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This study focuses on the numerical resolution of backward stochastic differential equations with data

dependent on a jump-diffusion process. We propose and analyse a numerical scheme based on iterative

regression functions which are approximated by projections on vector spaces of functions, with

coefficients evaluated using Monte Carlo simulations. Regarding the error, we derive explicit bounds

with respect to the time step, the number of paths simulated and the number of functions: this allows

us to optimally adjust the parameters to achieve a given accuracy. We also present numerical tests

related to option pricing with differential interest rates and locally risk-minimizing strategies

(Föllmer–Schweizer decomposition).
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1. Introduction

Let (�, F , (F t) t, P) denote a given filtered probability space on which a standard

Brownian motion W in Rq and a jump-diffusion process X in Rd are defined. We aim to

numerically approximate a generalized backward stochastic differential equation (GBSDE)

with a fixed terminal time T ,

�dYt ¼ f (t, X t, Yt, Z t)dt � Z t dW t � dLt, YT ¼ �(X T ), (1)

where Y is a scalar cadlag adapted process, Z is a predictable Rq-valued process (as a row

vector) and L is a scalar cadlag martingale orthogonal to W (with L0 ¼ 0). Actually, in what

follows, X could be any Markov process. Our results can be extended to higher-dimensional Y ,

Z and L as well. Under suitable Lipschitz assumptions on the driver f and L2-integrability

conditions, there is a unique solution (Y , Z, L) in appropriate spaces of processes (with L2

norms): for details, we refer to Pardoux and Peng (1990) for the Brownian filtration (L � 0),

and to El Karoui et al. (1997) for general filtrations. A more comprehensive situation is treated

in Barles et al. (1997), where in addition the driver is allowed todepend on the martingale L.

The main focus of this work is to provide and analyse a simple algorithm based on
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empirical regression methods using simulated paths of X , which approximates the (Y , Z)

solution of (1) (L could be obtained as a difference). For the convergence analysis,

techniques from BSDEs and nonparametric regressions are mixed, which illustrates another

interesting interface between probability and statistics. To encourage future collaborations

between people in these different fields, we now give an overview of the related

applications and issues.

1.1. Applications

During the last decade, the importance of designing efficient numerical methods to solve (1)

has increased significantly because of various applications. For references, see El Karoui et al.

(1997). Solving (1) may give access to the Föllmer and Schweizer (1991) decomposition of

�(X T ) ¼ Y0 þ
Ð T

0
� t dX t þ ~LLT , with a martingale ~LL strongly orthogonal to the martingale part

of X ; in that case, the driver f is linear. In finance, this decomposition plays a crucial role in

valuing and hedging claims (with payoff �(X T )) in incomplete markets: this is the concept of

locally risk-minimizing strategies. In this instance, Y stands for the price and Z is related to

the hedging strategy. The current BSDE framework applies to this financial setting if the

martingale part of the traded assets X is driven by W, meaning that the jumps are incorporated

only in the volatility and the non-traded assets. Finally, for the connection between BSDEs and

dynamic risk measures, see Peng (2004). On the relation with semi-linear partial differential

equations (possibly with integral-differential operators), see Barles et al. (1997).

1.2. Where nonparametric regressions come in

The first approximation of (1) is a time discretization using a time step h ¼
T=N : (t k ¼ kh)0<k<N denotes the discretization times. We set ˜W k ¼ W t kþ1

� W t k

(˜W l,k componentwise) and X N a relative approximation of X at these discretization

times, obtained, say, through an Euler scheme on the jump-diffusion equation satisfied by X

(see Jacod 2004, among others). Quite naturally, the solution (Y , Z) of (1) is approximated

by (Y N , Z N ) defined in a backward manner by Y N
t N

¼ �(X N
t N
) and

Y N
t k
¼ E t k

(Y N
t kþ1

)þ hE t k
f (t k , X N

t k
, Y N

t kþ1
, Z N

t k
), hZ N

t k
¼ E t k

(Y N
t kþ1

˜W�
k ), (2)

where E t k
is the conditional expectation with respect to F t k

and � the transpose. In Theorem

1 below, we state the convergence of (Y N , Z N ) towards (Y , Z) in the standard BSDE L2-

norm as N goes to infinity. As the terminal condition is a deterministic function of X N
t N

and

as X N is a Markov chain, it is easy to see that Y N
t k
¼ yN

k (X
N
t k
) and Z N

t k
¼ zN

k (X
N
t k
), where yN

k

and zN
k are unknown regression functions defined in a backward manner by yN

N (�) ¼ �(�), and

yN
k (x) ¼ E yN

kþ1(X
N
t kþ1

)þ hf (t k , X N
t k
, yN

kþ1(X
N
t kþ1

), zN
k (X

N
t k
))jX N

t k
¼ x

� �
,

hzN
k (x) ¼ E yN

kþ1(X
N
t kþ1

)˜W�
k jX N

t k
¼ x

� �
:

We are thus faced with the iterative computation of N unknown regression functions. There
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are several ways to approximate a regression function: for example, kernel methods (see Bosq

and Lecoutre 1987) or projection methods on vector spaces of functions (see Györfi et al.

2002). However, in comparison with the classic nonparametric regression problem, there is a

further difficulty in our case because the N regression functions are nested: the regression

function computed at time t kþ1 is used to compute a new regression function at time t k . Thus

we have to find a way of approximating the unknown regression functions that fulfils two

constraints: it must lead to a nice propagation of the error during the backward iteration and

its complexity must be reasonable regarding the accuracy (keep in mind that as N goes to

infinity, more and more regression functions have to be estimated).

Some approximation schemes have already been considered for solving this problem, in

the case of Brownian filtration and diffusion processes for X. The first method involves

replacing X N by a Markov chain with finite state space and known transition probabilities,

leading to a regression function that can be exactly computed. This is achieved either by

replacing the Brownian motion by a random walk (see Briand et al. 2001; Ma et al. 2002)

or by using quantization techniques (see Bally and Pagès 2003). The second method

involves directly computing a nonparametric approximation of the regression function.

Bouchard and Touzi (2004) use a technique based on Malliavin calculus integration-by-parts

formulae (under an ellipticity assumption on the diffusion process X ), whereas Egloff

(2005) uses a least-squares method, both methods using Monte Carlo simulations of X N . In

our paper, for the first time (to our knowledge) the case of a non-Brownian filtration

(leading to L 6¼ 0) is considered for the numerical resolution of (1).

1.3. Our contributions

We also approximate the unknown regression functions using projections on vector spaces

of functions. Using M Monte Carlo simulations of X N , we solve at each discretization time

t k a least-squares problem to determine the approximation in the vector space spanned by a

finite number of functions. The parameters of this numerical scheme are the number of time

steps N , the number of Monte Carlo simulations M and the number and type of functions.

In Gobet et al. (2005), we have already studied the influence of the parameters for a similar

procedure, but unfortunately the estimates as M ! 1 (see Gobet et al. 2005: Theorem 3)

involve the fourth moments of the L2-orthonormalized basis functions. It turns out that

these moments are difficult to evaluate, presumably converging to infinity as the dimension

of the vector space increases. Therefore the practical use of these results remains

questionable, in particular if one has to achieve a given accuracy by a joint convergence of

N , M and the number of functions to infinity. In this work, we derive tractable error

estimates that depend only on N , M and the number of functions.

Thus we obtain an explicit rate of convergence for an algorithm which is very efficient.

Beyond the fact that we are not restricted to Brownian randomness, we mention other

advantages of our approach compared to existing schemes. Compared to Bally and Pagès

(2003), we do not need quantization grids and can use more flexible choices of vector spaces

of functions than Voronoı̈ cells alone. Compared to random walk approximations (Briand et

al. 2001; Ma et al. 2002), we establish a rate of convergence. The algorithm is easier to
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implement than that in Bouchard and Touzi (2004) and generally results in greater accuracy.

Finally, a significant advantage is that our approach is distribution-free with respect to X .

This means that in our error estimates, we make very little use of the specific form of the

model for X , which could be any Markov process. No non-degeneracy condition on X is

required, which is a significant difference from a Malliavin calculus approach. We mention

similar results recently obtained by Egloff (2005), for optimal stopping problems with a fixed

number of dates N . His approximations of regression functions are more general than ours.

However, his error bounds increase geometrically with N , which does not fit our current

framework (in addition, we have to overcome difficulties related to Z).

1.4. Organization of this paper

In Section 2, we rigorously define the model, introduce notation used throughout the paper,

explain the algorithm, state our main results and discuss the trade-off between accuracy and

complexity. The proofs are postponed to Section 4. In Section 3 we present numerical tests which

illustrate the error bounds derived in Section 2 for explicit choices of vector spaces of functions.

