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In many prediction problems, it is not uncommon that the number of variables used to construct a forecast
is of the same order of magnitude as the sample size, if not larger. We then face the problem of constructing
a prediction in the presence of potentially large estimation error. Control of the estimation error is either
achieved by selecting variables or combining all the variables in some special way. This paper considers
greedy algorithms to solve this problem. It is shown that the resulting estimators are consistent under weak
conditions. In particular, the derived rates of convergence are either minimax or improve on the ones given in
the literature allowing for dependence and unbounded regressors. Some versions of the algorithms provide
fast solution to problems such as Lasso.
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1. Introduction

The goal of this paper is to address the problem of forecasting in the presence of many explana-
tory variables or individual forecasts. Throughout the paper, the explanatory variables will be
referred to as regressors even when they are individual forecasts that we wish to combine or
basis functions, or in general elements in some dictionary.

The framework is the one where the number of regressors is often large relatively to the sample
size. This is quite common in many fields, for example, in macroeconomic predictions (e.g.,
Stock and Watson [64,65,66]). Moreover, when there is evidence of structural breaks, it is not
always possible to use the full sample without making further assumptions. Indeed, it is often
suggested to forecast using different sample sizes in an effort to mitigate the problem (e.g.,
Pesaran et al. [56], Pesaran and Picks [57]). When doing so, we still need to make sure that
the forecasts built using smaller sample sizes are not too noisy.

For these reasons, it is critical to consider procedures that allow us to select and/or combine
variables in an optimal way when the data are dependent. It is clear that in large-dimensional
problems, variable selection via information criteria is not feasible, as it would require the esti-
mation of a huge number of models. For example, if we are considering 100 regressors, naive
model selection of a model with only 10 variables (i.e., an order of magnitude lower) would
require estimation and comparison of

(100
10

)
models, which is in the order of billions.

This paper considers greedy algorithms to do automatic variable selection. There are many
references related to the algorithms considered here (e.g., Bühlmann [15], Barron et al. [6],
Huang, Cheang and Barron [40], Bühlmann and van de Geer [17]). These existing results are not
applicable to standard prediction problems, as they assume i.i.d. random variable with bounded
regressors and in some case bounded error terms.
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Greedy algorithms have been applied to time series problems both in a linear and non-linear
context (e.g., Audrino and Bühlmann [3,4], Audrino and Barone-Adesi [2], amongst others).
However, to the author’s knowledge, in the linear case, only Lutz and Bühlmann [49] derive
consistency under strong mixing. There, no rates of convergence are given. (See Audrino and
Bühlmann [4], for the non-linear case, again where no rates are given.) The above references
only consider Boosting. It is known that other greedy algorithms possess better convergence
rates (e.g., Barron et al. [6]). Here, only linear predictions are considered. Of course, when the
regressors are a basis for some function space, the results directly apply to series estimators,
hence, non-linear prediction (e.g., Mallat and Zhang [50], Daubechies, Defrise and De Mol [27],
Barron et al. [6], Bühlmann and van de Geer [17], Sancetta [63], for more details along these
lines).

To be precise, this paper shall consider greedy algorithms and provide rates of convergence
which are best possible for the given set up or considerably improve on the existing ones, even
under dependence conditions. The first algorithm is the L2-Boosting studied by Bühlmann [15],
also known as Projection Pursuit in signal processing (e.g., Mallat and Zhang [50]) and Pure
Greedy Algorithm in approximation theory (e.g., DeVore and Temlyakov [29]). As mentioned
above, it is routinely used in many applications, even in time series problems. The second algo-
rithm is known as Orthogonal Greedy Algorithm (OGA) in approximation theory (e.g., DeVore
and Temlyakov [29], Temlyakov [68]), and has also been studied in the statistical literature (Bar-
ron et al. [6]). It is the one the most resembles OLS estimation. The OGA is also reviewed in
Bühlmann and van de Geer [17], where it is called Orthogonal Matching Pursuit (see also Zhang
[81], Cai and Wang [23], for recent results). The third algorithm is a version of the Hilbert space
projection algorithm studied by Jones [43] and Barron [5] with the version studied in this paper
taken from Barron et al. [6], and called the Relaxed Greedy Algorithm (RGA). Adding a natural
restriction to the RGA, the algorithm leads to the solution of the Lasso problem, which appears to
be relatively new (see Sancetta [63]). This constrained version will be called Constrained Greedy
Algorithm (CGA). Finally, closely related to the CGA is the Frank–Wolfe Algorithm (FWA) (see
Frank and Wolfe [35], and Clarkson [26], Jaggi [42], and Freund, Grigas and Mazumder [36], for
recent results). This selection seems to span the majority of known algorithms used in applied
work.

The general problem of variable selection is often addressed relying on penalized estimation
with an l1 penalty. Greedy algorithms can be related to Lasso as they both lead to automatic
variable selection. Algorithms that use a penalty in the estimation will not be discussed here.
It is well known (Friedman et al. [37]) that the Lasso solution can be recovered via Pathwise
Coordinate Optimization (a stagewise recursive algorithm), using the results of Tseng [71] (see
also Daubechies, Defrise and De Mol [27], for related results). On the other hand, Huang, Cheang
and Barron [40] have extended the RGA to the case of a Lasso penalty. (For recent advances on
asymptotics for Lasso, the reader may consult Greenshtein and Ritov [39], Bunea, Tsybakov
and Wegkamp [19], van de Geer [76], Huang, Cheang and Barron [40], Zhang [79], Belloni and
Chernozhukov [10], Belloni et al. [9], amongst others.) Another related approach for variable
selection under sparsity and design matrix constraints is via linear programming (e.g., Candes
and Tao [24]).

One related question which is also considered here is the one of persistence as defined by
Greenshtein and Ritov [39] and explored by other authors (e.g., Greenshtein [38], Bühlmann
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and van de Geer [17], Bartlett, Mendelson and Neeman [7]). This problems is of interest in a
prediction context and relates to the idea of pseudo true value. Loosely speaking, one is interested
in finding the largest class of linear models relative to which the estimator is still optimal in
some sense. Here, it is shown that for mixing data, persistence holds for the class of linear
models as large as the ones considered in Greenshtein and Ritov [39] and Bartlett, Mendelson
and Neeman [7].

