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Pickands’ constant Hα does not equal
1/�(1/α), for small α

ADAM J. HARPER

Jesus College, Cambridge CB5 8BL, England. E-mail: A.J.Harper@dpmms.cam.ac.uk

Pickands’ constants Hα appear in various classical limit results about tail probabilities of suprema of Gaus-
sian processes. It is an often quoted conjecture that perhaps Hα = 1/�(1/α) for all 0 < α ≤ 2, but it is also
frequently observed that this does not seem compatible with evidence coming from simulations.

We prove the conjecture is false for small α, and in fact that Hα ≥ (1.1527)1/α/�(1/α) for all suffi-
ciently small α. The proof is a refinement of the “conditioning and comparison” approach to lower bounds
for upper tail probabilities, developed in a previous paper of the author. Some calculations of hitting proba-
bilities for Brownian motion are also involved.
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1. Introduction

In the author’s paper [7], the following lower bound inequality was proved.

Theorem 1 (see Theorem 1 of Harper [7]). Let n ≥ 2 and let {Z(ti)}1≤i≤n be jointly multivari-
ate normal random variables, each with mean zero and variance one. Suppose that the sequence
is stationary in the indices i, in other words that EZ(tj )Z(tk) = ρ(|j − k|) for some function ρ.
Let u ≥ 1, and suppose that:

• ρ(m) is a decreasing non-negative function;
• ρ(1)(1 + 2u−2) is at most 1.

Then P(max1≤i≤n Z(ti) > u) is

≥ n
e−u2/2

40u
min

{
1,

√
1 − ρ(1)

u2ρ(1)

} n−1∏
j=1

�

(
u
√

1 − ρ(j)

(
1 + O

(
1

u2(1 − ρ(j))

)))
,

where � denotes the standard normal distribution function, and where the implicit constant in
the “big Oh” notation is absolute (in particular, not depending on {Z(ti)}1≤i≤n), and could be
found explicitly.

(In applications, we have t1 < t2 < · · · < tn being equally spaced sample points on the real
line, and ρ(|j − k|) = r(|tj − tk|) for some underlying stationary covariance function r(t) on the
real line. But in the statement of Theorem 1, the ti are just dummy indices.)

It turns out that Theorem 1 is almost sharp for some interesting collections of random vari-
ables {Z(ti)}1≤i≤n, for moderately sized u (e.g., one can sometimes use Theorem 1 to identify
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Emax1≤i≤n Z(ti) up to second order terms, if the lower bound is fairly large for u close to the
conjectured value of Emax1≤i≤n Z(ti)). Indeed, this is the case in the paper [7], where Theo-
rem 1 (or, more precisely, the ingredients of its proof) was used to obtain improved results in a
probabilistic number theory problem. See the preprint [6] for a related application to modelling
the “typical large values” of the Riemann zeta function.

The proof of Theorem 1 breaks into two propositions. The first proposition was a condition-
ing step, in which P(max1≤i≤n Z(ti) > u) was lower bounded in terms of other probabilities
involving conditioned versions of the Z(ti). This was beneficial because, under the conditions on
ρ(m) imposed in Theorem 1, the correlation structure of the conditioned random variables could
be lower bounded by a fairly nice correlation structure, corresponding to random variables con-
structed using random walks. The second proposition was a comparison step, in which Slepian’s
lemma was used to pass to random variables with the nicer lower bound correlation structure, and
their behaviour was investigated using a simple result about the probability of Brownian motion
remaining below a constant level.

In this paper, we revisit the above argument, by requiring the Brownian motion in our compari-
son step to stay below a piecewise-linear function, rather than a constant. Most of this piecewise-
linear function will be a negatively sloping line, which improves the bound by increasing the
argument u

√
1 − ρ(j) in some of the product terms. Moreover, by choosing the height and slope

of the function appropriately one can simultaneously improve the multiplier min{1,
√

1−ρ(1)

u2ρ(1)
}.

We will prove the following, slightly scary looking, result. In its statement, as well as in some of
our later proofs, we use Vinogradov’s notation �, meaning “greater than, up to a multiplicative
constant”. Thus, a statement like p(α) � q(α) means the same as q(α) = O(p(α)).

Theorem 2. Let the situation be as in Theorem 1. In addition, let C > 0 and K ≥ 0 and 1 ≤
N ≤ n − 1 be any parameters. Then P(max1≤i≤n Z(ti) > u) is

� n
e−u2/2

u
�

(
C/2 − Kρ(N)/(1 − ρ(N))√

ρ(N)/(1 − ρ(N))

)
min

{
1,

C(1 − ρ(N))

Kρ(N)

}
min

{
1,

√
C2(1 − ρ(1))

ρ(1)

}

×
n−1∏
j=1

�

(
u
√

1 − ρ(j)

(
1 − C

u
+ K

u
min

{
ρ(j)

1 − ρ(j)
,

ρ(N)

1 − ρ(N)

}
− 1

u2(1 − ρ(j))

))
,

where the implicit constant in the � notation is absolute (in particular, not depending on
{Z(ti)}1≤i≤n), and could be found explicitly.

Note that Theorem 1 follows from Theorem 2 by choosing C = 1/u, K = 0, and N = 1, say.
As the reader will see later, the parameter C in Theorem 2 may be thought of as a “height”
parameter, the parameter K may be thought of as a “slope” parameter, and the parameter N

may be thought of as a “break” parameter (where a boundary line of slope −K changes into a
horizontal line). Depending on the sizes of the u

√
1 − ρ(j) there may be other choices of the

parameters that yield a much stronger lower bound.
We shall prove Theorem 2 in Section 2 of this paper. Actually, we will first prove a more

general result (stated as Theorem 3, below) in which the conditioning and comparison steps
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are implemented, but the Brownian motion type term is left unanalysed. We then develop a few
results about Brownian motion hitting probabilities for piecewise linear boundaries, and combine
these with Theorem 3 to deduce Theorem 2. The proofs of fairly standard facts about Brownian
motion are deferred to the Appendix.

