small in Zg. Since p(EAX,EAWAY) =
[X,EAW AY], every spectrum of the form EA W is in ¥x. Furthermore,
since L,S is E-nilpotent (c¢f. [15]), L,S is in the thick subcategory generated by
the spectra of the form EA W. 1t follows that L,S € ¥y as desired. O

3. A decomposition of H*M|

From this section on, we set the prime p =3 and work in %, the stable
homotopy category of spectra localized with respect to the second Johnson-
Wilson spectrum E(2), whose coefficient ring is E(2), = v5'Zg)[v1,v2] =

v5'BP,. Consider the mod 3 Moore spectrum V/(0) defined by the cofiber
sequence

(3.1) s2sLyo) L zs,
and the first Smith-Toda spectrum V(1) defined by the cofiber sequence
=0) S r0) L vy L 2Sro).

Here o denotes the Adams map.

Let U(n) denote an n-th generalized Smith-Toda spectrum such that
E(2),(U(n)) is isomorphic to E(2),(V(n)) as an E(2),E(2)-comodule, where
V(n) denotes the n-th Smith-Toda spectrum. Note that U(n) = * if n > 2.
For n =0, we call a spectrum U(0) € % a generalized Moore spectrum, and
consider M, U(0) defined by the cofiber sequence

U(0) — LiU(0) — 2~ 'M,U(0)
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(¢f. [14]). Consider the E(2),E(2)-comodule MY and M| defined by MY =
E(2),/(3,v1), which is also denoted by K(2),, and the short exact sequence

0~ E(2),/(3) = v E(2),/(3) — M} — 0.

Then we have the short exact sequence

(3.2) 0— M2 %t o

of E(2),E(2)-comodules. The E,-terms of the E(2)-based Adams spec-
tral sequences converging to #.(U(1)) and n.(M,U(0)) are H*M) and
H*M{, respectively. Here H*M for an E(2),E(2)-comodule M denotes
Extro) g (E(2),, M). The Er-term H*M; (resp. H*M|) is shown in [16]
(resp. [17]) to be isomorphic to the tensor product of A({,) and the module
M (resp. the direct sum of modules (K(1),/k(1),) ® A(hi), @P),.,Fn and
(F®F*)® (Z/3)[b1o]). Here the modules M, F, F* and F, are given by

M = K(2),[b1o)]{1, ho, h1, & g, ¥y, 11}

F= E(2, 1)*{v;—“1/vl,vzh10/vlz, v%hll/vlz, Uzi—lbll/lil},
F* = E(2,1){&/vf, 03" Wo/vi, 05 "W, /o1, bné/vf} and
Fo= EQ,n+2) {03 job3 =1 53 pg fut<3"+1,

8x3" 10x3"41  3"(5+3)+(3"=1)/2 ¢z 4x3n
0y o /vy , U5 /o }

for

k1), = (Z/3)w),  EQn), =k(1),[0], K1), = vy k(1)

* *

and

*

K(2), = (Z/3)[v;""].

The element by acts on (F @ F*) ® (Z/3)[byo] freely. The action of bjy on F,
is seen as follows: Consider the exact sequence H*M) — H*M}! — H’M| —
H**'MY) associated to (3.2) and suppose that d(x) =y and &(w) = ybyo for
xelF,, weF®F* and y#0¢€ H*Mg. Then there exists an element u e
H*Ml1 such that xb;p =w+vju. Thus replacing w by w4+ vju, we have
an isomorphism (Z/3){x} ® (Z/3)[b1o]{w} = (Z/3)[b10]{x}. We also write
x=w. In this way, we compute the bjp-action in [8] and rewrite here the
direct sum of the modules ), _,F, and (F@® F*) ® (Z/3)[b1o] as the direct
sum of @ _,F, and F' ® (Z/3)[biy]. Here

n>0"n
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F' = (Z/3) {0;"") o} = 0353 2by oy,

