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The impact of the diagonals of polynomial
forms on limit theorems with long memory
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We start with an i.i.d. sequence and consider the product of two polynomial-forms moving averages based
on that sequence. The coefficients of the polynomial forms are asymptotically slowly decaying homoge-
neous functions so that these processes have long memory. The product of these two polynomial forms is a
stationary nonlinear process. Our goal is to obtain limit theorems for the normalized sums of this product
process in three cases: exclusion of the diagonal terms of the polynomial form, inclusion, or the mixed case
(one polynomial form excludes the diagonals while the other one includes them). In any one of these cases,
if the product has long memory, then the limits are given by Wiener chaos. But the limits in each of the
cases are quite different. If the diagonals are excluded, then the limit is expressed as in the product formula
of two Wiener–Itô integrals. When the diagonals are included, the limit stochastic integrals are typically
due to a single factor of the product, namely the one with the strongest memory. In the mixed case, the limit
stochastic integral is due to the polynomial form without the diagonals irrespective of the strength of the
memory.
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1. Introduction

Let X(n) be a stationary process with mean 0 and finite variance. We are interested in the fol-
lowing weak convergence of normalized partial sum to a process Z(t):

1

A(N)

[Nt]∑
n=1

X(n) ⇒ Z(t) (1)

as N → ∞ where A(N) → ∞ is a suitable normalization. The limit Z(t), t ≥ 0 if it exists,
has stationary increments and is self-similar with some index H > 0, that is, for any a > 0,
{Z(at), t ≥ 0} and {aH Z(t), t ≥ 0} have the same finite-dimensional distributions. The parameter
H is called the memory parameter1 of the process X(n) and the Hurst index or self-similarity
parameter of the limit process Z(t). The higher the value of H , the stronger the memory of the
process X(n).

1A precise definition of memory parameter is given in Definition 4.3.
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When the dependence in X(n) is weak, one typically ends up in (1) with

A(N) =
(

Var

[
N∑

n=1

X(n)

])1/2

∼ cN1/2

as N → ∞ for some c > 0, and Z(t) is the Brownian motion. These types of limit theorems are
often called central limit theorems.

When, however, the dependence in X(n) is so strong that Var[∑N
n=1 X(n)] grows faster than

the linear speed N , and typically as N2H with H ∈ (1/2,1), the limit process Z(t) in (1) is no
longer Brownian motion. Z(t) is in this case a self-similar process with stationary increments
which has a Hurst index H (see [7]). This type of limit theorems involving non-Brownian limits
are often called noncentral limit theorems. When the process X(n) is nonlinear and has long
memory, the limit Z(t) can be non-Gaussian (e.g., [6,15,16]).

In [1], a noncentral limit theorem is established for an off-diagonal polynomial-form process
called kth order discrete chaos process:

Y ′(n) =
′∑

0<i1,...,ik<∞
a(i1, . . . , ik)εn−i1 · · · εn−ik , (2)

where the prime ′ indicates that we do not sum on the diagonals ip = iq , p 	= q , the noise εi ’s
are i.i.d. random variables with mean 0 and variance 1, and a(·) is asymptotically some homoge-
neous function g called generalized Hermite kernel (GHK). The limit Z(t), called a generalized
Hermite process, is expressed by a k-fold Wiener–Itô integral:

Z(t) =
∫ ′

Rk

∫ t

0
g(s − x1, . . . , s − xk)1{s>x1,...,s>xk} dsB(dx1) · · ·B(dxk), (3)

where the prime ′ indicates that we do not integrate on the diagonals xp = xq , p 	= q , and B(·)
is Brownian motion. These processes Z(t) include the Hermite process considered in [6,16] and
[15].

In [2], a noncentral limit theorem is established for a polynomial-form process called kth order
discrete Volterra process:

Y(n) =
∑

0<i1,...,ik<∞
a(i1, . . . , ik)εn−i1 · · · εn−ik , (4)

which differs from Y ′(n) in (2) by including the diagonals, and where a(·) is asymptotically g(·),
some special type of generalized Hermite kernel called generalized Hermite kernel of Class (B)
(GHK(B)). The limit Z(t) can be heuristically thought as (3) with diagonals included, and is pre-
cisely expressed as a k-fold centered Wiener–Stratonovich integral, which is a linear combination
of certain Wiener–Itô integrals of orders lower than or equal to k (see [2]).

In this paper, we contrast the effect of two types of stationary sequences in the limit theo-
rem (1). The first stationary sequence is

X(n) = Y ′
1(n)Y ′

2(n), (5)
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that is, a product of two long memory chaos processes (2) which exclude the diagonals. The
second stationary sequence is

X(n) = Y1(n)Y2(n), (6)

that is, a product of two long memory processes in (4) which include the diagonals. We also
consider the mixed case

X(n) = Y ′
1(n)Y2(n). (7)

Limit theorems for such types of product are of interest, for example, in statistical inference
involving long memory processes with different memory parameters ([10], see also Proposi-
tion 11.5.6 of [8]), and in the study of covariation of fractional Brownian motions with different
Hurst indexes [11]. Typically, the factor processes Y there are assumed to be either linear (or
Gaussian) or a transformation of linear process (or Gaussian), which yields in the limit a gener-
alized Rosenblatt processes where g(x1, x2) = x

γ1
1 x

γ2
2 in (3). By taking the factors Y to be some

nonlinear processes as in (5), (6) and (7), one can obtain much richer limit structures, which are
briefly described below.

We show that in the case (5), the limit in (1) is expressed as Wiener–Itô integrals which can be
obtained by using a rule similar to that used for computing the product of two Wiener–Itô inte-
grals. In fact, if the stationary sequences Y ′

1(n) and Y ′
2(n) have, respectively, memory parameters

H1,H2 ∈ (1/2,1) with H1 + H2 > 3/2, then the limit in (1) has Hurst index

H = H1 + H2 − 1 ∈ (1/2,1).

In the case (6), in contrast, the limit stochastic integrals are typically due to a single factor Y1(n)

or Y2(n), namely, the one with the strongest memory parameter. The Hurst index of the limit is
then

max(H1,H2) ∈ (1/2,1)

which is always greater than H1 + H2 − 1. In the case (7), only the off-diagonal factor Y ′
1(n)

contributes to the limit stochastic integral, irrespective of the strength of the memory.
The paper is organized as follows. Section 2 contains some background. We state the main

results in Section 3, namely, Theorem 3.5 for processes without diagonals, Theorem 3.6 for pro-
cesses with diagonals and Theorem 3.8 for the mixed case. Section 4 provides some preliminary
results used in the proofs. Section 5 contains the proofs of the theorems.

2. Background

The following notation will be used throughout: 0 denotes the zero vector (0,0, . . . ,0) and 1 =
(1,1, . . . ,1) denotes the vector with ones in every component. For two vectors x and y with the
same dimension, we write x ≤ y (or <, ≥, >) if the inequality holds componentwise. We let

[x] = sup{n ∈ Z: n ≤ x}
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for any real x and for a real vector x = (x1, . . . , xk), we define

[x] = ([x1], . . . , [xk]
)
.

The notation 1A denotes the indicator function of a set A. The value of a constant C > 0 or c > 0
may change from line to line.

In [1], the following classes of functions were introduced.

Definition 2.1. A measurable function g defined on R
k+ is called a generalized Hermite kernel

(GHK) with homogeneity exponent

α ∈
(

−k + 1

2
,−k

2

)
, (8)

if it satisfies

1. g(λx) = λαg(x), ∀λ > 0;
2.

∫
R

k+ |g(1 + x)g(x)|dx < ∞;

A GHK g is said to belong to Class (B) [abbreviated as GHK(B)], if g is a.e. continuous on R
k+

and ∣∣g(x)
∣∣ ≤ c‖x‖α = c(x1 + · · · + xk)

α

(‖ · ‖ is the L1-norm) for some constant c > 0.

Remark 2.2. As it was shown in Theorem 3.5 of [1], if g is a GHK, then∫ t

0

∣∣g(s1 − x)
∣∣1{s1>x} ds < ∞

for a.e. x ∈R
k , and the function

ht (x) :=
∫ t

0
g(s1 − x)1{s1>x} ds ∈ L2(

R
k
)
.

Using a GHK, one can define a self-similar process with stationary increments on a Wiener
chaos as follows.

Definition 2.3. Let g be a GHK on R
k+ with homogeneity exponent α ∈ (− k+1

2 ,− k
2 ), then (3) is

called a generalized Hermite process Z(t). It is self-similar with Hurst index

H = α + k/2 + 1. (9)

Example 2.4. If

g(x) =
k∏

j=1

x
γ

j ,
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where −1/2 − 1/k < γ < −1/2, then Z(t) in (3) is the Hermite process considered in [6]
and [16].

Note that GHK(B) does not include the kernel in Example 2.4. We use a GHK(B) because of
its boundedness property. The subclass of GHK(B) is, in fact, a dense subset in the whole class
of GHK (see Remark 3.17 of [1]).

We now state two limit theorems, the first for the discrete chaos process Y ′(n) defined in (2)
where the diagonals are excluded, and the second for the Volterra process Y(n) defined in (4)
which includes the diagonals.

Suppose that g is a GHK(B) on R
k+, L(·) is a bounded function defined on Z

k+ such that

lim
n→∞L

([nx] + B(n)
) = 1

for any x ∈ R
k+ and any Z

k+-valued bounded function B(n), and suppose that the coefficient a(·)
in (2) is given by

a(i) = g(i)L(i). (10)

Proposition 2.5 (Theorem 6.5 of [1]). The following weak convergence holds in D[0,1]:

1

NH

[Nt]∑
n=1

Y ′(n) ⇒ Z(t) := Ik(ht ), (11)

where H = α + k/2 + 1 ∈ (1/2,1),

ht (x) =
∫ t

0
g(s1 − x)1{s1>x} ds (12)

with g as in (10), and Ik(·) denotes the k-fold Wiener–Itô integral, so that Z(t) is a generalized
Hermite process (3).