The focus of the paper is on prediction and consistency of the forecasts. Asymptotic normal-
ity of the estimators is not derived due to the weak conditions used (e.g., see Bühlmann [16],
Nickl and van de Geer [53], van de Geer et al. [75], Zhang and Zhang [80] for results on statisti-
cal significance for high-dimensional, sparse models, under different estimation procedures and
assumptions).

The paper is structured as follows. The remainder of this section defines the estimation set-
up, the objectives and the conditions to be used. Two different sets of dependence conditions
are used: beta mixing, which gives the best convergence rates, and more general conditions al-
lowing for non-mixing data and possibly long memory data. Section 2 starts with a summary
of existing results comparing them with some of the ones derived here. The actual statement of
all the results follows afterward. With the exception of the PGA, it is shown that the algorithms
can achieve the minimax rate under beta mixing. However, for the PGA, the rates derived here
considerably improve on the ones previously obtained. The algorithms are only reviewed later
on in Section 2.3. The reader unfamiliar with these algorithms can browse through Section 2
right after Section 1 if needed. A discussion of the conditions and examples and applications of
the results are given in Section 2.4. In particular, Section 2.4.3 gives examples of applications
to long memory achieving convergence rates as good or better than the ones derived by other
authors under i.i.d. observations, though requiring the population Gram matrix of the regressors
to have full rank. In Section 3, details on implementation are given. Section 3 contains remarks
of practical nature including vectorized versions of the algorithms, which are useful when im-
plemented in scripting languages such as R and Matlab. This section also gives details on finite
sample performance via simulation examples to complement the theoretical results. For exam-
ple, the simulations in Section 3.3 show that – despite the slower rates of convergence – the PGA
seems to perform particularly well when the signal to noise is low (see also Bühlmann and van de
Geer [17], Section 12.7.1.1). The proofs are all in Section 4. Section 4 contains results on the
approximation properties of the algorithms that can be of interest in their own. For example, a
simple extension of the result in DeVore and Temlyakov [29] to statistical least square estimation
is given in order to bound the approximation error of the PGA (L2-Boosting). Moreover, it is also
shown that the complexity of the PGA grows sub-linearly with the number of iteration, hence
compensating this way for the higher approximation error (Lemma 8 in Section 4). This obser-
vation appears to be new and it is exploited when considering convergence under non-mixing
data.

1.1. Estimation setup

There are possibly many more regressors than the sample size. However, most of the regres-
sors are not needed or useful for prediction, for example, they may either be zero or have a
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progressively decreasing importance. This means that most of the regressors are redundant. Re-
dundancy is formally defined in terms of a bound on the absolute sum of the regression coef-
ficients. In particular, let X be a set of regressors of cardinality K , possibly much larger than
the sample size n and growing with n if needed. Then the focus is on the linear regression func-
tion μ(x) = ∑K

k=1 bkx
(k) where

∑K
k=1 |bk| ≤ B < ∞, and x(k) is the kth element in x. As B

increases, the class of functions representable by μ becomes larger (e.g., when X is a set of
functions whose linear span is dense in some space of functions). The same remark is valid when
K grows with n, as for sieve estimators. The absolute summability of the regression coefficients
is standard (e.g., Bühlmann [15], Barron et al. [6]). This restriction is also used in compressed
sensing, where a signal with no noise admits a sparse representation in terms of a dictionary
(e.g., Temlyakov [67], Chapter 5). Nevertheless, high-dimensional statistics also considers the
problem of consistency when B → ∞ at the rate o(

√
n/ lnK) (e.g., Greenshtein and Ritov [39],

Greenshtein [38], Bühlmann and van de Geer [17], Bartlett, Mendelson and Neeman [7]). Here,
it is shown that Greedy algorithms are consistent in this situation when the data are dependent
and the regressors are not necessarily bounded.

Notational details and conditions are introduced next. Given random variables Y and X, in-
terest lies in approximating the conditional regression function E[Y |X] = μ0(X), with the linear
regression μ(X) :=∑K

k=1 bkX
(k), where

∑K
k=1 |bk| ≤ B , and X(k) denotes the kth element of X.

Hence, μ0 does not need to be linear. (Most of the literature, essentially, considers the case when
the true regression function μ0 ∈ L(B) with Barron et al. [6] being one of the few exceptions.)
Let {Yi,Xi : i = 1,2, . . . , n} be possibly dependent copies of Y,X. Define the empirical inner
product

〈
Y,X(k)

〉
n

:= 1

n

n∑
i=1

YiX
(k)
i and

∣∣X(k)
∣∣2
n

:= 〈
X(k),X(k)

〉
n
.

To make sure that the magnitude of the regression coefficients is comparable, assume that
|X(k)|2n = 1. This is a standard condition that also simplifies the discussion throughout (e.g.,
Bühlmann [15], Barron et al. [6]). In practice, this is achieved by dividing the original variables
by |X(k)|n. Throughout, it is assumed that the variables have unit | · |n norm. This also implies
that E|X(k)|2n = 1. Denote by

L(B) :=
{

μ: μ(X) =
K∑

k=1

bkX
(k),

K∑
k=1

|bk| ≤ B,X ∈X
}

,

the space of linear functions on X with l1 coefficients bounded by B . It follows that L(B) is
a Hilbert space under the inner product 〈X(k),X(l)〉 = EX(k)X(l) as well as the empirical inner
product 〈X(k),X(l)〉n. Also, let L :=⋃

B<∞ L(B) be the union of the above spaces for finite B .
The goal it to estimate the regression function when the true expectation is replaced by the
empirical one, that is, when we use a finite sample of n observations {Yi,Xi : i = 1,2, . . . , n}.
As already mentioned, B is only known to be finite, and this is a standard set up used elsewhere
(e.g., Bühlmann [15], Barron et al. [6]). Moreover, μ0 does not need to be an element of L(B)

for any finite B .
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Results are sometimes derived using some restricted eigenvalue condition on the empirical
Gram matrix of the regressors also called compatibility condition (e.g., Bühlmann and van de
Geer [17], for a list and discussion). For example, the minimum eigenvalue of the empirical
Gram matrix of any possible m regressors out of the K possible ones, is given by