3"(3t+1) 4><3”1 1 3" 1(9143-1)—
v v =, bll/vl (n> 1)7

t 2 371 (3141)— L9r—1)—
by /vy, v5 ( 'byifor, 05 by Jor,

"(3t41) h / 2x3"+1 _ U;”“t+(3"71)/21p1/v1 (n > 0),

) ni2 n_
U;n(9t+8)h10/vllox3t+1 _ l); F214+5%34+(3 1)/2!101/1)1 (n > ())’1);,[71‘//1/1)17

ugn(9’+5i3)+(3"">/25/0f“" _ U;rl+1(3z+1i1)+3(3n—1)/2b“§/012 (n>0),

v3'biié/or}
® E2, 1) {vf! Jv1, vh10/0}, 03011 07, E/0}, 03 o o1} and
:E(27n+2)*{vzi3n+l fo?)n ) 3n+lh /l)6><3r17

8x3" 10x37  3"(5£3)+(3"=1)/2 ¢/ 4x37—1
vy hio /vy y U /v }

Put
(3-3) A= ((K(1),/k(1),) ® A(h10) @D, F,) ® 4(&)  and
B=F' ® (Z/3)[bio] ® 4((5).
Then we have a decomposition of H*M:
H*M! =A@ B.
By observing the construction of modules, these modules satisfy the following:

34) 1. Ac@  H'M].
2. If xe BNH*M} for s> 5, then x = ybyy for some y € B.
3. the generator bjy acts trivially on 4 and freely on B.

4. The generalized Moore spectrum WX for an invertible spectrum X at
the prime three

We call a spectrum X invertible if there is a spectrum X' such that
X AX'=L,S. An invertible spectrum X is called strict if HQy(X) = Q, and
proper if HQy(X) =Q and X % L,S. We denote by Pic(#)" the collection
of isomorphism classes of strict invertible spectra, which is shown to be a group
with multiplication defined by the smash product and with the unit L,S. Note
that every invertible spectrum is a suspension of a strict one (c¢f [6]). It
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is shown in [6] and [10] that X is a strict invertible spectrum if and only if
E(2),(X)=E(2), as an E(2),E(2)-comodule. For a strict invertible spectrum
X, the E(2)-based Adams E,-term E;(X) is isomorphic to E;(S). In par-
ticular, ES’O(X) = ES’O(S) = Z(3). Take the generator gy € Eg’O(X). Then by
[10], X is characterized by ds(gx) € E25"4(X). For example, ds(gx) =0 if and
only if X = L,S. 1If ds(gx) # 0, then gy does not detect a homotopy element
but 3gy does. We denote 1y as the homotopy element detected by 3¢y, and
write WX as the cofiber of 1y.

Let V(11) denote the Toda spectrum defined in [22] by the cofiber
sequence

S16p0) 2 V(1) — V(1) — 27 (0),

in which the map B induces the homomorphism v, : E(2),/(3) — E(2),/(3,v1),
the multiplication by v,. The element B is denoted by [fi] in [22]. This is
an example of generalized Moore spectra studied in the next section. In [10],
a proper invertible spectrum P is constructed as well as the existence of a map
f:P— 2L,V (1)) that realizes the projection E(2), — E(2),/(3). The
spectrum P is characterized by the differential of the E(2)-based Adams spectral
sequence as follows:

ds(gp) = v, hnbiy € E3*(P) = E>*(S),

where  the  E)-term E25’4(S) for =w.(L,S) is isomorphic to
(Z/3){v52hnb}y, v3 b9y} Note then that P>=PAP is an invertible
spectrum characterized by ds(gp:) = —v52hnb3, € E>*(P?) = Ey*(S). Now
the generalized Moore spectrum WP* for k = 1,2 fits in the cofiber sequence

(4.1) S5 Pk wpk X ss,
where 1; is the abbreviation of ip«.

PROPOSITION 4.2. WP and WP? are generalized Moore spectra, which are
not V(0)-module spectra.

PrOOF. By definition, the homotopy element 1 € mo(P*) for k=1,2
induces (1), =3: E(2), = E(2),(S) — E(2),(P*) = E(2),, and so E(2),(WP¥)
is isomorphic to E(2),/(3) as an E(2), E(2)-comodule.

