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Abstract. Let Eð2Þ denote the Johnson-Wilson spectrum with homotopy

groups p�ðEð2ÞÞ ¼ Zð3Þ½v1; v2; v�1
2 �. Then the mod 3 Moore spectrum Vð0Þ satisfies

Eð2Þ�ðVð0ÞÞ ¼ Eð2Þ�=ð3Þ. We call a spectrum M generalized (Eð2Þ-local) Moore

spectrum if it satisfies Eð2Þ�ðMÞ ¼ Eð2Þ�=ð3Þ ¼ Eð2Þ�ðVð0ÞÞ as an Eð2Þ�Eð2Þ-comodule.

We see that the Toda spectrum S�21V 112
� �

is an example (cf. [10]) other than the Moore

spectrum Vð0Þ. Here we introduce other generalized Moore spectra and determine the

homotopy groups of them.

1. Introduction

Let SðpÞ denote the stable homotopy category of p-local spectra for a

prime p, and EðnÞ A Sð pÞ denote the Johnson-Wilson spectrum characterized

by the homotopy groups p�ðEðnÞÞ ¼ EðnÞ� ¼ v�1
n ZðpÞ½v1; v2; . . . ; vn�H v�1

n BP� ¼
v�1
n ZðpÞ½v1; v2; . . .�. Here, BP denotes the Brown-Peterson spectrum. We

denote Ln : SðpÞ ! SðpÞ as the Bousfield localization functor with respect to

EðnÞ. We write Ln as the image of Ln. We call a spectrum X A Ln invertible

if there exists a spectrum Y such that X5Y ¼ LnS for the sphere spectrum

S. Then Hovey and Sadofsky [6] showed that the collection of isomorphism

classes of invertible spectra forms a group, which is called the Picard group

of Ln and denoted by PicðLnÞ. We call an invertible spectrum X strict if

HQ0ðXÞ ¼ Q, and proper if X is strict and X VLnS. The strict invertible

spectra define the subgroup PicðLnÞ0 HPicðLnÞ. Hovey and Sadofsky also

showed PicðLnÞ ¼ PicðLnÞ0 lZ, which means that an invertible spectrum is

isomorphic to a suspension of a strict one.

In [6] and [10], it is shown that a spectrum X A Ln is strict invertible if and

only if EðnÞ�ðXÞ ¼ EðnÞ� ¼ EðnÞ�ðSÞ as an EðnÞ�EðnÞ-comodule. We gener-
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alize this. We call X A Ln a generalized (EðnÞ-local) k-th Smith-Toda spec-

trum if EðnÞ�ðXÞ ¼ EðnÞ�=ðp; v1; . . . ; vkÞ as an EðnÞ�EðnÞ-comodule. In par-

ticular, the point spectrum � is a generalized k-th Smith-Toda spectrum for

kb n, and the EðnÞ-localization of the k-th Smith-Toda spectrum VðkÞ is a

generalized one if VðkÞ exists. Note that the 0-th Smith-Toda spectrum Vð0Þ
is the mod p Moore spectrum, which is a cofiber of p : S ! S. So we call a

generalized 0-th Smith-Toda spectrum a generalized (EðnÞ-local mod p) Moore

spectrum, which exists for any nb 0 and any prime p. A generalized ð�1Þ-st
Smith-Toda spectrum X is an invertible spectrum as above. Let VnðkÞ denote

the collection of the isomorphism classes of generalized k-th Smith-Toda

spectra in Ln. In particular, Vnð�1Þ ¼ PicðLnÞ0 and VnðkÞ ¼ f�g if kb n.

Strickland shows that if X has a finitely generated EðnÞ�-homology, then X is a

small object in Ln. (See Theorem 2.1.) This shows that VnðkÞ is also a set.

In [21] and [20], Yosimura, Yokotani and the second author showed the

existence and uniqueness of a generalized Smith-Toda spectrum LnVðkÞ if

k < n and n2 þ n < 2p.

Proposition 1.1 ([21], [20], [6]). If n2 þ n < 2p, then VnðkÞ ¼ fLnVðkÞg.
In particular, if n2 þ n < 2p, then each generalized mod p Moore spectrum is

nothing but the EðnÞ-localization of the mod p Moore spectrum.

In the same manner as the sphere spectrum acts on any spectrum, PicðLnÞ0
acts on VnðkÞ by xv ¼ ½X5V � for x ¼ ½X � A PicðLnÞ0 and v ¼ ½V � A VnðkÞ.
Since a generalized Smith-Toda spectrum V is small, the Spanier-Whitehead

dual D defines an action on VnðkÞ by D�ðVÞ ¼ S vðnÞDV ¼ S vðnÞFðV ;LnSÞ with
D�D�ðVÞ ¼ V . Here, vðnÞ ¼

Pn
k¼0ð2pk � 1Þ. Indeed, EðnÞ�ðDVÞ ¼ EðnÞ�ðVÞ

¼ EðnÞ�=ðp; v1; . . . ; vkÞ. Note that D�ðVðkÞÞ ¼ LnVðkÞ for the Smith-Toda

spectrum VðkÞ if it exists. Let PicðLnÞ0fVg denote the orbit of V :

f½V5X � : X A PicðLnÞ0g. Hereafter, we write V A VnðkÞ for ½V � A VnðkÞ.

Conjecture A. For V A VnðkÞ, PicðLnÞ0fD�ðVÞg ¼ PicðLnÞ0fVg.

This is true if k ¼ �1.

Now we consider the generalized Moore spectra at the prime three. Then,

Proposition 1.1 says that the generalized mod 3 Moore spectrum is LnVð0Þ
if n < 2. So we work in L2. In [10], Kamiya and the second author

constructed a proper invertible spectrum P that generates a summand

Z=3HPicðL2Þ0 and a monomorphism from PicðL2Þ0 to the direct sum of the

Adams-Novikov Er-terms 0
r>1

Er; r�1
r ðSÞ, which is isomorphic to Z=3lZ=3

by [19]. The invertible spectrum P is constructed by defining a map f : P !
S�21L2V 112

� �
that induces the projection f� : Eð2Þ� ! Eð2Þ�=ð3Þ. There is a

problem that asks whether or not there is another proper invertible spectrum
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Q, which corresponds to the other summand of E
5;4
5 ðSÞ. Since each Eð2Þ�-

homology sphere is an invertible spectrum by [10], X5Vð0Þ for each invertible

spectrum X is an example of generalized Moore spectra other than L2Vð0Þ.
We have no idea whether or not an invertible spectrum X is an Eð2Þ-
localization of a finite spectrum, though X is a retract of Eð2Þ-localization of

a finite spectrum [6]. There is another generalized Moore spectrum L2V 112
� �

(cf. [10]) other than L2Vð0Þ, which is an Eð2Þ-localization of a finite spectrum.