We now consider the limit when the diagonals are included. If g is GHK(B) on R
k+ and is in

addition symmetric, we define the following function gr by identifying r pairs of variables of g

and integrating them out, as follows:

gr(x) =
∫
R

r+
g(y1, y1, . . . , yr , yr , x1, . . . , xk−2r )dy. (13)

In [2], a noncentral limit theorem was established for the Volterra process Y(n) in (4). Let

a(·) = g(·)L(·)

in (4) be given as in (10) assuming in addition that g is symmetric.



Impact of diagonals of polynomial forms on limit theorems with long memory 715

Proposition 2.6 (Theorem 6.2 of [2]). One has the following weak convergence in D[0,1]:
1

NH

[Nt]∑
n=1

Y(n) ⇒ Z(t) :=
∑

0≤r<k/2

dk,rZk−2r (t), (14)

where H = α + k/2 + 1 ∈ (1/2,1),

dk,r = k!
2r (k − 2r)!r! , (15)

and

Zk−2r (t) :=
∫ ′

Rk−2r

∫ t

0
gr(s1 − x)1{s1>x} dsB(dx1) · · ·B(dxk) (16)

is a (k − 2r)th order generalized Hermite process with GHK given by gr in (13).

Remark 2.7. The limit process Z(t) in (14) can be simply expressed in terms of a centered
Wiener–Stratonovich integral

◦
I c
k (·) as

Z(t) = ◦
I c
k (ht ), (17)

where ht is as in (12), and where
◦
I c
k (·) =

∑
0≤r<k/2

dk,r Ik−2r

(
τ r ·).

The integral
◦
I c
k (·) differs from the Wiener–Stratonovich integral

◦
Ik(·) :=

∑
0≤r≤[k/2]

dk,r Ik−2r

(
τ r ·)

introduced in [9] by excluding the term r = k/2 when k is even. Here, the operator τ r identifies r

pairs of variables of h and integrates them out (see [2]). The operator τ r is often called a “trace
operator.”

3. Statement of the main results

We state here the main results, and defer the proofs to Sections 5.1 and 5.2. In the statement of
the results, the following expressions are used.

Definition 3.1. Let X(n) be a stationary process with finite variance. We say that:

1. X(n) satisfies a central limit theorem (CLT), if

N−1/2
[Nt]∑
n=1

[
X(n) −EX(n)

] ⇒ σB(t) (18)

in D[0,1], where σ 2 = ∑∞
n=−∞ Cov(X(n),X(0));
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2. X(n) satisfies a noncentral limit theorem (NCLT) with a Hurst index H ∈ (1/2,1) and limit
Z(t), if

N−H

[Nt]∑
n=1

[
X(n) −EX(n)

] ⇒ Z(t) (19)

in D[0,1].

Remark 3.2. In case 1 above, the “long-run variance” σ 2 can be 0. In this case, we understand
the limit theorem as degenerate (the normalization N−1/2 is too strong). We do not consider here
limit theorems involving a Hurst index H < 1/2. In case 2, the limit in (19) may be fractional
Brownian motion.

We now consider separately the cases where the diagonals of the polynomial forms are ex-
cluded (chaos processes) and when they are included (Volterra processes).

3.1. Limit theorem for a product of long-memory chaos processes

Suppose that we have the following two discrete chaos processes (off-diagonal polynomial
forms):

Y ′
1(n) =

′∑
i∈Zk1+

a(1)(i)εn−i1 · · · εn−ik1
, Y ′

2(n) =
′∑

i∈Zk2+

a(2)(i)εn−i1 · · · εn−ik2
, (20)

where we assume that a(j) = g(j)L(j) as in (10) is symmetric, where g(j) is a symmetric GHK(B)
with homogeneity exponent

αj ∈ (−kj /2 − 1/2,−kj /2), j = 1,2.

Definition 2.3 suggests the following terminology.

Definition 3.3. The index

H = α + k/2 + 1 ∈ (1/2,1) (21)

is called the associated Hurst index of the coefficient a(·) = g(·)L(·) in (10).

Remark 3.4. The associated Hurst indices of the coefficients in Y ′
1(n) and Y ′

2(n) will determine
the Hurst index of the limit process Z(t) in (1).

We want to obtain a limit theorem for the normalized partial sum of the product process:

X(n) := Y ′
1(n)Y ′

2(n). (22)
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Theorem 3.5. Let X(n) be the product process in (22). Suppose that Hj is the associated Hurst
index of a(j)(·), j = 1,2, and assume that E|εi |4+δ < ∞ for some δ > 0.

1. If H1 + H2 < 3/2, then X(n) satisfies the CLT (18);
2. If H1 + H2 > 3/2, then X(n) satisfies the NCLT (19) with Hurst index H = H1 + H2 − 1

and limit

Z(t) =
k∑

r=0

r!
(

k1
r

)(
k2
r

)
Ik1+k2−2r (ht,r ), (23)

where k = k1 ∧ k2 if k1 	= k2, and k = k1 − 1 if k1 = k2. The integrand ht,r above is defined
as

ht,r (x) =
∫ t

0

(
g(1) ⊗r g(2)

)
(s1 − x)1{s1>x} ds, (24)

where

g(1) ⊗r g(2)(x)
(25)

:=
∫
R

r+
g(1)(y1, . . . , yr , x1, . . . , xk1−r )g

(2)(y1, . . . , yr , xk1−r+1, . . . , xk2+k2−2r )dy

is a GHK, and when r = 0, (25) is understood as the tensor product g(1) ⊗g(2). When r > 0
in (25), we identify r variables of g(1) and g(2) and integrate over them.

This theorem is proved in Section 5.1.

3.2. Limit theorem for a product of long-memory Volterra processes

Let now

X(n) = Y1(n)Y2(n), (26)

where

Y1(n) =
∑

i∈Zk1+

a(1)(i)εn−i1 · · · εn−ik1
, Y2(n) =

∑
i∈Zk2+

a(2)(i)εn−i1 · · · εn−ik2
. (27)

We assume that a(j) = g(j)L(j) in (10) is symmetric, and g(j) is a symmetric GHK(B) with
homogeneity exponent αj ∈ (−kj /2 − 1/2,−kj /2), j = 1,2. In this case, we can write

X(n) =
∑
i∈Zk+

a(i)εi1 · · · εik ,

where k = k1 + k2, and

a = a(1) ⊗ a(2). (28)
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Let C2
1 to be the collection of partitions of the set {1, . . . , k1} such that each set in the partition

contains at least 2 elements, and similarly let C2
2 be the same thing for {k1 + 1, . . . , k1 + k2}.

Any partition π ∈ C2
j can be expressed as π = (P1, . . . ,Pm), where Pi , i = 1, . . . ,m, are subsets

ordered according to their smallest elements. For example, if π = {{1,4}, {2,3}}, then P1 = {1,4}
and P2 = {2,3}. Let

cj =
∑
π∈C2

j

′∑
i>0

a(j)
π (i)μπ , j = 1,2, (29)

where

μπ = μp1 · · ·μpm with μp = Eε
p
i

and pi = |Pi | ≥ 2 if π = (P1, . . . ,Pm), and where a
(j)
π (·) denotes a(j) with its variables identified

according to the partition π (see (54) below).
The limit theorem for the normalized partial sum of the centered X(n) in (26) includes several

cases. We shall use the centered multiple Wiener–Stratonovich integral
◦
I c
k (·) introduced in (17).

The theorem states that except for some low-dimensional cases (cases 1–4), the limit is up to
some constant the same as the limit for a single factor, namely the one with the highest Hj (cases
5–7).

Theorem 3.6. Let X(n) be the product process in (26), where a(j) has associated Hurst index
Hj = αj + kj /2 + 1 ∈ (1/2,1) (Definition 3.3). Assume E|εi |2k1+2k2+δ < ∞ for some δ > 0.
Then using the language of Definition 3.1,

1. if k1 = 1, k2 = 1, and H1 + H2 < 3/2, then X(n) satisfies a CLT (18);
2. if k1 = 1, k2 = 1, and H1 + H2 > 3/2, then X(n) satisfies a NCLT (19) with Hurst index

H1 + H2 − 1 and limit

Z(t) =
∫ ′

R2

∫ t

0
g1(s − x1)g2(s − x2)1{s1>x} dsB(dx1)B(dx2)

(nonsymmetric Rosenblatt process);
3. if k1 ≥ 2, k2 = 1, and if c1 in (29) is nonzero, then X(n) satisfies a NCLT (19) with Hurst

index H2 and limit

Z(t) = c1

∫
R

∫ t

0
g2(s − x)1{s>x} dsB(dx)

(fractional Brownian motion);
4. if k1 = 1, k2 ≥ 2, and if c2 in (29) is nonzero, then X(n) satisfies a NCLT (19) with Hurst

index H1 and limit

Z(t) = c2

∫
R

∫ t

0
g1(s − x)1{s>x} dsB(dx)

(fractional Brownian motion);
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5. if k1 ≥ 2, k2 ≥ 2, H1 > H2, and if c2 in (29) is nonzero, then X(n) satisfies a NCLT (19)
with Hurst index H1, and the limit

Z(t) = c2
◦
I c
k1

(ht,1),

where ht,1(x) = ∫ t

0 g1(s1 − x)1{s1>x} ds;
6. if k1 ≥ 2, k2 ≥ 2, H1 < H2, and if c1 in (29) is nonzero, then X(n) satisfies a NCLT (19)

with Hurst index H2, and the limit

Z(t) = c1
◦
I c
k2

(ht,2),

where ht,2(x) = ∫ t

0 g2(s1 − x)1{s1>x} ds;
7. if k1 ≥ 2, k2 ≥ 2, H1 = H2, and if at least one of the cj ’s in (29) is nonzero, then X(n)

satisfies a NCLT (19) with Hurst index H1 = H2, and the limit

Z(t) = c1
◦
I c
k2

(ht,2) + c2
◦
I c
k1

(ht,1).