We show that 3id # 0 € [WP, WP], for the identity map id € [WP, WP],.
Consider the diagram

*

(WP, WP,

Jis

[P, S)y —— [P, P]y —— [P, WP], —— [P, S]_,
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The behavior of the map 1, : [P,S], — [P,P], is observed by the one of
(1 AP?), :[S,P?, — [S,S]y, since P is an invertible spectrum and P? is its
inverse. The generator 1, € Z < [S, P?), is detected by 3gp> € Eg’o(Pz) and 1
induces also multiplication by 3 on the E>-terms. Therefore, the induced map
(11 A P?), assigns the element 3gp» to 9gs on the E,-terms, and so we have
(1 AP?), (12) =9 emny(S) on the homotopy. It follows that the map i, gen-
erates Z/9 < [P, WP),. Therefore, if(3id) = 3i; # 0 € [P, WP],, and 3id # 0.

O

The results of [10] and [18] imply the following

Lemma 4.3. If U= WX for an invertible spectrum X, then ds(gy) €
(Z/3){vy b}y, v3'¢broa} = E3*(U).

ProoF. By the definition of WX, there is an exact sequence

o

(1x),=3 (ix). 5,4
X X E2 (U) _°

Ey(S) 5 BN (X)) ——— EY(S)

associated to the cofiber sequence S = X X U. Since E25’4(X )= E25’4(S) =
(Z/3){v32hnb}y, vy Eb1oly} by [18], (ix), is @ monomorphism. Now the lemma
follows from the naturality of the Adams differentials. O

5. The generalized Moore spectrum Vs related to v5

It is well known that there is a generator v} € my6;(¥ (1)) for each i =0,1,5
([12]), which are of order three. It follows that there exists a map
BY : 21811 (0) — V(1) that induces v} : E(2),/(3) — E(2),/(3,v1). Note that
B =i and BY) =, the Smith element. First we show that

LEMMA 5.1. The element v; € ngo(V (1)) does not extend to a self-map
v3 01 (1) — V(1.

ProoF. Suppose that such a self-map exists. Then we have a map
vl 210p (1) — V(1). Since there is an equivalence v5: XL,V (1) ~
LyV(1) by [7], we obtain a self map vy : XL,V (1) — LoV (1). This con-
tradicts to the non-existence of the self map v, : X'V (1) — V(1), whose
obstruction survives after localizing it with respect to E(2). ]

Now we write 23V, as the cofiber of BY.
PrROPOSITION 5.2. L, Vs is a generalized Moore spectrum.

Proor. Consider the diagram
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i J
|
,5
v i
|

>¥y0) = Z0p0) L 20p1) L= =%51(0)
i i i

N ’
A ., ,
sy L o) 2L pay 2L sy

Here the broken arrows exist after smashing with E(2) so that the diagram
commutes. Since v5 is an isomorphism on the E(2),-homology of V(1),
we have an isomorphism E(2), /(3) = E(2),(V(0)) = E(2),(V5) by the Five

Lemma. |
LemMmA 5.3. L Vs & WX for any invertible spectrum X.

PrOOF. Lemma 5.1 shows that B®a # 0 e mgy(LoV(1)). Write x #0 €
Ey*(V(1)) for an element that detects B®)o. Then er;’SS(V(l)) or
xe Ey”(V(1)). By [16], we see that E;**(V(1)) = (Z/3){vibioh11(,} and
Eg’gz(V(l)) =0. It follows that x = +v3b1oh11{s eE;’SS(V(l)). Observe the
cofiber sequence that defines Vs, and we see that ds(gy,) =0d(x) =
+0105°bbiols € ESH(Vs). In - fact,  3(v3biohns) = [v7'd(v3 ' biohiily)] =
vlv2‘3b11b10C2 read off from [17, Lemma 3.3]. Therefore, Lemma 4.3 shows
that there is no invertible spectrum X such that L,Vs = WX. O

Proor oOF ProposiTiON 1.2. Since E(2),(X) for a strict invertible
spectrum X is isomorphic to E(2), as an E(2) E(2)-comodule, we see
that E(2),(U A X) = E(2),(U) ® ), EQ).(X) = E(Q2),(U) as an E(2),E(2)-
comodule. So it suffices to show that WX and L,V; are generalized Moore
spectra. For L, V), it is trivial, and for L, V7, it is shown in [10]. L,Vs and
WX are generalized Moore spectra by Propositions 5.2 and 4.2, respectively.