Here V 112
� �

is the Toda spectrum given in [22]. The construction is gener-

alized as follows: It is shown the existence of a map B 0ðiÞ : S16iS ! Vð1Þ that

induces vi2 : BP� ! BP�=ð3; v1Þ for i ¼ 0; 1; 5 (cf. [12]). Since the order of B 0ðiÞ

is three, B 0ðiÞ extends to BðiÞ : S16iVð0Þ ! Vð1Þ. Let S16iþ5Vi denote the

cofiber of BðiÞ. Then, L2Vi A V2ð0Þ for i ¼ 0; 1; 5. Note that V0 ¼ Vð0Þ and

V1 ¼ S�21V 112
� �

.

We have another construction: Let X be an invertible spectrum and

iX A p0ðXÞ denote the element detected by 3gX A E
0;0
2 ðX Þ ¼ Zð3ÞfgXg, and write

WX as the cofiber of iX . In particular, WL2S
0 ¼ L2Vð0Þ. Note that W does

not seem a good operation. Indeed, even though the Adams-Novikov dif-

ferentials d5 on the generators of E0;0
2 ¼ Z=3 for WX5X 0 and WðX5X 0Þ

agree for any strict invertible spectra X and X 0, these spectra are not always

homotopy equivalent. (If the Adams-Novikov di¤erentials d5 on the gen-

erators of E
0;0
2 ¼ Zð3Þ for invertible spectra X and X 0 agree, then they are

homotopy equivalent by [10].) For the proper invertible spectrum P A
PicðL2Þ0, we have WP j for jb 0. Here U j for a spectrum U denotes the j-

fold smash product of U for j > 0 and U 0 ¼ L2S. Note that WP2 ¼ V15P,

since P2 ! P !f S�21L2V1 is a cofiber sequence [8]. It follows that

PicðL2Þ0fWP2g ¼ PicðL2Þ0fL2V1g. If the other proper invertible spectrum

Q exists, then we also have WQ, and V2ð0Þ contains the orbit

PicðL2Þ0fWQ;WQ2g. Put

V2ð0Þ0 ¼ PicðL2Þ0fL2V0;L2V1;L2V5;WP; ðWQ;WQ2 if they existÞg:

Proposition 1.2. V2ð0Þ0 HV2ð0Þ.

The size of PicðLnÞ0 ¼ Vnð�1Þ has an upper bound, but we have no idea

about the size of VnðkÞ for kb 0. Indeed, an generalized k-th Smith-Toda

spectrum is not always a VðkÞ-module spectrum if kb 0.

Conjecture B. V2ð0Þ0 ¼ V2ð0Þ.

For the Spanier-Whitehead dual D, DðX Þ ¼ X 2 for an invertible spectrum

X (cf. [5], [10], Theorem 2.1), and we see that D�ððWX Þ5XÞ ¼ WX5X ,

since the dual of the cofiber sequence X ��!i5X
X 2 ��! ðWXÞ5X is X ����!Dði5XÞ
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X 2 ! SDððWX Þ5XÞ. For Vi, we also see that D�ðL2ViÞ ¼ L2Vi. It follows

that D�ðVÞ A PicðL2Þ0fVg for V A V2ð0Þ0.

Proposition 1.3. If Conjecture B holds, then so does Conjecture A for

k ¼ 0.

In this paper, we determine the homotopy groups of all spectra in V2ð0Þ0
other than WQi for i ¼ 1; 2. The structure of the homotopy groups of L2U

for a spectrum U is more complicated than that of p�ðLKð2ÞUÞ. Here LKð2Þ
denotes the Bousfield localization functor with respect to the second Morava

K-theory Kð2Þ. So we recall [14] the chromatic spectra MnU and NnU for a

spectrum U , which are defined inductively by

N0U ¼ U ; MnU ¼ LnNnU and the cofiber sequence

NnU ! MnU ! Nnþ1U :

Then the homotopy groups p�ðLKð2ÞUÞ are closely related with p�ðM2UÞ, and
the structure of p�ðM2UÞ is less complicated than that of p�ðL2UÞ. Thus we

consider p�ðM2UÞ instead of p�ðL2UÞ. In [17], the homotopy groups p�ðM2V0Þ
for the mod 3 Moore spectrum V0 ¼ Vð0Þ are determined by use of the Eð2Þ-
based Adams spectral sequence. The E2-term of it is a direct sum of modules

A, Bh and Bt, and the homotopy groups are a direct sum of A, eBhBh and eBtBt.

Here, eBjBj denotes the permanent cycles of Bj. By use of the decomposition of

the E2-term, we obtain the homotopy groups in [8]:

p�ðM2V05PkÞ ¼ Al v9�3k
2

eBhBh l v9�3k
2

eBtBt and

p�ðM2V1Þ ¼ Al v32
eBhBh l v62

eBtBt:

Note that v92
eBjBj G eBjBj. These make us to predict the following theorem:

Theorem 1.4. p�ðM2V15PkÞ ¼ Al v3�3k
2

eBhBh l v6�3k
2

eBtBt.

These results let us ask if there is a spectrum Uk such that p�ðUkÞ ¼
Al v6�3k

2
eBhBh l v3�3k

2
eBtBt. The elements of the orbit PicðL2Þ0fWPg give the

a‰rmative answer.

Theorem 1.5. p�ðM2WP5Pkþ1Þ ¼ Al v6�3k
2

eBhBh l v3�3k
2

eBtBt.

For V5, we have

Theorem 1.6. p�ðM2V55PkÞ ¼ Al v3�3k
2

eBhBh l v9�3k
2

eBtBt.

Remark. p�ðM2V5Þ ¼ p�ðM2WP5P2Þ, while L2V5 6FWP5P2 by

Lemma 5.3.
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Remark. If Q exists, then the homotopy groups p�ðM2WQÞ agree with

none of above (cf. [9]).