Remark 3.7. These constants cj ’s in the theorem are nonzero if, for example, every a(j)(i) > 0,
j = 1,2.

The theorem, which is proved in Section 5.2, seems bewildering at first glance. But there is
structure into it. The cases 3 and 4 are symmetric, and so are the cases 5 and 6. Case 1 involves
short-range dependence, while all the other cases involve long-range dependence. Case 2 involves
the nonsymmetric Rosenblatt process, originally introduced by Maejima and Tudor [11]. Cases 3
and 4 involve fractional Brownian motion since one of the orders k equals 1. The typical cases are
5 (and 6). In these cases, quite surprisingly, it is not the orders k1 or k2 that matter, but the process
Y1(n) or Y2(n) in (26) with the highest value of H . In the boundary case 7, where H1 = H2, they
both contribute.

3.3. Limit theorem for the mixed case

Now we consider the mixed case (7), where Y ′
1(n) is as in (20) and Y2(n) is as in (27). Let

X(n) = Y ′
1(n)Y2(n). (30)

We only state the case which does not overlap Theorem 3.5 and Theorem 3.6, that is, both
Y ′

1(n) and Y2(n) are nonlinear: k1 ≥ 2 and k2 ≥ 2. The limit, up to some constant, turns out to be
the same as the limit for the single factor Y ′

1(n).

Theorem 3.8. Let X(n) be the product process in (30), where a(j) has associated Hurst index
Hj = αj + kj /2 + 1 ∈ (1/2,1) (Definition 3.3). Assume k1 ≥ 2, k2 ≥ 2 and E|εi |2+2k2+δ < ∞
for some δ > 0. Then using the language of Definition 3.1, if c2 in (29) is nonzero, then X(n)

satisfies a NCLT (19) with Hurst index H1 = α1 + k1/2 + 1, and the limit is

Z(t) = c2Ik1(ht,1),

where ht,1(x) = ∫ t

0 g1(s1 − x)1{s1>x} ds.
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Theorem 3.8 is proved in Section 5.3.

Remark 3.9. If the noises εi ’s are Gaussian, then the normalized partial sum

1

A(N)

[Nt]∑
n=1

X(n)

considered in Theorem 3.5 3.6 and 3.8 belongs to a Wiener chaos of finite order. There is a rich
literature on obtaining Berry–Esseen type quantitative limit theorems for elements on Wiener
chaos. For the case where the limit is Gaussian, see the monograph [12] and the references
therein; for the case where the limit belongs to higher-order Wiener chaos, see [4,5] and [14].
The case where εi ’s are non-Gaussian may also be treated using techniques from [13].

The quantitative results mentioned above, however, seem not directly applicable to the limit
theorems considered here. This is because, as it will be clear in the proofs of these theorems,

1
A(N)

∑[Nt]
n=1 X(n) does not have a “clean” structure as that considered in the works mentioned

above. In particular, the decomposition of 1
A(N)

∑[Nt]
n=1 X(n) yields many terms. Some of the

quantitative results mentioned above may be applicable to the terms which contribute to the
limit, but there are other terms in the decomposition which converge in L2(
) to zero. How to
deal with these degenerate terms is an open problem.

4. Preliminary results

A central idea in establishing the limit theorems is to involve the nonsymmetric discrete chaos
process which generalizes the chaos process in (2) by allowing different sequences of noises.
We shall now define it. Let εi = (ε

(1)
i , . . . , ε

(k)
i ) be an i.i.d. vector where each component has

mean 0 and finite variance. The components ε
(1)
i , . . . , ε

(k)
i are typically dependent. Introduce the

following nonsymmetric discrete chaos process

Y ′(n) =
′∑

0<i1,...,ik<∞
a(i1, . . . , ik)ε

(1)
n−i1

· · · ε(k)
n−ik

, (31)

where
∑′

i∈Zk+
a(i)2 < ∞ so that X′(n) is well-defined in the L2(
)-sense. Let

�(i, j) = Eε(i)
n ε

(j)
n .

The autocovariance of Y ′(n) is then given by

γ (n) =
∑
σ

′∑
0<i1,...,ik<∞

a(i1, . . . , ik)a(iσ (1) + n, . . . , iσ (k) + n)�(i1, iσ (1)) · · ·�(ik, iσ (k)), (32)

where in the summation σ runs over all the k! permutations of {1, . . . , k}. The following lemma
is useful for studying the asymptotic properties of the covariance of X′(n).
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Lemma 4.1. Suppose that in (31), there exist constant c0 > 0 and γj < −1/2, j = 1, . . . , k, such
that ∣∣a(i1, . . . , ik)

∣∣ ≤ c0i
γ1
1 · · · iγk

k . (33)

Let

H ∗ = α + k/2 + 1 with α =
k∑

j=1

γj . (34)

• If H ∗ < 1/2, then
∑∞

n=−∞ |γ (n)| < ∞, and Var[∑N
n=1 Y ′(n)] ≤ c1N for some c1 > 0;

• If H ∗ > 1/2, then |γ (n)| ≤ c2n
2H ∗−2 for some c2 > 0, and Var[∑N

n=1 Y ′(n)] ≤ c3N
2H ∗

for
some c3 > 0.

Proof. The case H ∗ < 1/2 was proved in Proposition 5.4 in [2].
In the case H ∗ > 1/2, let |̃a| be the symmetrization of |a|(i) := |a(i)|, then for n ≥ 0, by (32)

and (33), ∣∣γ (n)
∣∣ ≤ C0

∑
i∈Zk+

|̃a|(i + n1)|̃a|(i)

≤ C1

∑
σ

∞∑
i1=1

· · ·
∞∑

ik=1

(i1 + n)γ1 · · · (ik + n)γk i
γσ(1)

1 · · · iγσ(k)

k

≤ C2

∑
σ

nγ1+γσ(1)+1 · · ·nγk+γσ(k)+1 = C3n
2α+k = C3n

2H ∗−2,

where the Ci ’s are positive constants, and σ in the summation runs over all the permutations of
{1, . . . , k}. Var[∑N

n=1 Y ′(n)] ≤ c3N
2H ∗

then follows as a standard result. �

Remark 4.2. In the applications of Lemma 4.1, the inequality (33) is often not seen in this form.
For example, the function a(·) defined on Z

k+ may satisfy∣∣a(i)
∣∣ ≤ C(i1 + · · · + ik1)

α1(ik1+1 + · · · + ik1+k2)
α2 ,

for some C > 0, where k1 + k2 = k, and
αj

kj
< − 1

2 , then it is easily verified by the arithmetic–
geometric mean inequality

k−1
k∑

j=1

yj ≥
(

k∏
j=1

yj

)1/k

for yj > 0, that (33) is satisfied since α < 0. It is also verified for a function aπ(·) which is a(·)
with some of its variables identified.

In general when applying Lemma 4.1, we will omit the verification of (33) which usually can
be easily done as indicated above. We will merely count the total homogeneity exponents of the
bound, which in the preceding example is α = α1 + α2.
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For convenience, we make the following definition.

Definition 4.3. Let X(n) be a stationary process with mean 0 and finite variance. We say

• X(n) has a memory parameter of at most (denoted using ≤) H , if

Var

[
N∑

n=1

X(n)

]
≤ cN2H

for some c > 0;
• X(n) has a memory parameter (denoted using =) H , if

Var

[
N∑

n=1

X(n)

]
∼ cN2H

as N → ∞ for some c > 0.

Remark 4.4. In view of the definition above, Lemma 4.1 states that if Y ′(n) in (2) satisfies (33),
then Y ′(n) has a memory parameter of at most 1/2 if H ∗ < 1/2 and of at most H ∗ if H ∗ > 1/2.

Proposition 4.5 (Proposition 5.4 of [2]). Let Y ′(n) be given as in (31) with coefficient a(·)
satisfying (33) and H ∗ < 1/2 in Lemma 4.1. Then

N−1/2
[Nt]∑
n=1

[
Y ′(n) −EY ′(n)

] f.d.d.−→ σB(t),

where

σ 2 =
∞∑

n=−∞
Cov

[
Y ′(n),Y ′(0)

]
,

B(t) is a standard Brownian motion, and
f.d.d.−→ stands for convergence of finite-dimensional dis-

tributions.
If each ε

(1)
i , . . . , ε

(k)
i has a moment greater than 2, then the tightness of

N−1/2
[Nt]∑
n=1

[
Y ′(n) −EY ′(n)

]
in D[0,1] holds and thus

f.d.d.−→ can be replaced by weak convergence ⇒ in D[0,1].

Remark 4.6. The above
f.d.d.−→ or ⇒ convergence also holds for a linear combination of different

Y ′(n)’s defined on a common i.i.d. noise vector εi , while the Y ′(n)’s can have different orders
and involve different subvectors of εi , provided the coefficient of each Y ′(n) satisfies (33) with
H ∗ < 1/2.



Impact of diagonals of polynomial forms on limit theorems with long memory 723

We now state an important result concerning the weak convergence of a discrete chaos to a
Wiener chaos. Let h be a function defined on Z

k such that
∑′

i∈Zk+
h(i)2 < ∞, where ′ indicates

the exclusion of the diagonals ip = iq , p 	= q . Let Qk(h) be defined as follows:

Qk(h) = Qk(h,ε) =
′∑

(i1,...,ik)∈Zk

h(i1, . . . , ik)εi1 · · · εik =
′∑

i∈Zk

h(i)
k∏

p=1

εip , (35)

where εi ’s are i.i.d. noises. Observe that Qk(h) is invariant under permutation of the arguments
of h(i1, . . . , ik). So if h̃ is the symmetrization of h, then Qk(h) = Qk(h̃).

Suppose now that we have a sequence of function vectors hn = (h1,n, . . . , hJ,n) where each
hj,n ∈ L2(Zkj ), j = 1, . . . , J .