2. The algorithm

2.1. Model

We follow the presentation of Barles et al. (1997). Let (�, F , (F t) t, P) be a stochastic

basis, where the filtration satisfies the usual conditions of right-continuity and completeness.

We suppose that the filtration is generated by two mutually independent processes: an Rq-

valued Brownian motion W and a Poisson random measure � on Rþ 3 E, where

E ¼ R lnf0g is equipped with its Borel field E, with compensator �(dt, de) ¼ dtº(de), such

that f ~��([0, t]3 A) ¼ (�� �)([0, t]3 A)g t>0 is a martingale for all A 2 E with

º(A) , þ1. º is assumed to be a � -finite measure on (E, E) satisfyingÐ
E
(1 ^ jej2)º(de) , þ1. We consider the Rd-valued jump-diffusion

X t ¼ x þ
ð t

0

b(s, X s)ds þ
ð t

0

� (s, X s)dWs þ
ð t

0

ð
E

�(s, X s� , e) ~��(ds, de), (3)

which is uniquely defined under the following assumption.

Assumption 1. The functions b(t, x) and � (t, x) are uniformly Lipschitz continuous with

respect to (t, x) 2 [0, T ]3 Rd. For some constant c, the function � satisfies

j�(t, x, e)j < c(1 ^ jej) and j�(t, x, e)� �(t9, x9, e)j < c(jx � x9j þ jt � t9j)(1 ^ jej) for any

(t, x), (t, x9) 2 [0, T ]3 Rd and e 2 E.

We denote by X N a time-discretization of X (we may think of Euler schemes, see Jacod

2004 and references therein) and we suppose that X N is a Markov chain, which satisfies
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Assumption 2. As N goes to infinity, sup0<k<NEjX t k
� X N

t k
j2 ! 0.

We require a convergence of X N towards X in the L2-norm because we aim to approximate

the solution of (1) in the usual BSDE norm. We refer to Jacod (2004) for other convergence

results.

The GBSDE (1) is well-defined under the following assumption:

Assumption 3. The driver f satisfies the continuity estimate

j f (t2, x2, y2, z2)� f (t1, x1, y1, z1)j < C(jt2 � t1j1=2 þ jx2 � x1j þ jy2 � y1j þ jz2 � z1j)

for any (t1, x1, y1, z1), (t2, x2, y2, z2) 2 [0, T ]3 Rd 3 R3 Rq. The terminal condition � is

Lipschitz continuous.

Actually, only the L2-integrability of �(X T ) is usually required, but here the smoothness of �
is imposed to derive explicit error estimates.

Finally, to ensure that the discrete GBSDE satisfies a Lipschitz continuity property with

respect to the state variable X N , one requires (X N
t k
)k to be a Markov chain and X N ,k0,x

t k
to

satisfy1 the following assumption:

Assumption 4. For some constant C . 0,

(a) EjX N ,k0,x
t N

� X N ,k0,x9
t N

j2 þ EjX N ,k0,x
t k0þ1

� X N ,k0,x9
t k0þ1

j2 < Cjx � x9j2 for any x and x9, uni-

formly in k0 and N;

(b) EjX N ,k0,x
t k0þ1

� xj2 < Ch(1þ jxj2) for any x, uniformly in k0 and N.

This kind of assumption has been introduced in Gobet et al. (2005) and is quite natural since

it is fulfilled by X itself under Assumption 1. We now state a convergence result regarding

the time discretization.

Theorem 1. Under Assumptions 1–3, define the error

e(N ) ¼ max
0<k<N

EjY N
t k
� Yt k

j2 þ E
XN�1

k¼0

ð t kþ1

t k

jZ N
t k
� Z tj2 dt,

where Y N and Z N are given by (2). Then e(N ) converges to 0 as N ! 1. Furthermore, in

the case of Brownian filtration (� � 0 and L � 0) and when X N is the Euler scheme of X ,

e(N ) ¼ O(N�1).

The proof, which is quite standard, is set out in full in Gobet and Lemor (2006).

1As usual, X
N ,k0,x
t k

denotes X N
t k

starting at x at time t k0 .
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2.2. Notation

We now introduce convenient notation for describing the algorithm.

2.2.1. Localization

We define localized versions of the Brownian increments and of the functions f , �,

[˜W l,k]w ¼ (�R0

ffiffiffi
h

p
) _ ˜W l,k ^ (R0

ffiffiffi
h

p
),

f R(t, x, y, z) ¼ f (t, �R1 _ x1 ^ R1, . . . , �Rd _ xd ^ Rd , y, z),

�R(x) ¼ �(�R1 _ x1 ^ R1, . . . , �Rd _ xd ^ Rd),

where R ¼ (R0, R1, . . . , Rd) 2 (Rþ)dþ1, the influence of which is analysed in Proposition 2.

These localizations enable us to slightly modify (2) and define (Y N ,R, Z N ,R) by

Y N ,R
t k

¼ E t k
(Y N ,R

t kþ1
)þ hE t k

f R(t k , X N
t k
, Y N ,R

t kþ1
, Z N ,R

t k
), (4)

hZ N ,R
t k

¼ E t k
(Y N ,R

t kþ1
[˜W k]

�
w), (5)

and Y N ,R
t N

¼ �R(X N
t N
). With the same arguments as for (Y N , Z N ), we can easily see that

Y N ,R
t k

¼ y
N ,R
k (X N

t k
) and Z N ,R

t k
¼ z

N ,R
k (X N

t k
) for deterministic functions y

N ,R
k (�) and z

N ,R
k (�).

Moreover, the functions y
N ,R
k and

ffiffiffi
h

p
z

N ,R
k are Lipschitz continuous uniformly in R and

N (see Proposition 1 below). But the main motivation for this localization is to provide

bounded (unknown) regression functions y
N ,R
k and z

N ,R
k : one has ky

N ,R
k k1 < C y(R) and

kz
N ,R
l,k k1 < Cz(R) (for details on these upper bounds, see again Proposition 1). This

boundedness property plays an important role in the derivation of error bounds.

2.2.2. Vector spaces of functions

At each discretization time t k , 0 < k < N � 1, we choose q þ 1 deterministic functions

bases pl,k(�)ð Þ0< l<q and we look for an approximation of y
N ,R
k (�) (or z

N ,R
l,k (�)) in the vector

space spanned by the basis p0,k (or pl,k). Each basis pl,k is considered as a vector of

functions, of dimension K l,k . The vector space of functions spanned by pl,k is denoted by

Pl,k , that is, Pl,k ¼ fÆ � pl,k(�), Æ 2 RK l, kg. A common example is the hypercube basis HC

used in Gobet et al. (2005). In this case, pl,k does not depend on l or k and its dimension

is denoted by K. Choose a domain D � Rd centred on X0 ¼ x, that is,

D ¼
Qd

i¼1]xi � a, xi þ a], and partition it into small hypercubes of edge �. Thus,

D ¼ [i1,...,id
Di1,...,id

where Di1,...,id
¼ ]x1 � a þ i1�, x1 � a þ (i1 þ 1)�] 3 � � � 3 ]xd � a þ

id�, xd � a þ (id þ 1)�]. Then we define pl,k as the indicator functions associated with

this set of hypercubes: pl,k(�) ¼ (1Di1,...,id
(�))i1,...,id

.
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2.2.3. Monte Carlo simulations

The evaluation of the different projection coefficients Æ will be obtained using M

independent Monte Carlo simulations of (X N
t k
)0<k<N and (˜W k)0<k<N�1. We denote these

Monte Carlo simulations by (X N ,m
t k

)1<m<M ,0<k<N and (˜W m
k )1<m<M ,0<k<N�1.

For the sake of brevity of notation, we write pl,k(X
N ,m
t k

) ¼ pm
l,k . We define by BM

l,k the

M 3 K l,k matrix with rows ( pm
l,k)

�. We denote by K M
l,k the rank of BM

l,k (K M
l,k is random

and lower than K l,k).

2.2.4. Truncations

We have mentioned that yN ,R
k and zN ,R

l,k are respectively bounded by C y(R) and Cz(R), and

it is useful to force our approximations to be bounded in the same way. This is the role of

the following truncations. For a function ł, we define two new functions [ł] y and [ł]z by

[ł] y(x) ¼ �C y(R) _ ł(x) ^ C y(R), [ł]z(x) ¼ �Cz(R) _ ł(x) ^ Cz(R),

which are bounded respectively by C y(R) and Cz(R). Our approximation of yN ,R
k (or zN ,R

l,k )

will belong to the space [P0,k] y ¼ f[Æ � p0,k] y(�), Æ 2 RK0, kg (or [Pl,k]z ¼ f[Æ � pl,k]z(�),
Æ 2 RK l, kg).