To illustrate the strength of Theorem 2, we turn to the Pickands constants application described
in the title of this paper. Suppose that {Z(t)}0≤t≤h is any mean zero, variance one, stationary
Gaussian process indexed on the real line, whose covariance function r(t) := EZ(0)Z(t) satisfies

r(t) = 1 − �|t |α + o
(|t |α)

as t → 0,

for some constant � > 0 and 0 < α ≤ 2. An important theorem of Pickands [9] asserts that,
provided supε≤t≤h r(t) < 1 for all ε > 0, one has

lim
u→∞ eu2/2u1−2/α

P

(
sup

0≤t≤h

Z(t) > u
)

= h�1/αHα√
2π

,

where Hα is the so-called Pickands constant.
It is a sometimes quoted conjecture (see, e.g., [1], noting that our Hα is written there as Hα/2)

that perhaps Hα = 1/�(1/α), and this is known to hold when α = 1,2, the only cases where the
value of Hα is known exactly. But it is also frequently observed that, in general, this conjecture
does not seem to match the behaviour predicted by simulations of random processes. In their
paper [4], Dieker and Yakir develop more practical Monte Carlo experiments for the investigation
of Hα , and state that “. . .our simulation gives strong evidence that this conjecture is not correct. . .
the confidence interval and [heuristic] error bounds are well above the curve [corresponding to
1/�(1/α)] for α in the range 1.6–1.8.” Dȩbicki and Mandjes reproduce the conjecture in their
open problems paper [2], saying that it “. . .lacks any firm heuristic support. . . [but] has not been
falsified so far”.

Until recently, the best known lower bound for Pickands’ constants (for small α) was
Michna’s [8] bound Hα ≥ α

4�(1/α)
(1/4)1/α , which improved an earlier bound of Dȩbicki, Michna

and Rolski [3] by a multiplicative factor of 2. In the author’s paper [7], this was improved using
the techniques underlying Theorem 1, to show that for a small absolute constant c > 0 (which
could be found explicitly) one has

Hα ≥ cα

�(1/α)
(1/2)1/α ∀0 < α ≤ 2.

See the introduction to the author’s paper [7] for further references concerning bounds for
Pickands’ constants, and the introduction to Dieker and Yakir’s paper [4] for further general
references.

By applying Theorem 2 to suitable random variables Z(ti), and making a good choice of
the parameters C,K,N (which will be done in Section 3 below, using Theorem 2 to deduce a
Technical Proposition and then a Main Proposition), we further improve the lower bound for
Hα when α is small. In particular, we can show that the conjecture about Hα is false for small
enough α.
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Corollary 1. There is an absolute constant c > 0, which could be found explicitly, such that

Hα ≥ cα5/2(1.15279)1/α

�(1/α)
∀0 < α ≤ 2.

In particular, if α > 0 is sufficiently small then Hα ≥ (1.1527)1/α/�(1/α).

Note that the number 1.1527 can be replaced in the second part by any number strictly smaller
than 1.15279 (we just use that α5/2(1.15279)1/α/(1.1527)1/α → ∞ as α → 0). Moreover, as will
be seen in the proof, the number 1.15279 could actually be replaced by a slightly larger number
(which is presumably transcendental) that solves a certain optimisation problem. We have chosen
to state Corollary 1 as we have because it is simpler and still conveys the essential point of the
result.

Although the lower bound in Corollary 1 is essentially the best that seems to follow from The-
orem 2, it is almost certainly not the best bound obtainable by our “conditioning and comparison”
method. That is because Theorem 2 corresponds to the Brownian motion in our comparison step
remaining below a negatively sloping line, and then a horizontal line, which is presumably not
the best choice of boundary function for this application. When we apply Theorem 2 to prove
Corollary 1, our choices of the parameters C,K,N are dictated by the behaviour of u

√
1 − ρ(j)

on just a few special subranges of j , which suggests that if one considered a more complicated
function one could work more carefully around those ranges, and obtain a stronger bound. As a
concrete (but probably quite fiddly) suggestion for further work, it would very likely lead to a
stronger bound if one allowed a boundary function consisting of a negatively sloping line, and
then another line with a different negative (rather than zero) slope, which would introduce an
extra slope parameter into Theorem 2. In principle, one can consider any boundary function,
but estimating the relevant Brownian hitting probabilities may be impractical if the choice is too
complicated.

The assumptions made on the correlation function ρ(m) in Theorems 1 and 2 (and in the
underlying “conditioning and comparison” arguments) are not too specialised, requiring only
that it be decreasing, non-negative, and never extremely close to 1. Thus, the author believes
there should be several applications to other probabilistic problems, and some of these will be
pursued in future work.

2. Proof of Theorem 2

2.1. A more general result

As mentioned in the Introduction, to prove Theorem 2 we shall first state and prove a more
general result, which encapsulates the conditioning and comparison arguments whilst leaving a
Brownian motion (or, in fact, random walk) term for further analysis.
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Theorem 3. Let the hypotheses be as in Theorem 1. Also let (δ(i))1≤i≤n−1 be any real numbers.
Then

P

(
max

1≤i≤n
Z(ti) > u

)
≥ n

e−u2/2

12u
P

(∑
j≤i

αjYj ≤ δ(n − i)u,∀1 ≤ i ≤ n − 1

)

×
n−1∏
j=1

�

(
u
√

1 − ρ(j)

(
1 − δ(j) − 1

u2(1 − ρ(j))

))
,

where the Yj are independent standard normal random variables, and the αj defined by

∑
j≤i

α2
j := ρ(n − i)

1 − ρ(n − i)
.

Notice that ρ(n − i)/(1 − ρ(n − i)) is an increasing function of 1 ≤ i ≤ n − 1, since ρ(m) is
assumed to be a decreasing non-negative function.

Theorem 3 could be extracted with some effort from the proofs of Propositions 1 and 2 in the
author’s paper [7], but for completeness we shall give the main details of the argument.

Since we assume the {Z(ti)}1≤i≤n are stationary, we see P(max1≤i≤n Z(ti) > u) is

=
n∑

m=1

P
(
Z(tm) > u,Z(tj ) ≤ u,∀1 ≤ j ≤ m − 1

)
≥ nP

(
Z(tn) > u,Z(tj ) ≤ u,∀1 ≤ j ≤ n − 1

)
= nP

(
Z(tn) > u,

Z(tj ) − ρ(n − j)Z(tn)√
1 − ρ(n − j)2

≤ u − ρ(n − j)Z(tn)√
1 − ρ(n − j)2

,∀1 ≤ j ≤ n − 1

)
.

Now it is easy to check that the random variables Vj := Z(tj )−ρ(n−j)Z(tn)√
1−ρ(n−j)2

satisfy

EVj = 0, EV 2
j = 1, EVjVk = ρ(|j − k|) − ρ(n − j)ρ(n − k)√

1 − ρ(n − j)2
√

1 − ρ(n − k)2
, EVjZ(tn) = 0.