Proposition 4.7 (Proposition 4.1 of [1]). Let

h̃j,n(x) = nkj /2hj,n

([nx] + cj

)
, j = 1, . . . , J,

where cj ∈ Z
k . Suppose that there exists hj ∈ L2(Rkj ), such that

‖h̃j,n − hj‖L2(R
kj )

→ 0 (36)

as n → ∞. Then, as n → ∞, we have the following joint convergence in distribution:

Q := (
Qk1(h1,n), . . . ,QkJ

(hJ,n)
) d→ I := (

Ik1(h1), . . . , IkJ
(hJ )

)
.

5. Proofs

5.1. Proof of Theorem 3.5 where diagonals are excluded

We first show that g(1) ⊗r g(2) in (25) is a GHK.

Lemma 5.1. Let g(j) be a symmetric GHK(B) with homogeneity exponent αj defined on R
kj

+ ,
j = 1,2. Suppose in addition that either k1 ≥ 2 or k2 ≥ 2, and that

α1 + α2 > −(k1 + k2 + 1)/2, (37)

and set

r =
{

0, . . . , k1 ∧ k2, if k1 	= k2,

0, . . . , k1 − 1, if k1 = k2.

If the function g(1) ⊗r g(2) is nonzero, then it is a GHK on R
k1+k2−2r
+ with homogeneity exponent

α1 + α2 + r .
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Proof. When r = 0, g(1) ⊗ g(2) is a tensor product of two GHK(B)s. It is a GHK because con-
dition 1 of Definition 2.1 is satisfied with homogeneity exponent

−(k1 + k2 + 1)/2 < α1 + α2 < −(k1 + k2)/2 (38)

[see (8)], and condition 2 of Definition 2.1 is satisfied because∫
R

k1+k2+

∣∣g(1)(x1)g
(2)(x2)g

(1)(1 + x1)g
(2)(1 + x2)

∣∣dx1 dx2

=
∫
R

k1+

∣∣g(1)(x)g(1)(1 + x)
∣∣dx

∫
R

k2+

∣∣g(2)(x)g(2)(1 + x)
∣∣dx < ∞.

We shall now focus on the case r > 0.
Consider first k1 ≥ 2 and k2 = 1 (the case k1 = 1 and k2 ≥ 2 is similar), so that g(2)(x) = Cxα2

for some C 	= 0, where α2 ∈ (−1,−1/2). Fix an x = (x1, . . . , xk−1) ∈R
k1−1
+ , then∫ ∞

0

∣∣g(1)(y,x)
∣∣yα2 dy ≤ C

∫ ∞

0
(y + x1 · · · + xk1−1)

α1yα2 dy < ∞,

because near y = 0 (the other x > 0), the integrand behaves like yα2 , where α2 > −1, while
near y = ∞, the integrand is like yα1+α2 , where α1 < −1 and α2 < −1/2. Hence, g(1) ⊗1 g(2) is
well-defined in this case. It is easy to check that

g(1) ⊗1 g(2)(λx) = λα1+α2+1g(1) ⊗1 g(2)(x)

for any λ > 0 by using a change of variable and using the homogeneity of g(j). We are left
to show that g := g(1) ⊗1 g(2) satisfies condition 2 of Definition 2.1. This is true because the
function f (x) := ∫ ∞

0 (x + y)α1yα2 dy is f (x) = C0x
α1+α2+1 for some C0 > 0. So∣∣g(1) ⊗1 g(2)(x)

∣∣ ≤ C(x1 + · · · + xk1−1)
α1+α2+1 =: g∗(x) (39)

for some C > 0. Note that g∗(·) is a GHK(B) on R
k1−1 with

−(k1 − 1)/2 − 1/2 < α1 + α2 + 1 < −(k1 − 1)/2

because α1 < −1/2, α2 < −k2/2 and α1 + α2 > −(1 + k2 + 1)/2 by assumption (37). So g =
g(1) ⊗1 g(2) satisfies condition 2 of Definition 2.1 because the dominating function g∗ does.

Suppose now that k1 ≥ 2 and k2 ≥ 2. Consider first the case 1 ≤ r ≤ (k1 ∧ k2) − 1. Using the
bound g(j)(x) ≤ C‖x‖αj , one has by applying Cauchy–Schwarz and integrating power functions
iteratively that∣∣g(1) ⊗r g(2)(x)

∣∣
≤ C

∫
R

r+
(y1 + · · · + yr + x1 + · · · + xk1−r )

α1

× (y1 + · · · + yr + xk1−r+1 + · · · + xk2+k2−2r )
α2 dy1 · · · dyr (40)
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= C

∫
R

r−1+
dy1 · · · dyr−1

(∫ ∞

0
(y1 + · · · + yr + x1 + · · · + xk1−r )

2α1 dyr

)1/2

×
(∫ ∞

0
(y1 + · · · + yr + xk1−r+1 + · · · + xk2+k2−2r )

2α2 dyr

)1/2

≤ C

∫
R

r−1+
(y1 + · · · + yr−1 + x1 + · · · + xk1−r )

α1+1/2

× (y1 + · · · + yr−1 + xk1−r+1 + · · · + xk2+k2−2r )
α2+1/2 dy

· · ·
≤ C(x1 + · · · + xk1−r )

α1+r/2(xk1−r+1 + · · · + xk1+k2−2r )
α2+r/2 =: g∗(x).

The dominating function g∗ is a GHK because it is a tensor product of two GHK(B)’s on R
kj

+ ,
j = 1,2, and

− (k1 − r) + (k2 − r) + 1

2
< (α1 + r/2) + (α2 + r/2) < − (k1 − r) + (k2 − r)

2
,

as in the inequality (38). Therefore, the bound g∗(x), and hence the kernel g(1) ⊗r g(2) satisfy
condition 2 of Definition 2.1. Moreover, the homogeneity exponent of g(1) ⊗r g(2) is α1 +α2 + r

in condition 1 of Definition 2.1. This can be easily verified as above by change of variables and
using the homogeneity of g(j).

The only case left is: k1 	= k2 ≥ 2 and r = k1 ∧k2. Suppose k1 < k2. In this case, condition 2 of
Definition 2.1 can be checked by first applying the iterative Cauchy–Schwarz argument leading to
(40) until only one variable of g(1) is unintegrated, and then bounding the last fold of integration
similarly as in (39). Hence, in this case as well, g(1) ⊗r g(2) is GHK. �

The following lemma shows a noncentral convergence involving g(1) ⊗r g(2) appearing in (25).

Lemma 5.2. Suppose that all the assumptions in Lemma 5.1 hold. Let aj (·) = g(j)L(j), j = 1,2,
be as assumed before. Set

X′
r (n) :=

′∑
(u,i)>0

a(1)(u1, . . . , ur , i1, . . . , ik1−r )

× a(2)(u1, . . . , ur , ik1−r+1, . . . , ik1+k2−2r )εn−i1 · · · εn−ik1+k2−2r
,

where εi ’s are i.i.d. with mean 0 and variance 1. We then have

1

NH

[Nt]∑
n=1

X′
r (n)

f.d.d.−→ Zr(t) := Ik1+k2−2r (ht,r )
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jointly for all the r = 0,1 . . . , k where k is as defined in Theorem 3.5, and where

H = α1 + α2 + (k1 + k2)/2 + 1 ∈ (1/2,1).

Proof. In view of Proposition 4.7, we need only to prove the convergence for a single r and a
single t > 0, and the joint convergence for different r’s and t ’s follows. We assume for simplicity
that a(j)(·) = g(j)(·) (setting L = 1), and including a general L in (10) is easy. We focus on the
case r ≥ 1, since the case r = 0 follows from Theorem 6.5 of [1], although the proof for case
r = 0 may be regarded as contained in the proof below with u being an empty vector.

Let u = (u1, . . . , ur ), i1 = (i1, . . . , ik1−r ), i2 = (ik1−r+1, . . . , ik1+k2−2r ), and i = (i1, i2). We
define the sum

Nt∑
n=1

xn :=
[Nt]∑
n=1

xn + (
Nt − [Nt])x[Nt]+1 = N

∫ t

0
x1+[Ny] dy.

Obviously,

E

[
1

NH

[Nt]∑
n=1

X′
r (n) − 1

NH

Nt∑
n=1

X′
r (n)

]2

→ 0

as N → ∞. One can thus focus on 1
NH

∑Nt
n=1 X′

r (n) instead.

1

NH

Nt∑
n=1

X′
r (n) =

′∑
i∈Zk1+k2−2r

1

NH

Nt∑
n=1

∑
u∈D(i,n)

g(1)(u, n1 − i1)1{n1>i1}

× g(2)(u, n1 − i2)1{n1>i2}
k1+k2−r∏

j=1

εij

=: Qk1+k2−2r (hN,t,r ),

using the notation (35), where

hN,t,r (i) := 1

NH

Nt∑
n=1

∑
u∈D(i,n)

g(1)(u, n1 − i1)g(2)(u, n1 − i2)1{n1>i}

and

D(i, n) = {
u ∈ Z

r+: up 	= uq if p 	= q; and up 	= n − iq even if p = q
}
.