2.2.5. Constants

In the following, we denote by C any finite constant which value may change in value from

line to line but which is independent of N , M , the function bases and the vector R. It

depends only on b, � , �, º, f , �, T and x.

2.3. Description of the algorithm

The functions (y
N ,R
k )0<k<N�1 and (zN ,R

l,k )1< l<q,0<k<N�1 are approximated by

(y
N ,R,M
k )0<k<N�1 and (zN ,R,M

l,k )1< l<q,0<k<N�1, which are constructed in a backward manner.

Initialization. For k ¼ N take y
N ,R,M
N (�) ¼ �R(�).

Iteration. For k ¼ N � 1, . . . , 0, solve the q least-squares problems

ÆM
l,k ¼ arg inf

Æ

1

M

XM

m¼1

����yN ,R,M
kþ1 (X N ,m

t kþ1
)
[˜W m

l,k]w

h
� Æ � pm

l,k

����
2

: (6)

Then compute ÆM
0,k as the minimizer of

1

M

XM

m¼1

jyN ,R,M
kþ1 (X N ,m

t kþ1
)þ hf R(t k , X N ,m

t k
, yN ,R,M

kþ1 (X N ,m
t kþ1

)h, [ÆM
l,k � pm

l,k]z)� Æ � pm
0,k j2: (7)

Here, we use the shorter notation f R(t k , x, y, zl) ¼ f R(t k , x, y, (zl)1< l<q). Then we define

y
N ,R,M
k (�) and z

N ,R,M
l,k (�) by

y
N ,R,M
k (�) ¼ [ÆM

0,k � p0,k] y(�), z
N ,R,M
l,k (�) ¼ [ÆM

l,k � pl,k]z(�):
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In the least-squares problems (6)–(7), whenever convenient, we can suppose (as done, for

example, in the proof of Theorem 11.1 in Györfi et al. 2002) that, for 0 < l < q, pl,k is a

complete orthonormal system in Pl,k , with respect to the empirical scalar product h�, �ik,M

defined by hł1, ł2ik,M ¼ M�1
PM

m¼1ł1(X
N ,m
t k

)ł2(X
N ,m
t k

). Of course these orthonormal

systems depend on the simulations (X N ,m
t k

)1<m<M and their ranks (K M
l,k)0< l<q satisfy

K M
l,k < K l,k . These orthonormal systems can easily be computed using a singular value

decomposition (see Golub and Van Loan 1996). With this choice, BM
l,k is now of dimension

M 3 K M
l,k and (BM

l,k)
�BM

l,k=M ¼ Id (0 < l < q), and the solutions of (6)–(7) are given by:

ÆM
l,k ¼ 1

M

XM

m¼1

pm
l,k yN ,R,M

kþ1 (X N ,m
t kþ1

)
[˜W m

l,k]w

h
,

ÆM
0,k ¼ 1

M

XM

m¼1

pm
0,kfy

N ,R,M
kþ1 (X N ,m

t kþ1
)þ hf R(t k , X N ,m

t k
, y

N ,R,M
kþ1 (X N ,m

t kþ1
), [ÆM

l,k � pm
l,k]z)g:

2.4. Main convergence results

The error on the unknown regression functions (y
N ,R
k )0<k<N�1 and (zN ,R

l,k )1< l<q,0<k<N�1 is

now estimated in the following theorem, which is our main result.

Theorem 2. Suppose that Assumptions 1–4 hold, and let � 2 ]0, 1]. Then there exists a

constant C (independent of �) such that:

max
0<k<N

E
1

M

XM

m¼1

jyN ,R
k (X N ,m

t k
)� yN ,R,M

k (X N ,m
t k

)j2 þ hE
XN�1

k¼0

1

M

XM

m¼1

jzN ,R
k (X N ,m

t k
)� zN ,R,M

k (X N ,m
t k

)j2

< C
C y(R)

2

M

XN�1

k¼0

Xq

l¼0

E(K M
l,k)þ Ch�

þ C
XN�1

k¼0

inf
Æ
EjyN ,R

k (X N
t k
)� Æ � p0,k(X

N
t k
)j2 þ

Xq

l¼1

inf
Æ
Ej

ffiffiffi
h

p
zN ,R

l,k (X N
t k
)� Æ � pl,k(X

N
t k
)j2

( )

þ C
C y(R)

2

h

XN�1

k¼0

(
E K M

0,k exp � Mh�þ2

72C y(R)2K M
0,k

 !
exp CK0,kþ1 log

CC y(R)(K
M
0,k)

1=2

h(�þ2)=2

 ! !

þ hE K M
l,kexp � Mh�þ1

72C y(R)2R2
0K M

l,k

 !
exp CK0,kþ1 log

CC y(R)R0(K
M
l,k)

1=2

h(�þ1)=2

 ! !

þ exp CK0,k log
CC y(R)

h(�þ2)=2

� �
exp � Mh�þ2

72C y(R)2

� �)
,

where we adopt the convention that K0,N ¼ 0.
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Remark 1. Using standard techniques of covering of functions classes (see, for example,

the proof of Theorem 11.3 in Györfi et al. 2002), we can state error estimates related to

the law of X N instead of the empirical law of (X N ,m)1<m<M , that is, we can

bound max0<k<NEjyN ,R
k (X N

t k
)� y

N ,R,M
k (X N

t k
)j2 þ hE

PN�1
k¼0 jz

N ,R
k (X N

t k
)� z

N ,R,M
k (X N

t k
)j2. This

extension is valid if we add to the upper bound a term CC y(R)
2 log(M)M�1

3
PN�1

k¼0

Pq
l¼0K l,k , which is essentially of the same order as the others (up to the log factor).

Remark 2. Of course, the inequality K M
l,k < K l,k leads to simpler but rougher estimates;

however, we think that in many cases it is possible to take advantage of better estimates on

the law of K M
l,k . This will be investigated in future work.

The terms C y(R)
2M�1

Pq
l¼0E(K

M
l,k) and infÆ E(jyN ,R

k (X N
t k
)� Æ � p0,k(X

N
t k
)j2) þPq

l¼1infÆ E(j
ffiffiffi
h

p
z

N ,R
l,k (X N

t k
)� Æ � pl,k(X

N
t k
)j2)g are classic error terms which arise when one

approximates a regression function from independent and identically distributed observations

using projections on a finite set of functions (see, for example, Györfi et al. 2002: Theorem

11.1). They are summed from k ¼ 0 until k ¼ N � 1 because we make N estimations, one

at each time t k . The other terms come from the lack of independence between the different

estimation problems at each discretization time. From the contribution h�, we understand

why � . 0 is necessary to ensure that the error tends to 0 and why � . 1 is unnecessary

because it gives a negligible term compared to h arising in Theorem 1.

Theorem 2 improves Theorem 3 in Gobet et al. (2005) because the error is not estimated

in terms of the fourth moments of the orthonormalized basis functions, but directly in terms

of the number of functions that are used in the algorithm. This result can therefore easily be

used in practice. Indeed, it is easy to establish the following corollary and we refer to Gobet

and Lemor (2006) for a complete proof.

Corollary 1. Suppose that Assumptions 1–4 hold and that pl,k is the hypercube basis HC of

edge � for which infÆ EjyN ,R
k (X N

t k
)� Æ � p0,k(X

N
t k
)j2 þ

Pq
l¼1 infÆ Ej

ffiffiffi
h

p
z

N ,R
l,k (X N

t k
) �

Æpl,k(X
N
t k
)j2 < C�2 (see Gobet et al. 2005). Neglecting the impact of the localization, in

order to obtain an error of order h�, it is enough to choose � and M as � ¼ C�1
1 h(�þ1)=2 and

M ¼ C1h�(�þ2þd(�þ1))jlog(h)j for a sufficiently large constant C1.

2.5. Accuracy and complexity of the algorithm

Here we wish to compare the accuracy–complexity ratio of this algorithm with that of other

numerical schemes.

If we denote by C the complexity of the algorithm, or equivalently the computational

effort, it is easy to see that the squared error obtained with the basis HC and � ¼ 1 is of

order C�1=(4þ2d) (Table 1) we refer to Gobet and Lemor (2006) for the details. Therefore

this algorithm has the same complexity as the less natural algorithm described and applied

to reflected BSDEs in Gobet and Lemor (2006) where extra simulations of (X N ,m
t kþ1

)1<m<M

are needed, but it has a worse trade-off between accuracy and complexity. Nevertheless,
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both algorithms behave the same in the numerical tests we performed, and we think that our

estimations in Theorem 2 are not optimal.