]

6. The homotopy groups of generalized Moore spectra

We also work in % at the prime three. For a spectrum U, the spectra
N,U and M,U are defined in [14] inductively by the cofiber sequence

N, U — MU — N, U,

setting NoU = U and M,U = L,N,U. Then the E(2)-based Adams E,-term
for the homotopy groups n.(M,U) of a generalized Moore spectrum U is
isomorphic to

E;(MyU) = E;(MyV(0)) = H' My,

where H*M for an E(2),E(2)-comodule M denotes Exty ) p»)(E(2),, M), and
the comodule M| is the cokernel of the localization map E(2),/(3) —
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vi'E(2),/(3). By observing the decomposition (3.3) of Ej(MyU) = H*M],
we obtain

LemMMA 6.1. The E(2)-based Adams differentials ds and dy are trivial on
A < Ef(M,U) for any generalized Moore spectrum U.

PrROOF. Suppose that d,(x) = y for an element xe€ A. Then ye B by
(3.4) 1), since the filtration degree of y is greater than 4. Now apply bjo, and
we have

0= d,'(xblo) = yblo € E,.*(MzU)

by (3.4) 3) and the naturality of the differential, since ;¢ detects the homotopy
element f, € m;o(S). If r=25, then by acts freely on B, and so y =0.

If r=9, then ybjye€ ES(M,U) is zero or killed by an element u under
the differential ds. If ybiyp =0 in the E,-term, then y =0 by (3.4) 3). So we
assume that ds(u) = ybio for some u € E5(M,U). Since the filtration degree of
y is greater than 8, the filtration degree of u is greater than 5, and so u = whyg
for some w € B by (3.4) 2). It follows that ds(w) = y mod Ker b;p. Note that
Ker bjp = B. Since by acts freely on B in the Es(= E;)-term, we see that
Ker bjp = 0, which shows that dy(x) = 0. O

Let P be the proper invertible spectrum constructed in [10], and consider
the cofiber sequence S % pk % wpk X 5§ for k = 0, 1,2, where we abbreviate
ipr by 1. Then it induces a long exact sequence

7. (MsS) 5 7, (MaPY) 5 (Mo WPR) 22 1 (M5S)
i) n*_l(szk).

The homotopy groups n.(M>S) are computed by the E(2)-based Adams
spectral sequence with Ep-term H*MZ. Here M is the comodule defined by
the short exact sequences

0— EQ2), »3'EQ2), >N, =0 and 0— Ny —o;'N} — M —0

of E(2),E(2)-comodules, in which both of the inclusions are the localization
maps. Since we have H*M| = A @ B, the structure of the E,-term H*M; is
described by using 4 and B, which is seen by observing the long exact sequence

0 H'M % HOME S HOME S H M) — - M Y B MR
i) HYMOZ i) HS+1M11 ..
associated to the short exact sequence

(6.2) 0— M L M2 M2 —o.
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In fact, let M for M = A, B denote the module fitting in the exact sequence
M2 S M. Tt is shown in [18] that B is decomposed into B, and B,
so that ¢(B;) = B and §(B) = B,. Note that these are isomorphisms, that is,
B, ~ B~ B,. Then, we obtain

H' M} =A®B

by [11, Remark 3.11]. The behaviors of the differentials ds and dy on the
spectral sequence for 7. (M,V(0)) are studied in [17] as follows:

(6.3) 1. the differentials ds and dy act trivially on A.
2. the survivors of B in the Ejp-term have the filtration degree less than
13.

Let B;, and Ez denote the submodules consisting of the survivors of B;, and B,
in Ejp-term, respectively. The properties (6.3) 2) and (3.4) 1) show that the
Ejo-term has the horizontal vanishing line s = 13, which means that the E)-
term is the E,-term. Therefore, we obtain

. (MyV(0)) = A® B, @ B,.
A similar properties hold for the spectral sequence for n.(M>S) [18]:

(6.4) 1. the differentials ds and dy act trivially on A.
2. the survivors of B in the Ejg-term have the filtration degree less than
13.

Therefore, the same argument as above shows
n*(MgS) = A_(-B B,
where B denotes the submodule consisting of the survivors of B in Ejp-term.