This paper is organized as follows: In the next section, we include the

result of Strickland. In section 3, we consider a decomposition of the Eð2Þ-
based Adams E2-term, which plays a crucial role to determine the homotopy

groups. Sections 4 and 5 are devoted to define the generalized Moore

spectrum, and to show some properties of them, which show Proposition 1.2.

In section 6, we prove Theorems 1.4 and 1.5. Theorem 1.6 is proved in

section 7.

The authors would like to thank the referee not only for suggesting them

to add the basic facts on generalized Smith-Toda spectra but also introducing

the result of Strickland. The authors would also like to thank Neil Strickland

who kindly allow them to include his result in this paper.

2. Some results on generalized Smith-Toda spectra

Let BP and EðnÞ denote the Brown-Peterson and the n-th Johnson-Wilson

spectra, respectively, at a prime p. We write Ln as the stable homotopy

category consisting of EðnÞ-local spectra. Then BP�BP ¼ BP�½t1; t2; . . .� has a

structure of a Hopf algebroid over BP� ¼ p�ðBPÞ ¼ ZðpÞ½v1; v2; . . .�. Besides, it

induces a Hopf algebroid structure on EðnÞ�EðnÞ over EðnÞ�, since EðnÞ�EðnÞ ¼
EðnÞ� nBP� BP�BPnBP� EðnÞ� for EðnÞ� ¼ v�1

n ZðpÞ½v1; v2; . . . ; vn�H v�1
n BP�.

We consider the EðnÞ-based Adams spectral sequence Es; t
r ðUÞ for

computing the homotopy groups p�ðLnUÞ of a spectrum U . The E2-term is

isomorphic to the Ext group

E
s; t
2 ðUÞ ¼ Ext s; t

EðnÞ�EðnÞ
ðEðnÞ�;EðnÞ�ðUÞÞ

of EðnÞ�EðnÞ-comodules.

The k-th Smith-Toda spectrum VðkÞ is a spectrum with BP�ðVðkÞÞ ¼
BP�=ðp; v1; . . . ; vkÞ. If k < 4, then the Smith-Toda spectrum exists if and

only if 2k < p (cf. [23], [13]). We call a spectrum V a generalized (EðnÞ-local)
k-th Smith-Toda spectrum if EðnÞ�ðVÞ ¼ EðnÞ�=ðp; v1; . . . ; vkÞ as an EðnÞ�EðnÞ-
comodule. The E2-term E

�;�
2 ðVÞ of the EðnÞ-based Adams spectral sequence

agrees with the E2-term E �
2 ðVðkÞÞ if VðkÞ exists. We write VnðkÞ as the

collection of isomorphism classes of generalized k-th Smith-Toda spectra.

Then

#ðVnðkÞÞ ¼ 1 if n2 þ n < 2p

by [21] and [20].
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Since EðnÞ�ðVÞ is finitely generated, we see that VnðkÞ is a set by [5, Th.

2.1.3] and a theorem of Strickland:

Theorem 2.1 (N. Strickland). If EðnÞ�ðXÞ is finitely generated, then X is

small in the EðnÞ-local category.

Proof. Let E be an S-algebra such that EFEðnÞ, whose existence is

certified in [2]. (A. Lazarev also has another argument.) Let CX denote a full

subcategory consisting of spectra Z such that the natural map

0
i

½X ;Z5Yi� ! X ;Z54
i

Yi

� �

is an isomorphism for all families fYig of E-local spectra. Then, CX is a thick

subcategory. Note that X is small if LnS A CX . Since E� is a ring of finite

global dimension and E�ðXÞ is finitely generated, E5X has a finite resolution

by finitely generated free modules in the derived category DE as in [1,

Chap. IV], and hence E5X is small in DE . Since DEðE5X ;E5W5Y Þ ¼
½X ;E5W5Y �, every spectrum of the form E5W is in CX . Furthermore,

since LnS is E-nilpotent (cf. [15]), LnS is in the thick subcategory generated by

the spectra of the form E5W . It follows that LnS A CX as desired. r

3. A decomposition of H �M 1
1

From this section on, we set the prime p ¼ 3 and work in L2, the stable

homotopy category of spectra localized with respect to the second Johnson-

Wilson spectrum Eð2Þ, whose coe‰cient ring is Eð2Þ� ¼ v�1
2 Zð3Þ½v1; v2�H

v�1
2 BP�. Consider the mod 3 Moore spectrum Vð0Þ defined by the cofiber

sequence

S !3 S !i Vð0Þ !j SS;ð3:1Þ

and the first Smith-Toda spectrum Vð1Þ defined by the cofiber sequence

S4Vð0Þ !a Vð0Þ !i1 Vð1Þ !j1 S5Vð0Þ:

Here a denotes the Adams map.

Let UðnÞ denote an n-th generalized Smith-Toda spectrum such that

Eð2Þ�ðUðnÞÞ is isomorphic to Eð2Þ�ðVðnÞÞ as an Eð2Þ�Eð2Þ-comodule, where

VðnÞ denotes the n-th Smith-Toda spectrum. Note that UðnÞ ¼ � if nb 2.

For n ¼ 0, we call a spectrum Uð0Þ A L2 a generalized Moore spectrum, and

consider M2Uð0Þ defined by the cofiber sequence

Uð0Þ ! L1Uð0Þ ! S�1M2Uð0Þ
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(cf. [14]). Consider the Eð2Þ�Eð2Þ-comodule M 0
2 and M 1

1 defined by M 0
2 ¼

Eð2Þ�=ð3; v1Þ, which is also denoted by Kð2Þ�, and the short exact sequence

0 ! Eð2Þ�=ð3Þ ! v�1
1 Eð2Þ�=ð3Þ ! M 1

1 ! 0:

Then we have the short exact sequence

0 �!M 0
2 �!1=v1 M 1

1 �!v1 M 1
1 �! 0ð3:2Þ

of Eð2Þ�Eð2Þ-comodules. The E2-terms of the Eð2Þ-based Adams spec-

tral sequences converging to p�ðUð1ÞÞ and p�ðM2Uð0ÞÞ are H �M 0
2 and

H �M 1
1 , respectively. Here H �M for an Eð2Þ�Eð2Þ-comodule M denotes

Ext�Eð2Þ�Eð2ÞðEð2Þ�;MÞ. The E2-term H �M 0
2 (resp. H �M 1

1 ) is shown in [16]