In particular, since the {Z(ti)}1≤i≤n were assumed to be jointly normal and since EVjZ(tn) = 0
we know the Vj are all independent of Z(tn), so conditioning shows

P

(
max

1≤i≤n
Z(ti) > u

)
≥ n

∫ u+1/u

u

P

(
Vj ≤ u − ρ(n − j)x√

1 − ρ(n − j)2
,∀1 ≤ j ≤ n − 1

)
e−x2/2

√
2π

dx

≥ n
e−(u+1/u)2/2

u
√

2π
inf

u≤x≤u+1/u
P

(
Vj ≤ u − ρ(n − j)x√

1 − ρ(n − j)2
,∀1 ≤ j ≤ n − 1

)
.
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Since we assume that ρ(m) is a non-negative function, the infimum is attained when x = u+1/u,
so a quick calculation (using our assumption that u ≥ 1) yields the simplified lower bound

P

(
max

1≤i≤n
Z(ti) > u

)
≥ n

e−u2/2

12u
P

(
Vj ≤ u(1 − ρ(n − j)(1 + u−2))√

1 − ρ(n − j)2
,∀1 ≤ j ≤ n − 1

)
.

Continuing with the proof, observe that

EVjVk ≥ ρ(n − min{j, k})(1 − ρ(n − max{j, k}))√
1 − ρ(n − j)2

√
1 − ρ(n − k)2

∀1 ≤ j, k ≤ n − 1,

since ρ(|j − k|) ≥ ρ(n− min{j, k}) (as ρ(m) is assumed to be a decreasing function). Therefore
by Slepian’s lemma (see, e.g., Piterbarg’s monograph [10]), if {Xj }1≤j≤n−1 are mean zero, vari-

ance one, jointly normal random variables such that EXjXk = ρ(n−min{j,k})(1−ρ(n−max{j,k}))√
1−ρ(n−j)2

√
1−ρ(n−k)2

for

all j 	= k, then we have the comparison lower bound

P

(
Vj ≤ u(1 − ρ(n − j)(1 + u−2))√

1 − ρ(n − j)2
,∀j ≤ n − 1

)

≥ P

(
Xj ≤ u(1 − ρ(n − j)(1 + u−2))√

1 − ρ(n − j)2
,∀j ≤ n − 1

)
.

In the proof of Proposition 2 in the author’s paper [7] (with the choices cj = ρ(n − j) and
dj = 1 − ρ(n − j)), it is shown by construction that such random variables Xj always exist, and

that P(Xj ≤ u(1−ρ(n−j)(1+u−2))√
1−ρ(n−j)2

,∀j ≤ n − 1) is

= P

(
Ai ≤ u(1 − ρ(n − i)(1 + u−2)) − (1 − ρ(n − i))

∑
j≤i αjYj√

1 − ρ(n − i)
,∀i ≤ n − 1

)
,

where the Ai and the Yj are all independent standard normal random variables, and the real
numbers αj are defined as in Theorem 3.

Finally, using independence, for any real (δ(i))1≤i≤n−1 the above probability is

≥ P

(∑
j≤i

αjYj ≤ δ(n − i)u,∀1 ≤ i ≤ n − 1

)

× P

(
Ai ≤ u(1 − ρ(n − i) − ρ(n − i)u−2 − (1 − ρ(n − i))δ(n − i))√

1 − ρ(n − i)
,∀i ≤ n − 1

)
.

Using the independence and standard normality of the Ai this is all

= P

(∑
j≤i

αjYj ≤ δ(n − i)u,∀1 ≤ i ≤ n − 1

)

×
n−1∏
i=1

�

(
u
√

1 − ρ(n − i)

(
1 − δ(n − i) − ρ(n − i)

u2(1 − ρ(n − i))

))
,
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from which Theorem 3 follows.

2.2. Some calculations with Brownian motion

In this subsection, we shall perform a few calculations involving Brownian motion, which will
ultimately supply a lower bound for the term P(

∑
j≤i αjYj ≤ δ(n − i)u,∀1 ≤ i ≤ n − 1) in

Theorem 3 (for a special choice of the numbers (δ(i))1≤i≤n−1).
We begin by stating two lower bounds for the probability of Brownian motion remaining below

a negatively sloping line segment.

Brownian Motion Lemma 1. Let a > 0, b < 0, and t > 0. There exists an absolute constant,
not depending on anything, such that the following is true provided |b√

t | is larger than that
constant: if {Ws}s≥0 denotes a standard Brownian motion (started from zero), we have

P(Ws ≤ a + bs,∀0 ≤ s ≤ t) � min

{
1,

a

|bt |
}
�

(
a + bt√

t

)
,

where the constant implicit in the � notation is absolute.

Brownian Motion Lemma 2. Let H > 0 be any fixed constant. Let a > 0, b ≤ 0, and t > 0,
and suppose that |b√

t | ≤ H . Then if {Ws}s≥0 denotes a standard Brownian motion (started from
zero), we have

P(Ws ≤ a + bs,∀0 ≤ s ≤ t) �H min

{
1,

a√
t

}
,

where the constant implicit in the �H notation depends on H only.

Brownian Motion Lemmas 1 and 2 are consequences of the well-known explicit formula for
hitting probabilities of a sloping line by Brownian motion, together with a little analysis to sim-
plify the resulting expressions. For the sake of completeness, proofs of these lemmas are included
in the Appendix.

Combining Brownian Motion Lemmas 1 and 2, we can deduce the following result.

Brownian Motion Lemma 3. Let a > 0, b ≤ 0, and 0 < t0 < t . Then if {Ws}s≥0 denotes a
standard Brownian motion (started from zero), we have

P
(
Ws ≤ a + b min{s, t0},∀0 ≤ s ≤ t

) � min

{
1,

a

|bt0|
}
�

(
a/2 + bt0√

t0

)
min

{
1,

a√
t

}
,

where the constant implicit in the � notation is absolute.

To prove Brownian Motion Lemma 3, we distinguish two cases. We fix a value H > 1 larger
than the absolute constant in the hypotheses of Brownian Motion Lemma 1, so that lemma is
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applicable when |b√
t0| ≥ H . Then if |b√

t0| ≥ H , we observe that

P
(
Ws ≤ a + b min{s, t0},∀0 ≤ s ≤ t

)
≥ P

(
Ws ≤ a/2 + bs,∀0 ≤ s ≤ t0, and (Ws − Wt0) ≤ a/2,∀t0 < s ≤ t

)
= P(Ws ≤ a/2 + bs,∀0 ≤ s ≤ t0) · P(Bs ≤ a/2,∀0 ≤ s ≤ t − t0)

� min

{
1,

a

|bt0|
}
�

(
a/2 + bt0√

t0

)
min

{
1,

a√
t − t0

}
,

where Bs denotes another standard Brownian motion. Here the final inequality uses Brownian
Motion Lemma 1, and then the well known fact that max0≤s≤t−t0 Bs ∼ |N(0, t − t0)| (or, alter-
natively, Brownian Motion Lemma 2 with b = 0).