Set x1 ∈R
k1−r , x1 ∈R

k2−r and x = (x1,x2). Define

E(x,N) = {
u ∈ Z

r+: up 	= uq if p 	= q; and up 	= n − [Nxq ] − 1 even if p = q
}
.
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In view of Proposition 4.7 and using the homogeneity of g(j)’s, one writes:

h̃N,t,r (x) = N(k1+k2−2r)/2hN,t

([Nx] + 1
)

= 1

Nα1+α2+r+1

Nt∑
n=1

∑
u∈E(x,n)

g(1)
(
u, n1 − [Nx1] − 1

)
g(2)

(
u, n1 − [Nx2] − 1

)
1{n1>i}

=
Nt∑
n=1

1

N

∑
u∈E(x,n)

1

Nr
g(1)

(
u
N

,
n1 − [Nx1] − 1

N

)
g(2)

(
u
N

,
n1 − [Nx2] − 1

N

)
1{n1>i}

=
∫ t

0
ds

∫
R

r+
dyg(1)

( [Ny] + 1
N

,
[Ns]1 − [Nx1]

N

)

× g(2)

( [Ny] + 1
N

,
[Ns]1 − [Nx2]

N

)
1{[Ns]1>[Nx]}∩F(N),

where we correspond u to [Ny] + 1, n to [Ns] + 1, and

F(N) = {
(x,y, s): [Nyp] 	= [Nyq ], [Nxp] 	= [Nxq ],
if p 	= q; and [Nyp] 	= [Ns] − [Nxq ] even if p = q

}
.

In view of Proposition 4.7, the goal is to show that

lim
N→∞‖h̃N,t,r − ht,r‖L2(Rk1+k2−2r ) = 0, (41)

where ht,r is given in (24). By the a.e. continuity of g(j)’s and the fact that 1F(N) → 1 a.e. as
N → ∞, one has

g(1)

( [Ny] + 1
N

,
[Ns]1 − [Nx1]

N

)
g(2)

( [Ny] + 1
N

,
[Ns]1 − [Nx2]

N

)
1{[Ns]1>[Nx]}∩F(N)

→ g(1)(y, s1 − x1)g
(2)(y, s1 − x2)1{s1>x} for a.e. (x,y, s).

We are left to establish suitable bound to apply the dominated convergence theorem. To this end,

since g(j)(x) ≤ C‖x‖αj =: g(j)∗(x) on R
kj

+ , we have the following bound:∣∣∣∣g(1)

( [Ny] + 1
N

,
[Ns]1 − [Nx1]

N

)
g(2)

( [Ny] + 1
N

,
[Ns]1 − [Nx2]

N

)∣∣∣∣1{[Ns]1>[Nx]}∩F(N)

≤ g(1)∗
( [Ny] + 1

N
,
[Ns]1 − [Nx1]

N

)
g(2)∗

( [Ny] + 1
N

,
[Ns]1 − [Nx2]

N

)
(42)

× 1{[Ns]1>[Nx]}∩F(N)

≤ Cg(1)∗(y, s1 − x1)g
(2)∗(y, s1 − x2)1{s1>x},
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where we have used the following facts: on the set {y > 0, [Ns]1 > [Nx]}, we have ([Ny] +
1)/N > y, ([Ns] − [Nxj ])/N ≥ 1

2 (s − xj ) (see relation (40) in the proof of Theorem 6.5 of [1])
and g(j)∗ decreases in its every variables, as well as the fact that {[Ns]1 > [Nx]} ⊂ {s1 > x}.
Note that ∫ t

0
ds

∫
R

r+
dyg(1)∗(y, s1 − x1)g

(2)∗(y, s1 − x2)1{s1>x}
(43)

=
∫ t

0
g(1)∗ ⊗r g(2)∗(s1 − x)1{s1>x} ds.

Since g(1)∗ and g(2)∗ are GHK(B)s, so by Lemma 5.1, g(1)∗ ⊗r g(2)∗ is a GHK. This has two
consequences. First, by Theorem 3.5 and Remark 3.6 of [1], the integral in ds dy on the left-
hand side of (43) is finite for a.e. x ∈R

k1+k2−2r . One can then apply the dominated convergence
theorem to conclude that

h̃N,t,r (x) → ht,r (x) for a.e. x ∈ R
k1+k2−2r . (44)

But to obtain (41), we need L2 convergence for the integral in dx. For this, we use the bound (42):

∣∣h̃N,t,r (x)
∣∣ ≤ h∗

t,r (x) := C

∫ t

0
g(1)∗ ⊗r g(2)∗(s1 − x)1{s1>x} ds.

The second consequence of the fact that g(1)∗ ⊗r g(2)∗ is a GHK stems from Remark 2.2, which
entails that h∗

t,r ∈ L2(Rk1+k2−2r ), and hence (41) follows from (44) and the dominated conver-
gence theorem. This concludes the proof of Lemma 5.2. �

We now decompose the product X(n) in (22) in off-diagonal forms (31) as follows: let
u = (u1, . . . , ur ) ∈ Z

r+, i1 = (i1, . . . , ik1−r ) and i2 = (ik1−r+1, . . . , ik1+k2−2r ), and i = (i1, i2) ∈
Z

k1+k2−2r
+ , then

X(n) = Y ′
1(n)Y ′

2(n)

=
k1∧k2∑
r=0

r!
(

k1
r

)(
k2
r

) ′∑
(u,i)∈Zk1+k2−r

+

a(1)(u, i1)a(2)(u, i2)ε2
n−u1

· · · ε2
n−ur

εn−i1 · · · εn−ik1+k2−2r
,

where we have used the symmetry of a(j)’s, while the combinatorial coefficient

c(r, k1, k2) := r!
(

k1
r

)(
k2
r

)
is obtained as the number of ways to pair r variables of a(1) to r variables of a(2). We write

ε2
n−i = 1 + (

ε2
n−i − 1

) =: A0(εn−i ) + A2(εn−i ),
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where A0(ε) = 1 and A2(ε) = ε2 − 1. These are Appell polynomials which will be introduced in
more details in Section 5.2. Set Jr = {0,2} × · · · × {0,2}. Then

Y ′
1(n)Y ′

2(n) =
k1∧k2∑
r=0

c(r, k1, k2)

′∑
(u,i)∈Zk1+k2−r

+

∑
j∈Jr

a(1)(u, i1)a(2)(u, i2)

× Aj1(εn−u1) · · ·Ajr (εn−ur )εn−i1 · · · εn−ik1+k2−2r
.

The random variables in each summand are independent because the sum does not include diag-
onals. Observe that it is only when k1 = k2, that the mean

EY ′
1(n)Y ′

2(n) = k1!
′∑

u∈Zk1+

a(1)(u)a(2)(u)

may possibly be nonzero (this is the case when r = k1 = k2). Hence, one can use the k defined
in Theorem 3.5 to write that

X(n) −EX(n) =
k∑

r=0

∑
j∈Jr

′∑
(u,i)∈Zk1+k2−r

+

c(r, k1, k2)a
(1)(u, i1)a(2)(u, i2)

(45)
× Aj1(εn−u1) · · ·Ajr (εn−ur )εn−i1 · · · εn−ik1+k2−2r

.

A basic term of the preceding decomposition of X(n) −EX(n) is

Xr
j (n) :=

′∑
(u,i)∈Zk1+k2−r

+

c(r, k1, k2)a
(1)(u, i1)a(2)(u, i2)

× Aj1(εn−u1) · · ·Ajr (εn−ur )εn−i1 · · · εn−ik1+k2−2r
.

Note that 0 ≤ r ≤ k1 ∧k2 if k1 	= k2, and 0 ≤ r ≤ k1 −1 if k1 = k2, which implies k1 +k2 −2r ≥ 1
so that there is at least one i variable. Due to the symmetry of a(j)’s, we can suppose without loss
of generality that j1 = · · · = js = 0 and js+1 = · · · = jr = 2, 0 ≤ s ≤ r . One can hence rewrite
the basic term as

Xr
j (n) =

′∑
(u,i)∈Zk1+k2−r

+

c(r, k1, k2)a
(1)(u, i1, i2)a(2)(u, i1, i3)

× A2(εn−i1) · · ·A2(εn−ir−s )εn−ir−s+1 · · · εn−ik1+k2−r−s
,

where

u = (u1, . . . , us), i1 = (i1, . . . , ir−s),

i2 = (ir−s+1, . . . , ik1−s), i3 = (ik1−s+1, . . . , ik1+k2−r−s)
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and i = (i1, i2, i3). Setting

a′(i) =
∑

u∈K(i)

c(r, k1, k2)a
(1)(u, i1, i2)a(2)(u, i1, i3), (46)

with

K(i) = {u > 0: up 	= uq if p 	= q; and up 	= iq even if p = q},
we get

Xr
j (n) =

′∑
i>0

a′(i)A2(εn−i1) · · ·A2(εn−ir−s )εn−ir−s+1 · · · εn−ik1+k2−r−s
. (47)

We list here some useful elementary inequalities which will be used many times in the sequel:

Lemma 5.3. Let A > 0, B > 0. If γ < −1, then

∞∑
i=1

(A + i)γ ≤ CAγ+1. (48)

If γ < 0, β < −1, then

∞∑
i=1

(A + i)γ iβ ≤ CAγ . (49)

If γ < −1/2, −1 < β < −1/2, then

∞∑
i=1

(A + i)γ iβ ≤ CAγ+β+1. (50)

If γ < −1/2, β < −1/2, then

∞∑
i=1

(A + i)γ (B + i)β ≤ CAγ+1/2Bβ+1/2. (51)

Proof. To obtain inequality (48), we have

∞∑
i=1

(A + i)γ =
∞∑
i=1

∫ i

i−1
(A + i)γ dx ≤

∞∑
i=1

∫ i

i−1
(A + x)γ dx

=
∫ ∞

0
(A + x)γ dx = −(γ + 1)−1Aγ+1.

For (49), note that (A + i)γ ≤ Aγ and
∑∞

i=1 iβ < ∞.
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For inequality (50), we have

∞∑
i=1

(A + i)γ iβ = Aγ+β+1
∞∑
i=1

∫ i

i−1
(1 + i/A)γ (i/A)β d(x/A) ≤ Aγ+β+1

∫ ∞

0
(1 + y)γ yβ dy,

where the integral is finite since β > −1 and γ + β < −1.
The last one (51) is obtained by applying Cauchy–Schwarz and (48) as follows:

∞∑
i=1

(A + i)γ (B + i)β ≤
[ ∞∑

i=1

(A + i)2γ

]1/2[ ∞∑
i=1

(B + i)2β

]1/2

≤ CAγ+1/2Bβ+1/2.
�

Remark 5.4. The inequalities (48), (50) and (51) all raise the total power exponent by 1, while
inequality (49) kills one of the exponents. These observations are useful in the proof below and
also in Section 5.2.