REMARK. In [18], the structure of 4 was left undetermined. It is de-
termined in [19].

Under this notation, we determined in [8] the structure of the homotopy
groups 7.(P¥) for k=0,1,2 as

(6.5) 7. (MyPY) = A @ v) 3B,
Note that vglliz B. Consider now the cofiber sequence
AP! ix A P! . jr A P!
(6.6) MyP 2P My PR BN wpk A pt 2T g pl

obtained by smashing P’ with the cofiber sequence (4.1). Then we compute
the homotopy groups 7.(M, WP* A P!) by the structure (6.5) of x,(M,P¥).

THEOREM 6.7. 7. (MyWPKAP!) =A@ 3B, @ vs *B,.
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ProOF. The cofiber sequence (6.6) induces a long exact sequence

(jx A P") 3 (ix A PT)
-

HM| S HM; H'M? S H M|

of the E(2)-based Adams E)-terms. Since there are isomorphisms
(ix AP") (B) =6(B) = B, and (ji AP"),(B;) = ¢(By) = B in the E,-terms, we
see that 0373“”)1?, ® vy VB, is a summand of E,-term for z.(My WPk A P')
by the naturality of the Adams differential. It also shows the same result as

(6.3) 2). Therefore, the differentials d, on A4 are trivial by Lemma 6.1. []

PrOOF OF THEOREM 1.4. In [8], we show that P> — P EN L,V is a cofiber
sequence for the proper invertible spectrum P. It follows that V; A P = WP?,
and V|, = WP? A P2. Thus the theorem follows from Theorem 6.7. ]

Proor oF THEOREM 1.5. This is a corollary of Theorem 6.7. O

7. The homotopy groups 7.(L,Vs)
Let X% Vs denote the cofiber of B : X¥1(0) — V(1) as above. By
definition, we have the cofiber sequence
84 T8 80 B 55 585
LY 2 SO Y(0) = LV (1) 25 5851, 1.
Then we obtain the cofiber sequence

Lyv(D) 5 52015 25 550100 & sL,v(1)

by Verdier’s axiom. This induces an exact sequence
1275 v v )
(T1) woe s MO 2 M) O M) S MY
where 05 = 035 for the connecting homomorphism J associated to the short
exact sequence (3.2).
We consider the Adams differentials on B < E;(M,Vs) =~ H*M|. For
this sake, it suffices to know the behavior on the elements

341 341
vy, U%”lhlo/vf, v3'E /v, and v o

for teZ and ¢=1,2. Indeed, using the multiplicative relations given in
[16, Prop. 5.9], the behavior on the other elements is deduced by the
actions of the homotopy elements fg/; € m52(S) and B € mo(S), which are
detected by v3b eE22’84(S) and blerzz’lz(S), respectively. Here, v3by =
U;bll mod(3,vl).

LemMmA 7.2.  The behavior of the Adams differentials is given by:
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( tJrl/v1
( 3t— 1/1}1
dg( 3t+1hlo/v1

(1- )Uglflhnb%o/vh

(1 — 1)od 263, /v,
031 bdy vy up to sign,

(7 =1 ’3‘//0b 0/01,

(1 — )03 2ybdy /11 up to sign,
tvz’éb /1 and

)
)
)
ds(v3" o /v7)
dy(v3'E/vn)
)

)

) =

ds(v3'E /v
ds(v [HWl/Ul
dS(Uzt 1lPl/”l

Proor. First consider the elements in the image of v;°/v;. In the E(2),-
based Adams spectral sequence for z.(L,V(1)),

0 i=0,1,5 (9)
(7.3) ds(v]) = —02 b3, j=3,4,8 (9)
2haby,  j=2,6,7 (9)

0 j=2,6,7 (9)

ds(vyy) = —02 'ebd, j=0,1,5 (9)

el j=3,4,8 (9)