ρm,n := inf

{
|∑K

k=1 X(k)bk|2n∑K
k=1 |bk|2

:
K∑

k=1

{bk 	= 0} = m

}
, (1)

where {bk 	= 0} is the indicator function of a set (e.g., Zhang [81], and many of the references on
Lasso cited above; see also the isometry condition in Candes and Tao [24]). The above condition
means that the regressors are approximately orthogonal, and typical examples are frames (e.g.,
Daubechies, Defrise and De Mol [27]). This condition is usually avoided in the analysis of con-
vergence rates of greedy algorithms. Note that unless one uses a fixed design for the regressors,
(1) is random. In this paper, m usually refers to the number of iterations or greedy steps at which
the algorithm is stopped. The population counterpart of (1) will be denoted by ρm, that is,

ρm := inf

{
E|∑K

k=1 X(k)bk|2n∑K
k=1 |bk|2

:
K∑

k=1

{bk 	= 0} = m

}
. (2)

When m is relatively small, ρm plus an op(1) term can be used to bound ρm,n from below (e.g.,
Loh and Wainwright [48]; see also Nickl and van de Geer [53]). Eigenvalue restrictions will be
avoided here under mixing dependent conditions. However, under non-mixing and possibly long
memory conditions, the convergence rates can deteriorate quite quickly. Restricting attention to
the case ρm > 0 allows one to derive more interesting results.

Throughout the paper, the following symbols are used: � and � indicate inequality up to a
multiplicative finite absolute constant, 
 when the left-hand side and the right-hand side are of
the same order of magnitude, ∧ and ∨ are min and max, respectively, between the left-hand side
and the right-hand side.

1.2. Objective

To ease notation, let | · |2 = (E| · |2)1/2 and define

γ (B) := inf
μ∈L(B)

|μ − μ0|2 (3)

to be the approximation error of the best element in L(B), and let μB be the actual minimizer.
Since for each B < ∞ the set L(B) is compact, one can replace the inf with min in the above
display. The approximation can improve if B increases. For simplicity, the notation does not
make explicit the dependence of the approximation error on K , as K is the same for all the
algorithms, while B can be different for the CGA and FWA, as it will be shown in due course.

Let X′ be a random variable distributed like X but independent of the sample. Let E′ be
expectation w.r.t. X′ only. The estimator from any of the greedy algorithms will be denoted
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by Fm. The bounds are of the following kind:

(
E

′∣∣μ0
(
X′)− Fm

(
X′)∣∣2)1/2 � error(B,K,n,m) + algo(B,m) + γ (B) (4)

for any B in some suitable range, where relates to the B in the approximation μB from (3). The
possible values of B depend on the algorithm. For the PGA, OGA and RGA, B < ∞, that is,
the algorithms allow to approximate any function in L, the union of L(B) for any B > 0. The
CGA and FWA restrict B ≤ B̄ which is a user specified parameter. This gives direct control of
the estimation error. The results for the CGA and FWA will be stated explicitly in B̄ , so that
B̄ → ∞ is allowed. The term γ (B) is defined in (3), while

algo(B,m)2 � |Y − Fm|2n − inf
μ∈L(B)

|Y − μ|2n

defines an upper bound for the error due to estimating using any of the algorithms rather than
performing a direct optimization. It could be seen as part of the approximation error, but to
clearly identify the approximation properties of each algorithm, algo(B,m) is explicitly defined.
Finally, the term error(B,K,n,m) is the estimation error.

1.3. Approximation in function spaces

When μ0 /∈ L, the approximation can be large. This is not to say that functions in L cannot
represent non-linear functions. For example, the set of regressors X could include functions that
are dense in some set, or generally be a subset of some dictionary (e.g., Mallat and Zhang [50],
Barron et al. [6], Sancetta [63]).

Consider the framework in Section 2.3 of Barron et al. [6]. Let μ0 be a univariate function
on [0,1], that is, μ0 is the expectation of Y conditional on a univariate variable with values
in [0,1]. Suppose D is a dictionary of functions on [0,1], and denote its elements by g. Sup-
pose that μ0 is in the closure of functions admitting the representation μ(x) = ∑

g∈D bgg(x),
where

∑
g∈D |bg| ≤ B; bg are coefficients that depend on the functions g. Examples include sig-

moid functions, polynomials, curvelet, frames, wavelets, trigonometric polynomials, etc. Since
D might be infinite or too large for practical applications, one considers a subset X ⊂ D, which
is a dictionary of K functions on [0,1]. Then μ0(x) = ∑

g∈X bgg(x) + ∑
g∈D\X bgg(x). As-

suming that |∑g∈D\X bgg(x)|2 � K−α for some α > 0, the approximation error decreases as
one expands the dictionary. Examples for non-orthogonal dictionaries are discussed in Barron
et al. [6]. However, to aid intuition, one can consider Fourier basis for smooth enough functions
to ensure that

∑
g∈D |bg| < ∞. If X is large enough, one may expect the second summation to

have a marginal contribution.
Hence, with abuse of notation, the result of the present paper cover the aforementioned prob-

lem, where the functions g ∈ X are then denoted by {x(k): k = 1,2, . . . ,K}; here x ∈ [0,1],
while each g(x) is denoted by x(k)(x), so that x(k) is not the kth entry in x but a function of x

(the kth element in a dictionary). As mentioned in the Introduction, this paper does not make any
distinction whether X is a set of explanatory variables or functions (in general a dictionary), so
it also covers problems addressed in compress sensing with error noise.
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1.4. Conditions

The theoretical properties of the algorithms are a function of the dependence conditions used. At
first, absolute regularity is used. This allows to obtain results as good as if the data were inde-
pendent (e.g., Chen and Shen [25]). However, for some prediction problems, absolute regularity
might not be satisfied. Hence, more general dependence conditions shall be used. Generality
comes at a big cost in this case.

Some notation is needed to recall the definition of absolute regularity. Suppose that (Wi)i∈Z
is a stationary sequence of random variables and, for any d ≥ 0, let σ(Wi : i ≤ 0), σ(Wi : i ≥ d)

be the sigma algebra generated by {Wi : i ≤ 0} and {Wi : i ≥ d}, respectively. For any d ≥ 0, the
beta mixing coefficient β(d) for (Wi)i∈Z is

β(d) := E sup
A∈σ(Wi : i≥d)

∣∣Pr
(
A|σ(Wi : i ≤ 0)

)− Pr(A)
∣∣

(see Rio [60], Section 1.6, for other equivalent definitions). The sequence (Wi)i∈Z is absolutely
regular or beta mixing if β(d) → 0 for d → ∞.