We now state the proof of Theorem 3.5.

Proof of case 1 of Theorem 3.5. We want to apply Proposition 4.5. The condition E|εi |4+δ < ∞
guarantees that E|A2(ε)|2+δ′

< ∞ in (47) holds for some δ′ > 0 and so the tightness in D[0,1]
holds.

We only need to show that H ∗ < 1/2 in Lemma 4.1 for each of the basic terms Xr
j (n) in (47).

Suppose without loss of generality that k1 ≤ k2. Using the fact |a(j)(i)| ≤ C‖i‖αj (recall that
‖ · ‖ is the L1-norm), one can bound a′(i) in (46). One has to distinguish two cases. In the first
case, where s < k1, one gets∣∣a′(i)

∣∣ ≤ C
∑

u∈Zs+

∥∥(u, i1, i2)
∥∥α1

∥∥(u, i1, i3)
∥∥α2

≤ C
∑

u∈Zs+

(
u1 + · · · + us + ‖i1‖ + ‖i2‖

)α1
(
u1 + · · · + us + ‖i1‖ + ‖i3‖

)α2

≤ C
(‖i1‖ + ‖i2‖

)α1+s/2(‖i1‖ + ‖i3‖
)α2+s/2

,

after applying (51) to each of the s components of u iteratively (note: i1 may not be present). In
the second case, where s = r = k1, one gets∣∣a′(i)

∣∣ ≤ C
∑

u∈Zs+

‖u‖α1
∥∥(u, i3)

∥∥α2

≤ C
∑

u∈Zs+

(u1 + · · · + us)
α1

(
u1 + · · · + us + ‖i3‖

)α2

≤ C‖i‖α1+α2+s ,
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after applying (51) s − 1 times, and then (50) to the last component of u. In either case, the total
power exponent is raised by s.

According to (34), this yields

H ∗ = α1 + α2 + s + (r − s + k1 − r + k2 − r)/2 + 1

= H1 + H2 + (s − r)/2 − 1 (52)

≤ H1 + H2 − 1 < 1/2,

where the last strict inequality is due to the assumption H1 + H2 < 3/2 of case 1. �

Proof of case 2 of Theorem 3.5. We now suppose that H1 + H2 > 3/2. As was shown in case 1
above, the off-diagonal chaos coefficient a′(·) in (46) leads to

H ∗ = H1 + H2 + (s − r)/2 − 1.

When s = r , we have only factors A0(ε) = 1 in (47). The chaos process X
j
r (n) is up to some

constant the process X′
r (n) in Lemma 5.2. Note that Lemma 5.2 concludes a joint convergence

for X′
r (n) with different r’s. So adding up all the terms corresponding to the case r = s in (45),

which yields

k∑
r=0

′∑
(u,i)∈Zk1+k2−r

+

r!
(

k1
r

)(
k2
r

)
a(1)(u, i1)a(2)(u, i2)εn−i1 · · · εn−ik1+k2−2r

,

one obtains the noncentral limit claimed in the theorem with a Hurst index H = H1 + H2 − 1 >

1/2.
When s < r , the corresponding terms are negligible. Indeed,

H ∗ = H1 + H2 + (s − r)/2 − 1 ≤ H1 + H2 − 1/2 − 1 < 1/2.

So by Lemma 4.1, the term X
j
r (n) has a memory parameter H ≤ 1/2 in the sense of Defini-

tion 4.3. Hence,

lim
N→∞E

[
N−(H1+H2−1)

[Nt]∑
n=1

X
j
r (n)

]2

= 0.

We have now shown the convergence of finite-dimensional distributions. Tightness in D[0,1]
is automatic since H > 1/2 (see, e.g., Proposition 4.4.2 of [8]). �

5.2. Proof of Theorem 3.6 where diagonals are included

We first recall from [2] the off-diagonal decomposition of a general kth order Volterra process
X(n) in (4). The purpose is to decompose X(n) into off-diagonal chaos terms as in (31). To
this end, it is convenient to use Appell polynomials. Suppose that ε is a random variable with
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finite K th moment. The Appell polynomial with respect to the law of ε is defined through the
following recursive relation:

d

dx
Ap(x) = pAp−1, EAp(ε) = 0, A0(x) = 1, p = 1, . . . ,K.

We will use the following identity:

xp =
p∑

j=0

(
p

j

)
μp−jAj (x), p = 0,1,2,3, . . . . (53)

For more details about Appell polynomials, see for example Chapter 3.3 of [3].
Let Pk be the collection of all the partitions of {1, . . . , k}. We further express each partition π ∈

Pk as π = (P1, . . . ,Pm) (so m = |π |), where the sets Pt ’s are ordered according to their smallest
element. If we have a variable i ∈ Z

k+, then iπ denotes a new variable where its components
are identified according to π . For example, if k = 3, π = ({1,2}, {3}) and i = (i1, i2, i3), then
iπ = (i1, i1, i2). In this case we write π = (P1,P2) where P1 = {1,2} and P2 = {3}. If a(·) is a
function on Z

k+, then

aπ(i1, . . . , im) := a(iπ ), (54)

where m = |π |. In the preceding example, aπ(i) = a(i1, i2, i2) with m = 2. We define a sum-
mation operator S′

T as follows: for any T ⊂ {1, . . . , |π |}, S′
T (aπ ) is obtained by summing aπ

over its variables indicated by T off-diagonally, yielding a function with |π | − |T | variables. For
instance, if π = ({1,5}, {2}, {3,4}), then iπ = (i1, i2, i3, i3, i1) and if T = {1,3}, then

(
S′

T aπ

)
(i) =

′∑
0<i1,i3<∞

a(i1, i, i3, i3, i1),

provided that it is well-defined. Note that in this off-diagonal sum, we require also that neither i1
nor i3 equals to i. If T =∅, S′

T is understood to be the identity operator.
Now, by collecting various diagonal cases and using (53), X(n) in (4) can be decomposed as

X(n) =
∑

π∈Pk

′∑
i∈Zm+

aπ(i)εp1
n−i1

· · · εpm

n−im
=

∑
π∈Pk

∑
j∈J (π)

Xj
π (n), (55)

where

Xj
π (n) =

′∑
i∈Zm+

aπ(i)c(p, j)Aj1(εn−i1) · · ·Ajm(εn−im), (56)

Aj(·) is the j th order Appell polynomial with respect to the law of εi , pt = |Pt |, J (π) =
{0, . . . , p1} × · · · × {0, . . . , pm}, and

c(p, j) =
(

p1
j1

)
· · ·

(
pm

jm

)
μp1−j1 · · ·μpm−jm, μj = Eε

j
i . (57)
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Note that since by assumption μ1 = 0, when jt = 0, it is only when pt ≥ 2 that it is possible to
have a nonzero term.

In addition, the expression for the centered X(n) − EX(n) is the sum in (55) with J (π) re-
placed by J+(π) := J (π) \ (0, . . . ,0), and

EX(n) =
∑

π∈Pk

′∑
i∈Zm+

aπ(i)μp1 · · ·μpm =
∑

π∈P2
k

′∑
i∈Zm+

aπ(i)μp1 · · ·μpm, (58)

where P2
k denotes the collection of partitions of {1, . . . , k} such that each set in the partition

contains at least 2 elements, namely, pt ≥ 2 for all t = 1, . . . ,m.
So from (55), (56) and the discussion above (58), the summands in the off-diagonal decompo-

sition of X(n) −EX(n) can be written as

Xj
π (n) =

′∑
i∈Zk′

+

c(p, j)S′
T aπ (i)Ajt1

(εn−it1
) · · ·Ajt

k′ (εn−it
k′ ), (59)

where T = {t = 1, . . . ,m: jt = 0}, and {t1, . . . , tk′ } = {1, . . . ,m} \ T (thus jt1 ≥ 1, . . . , jtk′ ≥ 1).

Note that T 	= {1, . . . ,m} since j ∈ J+(π). In fact, X
j
π (n) is of the form (31) with k = k′ and

a(·) = c(p, j)S′
T aπ (·).

We now state the proof of Theorem 3.6 case by case. Recall that C > 0 denotes a constant
whose value can change from line to line.

Proof of case 1. In this case, g(1)(i) = C1i
α1 , and g(2)(i) = C2i

α2 , where C1 and C2 are two
nonzero constants. The off-diagonal decomposition (55) for the centered X(n) is simply

X(n) −EX(n) =
′∑

0<i1,i2<∞
a(1)(i1)a

(2)(i2)εn−i1εn−i2 +
∑

0<i<∞
a(1)(i)a(2)(i)A2(εn−i ), (60)

where A2(εn−i ) = ε2
n−i − 1. Note that∣∣a(1)(i1)a

(2)(i2)
∣∣ ≤ Ci

α1
1 i

α2
2 ,

so the coefficient of the first term in (60) satisfies (33) with

H ∗ = α1 + α2 + (1 + 1)/2 + 1 = (H1 − 3/2) + (H2 − 3/2) + 2 < 1/2

by (21), since H1 + H2 < 3/2. For the second term in (33), one has∣∣a(1)(i)a(2)(i)
∣∣ ≤ Ciα1+α2 ,

which yields

H ∗ = α1 + α2 + 1/2 + 1 = (H1 − 3/2) + (H2 − 3/2) + 3/2 = H1 + H2 − 3/2 < 1/2, (61)

since H1 < 1 and H2 < 1. Hence, Proposition 4.5 applies. �
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Proof of case 2. Now the first term of (60) is subject to Proposition 2.5 with a Hurst index
H = α1 + α2 + 2 = H1 + H2 − 1 > 1/2. One can see that for the second term of (60), relation
(61) still holds. So by Lemma 4.1, the second term of (60) has a memory parameter H ≤ 1/2 in
the sense of Definition 4.3, and hence with the normalization N−H , the normalized partial sum
of the second term of (60) converges to 0 in D[0,1]. �

Proof of case 3. Recall from (59) that the summands in the off-diagonal decomposition of
X(n) −EX(n) are

Xj
π(n) =

∑
i∈Zk′

+

c(p, j)S′
T aπ (i)Ajt1

(εn−it1
) · · ·Ajt

k′ (εn−it
k′ ).