(resp. [17]) to be isomorphic to the tensor product of Lðz2Þ and the module

M (resp. the direct sum of modules ðKð1Þ�=kð1Þ�ÞnLðh10Þ, 0
nb0

Fn and

ðF lF �Þn ðZ=3Þ½b10�). Here the modules M, F , F � and Fn are given by

M ¼ Kð2Þ�½b10�f1; h10; h11; x;c0;c1; b11xg;

F ¼ Eð2; 1Þ�fvG1
2 =v1; v2h10=v

2
1 ; v

2
2h11=v

2
1 ; v

G1
2 b11=v1g;

F � ¼ Eð2; 1Þ�fx=v21 ; v2G1
2 c0=v1; v

G1
2 c1=v1; b11x=v

2
1g and

Fn ¼ Eð2; nþ 2Þ�fvG3 nþ1

2 =v4�3n�1
1 ; v3

nþ1

2 h10=v
6�3 nþ1
1 ;

v8�3 n

2 h10=v
10�3nþ1
1 ; v

3 nð5G3Þþð3 n�1Þ=2
2 x=v4�3 n

1 g

for

kð1Þ� ¼ ðZ=3Þ½v1�; Eð2; nÞ� ¼ kð1Þ�½vG3 n

2 �; Kð1Þ� ¼ v�1
1 kð1Þ� and

Kð2Þ� ¼ ðZ=3Þ½vG1
2 �:

The element b10 acts on ðF lF �Þn ðZ=3Þ½b10� freely. The action of b10 on Fn

is seen as follows: Consider the exact sequence HsM 0
2 ! HsM 1

1 ! HsM 1
1 !d

Hsþ1M 0
2 associated to (3.2) and suppose that dðxÞ ¼ y and dðwÞ ¼ yb10 for

x A Fn, w A F lF � and y0 0 A H �M 0
2 . Then there exists an element u A

H �M 1
1 such that xb10 ¼ wþ v1u. Thus replacing w by wþ v1u, we have

an isomorphism ðZ=3Þfxgl ðZ=3Þ½b10�fwg ¼ ðZ=3Þ½b10�fxg. We also write

x ¼ w. In this way, we compute the b10-action in [8] and rewrite here the

direct sum of the modules 0
nb0

Fn and ðF lF �Þn ðZ=3Þ½b10� as the direct

sum of 0
nb0

F 0
n and F 0 n ðZ=3Þ½b10�. Here
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F 0 ¼ ðZ=3Þ�fv
3ð3tG1Þ
2 =v31 ¼ v9tG3�2

2 b11=v1;

v
3 nð3tG1Þ
2 =v4�3 n�1�1

1 ¼ v
3 n�1ð9tG3�1Þ�1
2 b11=v1 ðn > 1Þ;

v9t�2
2 b11=v1; v

3 n�1ð3tþ1Þ�1
2 b11=v1; v

3 n�1ð9t�1Þ�1
2 b11=v1;

v
3 nð3tþ1Þ
2 h10=v

2�3 nþ1
1 ¼ v

3 nþ1tþð3 n�1Þ=2
2 c1=v1 ðn > 0Þ;

v
3 nð9tþ8Þ
2 h10=v

10�3 nþ1
1 ¼ v

3nþ2tþ5�3þð3n�1Þ=2
2 c1=v1 ðnb 0Þ; v3t�1

2 c1=v1;

v
3 nð9tþ5G3Þþð3 n�1Þ=2
2 x=v4�3 n

1 ¼ v
3nþ1ð3tþ1G1Þþ3ð3 n�1Þ=2
2 b11x=v

2
1 ðnb 0Þ;

v3t2 b11x=v1g

lEð2; 1Þ�fvG1
2 =v1; v2h10=v

2
1 ; v

2
2h11=v

2
1 ; x=v

2
1 ; v

2G1
2 c0=v1g and

F 0
n ¼ Eð2; nþ 2Þ�fvG3 nþ1

2 =v4�3 n�2
1 ; v3

nþ1

2 h10=v
6�3 n

1 ;

v8�3 n

2 h10=v
10�3 n

1 ; v
3 nð5G3Þþð3 n�1Þ=2
2 x=v4�3 n�1

1 g:

Put

A ¼ ððKð1Þ�=kð1Þ�ÞnLðh10Þl0
nb0

F 0
nÞnLðz2Þ andð3:3Þ

B ¼ F 0 n ðZ=3Þ½b10�nLðz2Þ:

Then we have a decomposition of H �M 1
1 :

H �M 1
1 ¼ AlB:

By observing the construction of modules, these modules satisfy the following:

1. AH03

s¼0
HsM 1

1 .ð3:4Þ
2. If x A BVHsM 1

1 for s > 5, then x ¼ yb10 for some y A B.

3. the generator b10 acts trivially on A and freely on B.

4. The generalized Moore spectrum WX for an invertible spectrum X at

the prime three

We call a spectrum X invertible if there is a spectrum X 0 such that

X5X 0 ¼ L2S. An invertible spectrum X is called strict if HQ0ðX Þ ¼ Q, and

proper if HQ0ðX Þ ¼ Q and X VL2S. We denote by PicðL2Þ0 the collection

of isomorphism classes of strict invertible spectra, which is shown to be a group

with multiplication defined by the smash product and with the unit L2S. Note

that every invertible spectrum is a suspension of a strict one (cf. [6]). It
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is shown in [6] and [10] that X is a strict invertible spectrum if and only if

Eð2Þ�ðXÞ ¼ Eð2Þ� as an Eð2Þ�Eð2Þ-comodule. For a strict invertible spectrum

X , the Eð2Þ-based Adams E2-term E �
2 ðX Þ is isomorphic to E �

2 ðSÞ. In par-

ticular, E0;0
2 ðXÞ ¼ E0;0

2 ðSÞ ¼ Zð3Þ. Take the generator gX A E0;0
2 ðXÞ. Then by

[10], X is characterized by d5ðgX Þ A E
5;4
2 ðX Þ. For example, d5ðgX Þ ¼ 0 if and

only if X ¼ L2S. If d5ðgX Þ0 0, then gX does not detect a homotopy element

but 3gX does. We denote iX as the homotopy element detected by 3gX , and

write WX as the cofiber of iX .