Throughout, with slight abuse of notation, for any p > 0, | · |pp = E| · |p is the Lp norm (i.e.,
do not confuse | · |n with | · |p). Moreover, μ0(X) := E[Y |X] is the true regression function,
Z := Y −μ0(X) is the error term, �(X) = μB(X)−μ0(X) is the approximation residual (recall
that μB is the best L2 approximation to μ0 in L(B)).

The asymptotics of the greedy algorithms are studied under the following conditions.

Condition 1. maxk |X(k)|2n = 1, maxk |X(k)|2 = 1.

Condition 2. The sequence (Xi,Zi)∈Z is stationary absolutely regular with beta mixing co-
efficients β(i) � βi for some β ∈ [0,1) and E|Z|p < ∞ for some p > 2, maxk≤K |X(k)| is
bounded, and the approximation residual �(X) = μB(X) − μ0(X) is also bounded. Moreover,
1 < K � exp{Cna}, for some absolute constant C and a ∈ [0,1).

Bounded regressors and sub-Gaussian errors are the common conditions under which greedy
algorithms are studied. Condition 2 already weakens this to the error terms only possessing a
p > 2 moment. However, restricting attention to bounded regressors can be limiting. The next
condition replaces this with a moment condition.

Condition 3. The sequence (Xi,Zi)∈Z is stationary absolutely regular with beta mixing coeffi-
cients β(i) � βi for some β ∈ [0,1) and

E
∣∣ZX(k)

∣∣p +E
∣∣X(k)

∣∣2p +E
∣∣�(X)X(k)

∣∣p < ∞, (5)

for some p > 2. Moreover, 1 < K � nα for some α < (p − 2)/2 (with p as just defined).

Note that in the case of independent random variables, one could relax the moment condition
to p ≥ 2. Recall that μ0 is not restricted to be in L(B). Only the resulting estimator will be. The
expectation of �(X) is the bias.



1234 A. Sancetta

There are examples of models that are not mixing (e.g., Andrews [1], Bradley [13]). For ex-
ample, the sieve bootstrap is not mixing (Bickel and Bühlmann [11]). It is important to extend
the applicability of the algorithms to such case. The gain in generality leads to a considerably
slower rate of convergence than the i.i.d. and beta mixing case. This is mostly due to the method
of proof. It is not known whether the results can be improved in such cases. Dependence is now
formalized by the following.

Condition 4. Denote by E0 the expectation conditional at time 0 (w.r.t. the natural filtration of
the random variables). Recall that | · |p := (E| · |p)1/p . The sequence (Xi,Zi)∈Z is stationary,
and for some p ≥ 2,

dn,p := max
k

n∑
i=0

(|E0ZiX
(k)
i |p + |E0[(1 −E)|X(k)

i |2]|p + |E0[(1 −E)�(Xi)X
(k)
i ]|p)

(i + 1)1/2
< ∞

for any n.

Note that the dependence condition is in terms of mixingales and for weakly dependent data,
supn dn,p < ∞ when the pth moment exists, under certain conditions. The general framework
allows us to consider data that might be strongly dependent (long memory), when dn,p → ∞
(see Example 4 for some details).

2. Algorithms

The algorithms have already appeared elsewhere, and they will be reviewed in Section 2.3. All
the algorithms studied here do achieve a global minimum of the empirical risk. This minimum
might not be unique if the number of variables are larger than the sample size. Moreover, the
convergence rates of the algorithms to the global minimum can differ. The reader unfamiliar
with them, can skim through Section 2.3 before reading the following. In particular, the PGA
has the slowest rate, while all the others have a faster rate which is essentially optimal (see
Lemmas 4, 5, 6 and 7, for the exact rates used here; see DeVore and Temlyakov [29], and Barron
et al. [6], for discussions on optimality of convergence rates). The optimal rate toward the global
minimum is m−1/2 under the square root of the empirical square error loss, where m is the
number of greedy iterations. For the PGA the convergence rate of the approximation error of
the algorithm, algo(B,m), is only m−1/6, without requiring the target Y to be itself an element
of L(B), that is, a linear function with no noise (Lemma 4). For functions in L(B), Konyagin
and Temlyakov [45] improved the rate to m−11/62, while Livshitz and Temlyakov [47] show a
lower bound m−0.27. Hence, the approximation rate of the PGA is an open question. The slow
rate of the PGA (L2-Boosting) has led Barron et al. [6] to disregard it. While the approximating
properties of the PGA are worse than the other algorithms, its finite sample properties tend to be
particularly good in many cases (e.g., Section 3.3). An overview of how the present results add
to the literature and further details are summarized next.
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2.1. Comparison with existing results

There are many results on greedy algorithms under different conditions. Table 1 summarizes and
compares some of these results. For each algorithm the most interesting results from the present
paper are presented first. The symbols used to describe the conditions are defined in the glossary
of symbols at the end of this section.

Table 1. Comparison of results

Algorithm/author/conditions Rates

PGA
M(X;b), M(Z;p), D(X,Z;βn), K(E), L2 ( lnK

n )1/8

M(X,Z;g), D(X,Z;NM), K(P ), X, L2 (
d2
n,p̄

n )(1−ε)/8

Bühlmann and van de Geer [17]

M(X;b), M(Z;g), D(X,Z; iid), K(E), L2n ( lnK
n )(1−ε)/16

Lutz and Bühlmann [49]

M(X,Z;p), D(X,Z;nα), K(E), L2 o(1)

OGA

M(X;b), M(Z;p), D(X,Z;βn), K(E), L2 ( lnK
n )1/4

M(X,Z;g), D(X,Z;NM), K(P ), X, L2 (
d2
n,p̄

n )(1−ε)/6

Bühlmann and van de Geer [17]

M(X;b), M(Z;g), D(X,Z; iid), K(E), L2 ( 1
n )1/6 ∨ ( lnK

n )1/4

Barron et al. [6]

M(X,Z;b), D(X,Z; iid), K(P ), EL2 ( lnK
n )1/4

Zhang [81]

M(X,Z;b), D(X,Z; iid), X, L2n, + (
K0
n )1/2

RGA

M(X;b), M(Z;p), D(X,Z;βn), K(E), L2 ( lnK
n )1/4

M(X,Z;g), D(X,Z;NM), K(P ), X, L2 (
d2
n,p̄

n )(1−ε)/6

Barron et al. [6]

M(X,Z;b), D(X,Z; iid), K(P ), EL2 ( lnK
n )1/4

CGA and FWA

M(X;b), M(Z;p), D(X,Z;βn), K(E), L2, + ( lnK
n )1/4

M(X,Z;g), D(X,Z;NM), K(P ), L2, + (
d2
n,p̄

n )(1−ε)/4
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2.1.1. Glossary for Table 1

2.1.1.1. Moments. M (variable; moment type); moment types: p = moments, refer to paper for
exact p, g = sub-Gaussian tails, b = bounded random variables; for example, M(X,Z;b) means
that both X and Z are bounded.