The other case is where |b√
t0| < H . Let b̃ := min{b,−1/

√
t0}. Then using Brownian Motion

Lemma 2, we have (remembering that b, b̃ are non-positive)

P
(
Ws ≤ a + b min{s, t0},∀0 ≤ s ≤ t

)
≥ P

(
Ws ≤ a/2 + 2b̃s,∀0 ≤ s ≤ t0, and (Ws − Wt0) ≤ a/2 + |b̃|t0,∀t0 < s ≤ t

)
= P(Ws ≤ a/2 + 2b̃s,∀0 ≤ s ≤ t0) · P(

Bs ≤ a/2 + |b̃|t0,∀0 ≤ s ≤ t − t0
)

�H min

{
1,

a√
t0

}
min

{
1,

a/2 + |b̃|t0√
t − t0

}

� min

{
1,

a√
t0

}
min

{
1,

a + √
t0√

t − t0

}
� min

{
1,

a√
t

}
.

Here the final inequality follows by considering whether a ≥ √
t0 or not. We also observe that,

since H is now permanently fixed (determined only by the absolute constant in the statement
of Brownian Motion Lemma 1), we can drop the subscript on the �H notation that denotes
dependence on H .

To summarise, in both cases we have shown, as claimed, that

P
(
Ws ≤ a + b min{s, t0},∀0 ≤ s ≤ t

) � min

{
1,

a

|bt0|
}
�

(
a/2 + bt0√

t0

)
min

{
1,

a√
t

}
.

We conclude this subsection with two fairly obvious remarks.
First, the proof of Brownian Motion Lemma 3 is a bit wasteful on certain ranges of the param-

eters a, b, t0, t . However, a sharper bound would be more complicated to state, and seemingly of
little additional use for the ultimate Pickands constants application.

Second, the main reason for examining linear and piecewise linear boundaries here (which
translates into Theorem 2, as will be seen in the next subsection) is simply that it is fairly easy
to work with them, because of the corresponding explicit formula for Brownian motion hitting
probabilities. It is quite reasonable to think that, in any given application, the best choice of
the numbers (δ(i))1≤i≤n−1 in Theorem 3 will not correspond to a piecewise linear boundary,
although Theorem 2 (and even Theorem 1) do seem to perform quite well in various applications.
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2.3. Putting everything together

The proof of Theorem 2 is completed by combining Theorem 3 with Brownian Motion Lemma 3.
Indeed, if we simply choose

δ(j) := C

u
− K

u
min

{
ρ(j)

1 − ρ(j)
,

ρ(N)

1 − ρ(N)

}

in Theorem 3 then the product over j there is as required for Theorem 2, as is the term
ne−u2/2/12u � ne−u2/2/u. Moreover, by definition we have

∑
j≤i α

2
j = ρ(n−i)

1−ρ(n−i)
for all i, and

so the remaining term P(
∑

j≤i αjYj ≤ δ(n − i)u,∀1 ≤ i ≤ n − 1) in Theorem 3 is

= P

(∑
j≤i

αjYj ≤ C − K min

{∑
j≤i

α2
j ,

ρ(N)

1 − ρ(N)

}
,∀1 ≤ i ≤ n − 1

)

≥ P

(
Ws ≤ C − K min

{
s,

ρ(N)

1 − ρ(N)

}
,∀0 ≤ s ≤ ρ(1)

1 − ρ(1)

)
,

since we always have (
∑

j≤i αjYj )1≤i≤n−1
d= (W∑

j≤i α2
j
)1≤i≤n−1 (where

d= denotes equality in

distribution). Since C > 0 and K ≥ 0 in Theorem 2, Brownian Motion Lemma 3 is applicable
and shows this probability is

� min

{
1,

C(1 − ρ(N))

Kρ(N)

}
�

(
C/2 − Kρ(N)/(1 − ρ(N))√

ρ(N)/(1 − ρ(N))

)
min

{
1,

√
C2(1 − ρ(1))

ρ(1)

}
,

as required for Theorem 2.

3. Proof of Corollary 1

3.1. Overview of the argument

It does not really require any further ideas to deduce Corollary 1 from Theorem 2, but the details
of the calculation are quite involved. To try to clarify things, in this subsection we describe
the collection of random variables to which Theorem 2 will be applied, and divide the task of
deducing Corollary 1 into two further propositions. Those propositions will be proved in the
following subsections.

Let 0 < α < 2, and let {Z(t)}t≥0 be a mean zero, variance one, stationary Gaussian process
with covariance function

r(t) := EZ(0)Z(t) = 1
2

(
eαt/2 + e−αt/2 − (

et/2 − e−t/2)α)
, t ≥ 0.

Such Gaussian processes were constructed by Shao [11] in his work on Pickands’ constants, by
suitably reparametrising fractional Brownian motion. It is easy to check that

r(t) = 1 − tα/2 + O
(
t2) as t → 0,
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and therefore by Pickands’ theorem (as stated in the Introduction) we have

Hα = 21/α
√

2π lim
u→∞ eu2/2u1−2/α

P

(
sup

0≤t≤1
Z(t) > u

)
.

(We could in fact work with any process Z(t) that satisfies the conditions of Pickands’ theorem,
rather than Shao’s particular choice, provided its covariance function r(t) is decreasing and non-
negative so that Theorem 2 will be applicable.)

Let us make two further remarks. In our proofs, it will be convenient to assume that α < α0,
for a certain small number α0 > 0. For any fixed value α0 > 0, Corollary 1 holds for all α0 ≤
α ≤ 2 as a consequence of the existing lower bounds for Hα (e.g., the bound due to Michna [8]),
provided the constant c > 0 in Corollary 1 is small enough. Thus, we can indeed restrict our
arguments to the case α < α0, where α0 is a small fixed constant. (An explicit permissible choice
of α0 could be found by working very carefully through all our proofs. The author believes
that setting α0 = 1/400 is more than sufficient, but has not checked this fully since it does not
affect the overall shape of our bounds.) Let us also recall that, by Stirling’s formula, �(1/α) ∼√

2π(1/α)1/α−1/2e−1/α as α → 0. So in order to prove Corollary 1, it will suffice to prove the
following result.

Main Proposition. There exists a small constant α0 > 0, which could be found explicitly, such
that the following is true.

Let 0 < α ≤ α0, and let {Z(t)}t≥0 be the Gaussian process described above. Then provided u

is larger than a certain absolute constant times 1/α3, we have

P

(
sup

0≤t≤1
Z(t) > u

)
� e−u2/2

u
u2/α 1

21/α
α2(1.15279eα)1/α,

where the constant implicit in the � notation is absolute.