Let V 112
� �

denote the Toda spectrum defined in [22] by the cofiber

sequence

S16Vð0Þ !B Vð1Þ ! V 112
� �

! S17Vð0Þ;

in which the map B induces the homomorphism v2 : Eð2Þ�=ð3Þ ! Eð2Þ�=ð3; v1Þ,
the multiplication by v2. The element B is denoted by ½bi1� in [22]. This is

an example of generalized Moore spectra studied in the next section. In [10],

a proper invertible spectrum P is constructed as well as the existence of a map

f : P ! S�21L2V 112
� �

that realizes the projection Eð2Þ� ! Eð2Þ�=ð3Þ. The

spectrum P is characterized by the di¤erential of the Eð2Þ-based Adams spectral

sequence as follows:

d5ðgPÞ ¼ v�2
2 h11b

2
10 A E

5;4
2 ðPÞ ¼ E

5;4
2 ðSÞ;

where the E2-term E 5;4
2 ðSÞ for p�ðL2SÞ is isomorphic to

ðZ=3Þfv�2
2 h11b

2
10; v

�1
2 xb10z2g. Note then that P2 ¼ P5P is an invertible

spectrum characterized by d5ðgP2Þ ¼ �v�2
2 h11b

2
10 A E5;4

2 ðP2Þ ¼ E5;4
2 ðSÞ. Now

the generalized Moore spectrum WPk for k ¼ 1; 2 fits in the cofiber sequence

S !ik Pk !ik WPk !jk SS;ð4:1Þ

where ik is the abbreviation of iPk .

Proposition 4.2. WP and WP2 are generalized Moore spectra, which are

not Vð0Þ-module spectra.

Proof. By definition, the homotopy element ik A p0ðPkÞ for k ¼ 1; 2

induces ðikÞ� ¼ 3 : Eð2Þ� ¼ Eð2Þ�ðSÞ ! Eð2Þ�ðPkÞ ¼ Eð2Þ�, and so Eð2Þ�ðWPkÞ
is isomorphic to Eð2Þ�=ð3Þ as an Eð2Þ�Eð2Þ-comodule.

We show that 3id0 0 A ½WP;WP�0 for the identity map id A ½WP;WP�0.
Consider the diagram

½WP;WP�0???yi �
1

½P;S �0 ���!i1� ½P;P�0 ���!i1� ½P;WP�0 ���!j1� ½P;S ��1
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The behavior of the map i1� : ½P;S �0 ! ½P;P�0 is observed by the one of

ði15P2Þ� : ½S;P2�0 ! ½S;S �0, since P is an invertible spectrum and P2 is its

inverse. The generator i2 A ZH ½S;P2�0 is detected by 3gP2 A E
0;0
2 ðP2Þ and i1

induces also multiplication by 3 on the E2-terms. Therefore, the induced map

ði15P2Þ� assigns the element 3gP2 to 9gS on the E2-terms, and so we have

ði15P2Þ�ði2Þ ¼ 9 A p0ðSÞ on the homotopy. It follows that the map i1 gen-

erates Z=9H ½P;WP�0. Therefore, i�1 ð3idÞ ¼ 3i1 0 0 A ½P;WP�0, and 3id0 0.

r

The results of [10] and [18] imply the following

Lemma 4.3. If U ¼ WX for an invertible spectrum X, then d5ðgUÞ A
ðZ=3Þfv�2

2 h11b
2
10; v

�1
2 xb10z2gHE

5;4
2 ðUÞ.

Proof. By the definition of WX , there is an exact sequence

E
5;4
2 ðSÞ ����!ðiX Þ�¼3

E
5;4
2 ðX Þ ����!ðiX Þ�

E
5;4
2 ðUÞ ����!d

E
6;4
2 ðSÞ

associated to the cofiber sequence S !iX X !iX U . Since E5;4
2 ðXÞ ¼ E5;4

2 ðSÞ ¼
ðZ=3Þfv�2

2 h11b
2
10; v

�1
2 xb10z2g by [18], ðiX Þ� is a monomorphism. Now the lemma

follows from the naturality of the Adams di¤erentials. r

5. The generalized Moore spectrum V5 related to v52

It is well known that there is a generator vi2 A p16iðVð1ÞÞ for each i ¼ 0; 1; 5

([12]), which are of order three. It follows that there exists a map

BðiÞ : S16iVð0Þ ! Vð1Þ that induces vi2 : Eð2Þ�=ð3Þ ! Eð2Þ�=ð3; v1Þ. Note that

Bð0Þ ¼ i1 and Bð1Þ ¼ b, the Smith element. First we show that

Lemma 5.1. The element v52 A p80ðVð1ÞÞ does not extend to a self-map

v52 : S80Vð1Þ ! Vð1Þ.

Proof. Suppose that such a self-map exists. Then we have a map

v102 : S160Vð1Þ ! Vð1Þ. Since there is an equivalence v92 : S144L2Vð1ÞF
L2Vð1Þ by [7], we obtain a self map v2 : S

16L2Vð1Þ ! L2Vð1Þ. This con-

tradicts to the non-existence of the self map v2 : S
16Vð1Þ ! Vð1Þ, whose

obstruction survives after localizing it with respect to Eð2Þ. r

Now we write S16iþ5Vi as the cofiber of BðiÞ.

Proposition 5.2. L2V5 is a generalized Moore spectrum.

Proof. Consider the diagram
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S84Vð0Þ ���!a S80Vð0Þ ���!i1 S80Vð1Þ ���!j1 S85Vð0Þ

------a

����

------a v5
2

------a

S�1V5 ���!j
Bð5Þ

S80Vð0Þ ���!Bð5Þ
Vð1Þ ���!i

Bð5Þ
S85V5:

Here the broken arrows exist after smashing with Eð2Þ so that the diagram

commutes. Since v52 is an isomorphism on the Eð2Þ�-homology of Vð1Þ,
we have an isomorphism Eð2Þ�=ð3Þ ¼ Eð2Þ�ðVð0ÞÞ ¼ Eð2Þ�ðV5Þ by the Five

Lemma. r

Lemma 5.3. L2V5 VWX for any invertible spectrum X .