2.1.1.2. Dependence. D (variable, dependence type); dependence types are all stationary:
iid = i.i.d. or just independence, αn/βn = geometric alpha/beta mixing, nα /nβ = polynomial
alpha/beta mixing; NM = non-mixing; see paper for details on the polynomial rate and how it
relates to moments.

2.1.1.3. K. K (growth rate); number of regressors K : P = na for any a < ∞, E = exp{Cna}
for a ∈ [0,1), C < ∞.

2.1.1.4. Design matrix. X if conditions are imposed on the design matrix, for example, com-
patibility conditions, otherwise, no symbol is reported.

2.1.1.5. Loss function. L2 = L2 loss as in the l.h.s. of (4) and results holding in probability,
EL2 = same as L2 but results holding in L1 (i.e., take a second expectation w.r.t. to the sample
data), L2n = empirical L2 loss.

2.1.1.6. Additional remarks on glossary. The true function μ0 is assumed to be in L(B) for
some finite B . When rates are included, ε is understood to be a positive arbitrarily small con-
stant. Also, p̄ in dn,p̄ refers to a large p depending on ε and K , with exact details given in
Corollary 5. In some cases, conditions may not fit exactly within the classification given above
due to minor differences, in which case they may still be classified within one group. The sym-
bol + is used to denote additional conditions which can be found in the cited paper. For Zhang
[81], K0 represents the true number of non-zero coefficients and it is supposed to be small. For
the CGA and the FWA, the symbol + refers to the fact that the user pre-specifies a B̄ < ∞ and
constrains estimation in L(B) with B ≤ B̄ , and it also assumes that μ0 ∈ L(B̄). The results in
the paper are more general, and the restrictions in Table 1 are for the sake of concise exposition
and comparison.

2.1.2. Comments

Table 1 only provides upper bounds. Interest would also lie in deriving lower bound estimates
(e.g., Donoho and Johnstone [30], Birgé and Massart [12], Tsybakov [72], and Bunea, Tsybakov
and Wegkamp [20], for such rates for certain nonparametric parametric problems; see also Tsy-
bakov [73], Chapter 2, for a general discussion on lower bounds). The results in Tsybakov [72]
and Bunea, Tsybakov and Wegkamp [20] provide minimax rates and explicit estimators for cer-
tain function classes which exactly apply in the present context. Suppose that the error term Z is
Gaussian, the regressors X are bounded and an i.i.d. sample is available. Let μn be any estimator
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in L(B). From Theorem 2 in Tsybakov [72], one can deduce that

sup
μ∈L(B)

|μ − μn| �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B

√
K

n
, if K � √

n,

B

(
lnK

n

)1/4

, if K � √
n.

This results is also useful to understand the difference between the result derived by Zhang [81]
for the OGA and usual results for Lasso under sparsity. In these cases, the target function is in a
much smaller class than L(B), that is, μ0 is a linear function with a small number of K0 non-zero
regression coefficients. Within this context, one can infer that the result from Zhang [81] is the
best possible (e.g., use Theorem 3 in Tsybakov [72]).

Under mixing conditions, the convergence rates for the OGA, RGA, CGA and FWA are opti-
mal. Table 1 shows that the results in Barron et al. [6] for the OGA and RGA are also optimal,
but require i.i.d. bounded regressors and noise. The convergence rates for the PGA are not op-
timal, but considerably improve the ones of Bühlmann and van de Geer [17] also allowing for
unbounded regressors and dependence.

2.2. Statement of results

2.2.1. Mixing data

In the following, when some relation is said to hold in probability, it means it holds with proba-
bility going to one as n → ∞. Also, note that the linear projection of μ0 onto the space spanned
by the regressors is in L (the union of the L(B) spaces) because the number of regressors K is
finite. Hence, let

B0 := arg inf
B>0

γ (B) (6)

be the absolute sum of the coefficients in the unconstrained linear projection of μ0 onto the space
spanned by the regressors (γ (B) as in (3)). Of course, K is allowed to diverge to infinity with n,
if needed, which in consequence may also imply B0 in (6) can go to infinity.

Theorem 1. Under Condition 1 and either Conditions 2 or 3,

(
E

′∣∣μ0
(
X′)− Fm

(
X′)∣∣2)1/2 � error(B,K,n,m) + algo(B) + γ (B) (7)

in probability, where

B ∈
{ [B0,∞), for the PGA, OGA, RGA,

(0, B̄], for the CGA and FWA,
(8)
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where

error(B,K,n,m) =

⎧⎪⎪⎨
⎪⎪⎩

√
m lnK

n
, for the PGA, OGA, RGA,

B̄

(
lnK

n

)1/4

, for the CGA and FWA,
(9)

algo(B,m) =

⎧⎪⎨
⎪⎩

B1/3m−1/6, for the PGA,

Bm−1/2, for the OGA and RGA,

B̄m−1/2, for the CGA and FWA.

(10)

Remark 1. When B0 ≤ B̄ , asymptotically, the CGA and FWA impose no constraint on the re-
gression coefficients. In this case, these algorithms also satisfy (7) with (8) as for the OGA and
RGA. While B0 is unknown, this observation will be used to deduce Corollary 2. Also note
that (7) for the PGA, OGA and RGA is minimized by B = B0.