In most of the proof, the condition that u is bigger than a large multiple of 1/α3 can be replaced
by the weaker condition that u is bigger than a large multiple of 1/

√
α, and with more work one

could possibly prove the proposition under that weaker assumption. However, this is unnecessary
for the application to Pickands’ constants for which we anyway let u → ∞.

We shall ultimately use Theorem 2 to prove the Main Proposition, so first let us check that
the conditions of the theorem are satisfied. Note that r(t) is a decreasing non-negative function
of t ≥ 0, which is easily checked by calculating r ′(t). Next, for any integer n = n(u,α) ≥ 1 we
obviously have

P

(
sup

0≤t≤1
Z(t) > u

)
≥ P

(
max

1≤i≤n
Z(i/n) > u

)
,

and the random variables {Z(i/n)}1≤i≤n will satisfy all the conditions of Theorem 2, with
ρ(j) := r(j/n), provided that

r(1/n)
(
1 + 2u−2) ≤ 1.
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Let us choose n = �(bu2α/2)1/α
, where �·
 denotes integer part and where 1 ≤ b ≤ 100 is a
parameter whose optimal value (from the point of view of proving the Main Proposition) will
be determined later. If u is bigger than a large constant times 1/

√
α then n will be large, and so

(since α ≤ α0 ≤ 1/400) we see

r(1/n)
(
1 + 2u−2) =

(
1 − 1

2nα
+ O

(
1

n2

))(
1 + 2u−2) ≤

(
1 − 1

4nα

)(
1 + 2u−2).

Remembering that n = �(bu2α/2)1/α
, and that α ≤ 1/400 ≤ 1/4b, it follows that

r(1/n)
(
1 + 2u−2) ≤

(
1 − 1

2bu2α

)(
1 + 2u−2) ≤ (

1 − 2u−2)(1 + 2u−2) < 1.

Thus the random variables {Z(i/n)}1≤i≤n do satisfy all the conditions of Theorem 2, with
ρ(j) := r(j/n).

We must still decide how to choose the “height”, “slope” and “break” parameters C > 0, K ≥ 0
and 1 ≤ N ≤ n − 1 in Theorem 2, in order to obtain the best lower bound we can. In Section 3.2,
we shall apply Theorem 2 and prove the following proposition, in the course of which we will
choose C and also the rough forms of K and N , in terms of two further bounded parameters κ,�.

Technical Proposition. There exists a small constant α0 > 0, which could be found explicitly,
such that the following is true.

Let 0 < α ≤ α0, let {Z(t)}t≥0 be the Gaussian process described above, let 1 ≤ b ≤ 100, and
set n = �(bu2α/2)1/α
. Finally, let 1/1000 ≤ κ ≤ 1000 and 1 ≤ � ≤ 1000 be any parameters.
Then provided u is larger than a certain absolute constant times 1/α3, we have

P

(
max

1≤i≤n
Z(i/n) > u

)
� n

e−u2/2

u
α3/2�

(
−(

1 + O(α)
)
κ

√
b

α�

)

×
∏

j≤n1/4

�

((
1 + O(α)

)√ jα

bα

(
1 + κb min

{
1

jα
,

1

�

}))
,

where the constants implicit in the � and “big Oh” notations are absolute.

Finally, in Section 3.3, we will fine tune the choices of κ and � and make the best choice of b

that we can, thereby deducing the Main Proposition from the Technical Proposition.

3.2. Proof of the Technical Proposition

The Technical Proposition is a messy but conceptually straightforward deduction from Theo-
rem 2, repeatedly using the fact that our underlying covariance function satisfies

r(t) = 1 − tα/2 + O
(
t2) as t → 0.
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First, consider the product term in the bound from Theorem 2, which in our case becomes

n−1∏
j=1

�

(
u

√
1 − r

(
j

n

)(
1 − C

u
+ K

u
min

{
r(j/n)

1 − r(j/n)
,

r(N/n)

1 − r(N/n)

}
− 1

u2(1 − r(j/n))

))
.

If j > n1/4 then, since r(t) is decreasing, we have

u
√

1 − r(j/n) ≥ u

√
1 − r

(
n−3/4

) = u

√
n−3α/4/2 + O

(
n−3/2

)
.

Furthermore, since n = �(bu2α/2)1/α
 is large and α ≤ α0 ≤ 1/4b is small we obtain

u
√

1 − r(j/n) ≥ u

2n3α/8
≥ u1/4,

say. Therefore for any choice of 0 < C ≤ u/2 (note the very weak upper bound restriction on C)
and K ≥ 0 and 1 ≤ N ≤ n − 1 in Theorem 2, the contribution to the product from those n1/4 <

j ≤ n − 1 will be

≥
∏

n1/4<j≤n−1

�

(
u1/4

(
1/2 − 1

u1/2

))
≥ (

�
(
u1/4/4

))n ≥ (
1 − e−u1/2/32)n

.

Since we have n ≤ (50u2α)1/α (which is only a power of u), this whole thing will be ≥ 1/2,
say, provided u is bigger than a large constant times 1/α3. This contribution can be absorbed
into the � constant in the Technical Proposition, so we only need to deal with the part of the
product where j ≤ n1/4. This simplification is helpful because when j ≤ n1/4 the approximation
r(j/n) ≈ 1 − jα/2nα is very sharp.

Indeed, when j ≤ n1/4 we have

u

√
1 − r

(
j

n

)
= u

√
jα

2nα
+ O

(
j2

n2

)
=

(
1 + O

(
j2−α

n2−α

))
u

√
jα

2nα

= (
1 + O

(
n−3/4))u

√
jα

2nα
,

say, since α is small. The “big Oh” term here is much better than we need, and for convenience
of writing later we take a very crude approach and note it is certainly O(α/jα), provided u is
bigger than a large constant times 1/

√
α. So, remembering that n = �(bu2α/2)1/α
, we have

u
√

1 − r(j/n) = (
1 + O

(
α/jα

))
u

√
jα

2nα
= (

1 + O
(
α/jα

))
u

√
jα

bu2α
= (

1 + O
(
α/jα

))√ jα

bα
.

We deduce that the product term in the bound from Theorem 2 is

�
∏

j≤n1/4

�

((
1+O

(
α

jα

))√
jα

bα

(
1− C

u
+ K

u
min

{
r(j/n)

1 − r(j/n)
,

r(N/n)

1 − r(N/n)

}
+O

(
α

jα

)))
,
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where 0 < C ≤ u/2, K ≥ 0 and 1 ≤ N ≤ n − 1 are still to be chosen. Here we used the fact that
bα/jα = O(α/jα), since b ≤ 100.