Compared to Bouchard and Touzi (2004), in the case of the geometric Brownian motion

model, our algorithm is theoretically more efficient for d < 9 and less efficient otherwise.

But in the case of a general model, the complexity of the algorithm presented in Bouchard

and Touzi (2004) is really difficult to evaluate, whereas in our case the complexity is

independent of the model.

3. Numerical tests

To test asymptotic results by letting N , M and the number of functions go to infinity, one

needs to use a vector space of functions for which the regression error arising in Theorem 2

is explicit. We use the hypercubes basis HC.

We consider the case of pricing an option with a differential of interest rates (Bergman

1995). We suppose that X follows the Black–Scholes model in dimension d ¼ 1,

dX t=X t ¼ � dt þ � dW t, with parameters � ¼ 0:05, � ¼ 0:2 and X0 ¼ 100. For the

terminal condition we take that of a call spread option, that is, (X T � K1)
þ

� 2(X T � K2)
þ with K1 ¼ 95 and K2 ¼ 105. The nonlinear driver f is defined by

f (t, x, y, z) ¼ �Łz � ry þ (y � z=� )�(R � r), where the two interest rates are r ¼ 0:01,
R ¼ 0:06 and Ł ¼ (�� r)=� . The maturity of the option is T ¼ 0:25. According to Gobet

et al. (2005), the relative solution Y0 is equal to 2.95.

Here the numerical issue is to determine if our algorithm asymptotically recovers this

value when one modifies all the parameters N , M and � (the edge of the hypercubes).

Regarding N , one starts from N0 ¼ 2 and N ¼ N0(
ffiffiffi
2

p
)( j�1) where j ¼ 1, . . . is the number

of different values of N to be tested. As mentioned before, we neglect the influences of the

Brownian increments threshold R0 and of the domain width R1 on which the basis HC is

defined. This domain is fixed once and for all to [40, 180]. As observed in Corollary 1, the

choice � ¼ 50=(
ffiffiffi
2

p
)( j�1)(�þ1)=2 � Ch(�þ1)=2 (50 being arbitrary and chosen to start with only

three functions) makes the algorithm converge at rate h� (for the squared error). Now it

remains to adjust M as a function of N and �, or equivalently h and �. According to

Corollary 1, M must be such that Mh�þ2þ(�þ1) ¼ Mh3þ2� ! 1 up to a logarithmic factor.

The following tests are aimed at testing the empirical validity of this threshold rule. For

this, we set M ¼ 2(
ffiffiffi
2

p
)ÆM ( j�1) for different values of ÆM and check the algorithm

convergence according to ÆM , Æ�M or ÆM . Æ�M where Æ�M ¼ 3þ 2� is the (theoretical)

Table 1. Squared error for different algorithms with respect to the complexity C with basis HC and

� ¼ 1 (see Gobet and Lemor 2006 for details)

Section 2 Gobet and Lemor (2006) Bouchard and Touzi (2004)

C�1=(4þ2d) C�1=(4þd) C�1=(13þd)

Note: The squared error for the Bouchard and Touzi algorithm is for the case where X is Brownian motion or
geometric Brownian motion.
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critical convergence threshold. In practice, we perform tests for � ¼ 0:2, � ¼ 1 and report

the average value given by the algorithm on 50 runs. From Figure 1, the algorithm’s price

seems to diverge for ÆM ¼ 1, whereas the prices ÆM . 1 seem to converge towards the

reference price but very slowly, in accord with the choice of � ¼ 0:2. From Figure 2

(� ¼ 1) we note that this time the algorithm’s price for ÆM > 3 clearly converges towards

the reference price but we observe in Figure 3 that excessively large values of ÆM are

undesirable: this does not speed up the convergence with respect to j because some error

terms (actually the bias) only depend on N and � but not on M , whereas the calculation

time becomes very large. As usual, it is important to properly balance the bias and variance

terms.

Finally, we observe in this last example that the empirical levels of convergence of ÆM

are better than those expected from the condition Mh3þ2� ! 1: this indicates that the

bound of Theorem 2 is not optimal.

In Figure 4 we again test � ¼ 0:2 but with the basis HC(1,0) which is analogous to HC:

it involves using the local polynomial basis 1, x on each hypercube to approximate y N ,R

instead of just 1 in the case of basis HC, while for z N ,R there is no modification. We refer

to Lemor (2005) for more details on these functions. In this example, the basis HC(1,0)

speeds up the overall convergence. This gives, in our opinion, a fundamental improvement,

compared to the quantization method that can be viewed as using only indicator function

bases.

�
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 � � 
 � �

��


���

���

��


���

���
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	��

�
�
	


�
���������

Figure 1. Basis HC, � ¼ 0:2, Æ�M ¼ 3:4, ÆM ¼ 1, 2, 3, 4, 5.
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Finally, we consider an example taken from Heath et al. (2001). In that paper, the authors

approximate via partial differential equation methods the local risk-minimization price (see

Föllmer and Schweizer 1991) of a put option in the Heston stochastic volatility model. The

dynamics of the asset price X and of the square of the volatility F are

dX t

X t

¼ ªFtdt þ
ffiffiffiffiffi
Ft

p
dW t, dFt ¼ k(Ł� Ft)dt þ �

ffiffiffiffiffi
Ft

p
dW 9t,

with W , W 9 two independent Brownian motions. It is easy to see that the local risk-

minimization price Y must satisfy the GBSDE

�dYt ¼ � rtYt þ
Z tffiffiffiffiffi
Ft

p (ªFt � rt)

� �
dt � Z t dW t � dLt, YT ¼ (K � X T )þ:

Taking r to be 0, this gives a driver f (t, x, F, y, z) ¼ �ªz
ffiffiffiffi
F

p
which is not globally

Lipschitz. We nevertheless apply our algorithm for ÆM ¼ 3 and present the results in Figure

5. As in Heath et al. (2001), we take k ¼ 5, Ł ¼ 0:04, � ¼ 0:6, ª ¼ 2:5, X 0 ¼ K ¼ 100,

F0 ¼ 0:04. The vector space of functions is HC, in dimension 2 (one dimension for the asset

price and one for the stochastic volatility). The reference price (for r ¼ 0) is taken from

Heath et al. (2001) and is 7.69. We observe that, in this non-Lipschitz case, the algorithm’s

output still converges towards the reference price.

�

�
��

��

� � 	 
 � � 
 � �

	

���

	��

�
�
	


�
���������

Figure 2. Basis HC, � ¼ 1, Æ�M ¼ 5, ÆM ¼ 1, 2, 3, 4, 5.
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4. Proof of Theorem 2

To prove Theorem 2, we first need two (easy) propositions, proved in Lemor et al. (2005).

The first states that the couple (Y N ,R, Z N ,R) is bounded and satisfies a Lipschitz property.

Proposition 1. Under Assumptions 1–3 there exists a constant C such that, for all k,

0 < k < N,

jY N ,R
t k

j < C y(R) ¼ Cfk�Rk1 þ k f Rk1g, jZ N ,R
l, t k

j < Cz(R) ¼
C y(R)ffiffiffi

h
p ,

where k�Rk1 ¼ supxj�R(x)j < C(1þ jRj) and k f Rk1 ¼ sup( t,x)j f R(t, x, 0, 0)j <
C(1þ jRj).

In addition under Assumption 4, for h small enough, the functions y
N ,R
k and z

N ,R
k defined

by y
N ,R
k (X N

t k
) ¼ Y N ,R

t k
and z

N ,R
k (X N

t k
) ¼ Z N ,R

t k
satisfy jyN ,R

k (x)� y
N ,R
k (x9)j þ

ffiffiffi
h

p
jzN ,R

k (x) �
z

N ,R
k (x9)j < Cjx � x9j uniformly in k0, N and R.

The second states an error bound regarding the localization.