Consider first the following partition π = (P1, . . . ,Pm) of {1, . . . , k1, k1 + 1}, which we express
as

π = (
P1, . . . ,Pm1 , {k1 + 1}),

with m1 = m − 1,
⋃m1

j=1 Pj = {1, . . . , k1}, and Pm = {k1 + 1}. Let T = {1, . . . ,m1}. Recall that
to have nonzero c(p, j), one must require |Pt | ≥ 2 if t ∈ T , and hence 2m1 ≤ k1. Set π1 =
{P1, . . . ,Pm1} and let u ∈ Z

k1+ . Then applying the off-diagonal summation S′
T , we get

(
S′

T aπ

)
(i) =

∑
up 	=uq ,up 	=i

a(1)
π1

(u)a(2)(i) =
( ∑

up 	=uq

a(1)
π1

(u)

)
a(2)(i) − R(i), (62)

where the difference R(i) includes the terms where some up = i. Since |a(1)(i)| ≤ C(i1 + · · · +
ik1)

α1 which implies |a(1)
π (u)| ≤ C(u1 + · · · + um1)

α1 . Suppose without loss of generality that
um1 = i, then by applying (48),∣∣R(i)

∣∣ ≤ C
∑

0<u1,...,um1−1<∞
(u1 + · · · + um1−1 + i)α1 iα2 ≤ Ciα2+(α1+m1−1),

where α1 + m1 − 1 < 0 because α1 < −k1/2 ≤ −m1 ≤ −1. It follows that |R(i)| ≤ Ciα2−δ for
some δ > 0. Since k2 = 1, the term R(i) defines the linear process

∑
i>0 R(i)εn−i but one with

smaller memory parameter in the sense of Definition 4.3, than the linear process:

μπ1

( ′∑
u>0

a(1)
π1

(u)

) ∞∑
i=1

a(2)(i)εn−i ,

resulting from the first term in the right-hand side of (62) (in this case c(p, j) = μπ1 :=
μp1 · · ·μpm1

). Collecting all such π1 ∈ C2
1 , one obtains c1

∑∞
i=1 a(2)(i)εn−i with c1 as given

in (29). Applying Proposition 2.6 with k = 1, we get the noncentral limit in case 3, with a Hurst
index

H = α2 + 1/2 + 1 = α2 + 3/2 = H2.
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We now show that in all the other cases, the memory parameter of X
j
π (n) is smaller than

H = α2 + 3/2, which will conclude the proof. Observe first that∣∣a(i)
∣∣ ≤ C(i1 + · · · + ik1)

α1 i
α2
k1+1. (63)

Let π = {P1, . . . ,Pm} is a partition of {1, . . . , k1 + 1}, and T = {t1, . . . , tl}, l ≤ m − 1. To bound
|(S′

T a)(i)|, one can assume without loss of generality that either

(a) Pj ∩ {k1 + 1} = ∅ for 1 ≤ j ≤ m − 1, Pm = {k1 + 1}, T ⊂ {1, . . . ,m − 1}, ⋃l
j=1 Ptj 	=

{1, . . . , k1}, or
(b) Pm ∩ {k1 + 1} 	=∅, and Pm ∩ {1, . . . , k1} 	=∅.

Observe that in the previous case we had
⋃l

j=1 Ptj = {1, . . . , k1} (l = m1 = m − 1) and Pm =
{k1 + 1}.

In case (a), one has by (63) that∣∣aπ(i)
∣∣ ≤ C(i1 + · · · + im−1)

α1 iα2
m .

Since in case (a),
⋃l

j=1 Ptj is a strict subset of {1, . . . , k1}, we have l < m − 1, and thus by
applying (48) iteratively, one has that∣∣(S′

T aπ

)
(i)

∣∣ ≤
∑
u>0

C(u1 + · · · + ul + i1 + · · · + im−l−1)
α1 i

α2
m−l

≤ C(i1 + · · · + im−l−1)
α1+l i

α2
m−l ,

which results in H ∗ in (34) equal to

H ∗ = (α1 + l + α2) + (m − l)/2 + 1 = α1 + α2 + m/2 + l/2 + 1

< −k1/2 + α2 + (k1 + 1)/2 + 1 = α2 + 3/2 = H2

since α1 < −k1/2, and m + l = 2l + (m − l) ≤ k1 + 1 (recall that each |Pt | ≥ 2 if t ∈ T ).
In case (b), one can write without loss of generality that∣∣aπ(i)

∣∣ ≤ C(i1 + · · · + im)α1 i
α2
1

since π contains m partitions. If for the above aπ , the summation S′
T includes a sum over the

index 1, that is, 1 ∈ T , then using (48) and then (50), one has∣∣(S′
T aπ

)
(i)

∣∣ ≤ C
∑
u>0

(u1 + · · · + ul + i1 + · · · + im−l )
α1u

α2
1

≤ C

∞∑
u1=1

(u1 + i1 + · · · + im−l )
α1+l−1u

α2
1 ≤ C(i1 + · · · + im−l)

α1+α2+l .

Relation (50) does apply because on one hand α2 > −1, and on the other hand, we have α1 +
l − 1 < −1/2 since α1 < −k1/2 and 2(l − 1) + 1 < k1 because of |Pt | ≥ 2 if t ∈ T . This leads to
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H ∗ in (34) equal to

H ∗ = (α1 + α2 + l) + (m − l)/2 + 1 = α1 + α2 + m/2 + l/2 + 1 < α2 + 3/2 = H2.

If the summation S′
T does not include the index 1, that is, if 1 /∈ T , one has∣∣(S′

T aπ

)
(i)

∣∣ ≤ C
∑
u>0

(i1 + · · · + im−l + u1 + · · · + ul)
α1 i

α2
1

≤ C(i1 + · · · + im−l )
α1+l i

α2
1 ,

by (48), which also yields H ∗ < α2 + 3/2 = H2. �

Proof of case 4. Same as case 3. �

Proof of case 5. We consider first in Part 1 all cases of S′
T aπ in (59) which contribute to the

limit, and in Part 2 negligible cases.
Part 1 of case 5: Suppose that π can be split into π1 and π2 which satisfy the following: the

subpartition π1 = {P1, . . . ,Pm1} is a partition of {1, . . . , k1}, such that each Pj satisfies |Pj | ≤ 2,
and at least one |Pj | = 1, j = 1, . . . ,m1.

Thus, suppose without loss of generality that |P1| = 2, . . . , |Pr | = 2, 0 ≤ r < m1, and |Pr+1| =
· · · = |Pm1 | = 1. Require that the subpartition π2 belongs to C2

2 , where C2
2 is the collection of

partitions of {k1 +1, . . . , k1 +· · ·+ k2} such that each set in π2 contains at least 2 elements. C2
2 is

nonempty because k2 ≥ 2. Let

T = {1, . . . , r,m1 + 1, . . . ,m1 + m2}.
Setting i = (i1, . . . , im1−r ), u = (u1, . . . , ur ) ∈ Z

r+ and v = (v1, . . . , vm2) ∈ Z
m2+ , one can write(

S′
T aπ

)
(i) =

∑
up 	=uqup 	=iq ,up 	=vq ,

vp 	=vq ,vp 	=iq ,u,v>0

a(1)(u1, u1, . . . , ur , ur , i1, . . . , im1−r )a
(2)
π2

(v) (64)

=
∑

up 	=uq ,up 	=vq ,vp 	=vq ,u,v>0

a(1)(u1, u1, . . . , ur , ur , i1, . . . , im1−r )a
(2)
π2

(v) − R1(i) (65)

=
∑

up 	=uq ,u>0

a(1)(u1, u1, . . . , ur , ur , i1, . . . , im1−r )

(66)
×

∑
vp 	=vq ,v>0

a(2)
π2

(v) − R1(i) − R2(i)

for ip 	= iq . Relation (66) has the preceding three parts. We shall now apply Proposition 2.6
to the first part. Summing over all possible values of r , one gets a NCLT with Hurst index
H = α1 + k1/2 + 1, where the limit is

Z := c2

∑
0≤r<k1/2

dk,rZk1−2r ,
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where the process Zk1−2r is defined in (16) with gr = g
(1)
r . Taking into account that in this setting,

c(p, j) in (57) and (59) is(
p1
0

)
· · ·

(
pr

0

)(
pr+1

1

)
· · ·

(
pm1

1

)(
pm1+1

0

)
· · ·

(
pm1+m2

0

)
(μ2)

rμpm1+1 · · ·μpm1+m2

=: μπ2 ,

since μ2 = 1, p1 = · · · = pr = 2 and pr+1 = · · · = pm1 = 1, one gets the nonzero constant c2
in (29). As in (17), we can express the limit Z(t) as a centered Wiener–Stratonovich integral.

We shall now show that R1 and R2 in (66) lead only to terms with Hurst indices strictly less
than H = α1 + k1/2 + 1 in the sense of Definition 4.3, so they are negligible compared to the
first term, and hence they do not contribute to the limit.