To get a rough idea of how we should select our parameters, note that if C,K ≈ 0 then the
product over j looks roughly like

∏
j≤n1/4 �(

√
jα/bα), which turns out to be ≈ 1 provided

b ≤ e/2, is very small if b > e/2, and moreover is dominated by those terms j ≤ (1000b)1/α ,
say. (See Section 5 of the author’s paper [7] for an analysis of the behaviour of the product. We
will also analyse it extensively in the next subsection.) So if we want to choose b larger than
e/2, as we do to prove the Main Proposition, we need to compensate by choosing K such that
(K/u)r(N/n)/(1 − r(N/n)) is at least a large constant. Assuming that N ≤ n1/4 (which seems
sensible both to increase the size of r(N/n)/(1 − r(N/n)), and because the size of the product
is mostly determined by small j ), our previous calculations show that

K

u
min

{
r(j/n)

1 − r(j/n)
,

r(N/n)

1 − r(N/n)

}

= Kumin

{
r(j/n)

u2(1 − r(j/n))
,

r(N/n)

u2(1 − r(N/n))

}

= Kumin

{
r(j/n)

(1 + O(α/jα))jα/(bα)
,

r(N/n)

(1 + O(α/Nα))Nα/(bα)

}

= Ku(bα)min

{
1 + O(α/jα)

jα
,

1 + O(α/Nα)

Nα

}
.

Here the final equality uses the fact that r(j/n) = 1 +O((j/n)α) = 1 +O(α/jα) when j ≤ n1/4

and u is large.
Motivated by all of this, let us take K = κ/(uα) and N = �1/α , where 1/1000 ≤ κ ≤ 1000

and 1 ≤ � ≤ 1000, say. Let us also set C = uα, which certainly satisfies our earlier restriction
that 0 < C ≤ u/2. With these choices, we see

K

u
min

{
r(j/n)

1 − r(j/n)
,

r(N/n)

1 − r(N/n)

}

= (
1 + O(α)

)
κb min

{
1

jα
,

1

Nα

}

= (
1 + O(α)

)
κb min

{
1

jα
,

1

�

}
.

Therefore the product term in Theorem 2 becomes

�
∏

j≤n1/4

�

((
1 + O

(
α

jα

))√
jα

bα

(
1 + κb min

{
1

jα
,

1

�

}
+ O(α)

))

=
∏

j≤n1/4

�

((
1 + O(α)

)√ jα

bα

(
1 + κb min

{
1

jα
,

1

�

}))
,
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on remembering that 1 ≤ b ≤ 100 and 1/1000 ≤ κ ≤ 1000, and therefore κbα = O(α). This
contribution is good enough for the Technical Proposition.

It remains to check the contribution from the terms on the first line of the Theorem 2 bound.
In our case these terms become

n
e−u2/2

u
�

(
C/2 − Kr(N/n)/(1 − r(N/n))√

r(N/n)/(1 − r(N/n))

)
min

{
1,

C(1 − r(N/n))

Kr(N/n)

}

× min

{
1,

√
C2(1 − r(1/n))

r(1/n)

}
,

and using our above calculations of r(j/n)
1−r(j/n)

and r(N/n)
1−r(N/n)

, we can rewrite this as

n
e−u2/2

u
�

(
C/2 − K(1 + O(α))u2bα/Nα√

(1 + O(α))u2bα/Nα

)
min

{
1,

CNα(1 + O(α))

Ku2bα

}

× min

{
1,

√
C2(1 + O(α))

u2bα

}
.

Finally, since we chose K = κ/(uα) and N = �1/α and C = uα the above is

� n
e−u2/2

u
�

(
uα/2 − (1 + O(α))κub/�√

(1 + O(α))u2bα/�

)
min

{
1,

α�

κb

}
min

{
1,

√
α

b

}
,

on noting that the factors 1 + O(α) from the two minima can be absorbed into the � notation,
since α ≤ α0 is small. Since we have 1 ≤ b ≤ 100 and 1/1000 ≤ κ ≤ 1000 and 1 ≤ � ≤ 1000, we
can also remove the factors �,κ, b from the two minima at the cost of adjusting the � constant
by some fixed amount. We deduce that the above is

� n
e−u2/2

u
�

(
α/2 − (1 + O(α))κb/�√

(1 + O(α))bα/�

)
α3/2 = n

e−u2/2

u
�

(
−(

1 + O(α)
)
κ

√
b

α�

)
α3/2,

on noting that α/2 may be absorbed into the O(α) term in the numerator. This bound is good
enough for the Technical Proposition.

3.3. Proof of the Main Proposition

It remains to prove the Main Proposition, and with it Corollary 1, by making a good choice of
the remaining parameters b, κ,� in the Technical Proposition. In order to do this, we need to put
the lower bound from the Technical Proposition into a bit more explicit form.

Whenever x ≥ 2 we have

�(x) ≥ 1 − 1

x
e−x2/2 ≥ exp

{
− 2

x
e−x2/2

}
and �(−x) � 1

x
e−x2/2.
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Therefore in the lower bound from the Technical Proposition we have

�

(
−(

1 + O(α)
)
κ

√
b

α�

)
� 1

κ

√
α�

b
e−(1+O(α))κ2b/(2α�) � √

αe−κ2b/(2α�),

bearing in mind that 1 ≤ b ≤ 100 and 1/1000 ≤ κ ≤ 1000 and 1 ≤ � ≤ 1000, and therefore
(1/κ)

√
�/b � 1 and e−O(κ2b/�) � 1. Furthermore, the product term in the Technical Proposi-

tion lower bound is

∏
j≤�1/α

�

((
1 + O(α)

)√ jα

bα

(
1 + κb

�

)) ∏
�1/α<j≤n1/4

�

((
1 + O(α)

)√ jα

bα

(
1 + κb

jα

))

≥ exp

{
−O

( ∑
j≤�1/α

√
α

jα
e−(1+O(α))jα/(2bα)(1+κb/�)2

+
∑

�1/α<j≤n1/4

√
α

jα
e−(1+O(α))jα/(2bα)(1+κb/jα)2

)}
.