�

�
��

��

� � 	 
 � � 

�

	




���

	��

Figure 3. Basis HC, � ¼ 1, Æ�M ¼ 5, ÆM ¼ 6 (cross markers), ÆM ¼ 7 (circle markers). Prices are

shown by solid lines, and upper and lower 0.95 confidence intervals by dotted lines.
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Proposition 2. Under Assumptions 1–4 there exists a constant C such that, for h small

enough,

max
0<k<N

EjY N ,R
t k

� Y N
t k
j2 þ hE

XN�1

k¼0

jZ N ,R
t k

� Z N
t k
j2

< CEj�(X N
t N
)� �R(X N

t N
)j2 þ C

C y(R)
2

h

XN�1

k¼0

E j˜W k j21j˜W k j>R0

ffiffiffi
h

p
� �

þ ChE
XN�1

k¼0

j f (t k , X N
t k
, Y N

t kþ1
, Z N

t k
)� f R(t k , X N

t k
, Y N

t kþ1
, Z N

t k
)j2:

As a consequence and since jY N
t k
j þ

ffiffiffi
h

p
jZ N

t k
j < C(1þ jX N

t k
j) (see Gobet et al. 2005), we

easily obtain that
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 � �
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Figure 4. Basis HC(1, 0), � ¼ 0:2, Æ�M ¼ 3:4, ÆM ¼ 1, 2, 3, 4, 5.
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max
0<k<N

EjY N ,R
t k

� Y N
t k
j2 þ hE

XN�1

k¼0

jZ N ,R
t k

� Z N
t k
j2

<
C

h
max

0<k<N
E (1þ jX N

t k
j2)1jX N

t k
j.jRj

h i
þ C

1þ jRj2
h

exp � R2
0

4

� �
:

Hence for appropriate thresholds R going to infinity, the localization error converges to 0.

Rates are available if in addition sup0<k<N EjX N
t k
j p < C p(1þ jxj p) for some p . 2 (stronger

moment conditions on the Lévy measure º would lead to larger exponents p): indeed, the

upper bound becomes

C p

h(1þ jRj) p�2
þ C

1þ jRj2
h

exp � R2
0

4

� �

and to obtain a contribution of order h (as in Theorem 1) it is enough to asymptotically set

Ri ¼ h�2=( p�2) (i ¼ 1, . . . , d) and R0 ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(1=h)

p
(for c large enough). Hence, the

convergence with respect to R is rather fast, especially if p can be taken large. In other

words, setting R to a fixed large value gives a very good approximation, as observed in the

numerical tests.
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Figure 5. Basis HC, � ¼ 1, ÆM ¼ 3.
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We can now turn to the proof of Theorem 2. The proof is technical and we divide it into

several steps. First, we introduce additional notation, closely related to non-parametric

regression arguments. Second, we state a result concerning the propagation of the error

from time t kþ1 to time t k (see Proposition 3). Finally, the different contributions in the

propagation error are evaluated in Proposition 4.

4.1. Extra notation for the proofs

4.1.1. Monte Carlo simulations

We recall that the algorithm uses M Monte Carlo simulations of the Brownian increments

˜W and of an approximation X N of X , (X N
t k
)k being a Markov chain. In addition to

(X N ,m
t kþ1

, ˜W m
k ) and for the proofs, we will use at each time t k extra random variables

( ~XX N ,m
t kþ1

, ˜ ~WW m
k ) which are, conditionally on X N ,m

t k
, an independent copy of (X N ,m

t kþ1
, ˜W m

k )

(and also independent of everything else). For instance, when X has no jump part (� � 0)

and an Euler scheme is used for X N , X N ,m
t kþ1

and ~XX N ,m
t kþ1

are defined by

X N ,m
t kþ1

¼ X N ,m
t k

þ b(t k , X N ,m
t k

)h þ � (t k , X N ,m
t k

)˜W m
k ,

~XX N ,m
t kþ1

¼ X N ,m
t k

þ b(t k , X N ,m
t k

)h þ � (t k , X N ,m
t k

)˜ ~WW m
k ,

where (˜W m
k )k,m and (˜ ~WW m

k )k,m are i.i.d.

4.1.2. Norms

For a function ł, we define (0 < k < N )

kłk2k,M ¼ 1

M

XM

m¼1

jł(X N ,m
t k

)j2, kłk2k, ~MM ¼ 1

M

XM

m¼1

jł( ~XX N ,m
t k

)j2:

4.1.3. Projection coefficients

In addition to the coefficients (ÆM
l,k)0< l<q defined by (6) and (7), we need other coefficients

in the proofs below. Thus, we define the projection coefficients ( ~ÆÆM
l,k)1< l<q:

~ÆÆM
l,k ¼ arg inf

Æ

1

M

XM

m¼1

����yN ,R,M
kþ1 ( ~XX N ,m

t kþ1
)
[˜ ~WW m

l,k]w

h
� Æ � pm

l,k

����
2

, (8)

and ~ÆÆM
0,k is defined as the minimizer of

1

M

XM

m¼1

jyN ,R,M
kþ1 ( ~XX N ,m

t kþ1
)þ hf R(t k , X N ,m

t k
, y

N ,R,M
kþ1 ( ~XX N ,m

t kþ1
), [ ~ÆÆM

l,k � pm
l,k]z)� Æ � pm

0,k j2: (9)

We also define the projection coefficients ( ~��M
l,k)1< l<q:
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~��M
l,k ¼ arg inf

Æ

1

M

XM

m¼1

����yN ,R
kþ1(

~XX N ,m
t kþ1

)
[˜ ~WW m

l,k]w

h
� Æ � pm

l,k

����
2

, (10)

and ~��M
0,k is defined as the minimizer of

1

M

XM

m¼1

jyN ,R
kþ1(

~XX N ,m
t kþ1

)þ hf R(t k , X N ,m
t k

, y
N ,R
kþ1(

~XX N ,m
t kþ1

), z
N ,R
l,k (X N ,m

t k
))� Æ � pm

0,k j2: (11)

We emphasize the differences between these projection coefficients: for (ÆM
l,k)0< l<q and

( ~ÆÆM
l,k)0< l<q, the function y

N ,R,M
kþ1 is fixed and we estimate ÆM

l,k from (X N ,m
t k

, X N ,m
t kþ1

,

˜W m
k )1<m<M , whereas we estimate ~ÆÆM

l,k from (X N ,m
t k

, ~XX N ,m
t kþ1

, ˜ ~WW m
k )1<m<M . As for

( ~��M
l,k)0< l<q, we also estimate from (X N ,m

t k
, ~XX N ,m

t kþ1
, ˜ ~WW m

k )1<m<M but knowing the true

functions y
N ,R
kþ1(�) and z

N ,R
k (�). We note that ÆM

0,k ¼ Æ1,M
0,k þ Æ2,M

0,k , where

Æ1,M
0,k ¼ arg inf

Æ

1

M

XM

m¼1

jyN ,R,M
kþ1 (X N ,m

t kþ1
)� Æ � pm

0,k j2,

Æ2,M
0,k ¼ arg inf

Æ

1

M

XM

m¼1

jhf R(t k , X N ,m
t k

, y
N ,R,M
kþ1 (X N ,m

t kþ1
), [ÆM

l,k � pm
l,k]z)� Æ � pm

0,k j2:

We define ( ~��i,M
0,k )1<i<2 and ( ~ÆÆi,M

0,k )1<i<2 in the same way.

4.1.4. Conditional expectations

We write F M for the � -algebra generated by ((X N ,m
t k

)0<k<N , (˜W m
k )0<k<N�1)1<m<M and

EM for the conditional expectation with respect to F M . We denote by EM
k (PM

k ) the

conditional expectation (conditional probability) with respect to the � -algebra generated by

((X N ,m
ti

)0<i<k , (˜W m
i )0<i<k�1)1<m<M .

4.1.5. Error terms

We define the following events which depend on � and the projection coefficients

AM
0,k ¼ 1

M

XM

m¼1

j pm
0,k :(Æ

1,M
0,k � ~ÆÆ1,M

0,k )j2 , h�þ2

( )
,

AM
l,k ¼ 1

M

XM

m¼1

j pm
l,k :(Æ

M
l,k � ~ÆÆM

l,k)j2 , h�

( )
,

AM
k ¼ f8ł 2 [P0,k] y � y

N ,R
k : kłkk, ~MM � kłkk,M , h(�þ2)=2g:

The probabilities of these events are evaluated in Proposition 4 below. We also deal with the

following quantities whose bounds are given in Proposition 4:
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T M
1,k ¼ EkEM ( ~��M

0,k) � p0,k � y
N ,R
k k2k,M , T M

2,k ¼ Ekf ~ÆÆ1,M
0,k � EM ( ~ÆÆ1,M

0,k )g � p0,kk2k,M ,

T M
3, l,k ¼ EkEM ( ~��M

l,k) � pl,k � z
N ,R
l,k k2k,M , T M

4, l,k ¼ Ekf ~ÆÆM
l,k � EM ( ~ÆÆM

l,k)g � pl,kk2k,M :

4.1.6. Covering numbers

In the proofs below we use random covering numbers. We refer to Györfi et al. (2002) for a

complete description. However, for the sake of completeness, we briefly recall here that if G
is a class of functions and xM

1 ¼ (x1, . . . , xM ) are M points in Rd , N 2(�, G, xM
1 ) (� . 0) is

the minimal p 2 N such that there exist functions g1, . . . , g p, such that for all g 2 G we

can find a j 2 f1 . . . , pg with (M�1
PM

m¼1jg(xm)� g j(xm)j2)1=2 , E. To simplify, we adopt

the notation N 2(E, k) ¼ N 2(E, [P0,k] y, (X
N ,m
t k

, ~XX N ,m
t k

)1<m<M ).