Theorem 1 allows one to answer several questions of interest about the algorithms. Note that
error(B,K,n,m) in (9) does not depend on B , as a consequence of the method of proof; it will
depend on B for some of the other results. The next two results will focus on two related im-
portant questions. One concerns the overall convergence rates of the estimator when the true
function μ0 ∈ L, that is, μ0 is linear with absolutely summable coefficients. The other concerns
the largest linear model in reference of which the estimator is optimal in a square error sense
(i.e., persistence in the terminology of Greenshtein and Ritov [39], or traditionally, this is termed
consistency for the linear pseudo true value). Rates of convergence are next. These rates di-
rectly follow from Theorem 1, using the fact that B < ∞ and equating error(B,K,n,m) with
algo(B,m) and solving for m.

Corollary 1. Under the conditions of Theorem 1, if

m satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩



(

n

lnK

)3/4

, for the PGA,



√

n

lnK
, for the OGA and RGA,

�
√

n

lnK
, for the CGA and FWA

then, in probability

(
E

′∣∣μ0
(
X′)− Fm

(
X′)∣∣2)1/2 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
lnK

n

)1/8

, for the PGA if μ0 ∈ L,

(
lnK

n

)1/4

, for the OGA and RGA if μ0 ∈ L,

B̄

(
lnK

n

)1/4

, for the CGA and FWA if μ0 ∈ L(B̄).
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The CGA and FWA achieve the minimax rate under either Conditions 2 or 3 if μ0 ∈ L(B̄) as
long as the number of iterations m is large enough. The drawback in fixing B̄ is that if μ0 ∈ L(B)

with B̄ < B , there can be an increase in bias. This can be avoided by letting B̄ → ∞ with the
sample size. The following can then be used to bound the error when B̄ < B , if μ0 ∈ L(B)

(Sancetta [63]).

Lemma 1. Let μ ∈ L(B) for some B < ∞. Then

inf
μ′∈L(B ′)

∣∣μ − μ′∣∣
2 ≤ max

{
B − B ′,0

}
.

The bounds are explicit in B̄ so that one can let B̄ → ∞ if needed and apply Lemma 1 to show
that the approximation error goes to zero if μ0 ∈ L(B) for some bounded B .

Next, one can look at the idea of persistence, which is also related to consistency of an estima-
tor for the pseudo true value in the class of linear functions. Adapting the definition of persistence
to the set up of this paper, the estimator Fm is persistent at the rate B → ∞ if

E
′∣∣Y ′ − Fm

(
X′)∣∣2 − inf

μ∈L(B)
E

′∣∣Y ′ − μ
(
X′)∣∣2 = op(1), (11)

where X′ and Y ′ are defined to have same marginal distribution as the Xi ’s and Yi ’s, but inde-
pendent of them. Directly from Theorem 1 deduce the following.

Corollary 2. Let B̄ = B for the CGA and FWA. Under the conditions of Theorem 1, (11) holds
if m → ∞ such that m = o(n/ lnK) and B = o(

√
m) for all algorithms.

2.2.2. Non-mixing and strongly dependent data

In the non-mixing case, the rates of convergence of the estimation error can quickly deteriorate.
Improvements can then be obtained by restricting the population Gram matrix of the regressors
to be full rank. The next result does not restrict ρm.

Theorem 2. Under Conditions 1 and 4, (7) holds in probability, with

error(B,K,n,m) =
(

d2
n,pK4/p

n

)1/4

×

⎧⎪⎨
⎪⎩
(
B + m1/2

)
, for the PGA,

(B + m), for the OGA, RGA,

B̄, for the CGA and FWA

and

B ∈
{

(0,∞), for the PGA, OGA, RGA,

(0, B̄], for the CGA and FWA

and algo(B,m) as in (10).

Unlike error(B,K,n,m) in (9) which did not depend on B , the above is derived using a
different method of proof and does depend on B . Also note the different restriction on B . Letting
μ0 ∈ L, one obtains the following explicit convergence rates.
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Corollary 3. Suppose that

m satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩



(

n

d2
n,pK4/p

)3/8

, for the PGA,



(

n

d2
n,pK4/p

)1/12

, for the OGA and RGA,

�
(

n

d2
n,pK4/p

)1/8

, for the CGA and FWA.

(12)

Under the conditions of Theorem 2, in probability,

(
E

′∣∣μ0
(
X′)− Fm

(
X′)∣∣2)1/2 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
d2
n,pK4/p

n

)1/16

, for the PGA if μ0 ∈ L,

(
d2
n,pK4/p

n

)1/12

, for the OGA and RGA if μ0 ∈ L,

(
d2
n,pK4/p

n

)1/4

, for the CGA and FWA if μ0 ∈ L(B̄).

The results are close to the lower bound O(n−1/4) only for the CGA and FWA under weak
dependence, not necessarily mixing data (i.e., supn dn,p < ∞) and variables with moments of all
orders (i.e., p arbitrary large). Now, restrict attention to ρK > 0, that is, ρm in (2) with m = K .
This is equivalent to say that the population Gram matrix of the regressors has full rank. In
this case, the results for the PGA, OGA and RGA can be improved. By following the proofs in
Section 4, it is easy to consider ρm going to zero as m → ∞, but at the cost of extra details,
hence these case will not be reported here.

Theorem 3. Suppose that ρK > 0. Under Conditions 1 and 4, for the PGA, OGA and RGA,
(7) holds in probability with

error(B,K,n,m) = (
m + m1/2B

)(d2
n,pK4/p

n

)1/2

for any positive B , and algo(B,m) as in (10), as long as error(B,K,n,m)+ algo(B,m) = o(1).

The above theorem leads to much better convergence rates.

Corollary 4. Suppose that

m 


⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
n

d2
n,pK4/p

)3/4

, for the PGA,

(
n

d2
n,pK4/p

)1/3

, for the OGA and RGA.

(13)
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Under the conditions of Theorem 3,

(
E

′∣∣μ0
(
X′)− Fm

(
X′)∣∣2)1/2 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
d2
n,pK4/p

n

)1/8

, for the PGA if μ0 ∈ L,

(
d2
n,pK4/p

n

)1/6

, for the OGA and RGA if μ0 ∈ L.

Under non-mixing dependence, deterioration in the rate of convergence due to K becomes
polynomial rather than the logarithmic one of Theorem 1. On the positive side, the dependence
condition used is very simple and can be checked for many models (e.g., Doukhan and Louhichi
[31], Section 3.5, Dedecker and Doukhan [28], for examples and calculations). Interesting re-
sults can be deduced when the regressors have a moment generating function. Then the rates of
convergence can be almost as good if not better than the ones derived by other authors assuming
i.i.d. data, though only when ρK > 0 holds.