Note that, because α is small, all of the arguments of � had absolute value at least 2, as required.
Next we need to understand the behaviour of the sums over j in the exponential. For any

constant λ > 0, we have that

∞∑
j=1

e−λjα/α ≤
∫ ∞

0
e−λtα/α dt = 1

λ

∫ ∞

0
e−y

(
αy

λ

)1/α−1

dy = 1

λ1/α
α1/α−1�(1/α),

on substituting y = λtα/α. By Stirling’s formula the right-hand side is � 1
λ1/α α−1/2e−1/α , and

so we have

∑
j≤�1/α

√
α

jα
e−(1+O(α))(jα/2bα)(1+κb/�)2 ≤ √

α

∞∑
j=1

e−(1+O(α))(jα/2bα)(1+κb/�)2

�
(

2b

(1 + κb/�)2e

)1/α

,

since (1 +O(α))1/α � 1. We remark that it may seem wasteful to remove the factor 1/
√

jα , and
extend the sum to infinity, but this is not really the case: we expect most of the contribution to
the sum to come from fairly small jα (as happens in the gamma function integral), and the sum
over �1/α < j ≤ n1/4 in the other part of our bound is anyway larger than the corresponding part
of the sum here.

Turning to the other sum over j , for any constants λ,μ > 0 we have that

∞∑
j=1

1√
jα

e−(λjα+μj−α)/α � eO(λ)

∫ ∞

1

1

tα/2
e−(λtα+μt−α)/α dt,
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since when j ≤ t ≤ j + 1 we see λtα/α = λjα(1 + O(1/j))α/α = λjα/α + O(λjα−1), and
μt−α/α ≤ μj−α/α. Substituting y = tα , we obtain that

∞∑
j=1

e−(λjα+μj−α)/α

√
jα

� eO(λ)

α

∫ ∞

1

1√
y

e−(λy+μy−1)/αy1/α−1 dy

= eO(λ)

α

∫ ∞

1

(
e−(λy+μy−1)y

)1/α dy

y3/2
,

and calculus shows that the maximum of e−(λy+μy−1)y over y > 0 occurs when y = (1/2λ)(1 +√
1 + 4λμ), and is equal to e−√

1+4λμ(1/2λ)(1 + √
1 + 4λμ). Therefore

∞∑
j=1

1√
jα

e−(λjα+μj−α)/α � eO(λ)

α

(
e−√

1+4λμ(1/2λ)(1 + √
1 + 4λμ)

)1/α
,

and so in our particular case we have

∑
�1/α<j≤n1/4

√
α

e−(1+O(α))(jα/2bα)(1+κb/jα)2

√
jα

= √
αe−(κ/α)+O(κ)

∑
�1/α<j≤n1/4

e−(1+O(α))((1/2b)jα+(κ2b/2)j−α)/α

√
jα

� 1√
α

eO(κ+1/2b)
(
e−κe−

√
1+κ2

b
(
1 +

√
1 + κ2

))1/α
,

using as before the fact that (1 + O(α))1/α � 1.
Now, for ease of writing, let us define

f (κ) := eκ+
√

1+κ2

1 + √
1 + κ2

.

Then putting the Technical Proposition together with the above calculations, bearing in mind our
restrictions that 1 ≤ b ≤ 100, 1/1000 ≤ κ ≤ 1000 and 1 ≤ � ≤ 1000 (which imply, e.g., that
eO(κ+1/2b) � 1), and the fact that n = �(bu2α/2)1/α
, we have shown that

P

(
max

1≤i≤n
Z(i/n) > u

)

� n
e−u2/2

u
α2e−κ2b/(2α�)

× exp

{
−O

((
2b

(1 + κb/�)2e

)1/α

+ 1√
α

(
e−κ−

√
1+κ2

b
(
1 +

√
1 + κ2

))1/α
)}

� u2/α

21/α

e−u2/2

u
α2(αbe−κ2b/2�

)1/α exp

{
−O

((
2b

(1 + κb/�)2e

)1/α

+ 1√
α

(
b

f (κ)

)1/α)}
.
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Now we can make our grand selection of parameters, but rather than immediately stating our
numerical choices we will try to indicate where the best choice comes from. Roughly speaking,
we want to choose b large since it is the only term that can increase the size of the lower bound,
as the other terms involving b, κ,� are negative exponentials. To give an idea of the sizes of
things note that f (0) = e/2, so in the “trivial” case of κ = 0 we could take any b < e/2 without
the second exponential term blowing up. We will find that by taking κ a little larger we can take
b rather larger.

More precisely, we must ensure that the second bracket inside the “big Oh” term is < 1, and
this will hold provided b < f (κ). Note that if b is strictly smaller than f (κ) then the bracketed
term will kill off the prefactor 1/

√
α. We also remark that f (κ) is an increasing function of

κ ≥ 0, so we will certainly have f (κ) ≥ f (0) = e/2.
We must also ensure that the first bracket inside the “big Oh” term is ≤ 1, which will hold

provided

1 + κb

�
≥ √

2b/e.

If these two conditions are satisfied (together with the previous restrictions that 1 ≤ b ≤ 100,
1/1000 ≤ κ ≤ 1000 and 1 ≤ � ≤ 1000), then we will have

P

(
max

1≤i≤n
Z(i/n) > u

)
� u2/α

21/α

e−u2/2

u
α2(αbe−κ2b/2�

)1/α
.

To obtain the best possible lower bound, we should clearly choose � as large as possible for
given κ and b, so we choose � such that

κb

�
= √

2b/e − 1.

Assuming this choice satisfies 1 ≤ � ≤ 1000 (which in the end it will, for the choices of κ and b

that we shall make), we will then have

P

(
max

1≤i≤n
Z(i/n) > u

)
� u2/α

21/α

e−u2/2

u
α2(αbe−κ/2(

√
2b/e−1)

)1/α
.

For any given b > e/2, the above bound is maximised by choosing κ as small as possible. And
we must always satisfy the constraint f (κ) > b, so the best lower bound we can possibly obtain
is

u2/α

21/α

e−u2/2

u
α2

(
α max

1/1000≤κ≤1000
f (κ)e−κ/2(

√
2f (κ)/e−1)

)1/α

.

Although the maximum of f (κ)e−κ/2(
√

2f (κ)/e−1) surely does not have a nice closed form, using
numerical methods we find it is attained when κ ≈ 1.18267.

Motivated by the above, we set κ = 1.18267 and we find f (1.18267) ≈ 6.02449, so we can
choose b = 6.02448, say. Then if we choose � such that κb

�
= √

2b/e − 1, we check that � ≈
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6.446, which is also permissible. So, finally, we obtain that

P

(
max

1≤i≤n
Z(i/n) > u

)
� u2/α

21/α

e−u2/2

u
α2(α6.02448e−0.591335(

√
12.04896/e−1)

)1/α
,

and the quantity in brackets is ≈ (3.13362α)1/α > (1.15279eα)1/α . This completes the proof of
the Main Proposition, and hence of Corollary 1.