4.2. Propagation of the error

Our main tool is the following result.

Proposition 3. Under the assumptions of Theorem 2, for 0 < k < N � 1,

Eky
N ,R
k � y

N ,R,M
k k2k,M

< (1þ Ch)Eky
N ,R
kþ1 � y

N ,R,M
kþ1 k2kþ1,M þ CfT M

1,k þ T M
2,kg þ Ch

Xq

l¼1

fT M
3, l,k þ T M

4, l,kg

þ C
C y(R)

2

h
P([AM

0,k]
c)þ h

Xq

l¼1

P([AM
l,k]

c)þ P([AM
kþ1]

c)

( )
þ Ch�þ1:

If we have this result and Proposition 4 which estimates each contribution, it is easy to

complete the error estimation on Y in Theorem 2. Then, an easy calculation (see Lemor

2005) enables us to deduce an error estimate for Z from that for Y.

Proof of Proposition 3. First by using [yN ,R
k ] y ¼ yN ,R

k and the fact that [�] y is 1-Lipschitz, we

obtain

Eky
N ,R,M
k � y

N ,R
k k2k,M < EkÆM

0,k � p0,k � y
N ,R
k k2k,M :

We now introduce ~��M
0,k (see (11)) and, noting that EM ( ~��M

0,k) is the minimizer of

M�1
PM

m¼1jy
N ,R
k (X N ,m

t k
)� Æ � pm

0,k j2, we apply Pythagoras’ theorem to obtain

EkÆM
0,k � p0,k � yN ,R

k k2k,M ¼ EkfÆM
0,k � EM ( ~��M

0,k)g � p0,kk2k,M þ T M
1,k :

Now, as EM (ÆM
0,k) ¼ ÆM

0,k and ÆM
0,k ¼ Æ1,M

0,k þ Æ2,M
0,k , we apply first Young’s inequality and then

Jensen’s inequality to obtain
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EkfÆM
0,k � EM ( ~��M

0,k)g � p0,kk2k,M < (1þ ªh)EkfÆ1,M
0,k � EM ( ~��1,M0,k )g � p0,kk2k,M

þ 1þ 1

ªh

� �
EkfÆ2,M

0,k � EM ( ~��2,M0,k )g � p0,kk2k,M

< (1þ ªh)EkfÆ1,M
0,k � EM ( ~��1,M0,k )g � p0,kk2k,M

þ 1þ 1

ªh

� �
EkfÆ2,M

0,k � ~��2,M0,k g � p0,kk2k,M : (12)

We deal separately with the two terms on the right-hand side of (12). For the first term,

we introduce ~ÆÆ1,M
0,k (see (9)) and use the definition of AM

0,k and T M
2,k to obtain

EkfÆ1,M
0,k � EM ( ~��1,M0,k )g � p0,kk2k,M

< (1þ h�1)EkfÆ1,M
0,k � ~ÆÆ1,M

0,k g � p0,kk2k,M þ (1þ h)Ekf ~ÆÆ1,M
0,k � EM ( ~��1,M0,k )g � p0,kk2k,M

< Ch�þ1 þ C

h
C y(R)

2P [AM
0,k]

c
� �

þ (1þ h)(Ekf ~ÆÆ1,M
0,k � EM ( ~ÆÆ1,M

0,k )g � p0,kk2k,M

þ EkfEM ( ~ÆÆ1,M
0,k )� EM ( ~��1,M0,k )g � p0,kk2k,M )

< Ch�þ1 þ C

h
C y(R)

2P [AM
0,k]

c
� �

þ (1þ h)T M
2,k

þ (1þ h)E
1

M

XM

m¼1

jEMfy
N ,R,M
kþ1 ( ~XX N ,m

t kþ1
)� y

N ,R
kþ1(

~XX N ,m
t kþ1

)gj2: (13)

In the second and third inequalities, we have used the contraction property of the projection

on (( pm
0,k)

�)1<m<M . Using this contraction property once again, we obtain for the second term

on the right-hand side of (12),

EkfÆ2,M
0,k � ~��2,M0,k g � p0,kk2k,M (14)

<
Ch2

M
E
XM

m¼1

jyN ,R,M
kþ1 (X N ,m

t kþ1
)� yN ,R

kþ1(
~XX N ,m

t kþ1
)j2 þ Ch2EkzN ,R,M

k � zN ,R
k k2k,M :

Let us deal with the last term of the right-hand side of (14). For 1 < l < q, we have that
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EkzN ,R,M
l,k � zN ,R

l,k k2k,M < EkÆM
l,k � pl,k � zN ,R

l,k k2k,M

as [zN ,R
l,k ]z ¼ z

N ,R
l,k . Next, we introduce ~��M

l,k (see (10)) and as EM ( ~��M
l,k) is the minimizer of

M�1
PM

m¼1jz
N ,R
l,k (X N ,m

t k
)� Æ � pm

l,k j2, we obtain

EkÆM
l,k � pl,k � z

N ,R
l,k k2k,M

¼ EkEM ( ~��M
l,k): pl,k � z

N ,R
l,k k2k,M þ EkfEM ( ~��M

l,k)� ÆM
l,kg � pl,kk2k,M

< T M
3, l,k þ 3EkfEM ( ~��M

l,k)� EM ( ~ÆÆM
l,k)g � pl,kk2k,M þ 3EkfEM ( ~ÆÆM

l,k)� ~ÆÆM
l,kg � pl,kk2k,M

þ 3Ekf ~ÆÆM
l,k � ÆM

l,kg � pl,kk2k,M

< T M
3, l,k þ 3EkfEM ( ~��M

l,k)� EM ( ~ÆÆM
l,k)g � pl,kk2k,M þ 3T M

4, l,k þ Ch�

þ C
C y(R)

2

h
P([AM

l,k]
c): (15)

Now an application of the contraction property associated with the projection on (( pm
l,k)

�) and
of the Cauchy–Schwarz inequality yields

3

M
E
XM

m¼1

jfEM ( ~��M
l,k)� EM ( ~ÆÆM

l,k)g � pm
l,k j2

<
3

M
E
XM

m¼1

����EM (y
N ,R
kþ1(

~XX N ,m
t kþ1

)� y
N ,R,M
kþ1 ( ~XX N ,m

t kþ1
))
[˜ ~WW m

l,k]w

h

( )����
2

<
3

Mh
E
XM

m¼1

fjyN ,R
kþ1(

~XX N ,m
t kþ1

)� y
N ,R,M
kþ1 ( ~XX N ,m

t kþ1
)j2

� jEM (y
N ,R
kþ1(

~XX N ,m
t kþ1

)� y
N ,R,M
kþ1 ( ~XX N ,m

t kþ1
))j2g: (16)

Substituting (13)–(16) into (12) gives
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EkyN ,R
k � yN ,R,M

k k2k,M

< T M
1,k þ (1þ ªh)

 
Ch�þ1 þ C

h
C y(R)

2P([AM
0,k]

c)þ (1þ h)T M
2,k :

þ (1þ h)
1

M
E
XM

m¼1

jEM (y
N ,R
kþ1(

~XX N ,m
t kþ1

)� y
N ,R,M
kþ1 ( ~XX N ,m

t kþ1
))j2
!

þ Ch2 1þ 1

ªh

� �
1

M
E
XM

m¼1

jyN ,R
kþ1(

~XX N ,m
t kþ1

)� y
N ,R,M
kþ1 (X N ,m

t kþ1
)j2

þ Ch2 1þ 1

ªh

� �
E
Xq

l¼1

fT M
3, l,k þ T M

4, l,kg

þ Ch2 1þ 1

ªh

� �
h� þ Ch2 1þ 1

ªh

� �
C

h
C y(R)

2
Xq

l¼1

P([AM
l,k]

c)

þ C h þ 1

ª

� �
1

M
E
XM

m¼1

fjyN ,R
kþ1(

~XX N ,m
t kþ1

)� y
N ,R,M
kþ1 ( ~XX N ,m

t kþ1
)j2

� jEM (y
N ,R
kþ1(

~XX N ,m
t kþ1

)� y
N ,R,M
kþ1 ( ~XX N ,m

t kþ1
))j2g:

Letting ª ¼ C, we obtain the following simplification:

Eky
N ,R
k � y

N ,R,M
k k2k,M (17)

< (1þ Ch)Eky
N ,R
kþ1 � y

N ,R,M
kþ1 k2kþ1, ~MM þ C

C y(R)
2

h
P([AM

0,k]
c)þ h

Xq

l¼1

P([AM
l,k]

c)

 !