Corollary 5. Suppose that X and Z have moments of all order and K � nα for some α ∈ N.
Under Conditions 1 and 4, choosing m as in (13) for the PGA, OGA and RGA and as in (12) for
the CGA and FWA, for any ε ∈ (0,1), and p = 4α/ε,

(
E

′∣∣μ0
(
X′)− Fm

(
X′)∣∣2)1/2

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
d2
n,p

n

)(1−ε)/8

, for the PGA if μ0 ∈ L and ρK > 0,

(
d2
n,p

n

)(1−ε)/6

, for the OGA and RGA if μ0 ∈ L and ρK > 0,

(
d2
n,p

n

)(1−ε)/4

, for the CGA and FWA if μ0 ∈ L(B̄)

in probability.

2.3. Review of the algorithms

The algorithms have been described in several places in the literature. The following sections
review them. The first two algorithms are boosting algorithms and they are reviewed in Bühlmann
and van de Geer [17]. The third algorithm has received less attention in statistics despite the
fact that it has desirable asymptotic properties (Barron et al. [6]). The fourth algorithm is a
constrained version of the third one and further improves on it in certain cases. The fifth and last
algorithm is the basic version of the Frank–Wolfe [35] algorithm.

2.3.1. Pure Greedy Algorithm (a.k.a. L2-Boosting)

Boosting using the L2 norm is usually called L2-Boosting, though some authors also call it Pure
Greedy Algorithm (PGA) in order to stress its origin in the approximation theory literature (e.g.,
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Set:
m ∈N

F0 := 0
ν ∈ (0,1]
For: j = 1,2, . . . ,m

s(j) := arg maxk |〈Y − Fj−1,X
(k)〉n|

gj (X) := 〈Y − Fj−1,X
s(j)〉nXs(j)

Fj := Fj−1 + νgj (X)

Figure 1. PGA (L2-Boosting).

Barron et al. [6]), and this is how it will be called here. The term matching pursuit is also used
by engineers (e.g., Mallat and Zhang [50]). Figure 1 recalls the algorithm. There, ν ∈ (0,1] is
the shrinkage parameter and it controls the degree of greediness in the algorithm. For example,
as ν → 0 the algorithm in Figure 1 converges to Stagewise Linear Regression, a variant of the
LARS algorithm that has striking resemblance to Lasso (Efron et al. [34], for details). In order
to avoid ruling out good regressors that are correlated to Xs(m) (s(m) as defined in Figure 1
and Xs(m) = X(s(m)) throughout to ease notation) one chooses ν smaller then 1, usually 0.1
(Bühlmann [15]).

The PGA recursively fits the residuals from the previous regression to the univariate regres-
sor that reduces the most the residual sum of the squares. At each step j , the algorithm solves
mink,b |Y −Fj−1 −X(k)b|2n. However, the coefficient can then be shrunk by an amount ν ∈ (0,1)

in order to reduce the degree of greediness. The resulting function Fm is an element of L(Bm) for
some Bm = O(m1/2) (Lemma 8). The algorithm is known not to possess as good approximation
properties as the other algorithms considered in this paper. However, this is compensated by Bm

not growing too fast, hence, also the estimation error does not grow too fast.

2.3.2. Orthogonal Greedy Algorithm (a.k.a. Orthogonal Matching Pursuit)

The Orthogonal Greedy Algorithm (OGA) (e.g., Barron et al. [6]) is also known as Orthogonal
Matching Pursuit. Figure 2 recalls that the OGA finds the next regressor to be included based on
the same criterion as for PGA, but at each m iteration, it re-estimates the regression coefficients

Set:
m ∈N

F0 := 0
For: j = 1,2, . . . ,m

s(j) := arg maxk |〈Y − Fj−1,X
(k)〉n|

P
j
X := OLS operator on span{Xs(1),Xs(2), . . . ,Xs(j)}

Fj := P
j
XY

Figure 2. OGA (Orthogonal Matching Pursuit).
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by OLS using the selected regressors. For convenience, the OLS projection operator is defined
by P m

X where the m stresses that one is only using the regressors included up to iteration m,
that is, P m

X Y = ∑m
k=1 bknX

s(k) for OLS coefficients bkn’s. Hence, in some circumstances, the
OGA is too time consuming, and may require the use of generalized inverses when regressors
are highly correlated. However, Pati, Rezaiifar and Krishnaprasad [54] give a faster algorithm for
its estimation.

2.3.3. Relaxed Greedy Algorithm

The Relaxed Greedy Algorithm (RGA) is a less popular method, which however has the same
estimation complexity of the PGA. It is reviewed in Figure 3. The RGA updates taking a convex
combination of the existing regression function with the new predictor. The RGA does not shrink
the estimated coefficient at each step, but does shrink the regression from the previous iteration
j −1 by an amount 1−wj , where wj = j−1. Other weighting schemes such that wj ∈ (0,1) and
wj = O(j−1) can be used and the results hold as they are (see Remark 2.5 in Barron et al. [6]).
The weight sequence wj = j−1 produces an estimator that has the simple average structure
Fm =∑m

j=1(
j
m

)gj (X).
The RGA is advocated by Barron et al. [6], as it possesses better theoretical properties than

PGA (L2-Boosting) and it is simpler to implement than the OGA. At each stage j , the algorithm
solves mink,b |Y − (1 − wj)Fj−1 + wjX

(k)b|2n. It is possible to also consider the case where wj

is not fixed in advance, but estimated at each iteration. In Figure 3, one just replaces the line
defining s(j) with [

s(j),wj

] := arg max
k≤K,w∈[0,1]

∣∣〈Y − (1 − w)Fj−1,X
(k)
〉
n

∣∣. (14)

The asymptotic results hold as they are, as in this case, the extra optimization can only reduce
algo(m,B), the error in the algorithm. The same remark holds for the next algorithms.