We conclude by making a general remark about the foregoing calculations. Increasing the
value of b increases the size of n, which increases the number of sample points i/n that are used
to lower bound the continuous maximum over [0,1]. However, the lower bound supplied by the
Technical Proposition (ultimately coming from Theorem 2) will deteriorate when b becomes
very large, which might be regarded as an undesirable feature of our method. The cause is that
the application of Slepian’s lemma in the proof of Theorem 2 becomes increasingly wasteful
when b becomes very large. Nevertheless, by optimising b at the same time as optimising the
Brownian motion boundary path (i.e., the parameters C,K,N ) one obtains rather strong lower
bounds. The complex form of the bounds as a function of the parameters reflects contributions
from different parts of the Brownian motion boundary path, and perhaps also the underlying
complexity of understanding sup0≤t≤1 Z(t).

Appendix: Proofs of the Brownian motion lemmas

In this Appendix, we shall prove Brownian Motion Lemmas 1 and 2, as stated in Section 2.2.
Both proofs exploit a well-known explicit formula for the hitting time of a line by Brownian
motion, which states that if {Ws}s≥0 is a standard Brownian motion started from 0, and if a > 0,
and if t > 0 and b ∈ R, then

P(Ws ≤ a + bs,∀0 ≤ s ≤ t) = �

(
a + bt√

t

)
− e−2ab�

(
bt − a√

t

)
,

where � denotes the standard normal cumulative distribution function. This formula follows by
studying the distribution of the maximum (up to time t ) of Brownian motion with a drift. See,
for example, Chapters 13.4–13.5 of Grimmett and Stirzaker [5].

A.1. Proof of Brownian Motion Lemma 1

Let B := −b, and let us rewrite the explicit formula as

P(Ws ≤ a + bs,∀0 ≤ s ≤ t) = 1√
2π

∫ ∞

(Bt−a)/
√

t

e−z2/2 dz − e2aB 1√
2π

∫ ∞

(Bt+a)/
√

t

e−z2/2 dz.

The hypotheses of Brownian Motion Lemma 1 are that B > 0, and that B
√

t is sufficiently large
(i.e., bigger than a large fixed constant).
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Suppose first that a ≥ Bt/2, say. Then we certainly have

∫ ∞

(Bt+a)/
√

t

e−z2/2 dz ≤ 1

(Bt + a)/
√

t

∫ ∞

(Bt+a)/
√

t

ze−z2/2 dz = 1

(Bt + a)/
√

t
e−(Bt+a)2/2t

= e−2aB

(Bt + a)/
√

t
e−(Bt−a)2/2t

≤ (2/3)e−2aB

B
√

t
e−(Bt−a)2/2t .

On the other hand, it is easy to check that if a ≥ Bt/2 and B
√

t is sufficiently large,

∫ ∞

(Bt−a)/
√

t

e−z2/2 dz ≥ 1

B
√

t
e−(Bt−a)2/2t .

Indeed this follows from integration by parts if (Bt −a)/
√

t ≥ 10, say, and it is trivial otherwise.
So provided a ≥ Bt/2 and B

√
t is large we have

P(Ws ≤ a + bs,∀0 ≤ s ≤ t) ≥ (1/3)�

(
a + bt√

t

)
� min

{
1,

a

|bt |
}
�

(
a + bt√

t

)
,

as claimed in Brownian Motion Lemma 1.
It remains to treat the case where a < Bt/2. If we let 
 := a/

√
t , we note that

∫ ∞

(Bt−a)/
√

t

e−z2/2 dz =
∫ ∞

(Bt−a)/
√

t

e−(z+2
)2/2e
(2(z+2
)−2
) dz

=
∫ ∞

(Bt+a)/
√

t

e−w2/2e
(2w−2
) dw.

But e
(2w−2
) ≥ e2aB for all w ≥ (Bt + a)/
√

t , and if w ≥ (Bt + a)/
√

t + 1/(10B
√

t) then

e
(2w−2
) ≥ e2aBe
/(5B
√

t) = e2aBea/(5Bt).

We conclude from all these calculations that∫ ∞

(Bt−a)/
√

t

e−z2/2 dz − e2aB

∫ ∞

(Bt+a)/
√

t

e−z2/2 dz

≥ (
ea/(5Bt) − 1

)
e2aB

∫ ∞

(Bt+a)/
√

t+1/(10B
√

t)

e−z2/2 dz

� (
ea/(5Bt) − 1

)
e2aB

∫ ∞

(Bt+a)/
√

t

e−z2/2 dz,
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where the final inequality uses the fact that (Bt + a)/
√

t < (3/2)B
√

t . Then using integration
by parts similarly as in the preceding paragraph, and remembering that B := −b, the above is

� (
ea/(5Bt) − 1

)∫ ∞

(Bt−a)/
√

t

e−z2/2 dz = (
ea/(5Bt) − 1

)√
2π�

(
a + bt√

t

)
.

So we have again shown that

P(Ws ≤ a + bs,∀0 ≤ s ≤ t) � (
ea/(5Bt) − 1

)
�

(
a + bt√

t

)
� min

{
1,

a

|bt |
}
�

(
a + bt√

t

)
.

A.2. Proof of Brownian Motion Lemma 2

In Brownian Motion Lemma 2, we are given a constant H > 0, and we have |b√
t | ≤ H by

hypothesis. We again distinguish two cases, according as a/
√

t is large enough in terms of H , or
not. First, if a/

√
t is large enough then (a + bt)/

√
t is large and positive, (bt − a)/

√
t is large

and negative, and integration shows that

P(Ws ≤ a + bs,∀0 ≤ s ≤ t) = �

(
a + bt√

t

)
− e−2ab�

(
bt − a√

t

)

= �

(
a + bt√

t

)
+ O

(
1

|bt − a|/√t

)
� 1,

as required for Brownian Motion Lemma 2.
On the other hand, if a/

√
t is smaller then we again write B := −b ≥ 0, and by hypothesis

we have (Bt + a)/
√

t �H 1. Therefore we see, as in the second part of the proof of Brownian
Motion Lemma 1 (with 1/(10B

√
t) replaced there by 1), that∫ ∞

(Bt−a)/
√

t

e−z2/2 dz − e2aB

∫ ∞

(Bt+a)/
√

t

e−z2/2 dz

≥ (
e2a/

√
t − 1

)
e2aB

∫ ∞

(Bt+a)/
√

t+1
e−z2/2 dz

�H

(
e2a/

√
t − 1

)
,

and so indeed

P(Ws ≤ a + bs,∀0 ≤ s ≤ t) �H

(
e2a/

√
t − 1

) ≥ a√
t
.
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