þ T M
1,k þ CT M

2,k þ Ch
Xq

l¼1

fT M
3, l,k þ T M

4, l,kg þ Ch�þ1

þ ChEky
N ,R
kþ1 � y

N ,R,M
kþ1 k2kþ1,M þ C

h

M
E
XM

m¼1

jyN ,R
kþ1(

~XX N ,m
t kþ1

)� y
N ,R
kþ1(X

N ,m
t kþ1

)j2:

Since y
N ,R
kþ1 is Lipschitz continuous, the last term of the right-hand side above is bounded by

Ch2 (here, we use Assumption 4(b)). To obtain the result of Proposition 3, the first term of

the right-hand side should be changed to Eky
N ,R
kþ1 � y

N ,R,M
kþ1 k2kþ1,M . Thus, we use the definition

of AM
kþ1 to write:
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EkyN ,R
kþ1 � yN ,R,M

kþ1 k2kþ1, ~MM

¼ E ky
N ,R
kþ1 � y

N ,R,M
kþ1 kkþ1, ~MM � ky

N ,R
kþ1 � y

N ,R,M
kþ1 kkþ1,M þ ky

N ,R
kþ1 � y

N ,R,M
kþ1 kkþ1,M

� �2

< (1þ h�1)E ky
N ,R
kþ1 � y

N ,R,M
kþ1 kkþ1, ~MM � ky

N ,R
kþ1 � y

N ,R,M
kþ1 kkþ1,M

� �2
þ

þ (1þ h)Eky
N ,R
kþ1 � y

N ,R,M
kþ1 k2kþ1,M

< Ch�þ1 þ C
C y(R)

2

h
P([AM

kþ1]
c)þ (1þ h)Eky

N ,R
kþ1 � y

N ,R,M
kþ1 k2kþ1,M : (18)

Plugging (18) into (17) gives the result. h

4.3. Other estimates

Proposition 4. Under the assumptions of Theorem 2, for 0 < k < N � 1,

P([AM
0,k]

c) < 2E K M
0,k exp � Mh�þ2

72C y(R)2K M
0,k

 !
N 2

h(�þ2)=2

3
ffiffiffiffiffiffiffiffiffiffiffiffi
2K M

0,k

q , k þ 1

0
B@

1
CA

0
B@

1
CA,

P([AM
l,k]

c) < 2E K M
l,k exp � Mh�þ1

72C y(R)2R2
0K M

l,k

 !
N 2

h(�þ1)=2

3
ffiffiffiffiffiffiffiffiffiffiffi
2K M

l,k

q
R0

, k þ 1

0
B@

1
CA

0
B@

1
CA,

P([AM
k ]c) < 2E N 2

h(�þ2)=2

3
ffiffiffi
2

p , k

� �
exp � Mh�þ2

72C y(R)2

� �� �
,

T M
1,k ¼ E inf

Æ
ky

N ,R
k � Æ � p0,kk2k,M

� �
< inf

Æ
EjyN ,R

k (X N
t k
)� Æ � p0,k(X

N
t k
)j2,

T M
2,k <

C y(R)
2

M
E(K M

0,k),

T M
3, l,k ¼ 1

h
E inf

Æ
k
ffiffiffi
h

p
z

N ,R
l,k � Æ � pl,kk2k,M

� �
<

1

h
inf
Æ
Ej

ffiffiffi
h

p
z

N ,R
l,k (X N

t k
)� Æ � pl,k(X

N
t k
)j2,

T M
4, l,k <

C y(R)
2

hM
E(K M

l,k),

N 2(�, k þ 1) < C exp CK0,kþ1 log
CC y(R)

E

� �
, K0,N ¼ 0:

Proof of the bound for P([AM
0,k]

c). As already mentioned in Section 2.3, we suppose without
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loss of generality that (BM
0,k)

�BM
0,k=M ¼ Id and that BM

0,k is a matrix of dimension M 3 K M
0,k .

Under this assumption, we can write (see our notation for PM
k )

P([AM
0,k]

c) ¼ E PM
k jÆ1,M

0,k � ~ÆÆ1,M
0,k j22 > h�þ2

� �� �
: (19)

By making the norm j � j2 in (19) explicit, we obtain

PM
k (jÆ1,M

0,k � ~ÆÆ1,M
0,k j22 > h�þ2)

¼ PM
k

XK M
0, k

i¼1

���� 1M
XM

m¼1

pm
0,k,ify

N ,R,M
kþ1 (X N ,m

t kþ1
)� y

N ,R,M
kþ1 ( ~XX N ,m

t kþ1
)g
����
2

> h�þ2

0
@

1
A

<
XK M

0, k

i¼1

PM
k

���� 1M
XM

m¼1

pm
0,k,ify

N ,R,M
kþ1 (X N ,m

t kþ1
)� y

N ,R,M
kþ1 ( ~XX N ,m

t kþ1
)g
����
2

>
h�þ2

K M
0,k

 !

<
XK M

0, k

i¼1

PM
k 9ł 2 [P0,kþ1] y :

���� 1M
XM

m¼1

pm
0,k,ifł( ~XX N ,m

t kþ1
)� ł(X N ,m

t kþ1
)g
����
2

>
h�þ2

K M
0,k

 !

¼
XK M

0, k

i¼1

PM
k 9ł 2 [P0,kþ1] y :

���� 1M
XM

m¼1

pm
0,k,iUmfł( ~XX N ,m

t kþ1
)� ł(X N ,m

t kþ1
)g
���� >

ffiffiffiffiffiffiffiffiffiffi
h�þ2

K M
0,k

s !
,

where (Um) is a sequence of i.i.d. Bernoulli random variables, taking values 1 and �1 with

probability 1
2
, which are independent of everything else. The last equality comes from the fact

that ~XX N ,m
t kþ1

and X N ,m
t kþ1

have the same law. We now introduce a covering G of [P0,kþ1] y such

that for all ł 2 [P0,kþ1] y, there exists g 2 G such that

1

2M

XM

m¼1

fjł(X N ,m
t kþ1

)� g(X N ,m
t kþ1

)j2 þ jł( ~XX N ,m
t kþ1

)� g( ~XX N ,m
t kþ1

)j2g <
h�þ2

18K M
0,k

:

We can assume without loss of generality that the elements of G are bounded by C y(R). Note

that G depends on (X N ,m
t kþ1

, ~XX N ,m
t kþ1

)1<m<M but not on (U m)1<m<M , and that the cardinality of G

is equal to N 2(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�þ2=18K M

0,k

q
, k þ 1). Taking advantage of the Cauchy–Schwarz inequality

jM�1
PM

m¼1 pm
0,k,iºmj2 < M�1

PM
m¼1º

2
m (under the assumption (BM

0,k)
�BM

0,k=M ¼ Id), we easily

get
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PM
k 9ł 2 [P0,kþ1] y :

���� 1M
XM

m¼1

pm
0,k,iUmfł( ~XX N ,m

t kþ1
)� ł(X N ,m

t kþ1
)g
���� >

ffiffiffiffiffiffiffiffiffiffi
h�þ2

K M
0,k

s !

< PM
k 9g 2 G :

���� 1M
XM

m¼1

pm
0,k,iU mfg( ~XX N ,m

t kþ1
)� g(X N ,m

t kþ1
)g
���� > 1

3

ffiffiffiffiffiffiffiffiffiffi
h�þ2

K M
0,k

s !

< N 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�þ2

18K M
0,k

s
, k þ 1

 !
max
g2G

PM
k

���� 1M
XM

m¼1

pm
0,k,iU mfg( ~XX N ,m

t kþ1
)� g(X N ,m

t kþ1
)g
���� > 1

3

ffiffiffiffiffiffiffiffiffiffi
h�þ2

K M
0,k

s !
:

To bound this last probability, we additionally condition on (X N ,m
t kþ1

, ~XX N ,m
t kþ1

)1<m<M and denote

by ~PPM
k,kþ1 the resulting conditional probability. We note that, if H m ¼

pm
0,k,iU mfg( ~XX N ,m

t kþ1
)� g(X N ,m

t kþ1
)g, ~EEM

k,kþ1(H m) ¼ 0 and jH mj < 2C y(R)j pm
0,k,ij. A combination

of Hoeffding’s inequality and M�1
PM

m¼1j pm
0,k,ij2 ¼ 1 gives

~PPM
k,kþ1

���� 1M
XM

m¼1

pm
0,k,iUmfg( ~XX N ,m

t kþ1
)� g(X N ,m

t kþ1
)g
���� > 1

3

ffiffiffiffiffiffiffiffiffiffi
h�þ2

K M
0,k

s !