Proof. Lemma 5.1 shows that Bð5Þa0 0 A p84ðL2Vð1ÞÞ. Write x0 0 A
E

�;�
2 ðVð1ÞÞ for an element that detects Bð5Þa. Then x A E

4;88
2 ðVð1ÞÞ or

x A E8;92
2 ðVð1ÞÞ. By [16], we see that E 4;88

6 ðVð1ÞÞ ¼ ðZ=3Þfv42b10h11z2g and

E
8;92
6 ðVð1ÞÞ ¼ 0. It follows that x ¼Gv42b10h11z2 A E

4;88
2 ðVð1ÞÞ. Observe the

cofiber sequence that defines V5, and we see that d5ðgV5
Þ ¼ dðxÞ ¼

Gv1v
�3
2 b11b10z2 A E5;4

5 ðV5Þ. In fact, dðv42b10h11z2Þ ¼ ½v�1
1 dðv�1

2 b10h11z2Þ� ¼
v1v

�3
2 b11b10z2 read o¤ from [17, Lemma 3.3]. Therefore, Lemma 4.3 shows

that there is no invertible spectrum X such that L2V5 ¼ WX . r

Proof of Proposition 1.2. Since Eð2Þ�ðXÞ for a strict invertible

spectrum X is isomorphic to Eð2Þ� as an Eð2Þ�Eð2Þ-comodule, we see

that Eð2Þ�ðU5XÞ ¼ Eð2Þ�ðUÞnEð2Þ� Eð2Þ�ðXÞ ¼ Eð2Þ�ðUÞ as an Eð2Þ�Eð2Þ-
comodule. So it su‰ces to show that WX and L2Vi are generalized Moore

spectra. For L2V0, it is trivial, and for L2V1, it is shown in [10]. L2V5 and

WX are generalized Moore spectra by Propositions 5.2 and 4.2, respectively.

r

6. The homotopy groups of generalized Moore spectra

We also work in L2 at the prime three. For a spectrum U , the spectra

NnU and MnU are defined in [14] inductively by the cofiber sequence

NnU ! MnU ! Nnþ1U ;

setting N0U ¼ U and MnU ¼ LnNnU . Then the Eð2Þ-based Adams E2-term

for the homotopy groups p�ðM2UÞ of a generalized Moore spectrum U is

isomorphic to

E �
2 ðM2UÞ ¼ E �

2 ðM2Vð0ÞÞ ¼ H �M 1
1 ;

where H �M for an Eð2Þ�Eð2Þ-comodule M denotes Ext�Eð2Þ�Eð2ÞðEð2Þ�;MÞ, and
the comodule M 1

1 is the cokernel of the localization map Eð2Þ�=ð3Þ !

Homotopy of generalized Moore spectra 135



v�1
1 Eð2Þ�=ð3Þ. By observing the decomposition (3.3) of E �

2 ðM2UÞ ¼ H �M 1
1 ,

we obtain

Lemma 6.1. The Eð2Þ-based Adams di¤erentials d5 and d9 are trivial on

AHE �
2 ðM2UÞ for any generalized Moore spectrum U .

Proof. Suppose that drðxÞ ¼ y for an element x A A. Then y A B by

(3.4) 1), since the filtration degree of y is greater than 4. Now apply b10, and

we have

0 ¼ drðxb10Þ ¼ yb10 A E �
r ðM2UÞ

by (3.4) 3) and the naturality of the di¤erential, since b10 detects the homotopy

element b1 A p10ðSÞ. If r ¼ 5, then b10 acts freely on B, and so y ¼ 0.

If r ¼ 9, then yb10 A E �
2 ðM2UÞ is zero or killed by an element u under

the di¤erential d5. If yb10 ¼ 0 in the E2-term, then y ¼ 0 by (3.4) 3). So we

assume that d5ðuÞ ¼ yb10 for some u A E �
2 ðM2UÞ. Since the filtration degree of

y is greater than 8, the filtration degree of u is greater than 5, and so u ¼ wb10
for some w A B by (3.4) 2). It follows that d5ðwÞ ¼ y modKer b10. Note that

Ker b10 HB. Since b10 acts freely on B in the E5ð¼ E2Þ-term, we see that

Ker b10 ¼ 0, which shows that d9ðxÞ ¼ 0. r

Let P be the proper invertible spectrum constructed in [10], and consider

the cofiber sequence S !ik Pk !ik WPk !jk SS for k ¼ 0; 1; 2, where we abbreviate

iPk by ik. Then it induces a long exact sequence

p�ðM2SÞ �!ik� p�ðM2P
kÞ �!ik� p�ðM2WPkÞ �!jk� p��1ðM2SÞ

�!ik� p��1ðM2P
kÞ:

The homotopy groups p�ðM2SÞ are computed by the Eð2Þ-based Adams

spectral sequence with E2-term H �M 2
0 . Here M 2

0 is the comodule defined by

the short exact sequences

0 ! Eð2Þ� ! 3�1Eð2Þ� ! N 1
0 ! 0 and 0 ! N 1

0 ! v�1
1 N 1

0 ! M 2
0 ! 0

of Eð2Þ�Eð2Þ-comodules, in which both of the inclusions are the localization

maps. Since we have H �M 1
1 ¼ AlB, the structure of the E2-term H �M 2

0 is

described by using A and B, which is seen by observing the long exact sequence

0 ! H 0M 1
1 !f� H 0M 2

0 !3 H 0M 2
0 !d H 1M 1

1 ! � � � ! HsM 1
1 !f� HsM 2

0

!3 HsM 2
0 !d Hsþ1M 1

1 ! � � �

associated to the short exact sequence

0 ! M 1
1 !f M 2

0 !3 M 2
0 ! 0:ð6:2Þ
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In fact, let M for M ¼ A;B denote the module fitting in the exact sequence

M !f M !3 M !d M. It is shown in [18] that B is decomposed into Bh and Bt

so that fðBhÞ ¼ B and dðBÞ ¼ Bt. Note that these are isomorphisms, that is,

Bh GBGBt. Then, we obtain

H �M 2
0 ¼ AlB

by [11, Remark 3.11]. The behaviors of the di¤erentials d5 and d9 on the

spectral sequence for p�ðM2Vð0ÞÞ are studied in [17] as follows:

(6.3) 1. the di¤erentials d5 and d9 act trivially on A.

2. the survivors of B in the E10-term have the filtration degree less than

13.

Let eBhBh and eBtBt denote the submodules consisting of the survivors of Bh and Bt

in E10-term, respectively. The properties (6.3) 2) and (3.4) 1) show that the

E10-term has the horizontal vanishing line s ¼ 13, which means that the E10-

term is the Ey-term. Therefore, we obtain

p�ðM2Vð0ÞÞ ¼ Al eBhBh l eBtBt:

A similar properties hold for the spectral sequence for p�ðM2SÞ [18]:

(6.4) 1. the di¤erentials d5 and d9 act trivially on A.

2. the survivors of B in the E10-term have the filtration degree less than

13.