R1 in (65) is obtained by taking the difference between the sum in (64) and the sum in (65).
Thus R1 is obtained by identifying some of the u and v variables in the sum in (64) with i

variables. Using the fact a(j)(i) ≤ C‖i‖αj , one can see that one of the terms (a coefficient on
Z

m1−r
+ ) in R1 is bounded by ∑

up 	=uq ,up 	=vq ,vp 	=vq ,u,v>0

C
(‖u‖ + ‖i‖)α1

(‖v‖ + ∥∥i′
∥∥)α2 , (67)

where u = (u1, . . . , ur−s1), i = (i1, . . . , im1−r ), v = (v1, . . . , vm2−s2), i′ = (i1, . . . , it ), where

0 ≤ s1 ≤ r ∧ (m1 − r), 0 ≤ t ≤ s2 ≤ m2 ∧ (m1 − r).

If t = 0, then s2 = 0, and in addition, either s1 > 0 or s2 > 0. Note that i′ is a subvector of i.
By (48), the term (67) is bounded by

∑
u,v>0

C
(‖u‖ + ‖i‖)α1

(‖v‖ + ∥∥i′
∥∥)α2 ≤

{
C‖i‖α1+r−s1 if t = 0;

C‖i‖α1+r−s1
∥∥i′

∥∥α2+m2−s2 if t > 0.

When t = s2 = 0, one must have s1 > 0, and so the term yields

H ∗ = α1 + r − s1 + (m1 − r)/2 + 1 = α1 + (r + m1)/2 + 1 − s1 < α1 + k1/2 + 1,

because

r + m1 = 2r + (m1 − r) = k1.

When s2 ≥ t > 0, it yields an

H ∗ = α1 + r − s1 + α2 + m2 − s2 + (m1 − r)/2 + 1

= α1 + (m1 + r)/2 + 1 + α2 + m2 − s1 − s2

≤ α1 + k1/2 + 1 + α2 + k2/2 − s1 − s2 < α1 + k1/2 + 1,

since 2m2 ≤ k2 due to π2 ∈ C2
2 , and where the last inequality is due to the assumption α2 <

−k2/2.
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We now examine R2 in (66), which is obtained by identifying some of the u variables to the v

variables in the first sum in (65). One term of R2 can be bounded by∑
up 	=uq,vp 	=vq ,u,v>0

C
(‖u‖ + ‖v1‖ + ‖i‖)α1

(‖v1‖ + ‖v2‖
)α2 ,

where u = (u1, . . . , ur−s),v1 = (v1, . . . , vs),v2 = (vs+1, . . . , vm2) and i = (i1, . . . , im1−r ),
where 1 ≤ s ≤ (r ∧ m2). By using (48), and then (51) and (49), this term is bounded by∑

u>0,v1>0,v2>0

C
(‖u‖ + ‖v1‖ + ‖i‖)α1

(‖v1‖ + ‖v2‖
)α2

≤
∑
v1>0

C
(‖v1‖ + ‖i‖)α1+r−s‖v1‖α2+m2−s ≤ C‖i‖α1+r−s+(s−1)/2,

which yields an

H ∗ = α1 + r − s/2−1/2+ (m1 − r)/2+1 = α1 + (m1 + r)/2+1− s/2−1/2 < α1 + k1/2+1.

So neither R1 nor R2 contributes to the limit.
Part 2 of case 5. Suppose now that π and T are not as in Part 1. To determine these cases, note
that one can always bound |(S′

T aπ)(i)| by

C
∑
u>0

(‖i1‖ + ‖i2‖ + ‖u1‖ + ‖u2‖
)α1

(‖i1‖ + ‖i3‖ + ‖u1‖ + ‖u3‖
)α2, (68)

where ij ∈ Z
sj
+ , uj ∈ Z

tj
+, sj , tj ≥ 0 and where s1 + s2 + s3 > 0 (at least one i variable must

remain), and

s1 + s2 + t1 + 2t2 ≤ k1, s1 + s3 + t1 + 2t3 ≤ k2.

Thus, the variables in u2 are at least paired within a(1), and the variables in u3 are at least paired
within a(2).

We note that in Part 1, we had s1 = s3 = t1 = 0, and st + 2t2 = k1. Thus, to avoid the situation
considered in Part 1, we require

if s1 = s3 = t1 = 0, then s2 + 2t2 < k1. (69)

As we have dealt with R1 and R2 before, by properly applying (48)–(51), the bound in (68)
yields

H ∗ < H1 = α1/2 + k1/2 + 1.

To check this, we consider the following exhaustive cases:

(a) either s1 > 0, or s1 = 0, s2 > 0, s3 > 0;
(b) s1 = s2 = 0, s3 > 0;
(c) s1 = s3 = 0, s2 > 0 but s2 + 2t2 < k1.
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Note that in case (c), if s2 + 2t2 = k1 then t1 = 0, which would contradict (69).
In case (a), for example, if s1 > 0, by applying (48) to the sum over u2 and u3, and then (51)

on the sum over u1, we can bound (68) by

C
(‖i1‖ + ‖i2‖

)α1+t1/2+t2
(‖i1‖ + ‖i3‖

)α2+t1/2+t3 .

This yields

H ∗ = α1 + α2 + t1 + t2 + t3 + (s1 + s2 + s3)/2 + 1

= α1 + (s1 + s2 + t1 + 2t2)/2 + 1 + α2 + (s3 + t1 + 2t3)/2 (70)

≤ α1 + k1/2 + 1 + α2 + k2/2 < α1 + k1/2 + 1 = H1.

In case (b), (68) becomes C
∑

u>0(‖u1‖ + ‖u2‖)α1(‖i3‖ + ‖u1‖ + ‖u3‖)α2 which we can
bound by

C
∑
u1>0

‖u1‖α1+t2
(‖i3‖ + ‖u1‖

)α2+t3

≤
{‖i3‖α2+(t1−1)+/2+t3 if α1 + t1/2 + t2 < −1/2;

‖i3‖α1+α2+t1+t2+t3 if − 1/2 < α1 + t1/2 + t2 < 0,

where we need to apply first (48), then apply (51) if t1 ≥ 2, and finally apply either (49) for the
first case or (50) for the second. Note that α1 + t1/2 + t2 > −1/2 only if t1/2 + t2 = k1/2 since
−k1/2 − 1/2 < α1 < −k1/2 and t1 + 2t2 ≤ k1. So this yields either an

H ∗ = α2 + (t1 − 1)+/2 + t3 + s3/2 + 1
(71)

= α2 + (s3 + t1 + 2t3)/2 + 1 + (t1 − 1)+/2 − t1/2 ≤ α2 + k2/2 + 1 = H2 < H1

or H ∗ as in (70).
Similarly, in case (c), (68) is

∑
u>0 C(‖i2‖ + ‖u1‖ + ‖u2‖)α1(‖u1‖ + ‖u3‖)α2 , which can be

bounded by

C
∑
u1>0

(‖i2‖ + ‖u1‖
)α1+t2‖u1‖α2+t3

≤
{‖i2‖α1+(t1−1)+/2+t2 if α2 + t1/2 + t3 < −1/2;

‖i2‖α1+α2+t1+t2+t3 if −1/2 < α1 + t1/2 + t2 < 0.

So it yields either an

H ∗ = α1 + (t1 − 1)+/2 + t2 + s2/2 + 1
(72)

= α1 + (s2 + t1 + 2t2)/2 + 1 + (t1 − 1)+/2 − t1/2 < α1 + k1/2 + 1 = H1,

or H ∗ as in (70). To get the strict inequality in (72), we use (69) when t1 = 0, and use (t1 −
1)+/2 < t1/2 when t1 > 0. �
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Proof of case 6. Same as case 5. �

Proof of case 7. Since H1 = H2, both factors a(1) and a(2) may contribute to the limit. The proof
is similar to case 5, while the other term in the limit arises by exchanging of the role of a(1) and
a(2) in the proof of case 5. Note that because H1 = H2, the equality in “≤” in (71) is attained
whenever t1 = 0 and s3 + 2t3 = k2, a case which would then be included in the NCLT part of the
proof. �

5.3. Proof of Theorem 3.8 the mixed case

The proof is similar to case 5 of Theorem 3.6. We thus only give a sketch.
First, following the same notation as Part 1 of case 5 of Theorem 3.6, we look at the con-

tributing case: the partition π can be split into π1 and π2, where since now the factor Y ′
1 in (30)

excludes the diagonals, the first partition π1 is just {{1}, . . . , {m1}}. This means that the compo-
nent u in (64) does not appear, namely, r = 0. Hence, instead of (66) one gets

a(1)(i1, . . . , im1)
∑

vp 	=vq ,v>0

a(2)
π2

(v) − R(i), (73)

where ip 	= iq for p 	= q and the residual term R(i) is as R1(i) in (66) (there is no R2 due to
absence of u). The first term leads to the noncentral limit c2Ik1(ht,1) with Hurst index H1 =
α1 + k1/2 + 1 claimed in Theorem 3.8 by Proposition 2.5. Then treating R(i) in the same way
as R1(i) is treated there, one can show that R(i) leads to terms with Hurst index strictly less than
H1 = α1 + k1/2 + 1. Since H1 is used in the normalization, all these terms are negligible.

Next, one follows Part 2 of case 5 of the proof of Theorem 3.6 to show that all other cases of π

yield terms with Hurst indices strictly less than H1 = α1 + k1/2 + 1. Due to the off-diagonality
of Y ′

1, for the bound (68), we have the following additional restrictions involving the dimensions
of the vectors in (68): t2 = 0 (u2 does not appear), and thus

s1 + s2 + t1 = k1. (74)

The argument in the proof of Theorem 3.6 for cases (a) and (c) continue to hold because the
quantity H ∗ continues to be strictly less than H1. The only case there involving modification is
case (b) where s1 = s2 = 0, s3 > 0, because the original inequality (71) allows H ∗ = H2 which
can be greater than H1. But now by (74) we have the restriction t1 = k1 ≥ 2. So (71) is now
changed to

H ∗ = α2 + (s3 + t1 + 2t3)/2 + 1 − 1/2 ≤ H2 − 1/2 < 1/2 < H1.

Since H ∗ < H1, these terms are also negligible. Then the first term of (73) dominates and pro-
vides the limit c2Ik1(ht,1).
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