< 2 exp � 2Mh�þ2

144C y(R)2K M
0,k M�1

PM
m¼1j pm

0,k,ij2

 !
¼ 2 exp � Mh�þ2

72C y(R)2K M
0,k

 !
:

The estimate on P([AM
0,k]

c) is now proved. h

Proof of the bound for P([AM
l,k]

c). The calculations are the same as for P([AM
0,k]

c), except

that we need here a covering G of [P0,kþ1] y such that for all ł 2 [P0,kþ1] y, there exists g 2 G
satisfying

1

2M

XM

m¼1

fjł( ~XX N ,m
t kþ1

)� g( ~XX N ,m
t kþ1

)j2 þ jł(X N ,m
t kþ1

)� g(X N ,m
t kþ1

)j2g <
h�þ1

18K M
l,kR

2
0

:

h

Proof of the bound for P([AM
k ]c). We partially follow the proof of Theorem 11.2 in Györfi

et al. (2002) and define the vector (Z m)1<m<2M by (Z m, Z Mþm) ¼ ( ~XX N ,m
t k

, X N ,m
t k

) if Um ¼ 1

and (Z m, Z Mþm) ¼ (X N ,m
t k

, ~XX N ,m
t k

) if U m ¼ �1, where (Um)1<m<M is a sequence of i.i.d.

Bernoulli variables, independent of everything else, taking values 1 and �1 with probability 1
2
.

As for P([AM
0,k]

c), we introduce a covering G (whose elements are bounded by 2C y(R)) of

[P0,k] y � y
N ,R
k such that for all ł 2 [P0,k] y � y

N ,R
k , there exists a g 2 G such that

1

2M

XM

m¼1

fjł( ~XX N ,m
t k

)� g( ~XX N ,m
t k

)j2 þ jł(X N ,m
t k

)� g(X N ,m
t k

)j2g <
h�þ2

18
:

Thus, we can write that
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P([AM
k ]c)

¼ P 9ł 2 [P0,k] y � y
N ,R
k :

1

M

XM

m¼1

jł(Z m)j2
( )1=2

� 1

M

XM

m¼1

jł(Z Mþm)j2
( )1=2

> h(�þ2)=2

0
@

1
A

< P 9g 2 G :
1

M

XM

m¼1

jg(Z m)j2
( )1=2

� 1

M

XM

m¼1

jg(Z Mþm)j2
( )1=2

>
h(�þ2)=2

3

0
@

1
A:

Introducing the conditional probability ~PPM
k�1,k and N 2(h

(�þ2)=2=3
ffiffiffi
2

p
, k) (the cardinality of

G), simple computations lead (see Györfi et al. 2002: 191) to

~PPM
k�1,k 9g 2 G :

1

M

XM

m¼1

jg(Z m)j2
( )1=2

� 1

M

XM

m¼1

jg(Z Mþm)j2
( )1=2

>
h(�þ2)=2

3

0
@

1
A

< 2N 2

h(�þ2)=2

3
ffiffiffi
2

p , k

� �
sup
g2G

exp �
Mh�þ2

PM
m¼1fjg( ~XX N ,m

t k
)j2 þ jg(X N ,m

t k
)j2g

18
PM

m¼1 fjg( ~XX N ,m
t k

)j2 � jg(X N ,m
t k

)j2g2

 !
:

The above exponential is bounded by exp �Mh�þ2=72C y(R)
2

� �
because

XM

m¼1

fjg( ~XX N ,m
t k

)j2 � jg(X N ,m
t k

)j2g2 <
XM

m¼1

jg( ~XX N ,m
t k

)j4 þ jg(X N ,m
t k

)j4
� �

< 4C y(R)
2
XM

m¼1

jg( ~XX N ,m
t k

)j2 þ jg(X N ,m
t k

)j2
� �

: (20)

Bringing together all the previous estimates gives the required upper bound for P([AM
k ]c).

h

Proof of the identities for ET M
1,k and ET M

3, l,k . Observe that EM ( ~��M
0,k) minimizes

M�1
PM

m¼1 jy
N ,R
k (X N ,m

t k
)� Æ � pm

0,k j2 ¼ ky
N ,R
k � Æ � p0,kk2k,M , that is, T M

1,k ¼ infÆky
N ,R
k �

Æ � p0,kk2k,M . The same arguments apply to ET M
3, l,k . h

Proof of the bounds for ET M
2,k and ET M

4, l,k . We prove only the estimate for ET M
2,k, the

technique being the same for ET M
4, l,k. We adapt the proof of Theorem 11.1 in Györfi et al.

(2002) and suppose without loss of generality that (BM
0,k)

�BM
0,k=M ¼ Id as before. We can

thus write, for 1 < m < M,
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EM j pm
0,k :f ~ÆÆ

1,M
0,k � EM ( ~ÆÆ1,M

0,k )gj2
� �

(21)

¼ EM (pm
0,k)

� (B
M
0,k)

�

M
fV � EM (V )gfV � EM (V )g�

BM
0,k

M
pm
0,k

 !

¼ ( pm
0,k)

� (B
M
0,k)

�

M
EM fV � EM (V )gfV � EM (V )g�
� � BM

0,k

M
pm
0,k ,

where V is the vector of RM with coordinates y
N ,R,M
kþ1 ( ~XX N ,m

t kþ1
). We bound this last expression

by considering kEM ðfV � EM (V )gfV � EM (V )g�Þk2. As ÆM
0,kþ1 is F M -measurable, we

obtain

EM y
N ,R,M
kþ1 ( ~XX N ,m

t kþ1
)y

N ,R,M
kþ1 ( ~XX N ,m9

t kþ1
)

� �

¼ EM [ÆM
0,kþ1 � p0,kþ1( ~XX

N ,m
t kþ1

)] y[Æ
M
0,kþ1 � p0,kþ1( ~XX

N ,m9
t kþ1

)] y

� �

¼ EM [ÆM
0,kþ1 � p0,kþ1( ~XX

N ,m
t kþ1

)] y

� �
EM [ÆM

0,kþ1 � p0,kþ1( ~XX
N ,m9
t kþ1

)] y

� �
,

from which we deduce that the non-diagonal terms of the matrix EM fV�ð
EM (V )gfV � EM (V )g�Þ are equal to 0. The introduction of the projection coefficients ~ÆÆM

0,k

ensures this crucial property which is not true for the projection coefficients ÆM
0,k . As

for the diagonal terms, they are bounded by C y(R)
2. Thus kEM fV �ð

EM (V )gfV � EM (V )g�Þk2 < C y(R)
2. Finally, in view of (21), we obtain

EM 1

M

XM

m¼1

jpm
0,k :f ~ÆÆ

1,M
0,k � EM ( ~ÆÆ1,M

0,k )gj2
 !

<
1

M

XM

m¼1

���� BM
0,k

M
pm
0,k

����
2

2

C y(R)
2

<
C y(R)

2

M2

XM

m¼1

jpm
0,k j2 ¼

C y(R)
2

M2
tr[(BM

0,k)
�BM

0,k] ¼
C y(R)

2

M
K M

0,k :

The estimate for ET M
2,k readily follows. h

Proof of the bound for N 2(E, k þ 1). One can directly apply Theorem 9.4 in Györfi et al.

(2002) (and Theorem 9.5 in the same reference to bound the Vapnik–Chervonenkis

dimension of a functions vector space) which gives

N 2(E, k þ 1) < 3
2e(2C y(R))

2

E2
log

3e(2C y(R))
2

E2

� �� �K0, kþ1

,

whence our result. h
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5. Conclusion

We have proposed a simple algorithm to solve GBSDEs. The dynamic programming

equation resulting from the time discretization of equation (1) is solved using a sequence of

empirical regression problems based on simulations of the underlying Markov process. The

extension to path-dependent terminal conditions is straightforward (see Gobet et al. 2005).

We have derived explicit error bounds which allow us to optimally choose the parameters of

the method to achieve a given accuracy. This is a significant improvement compared to

previous work. However, our numerical tests reveal that the convergence can be faster than

our theoretical estimates predict. The explanation of this phenomenon is a matter for future

research. Additional work is also necessary to consider in (1) a martingale other than W

and to allow the driver to depend on L.
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