Therefore, the same argument as above shows

p�ðM2SÞ ¼ Al ~BB;

where ~BB denotes the submodule consisting of the survivors of B in E10-term.

Remark. In [18], the structure of A was left undetermined. It is de-

termined in [19].

Under this notation, we determined in [8] the structure of the homotopy

groups p�ðPkÞ for k ¼ 0; 1; 2 as

p�ðM2P
kÞ ¼ Al v9�3k

2
~BB:ð6:5Þ

Note that v92
~BB ¼ ~BB. Consider now the cofiber sequence

M2P
l ���!ik5Pl

M2P
kþl ���!ik5Pl

M2WPk5Pl ���!jk5Pl

M2P
lð6:6Þ

obtained by smashing Pl with the cofiber sequence (4.1). Then we compute

the homotopy groups p�ðM2WPk5PlÞ by the structure (6.5) of p�ðM2P
kÞ.

Theorem 6.7. p�ðM2WPk5PlÞ ¼ Al v9�3l
2

eBhBh l v
9�3ðkþlÞ
2

eBtBt.

Homotopy of generalized Moore spectra 137



Proof. The cofiber sequence (6.6) induces a long exact sequence

HsM 1
1 ����!ð jk5PlÞ�

HsM 2
0 ����!3

HsM 2
0 ����!ðik5Pl Þ�

Hsþ1M 1
1

of the Eð2Þ-based Adams E2-terms. Since there are isomorphisms

ðik5PlÞ�ðBÞ ¼ dðBÞ ¼ Bt and ð jk5PlÞ�ðBhÞ ¼ fðBhÞ ¼ B in the E2-terms, we

see that v
9�3ðkþlÞ
2

eBtBt l v9�3l
2

eBhBh is a summand of Ey-term for p�ðM2WPk5PlÞ
by the naturality of the Adams di¤erential. It also shows the same result as

(6.3) 2). Therefore, the di¤erentials dr on A are trivial by Lemma 6.1. r

Proof of Theorem 1.4. In [8], we show that P2 ! P !f L2V1 is a cofiber

sequence for the proper invertible spectrum P. It follows that V15P ¼ WP2,

and V1 ¼ WP25P2. Thus the theorem follows from Theorem 6.7. r

Proof of Theorem 1.5. This is a corollary of Theorem 6.7. r

7. The homotopy groups p�ðL2V5Þ

Let S85V5 denote the cofiber of Bð5Þ : S80Vð0Þ ! Vð1Þ as above. By

definition, we have the cofiber sequence

S84L2V5 ��!j
Bð5Þ

S80L2Vð0Þ ��!Bð5Þ
L2Vð1Þ ��!i

Bð5Þ
S85L2V5:

Then we obtain the cofiber sequence

L2Vð1Þ !
f5

S84M2V5 !
A5

S80M2Vð0Þ !q5 SL2Vð1Þ

by Verdier’s axiom. This induces an exact sequence

� � � ���! H �M 0
2 ���!v�5

2
=v1

H �M 1
1 ���!v1 H �M 1

1 ���!d5 H �M 0
2 ���! � � � ;ð7:1Þ

where d5 ¼ v52d for the connecting homomorphism d associated to the short

exact sequence (3.2).

We consider the Adams di¤erentials on BHE �
2 ðM2V5ÞGH �M 1

1 . For

this sake, it su‰ces to know the behavior on the elements

v3tG1
2 =v1; v3tþ1

2 h10=v
e
1; v3t2 x=v

e
1; and v3tG1

2 c1=v1

for t A Z and e ¼ 1; 2. Indeed, using the multiplicative relations given in

[16, Prop. 5.9], the behavior on the other elements is deduced by the

actions of the homotopy elements b6=3 A p82ðSÞ and b1 A p10ðSÞ, which are

detected by gv32b11v32b11 A E
2;84
2 ðSÞ and b10 A E

2;12
2 ðSÞ, respectively. Here, gv32b11v32b11 1

v32b11 modð3; v1Þ.

Lemma 7.2. The behavior of the Adams di¤erentials is given by:
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d5ðv3tþ1
2 =v1Þ ¼ ð1� tÞv3t�1

2 h11b
2
10=v1;

d5ðv3t�1
2 =v1Þ ¼ 0;

d9ðv3tþ1
2 h10=v1Þ ¼Gtðt� 1Þv3t�2

2 b510=v1;

d5ðv3tþ1
2 h10=v

2
1Þ ¼ tv3t�1

2 b310=v1 up to sign;

d9ðv3t2 x=v1Þ ¼Gðt2 � 1Þv3t�3
2 c0b

4
10=v1;

d5ðv3t2 x=v21Þ ¼ ð1� tÞv3t�2
2 c0b

2
10=v1 up to sign;

d5ðv3tþ1
2 c1=v1Þ ¼ �tv3t2 xb

3
10=v1 and

d5ðv3t�1
2 c1=v1Þ ¼ 0:

Proof. First consider the elements in the image of v�5
2 =v1. In the Eð2Þ�-

based Adams spectral sequence for p�ðL2Vð1ÞÞ,

d5ðv j
2Þ ¼

0 j1 0; 1; 5 ð9Þ
�v

j�2
2 h11b

2
10 j1 3; 4; 8 ð9Þ

v
j�2
2 h11b

2
10 j1 2; 6; 7 ð9Þ

8><
>:ð7:3Þ

d5ðv j
2c1Þ ¼

0 j1 2; 6; 7 ð9Þ
�v

j�1
2 xb310 j1 0; 1; 5 ð9Þ

v
j�1
2 xb310 j1 3; 4; 8 ð9Þ

8><
>:

d9ðv j
2h10Þ ¼

v
j�3
2 b510 j1 3; 4; 8 ð9Þ
0 otherwise

�
d9ðv j

2xÞ ¼
v
j�3
2 c0b

4
10 j1 1; 5; 6 ð9Þ

0 otherwise

�

by [16, Prop. 8.4, Prop. 9.10]. Note that the undetermined integer k in [16]

is shown to be 1 in [4] (see also [3]). By the first two equations, we compute

d5ðv3tþ1
2 =v1Þ ¼ ðv�5

2 =v1Þ�d5ðv3tþ6
2 Þ ¼ ð1� tÞðv�5

2 =v1Þ�ðv3tþ4
2 h11b

2
10Þ;

d5ðv3t�1
2 =v1Þ ¼ ðv�5

2 =v1Þ�d5ðv3tþ4
2 Þ ¼ �ðtþ 1Þðv�5

2 =v1Þ�ðv3tþ2
2 h11b

2
10Þ;

d5ðv3tþ1
2 c1=v1Þ ¼ ðv�5

2 =v1Þ�d5ðv3tþ6
2 c1Þ ¼ �tðv�5

2 =v1Þ�ðv3tþ5
2 xb310Þ and

d5ðv3t�1
2 c1=v1Þ ¼ ðv�5

2 =v1Þ�d5ðv3tþ4
2 c1Þ ¼ ð1� tÞðv�5

2 =v1Þ�ðv3tþ3
2 xb310Þ:

Since d5ðv3tG1
2 b210=v1Þ ¼Gv3tG1þ4

2 h11b
2
10 and d5ðv3tG1

2 c1b
2
10=v1Þ ¼Gv3tG1þ5

2 xb310
are the only relations related to our case by [17, Prop. 3.4], we see the first, the

second, the seventh and the eighth equalities.

We also compute with (7.3) as
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d9ðv3tþ1
2 h10=v1Þ ¼ ðv�5

2 =v1Þ�d9ðv3tþ6
2 h10Þ ¼Gtðt� 1Þðv�5

2 =v1Þ�ðv3tþ3
2 b510Þ and

d9ðv3t2 x=v1Þ ¼ ðv�5
2 =v1Þ�d9ðv3tþ5

2 xÞ ¼Gðt2 � 1Þðv�5
2 =v1Þ�ðv3tþ2

2 c0b
4
10Þ:

Furthermore, d5ðv3tþ1
2 h10b

4
10=v

2
1Þ ¼ v3tþ5

2 b510 and d5ðv3t2 xb410=v21Þ ¼ �v3tþ4
2 c0b

4
10 are

the only relations, and we see the third and fifth equalities.

We make a di¤erent argument to show the fourth and the sixth

equalities. Since d5ðv3tþ1
2 h10=v

2
1Þ A E

6;16ð3tþ1Þ
2 ðL2V5Þ ¼ ðZ=3Þfv3t�1

2 b310=v1g, we

put d5ðv3tþ1
2 h10=v

2
1Þ ¼ kv3t�1

2 b310=v1 for some k A Z=3. We see that

ðv�5
2 =v1Þ�ðkv3tþ4

2 b310Þ ¼ kv3t�1
2 b310=v1 and d5ðv3tþ4

2 b310Þ ¼ �ð1þ tÞv3tþ2
2 h11b

5
10. On

the other hand, d5ðd9ðv3tþ1
2 h10=v1ÞÞ ¼ tðtþ 1Þd5ðv3t�2

2 b510=v1Þ ¼ tðtþ 1Þ �
v3tþ2
2 h11b

5
10. Therefore, kðtþ 1Þ ¼ tðtþ 1Þ A Z=3 up to sign. It follows that

k ¼ t A Z=3 if t0 2 A Z=3. If t ¼ 2 A Z=3, then q5�ðv9sþ7
2 h10=v1Þ ¼ kv9sþ10

2 b310.

By applying b310,

kv9sþ10
2 b610 ¼ q5�ðv9sþ7

2 h10b
3
10=v1Þ ¼ q5�ðd5ðv9sþ7

2 b11=v1ÞÞ

¼ d9ðd5ðv9sþ7
2 b11=v1ÞÞ ¼ d9ðv9sþ13

2 h10b10Þ

¼ v9sþ10
2 b610

up to sign by [17, Prop. 8.5], and k0 0. Thus the fourth equality follows. In

the same manner as this, we obtain the sixth. In fact, d5ðd9ðv3t2 x=v1ÞÞ ¼
tðt� 1Þv3t2 xb11b410 ¼ ktv3t2 xb11b

4
10 ¼ d5ðkv3tþ3

2 c0b
2
10Þ if we put d5ðv3t2 x=v21Þ ¼

kv3t�2
2 c0b

2
10=v1 for some k A Z=3. Thus, k ¼ t� 1 if t0 0. If t ¼ 0, we

see that k0 0 by the equation kv9sþ3
2 c0b

5
10 ¼ q5�ðd5ðv9sþ1

2 c1=v1ÞÞ ¼
d9ðd5�ðv9sþ1

2 c1=v1ÞÞ ¼ v9sþ3
2 c0b

5
10 up to sign. r

Proof of Theorem 1.6. For the homotopy groups p�ðL2Vð0ÞÞ, the

Adams di¤erentials act as follows:

d5ðv3tþ1
2 =v1Þ ¼ �tv3t�1

2 h11b
2
10=v1; d9ðv3t2 x=v1Þ ¼Gtðt� 1Þv3t�3

2 c0b
4
10=v1;

d5ðv3t�1
2 =v1Þ ¼ 0; d5ðv3t2 x=v21Þ ¼ ð1� tÞv3t�2

2 c0b
2
10=v1;

d9ðv3tþ1
2 h10=v1Þ ¼Gtðtþ 1Þv3t�2

2 b510=v1; d5ðv3tþ1
2 c1=v1Þ ¼ �ðtþ 1Þv3t2 xb310=v1;

d5ðv3tþ1
2 h10=v

2
1Þ ¼ tv3t�1

2 b310=v1; d5ðv3t�1
2 c1=v1Þ ¼ 0:

We decompose B into eight summands, each of which is generated by the

one of the above eight elements as Eð2Þ�½b1; b6=3�=ðb
2
6=3 � v92b

2
1Þ-modules. We

name them F 0
h , F 0

t , F 1
h , F 1

t , F �0
h , F �0

t , F �1
h and F �1

t , respectively. Corres-

ponding ones of L2V5, we name them G instead of F . Then Lemma 7.2

shows the isomorphisms

G0
h ¼ v32F

0
h ; G0

t ¼ F 0
t ; G1

h ¼ v32F
1
h ; G1

t ¼ F 1
t ;
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G�0
h ¼ v32F

�0
h ; G�0

t ¼ F �0
t ; G�1

h ¼ v32F
�1
h and G�1

t ¼ F �1
t

as spectral sequences. Since B ¼ 0
x¼h; t; e¼0;1

G e
x lG�e

x , the E10-term has the

same horizontal vanishing line as the one for p�ðL2Vð0ÞÞ. It follows that

every element of A survives to the Ey-term by Lemma 6.1. r
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