. Jj=315 P . Jj=3 4 -
dy(vihy) = {Uz biy J= 3,‘?,8 9) dy(v]E) = {Uz Yobiy J = 1,5.,6 )
0 otherwise 0 otherwise

by [16, Prop. 8.4, Prop. 9.10]. Note that the undetermined integer k in [16]
is shown to be 1 in [4] (see also [3]). By the first two equations, we compute

ds (03" fo1) = (037 for),ds (03%) = (1 = 1) (03> /v1), (03" Py,

ds (03" for) = (037 fv1),ds(037%) = = (0 + 1) (03> f01),. (03" P11 i),
ds(v3" 1y Jo1) = (037 [01).ds(03 %) = —1(v3° /1), (03°Cbiy)  and
ds(v3" 1 fo1) = (037 Jo1).ds (034 ) = (1= ) (037 Jo1), (03733

Since Js(v3'E1b3) Jv1) = 403" A bY, and Os(03 Y v1) = +u3'EIELY
are the only relations related to our case by [17, Prop. 3.4], we see the first, the
second, the seventh and the eighth equalities.

We also compute with (7.3) as
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dy(v3 i fvr) = (v3° fo1) . do (03" o) = £2(t = 1)(v3° /1), (03 7b}y)  and
dy(v3'E/v1) = (v3°01),do(v33E) = £(2 = 1)(v3° /01), (03" PWPobiy)-

Furthermore, ds5(v3" ' hobf, /v?) = v377°b3, and J5(v3'EhY,/v}) = —v3 Ty by, are
the only relations, and we see the third and fifth equalities.

We make a different argument to show the fourth and the sixth
equalities. Since ds(v3 hyo/v?) € ES OV (L, V5) = (Z/3) {03163, /v1}, we
put  ds(v3hyo/v?) = ko3 'bj, /vy for some keZ/3. We see that
(v3° /1), (kv3™™b3)) = kv3'='b3, /v and ds(v34b3)) = —(1 + t)v3"2hy1b3,. On
the other hand,  &s5(do(v3 ™ hig/v1)) = t(t + 1)s(v32b3y/v1) = t(t + 1) -
v3"2h1b3,.  Therefore, k(t+1)=1t(t+1)eZ/3 up to sign. It follows that
k=teZ/3if t#2€Z/3. If t=2¢€Z/3, then 85,(v3 Thio/v1) = kvy*t1%b3,.
By applying b3,

kv§s+10b 6 = 85, (v S+7h10b130/l71) = 65*(d5(vgs+7b11/171))
= do(J5(05" T b11 fv1)) = do (03 P hiobio)

_,95+107.6
=0,"""by,

up to sign by [17, Prop. 8.5], and k # 0. Thus the fourth equality follows. In
the same manner as this, we obtain the sixth. In fact, ds(do(v3'¢/v1))
t(t — 1)v3'by b}y = ktv3'Eby Yy = ds(kvsyyb%,) if we put  ds(v3'E/v?)
kv3~2yybiy/v1 for some keZ/3. Thus, k=¢—1 if 1#0. If 1=0, we
see that k#0 by the equation kv* b, = 05.(ds(vy 'y, /1))
dy (O35, (131 fo1)) = 633,y up to sign.

ProorF oF THEOREM 1.6. For the homotopy groups 7.(L,V(0)), the
Adams differentials act as follows:

]

03 /o) = — 103 By b2y Juy, do(v3'E/vr) = +1(t — 1)03" bty /1,

ds(v3'"! for) =0, ds(v3'¢/v1) = (1= 003 ebio /o1,
dy (03 o /1) = (e + 1o b for, ds(@3 Ny for) = =(+ 1)ed'Ebi fon,
ds(v3 o /v?) = 3183, Juy, ds(v; "y, Jo1) = 0.

We decompose B into eight summands, each of which is generated by the
one of the above eight elements as E(2), [ﬁl,ﬁ6/3]/(ﬁ§/3 v3f;)-modules. We
name them F?, F°, F!, F', F;° F° F;' and F/!, respectively. Corres-
ponding ones of L,Vs, we name them G instead of F. Then Lemma 7.2
shows the isomorphisms

Gh _Uthv Gto :on’ Gh _szh’ th :Ftl7
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*0 _ 3 0 *0 _ 0 «1 3l «1 okl
GO'=uF"  G'=F°  G'=vlF' and G'=F

as spectral sequences. Since B=P _, ., G:® G¥, the Ejp-term has the
same horizontal vanishing line as the one for 7z, (L,V(0)). It follows that

every element of A survives to the E,-term by Lemma 6.1. O
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