2.3.4. Constrained greedy and Frank–Wolfe Algorithms

The Constrained Greedy Algorithm (CGA) is a variation of the RGA. It is used in Sancetta [63]
in a slightly different context. The Frank–Wolfe Algorithm (FWA) (Frank and Wolfe [35]; see

Set:
m ∈N

F0 := 0
For: j = 1,2, . . . ,m

wj = 1/j

s(j) := arg maxk |〈Y − (1 − wj)Fj−1,X
(k)〉n|

gj (X) := 〈Y − (1 − wj)Fj−1,X
s(j)〉nXs(j)

Fj := (1 − wj)Fj−1 + gj (X)

Figure 3. RGA.
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CGA FWA
Set: Set:
m ∈N m ∈ N

F0 := 0 F0 := 0
B̄ < ∞ B̄ < ∞
For: j = 1,2, . . . ,m For: j = 1,2, . . . ,m

wj = 1/j wj := 2/(1 + j)

s(j) := arg maxk |〈Y − (1 − wj)Fj−1,X
(k)〉n| s(j) := arg maxk |〈Y − Fj−1,X

(k)〉n|
bj := 1

wj
〈Y − (1 − wj)Fj−1,X

s(j)〉n bj := B̄ sign(〈Y − Fj−1,X
s(j)〉n)

gj (X) := sign(bj )(|bj | ∧ B̄)Xs(j) gj (X) := bjX
s(j)

Fj := (1 − wj)Fj−1 + wjgj (X) Fj := (1 − wj)Fj−1 + wjgj (X)

Figure 4. CGA and FWA.

Clarkson [26], Jaggi [42], Freund, Grigas and Mazumder [36], for recent results on its conver-
gence) is a well-known algorithm for the optimization of functions under convex constraints.
Figure 4 review the algorithms. The two algorithms are similar, though some notable differences
are present. The FWA chooses at each iteration the regressor that best fits the residuals from
the previous iteration model. Moreover, the regression coefficient is chosen as the value of the
constraint times the sign of the correlation of the residuals with the chosen regressor. On the
other hand, the difference of the CGA from the RGA is that at each step the estimated regression
coefficient is constrained to be smaller in absolute value than a pre-specified value B̄ . When the
function one wants to estimate is known to lie in L(1), the algorithm is just a simplified version
of the Hilbert Space Projection algorithm of Jones [43] and Barron [5] and have been studied by
several authors for estimation of mixture of densities (Li and Barron [46], Rakhlin, Panchenko
and Mukherjee [59], Klemelä [44], Sancetta [62]).

At each step j , the CGA solves mink,|b|≤B̄ |Y − (1 −wj)Fj−1 +wjX
(k)b|2n. Under the square

loss with regression coefficients satisfying
∑K

k=1 |bk| ≤ B̄ , the FWA reduces to minimization
of the linear approximation of the objective function, minimized over the simplex, that is,
mink,|b|≤B̄〈bX(k),Fj−1 − Y 〉n with update of Fj as in Figure 4. Despite the differences, both
the CGA and the FWA lead to the solution of the Lasso problem. In particular, the regression
coefficients are the solution to the following problem:

min
b1,b2,...,bK

∣∣∣∣∣Y −
K∑

k=1

bkX
(k)

∣∣∣∣∣
n

, such that
K∑

k=1

|bk| ≤ B̄.

The above is the standard Lasso problem due to Tibshirani [69]. In particular, CGA and FWA
solve the above problem as m → ∞,

|Y − Fm|2n ≤ inf
μ∈L(B̄)

∣∣Y − μ(X)
∣∣2
n
+ B̄2

m
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(Lemma 6 and 7, in Section 4, where for simplicity, only the weighting schemes as in Figure 4
are considered). The complexity of the estimation procedure is controlled by B̄ . This parameter
can be either chosen based on a specific application, or estimated via cross-validation, or splitting
the sample into estimation and validation sample.

The CGA and FGA also allows one to consider the forecast combination problem with weights
in the unit simplex, by minor modification. To this end, for the CGA let

gj (X) := [
(bj ∧ 1) ∨ 0

]
Xs(j), (15)

so that B̄ = 1 and the estimated bj ’s parameters are bounded below by zero. For the FWA change,

s(j) := arg max
k

〈
Y − Fj−1,X

(k)
〉
n
;bj := B̄ sign

(〈
Y − Fj−1,X

s(j)
〉
n

)∨ 0,

where one does not use the absolute value in the definition of s(j). (This follows from the gen-
eral definition of the Frank–Wolfe Algorithm, which simplifies to the algorithm in Figure 4 when∑K

k=1 |bk| ≤ B̄ .) Hence, the resulting regression coefficients are restricted to lie on the unit sim-
plex.

As for the RGA, for the CGA and FWA it is possible to estimate wj at each greedy step. For
the CGA, this requires to change the line defining s(j) with (14). Similarly, for the FWA, one
adds the following line just before the definition of Fj :

wj = arg min
w∈[0,1]

∣∣Y − (1 − w)Fj−1 + wgj (X)
∣∣2
n
.

These steps can only reduce the approximation error of the algorithm, hence, the rates of conver-
gence derived for the fixed sequence wj are an upper bound for the case when wj is estimated at
each step.

2.4. Discussion

2.4.1. Objective function

The objective function is the same one used in Bühlmann [15], which is the integrated square
error (ISE), where integration is w.r.t. the true distribution of the regressors (note that the ex-
pectation is w.r.t. X′ only). This objective function is zero if the (out of sample) prediction error
is minimized (recall that μ0(X) = E[Y |X]), and for this reason it is used in the present study.
Under this objective, some authors derive consistency, but not explicit rates of convergence (e.g.,
Bühlmann [15], Lutz and Bühlmann [49]). An exception is Barron et al. [6], who derive rates
of convergence for the mean integrated square error. Rates of convergence of greedy algorithms
are usually derived under a weaker norm, namely the empirical L2 norm and the results hold
in probability (e.g., Bühlmann and van de Geer [17], and references therein). This is essentially
equivalent to assuming a fixed design for the regressors. The empirical L2 norm has been used
to show consistency of Lasso, hence deriving results under this norm allows one to compare
to Lasso in a more explicit way. Convergence of the empirical L2 norm does not necessarily
guarantee that the prediction error is minimized, asymptotically.
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Example 1. Let Fm(X) = ∑K
k=1 X(k)bkn be the output of one of the algorithms, where the

subscript n is used to stress that bkn depends on the sample. Also, let Z := Y − μ0(X), and
μ0(X) = ∑K

k=1 X(k)bk0, where the bk0’s are the true coefficients. Control of the empirical
L2 norm only requires control of Control of 〈Z,

∑K
k=1 X(k)(bkn − bk0)〉n (e.g., Lemma 6.1 in

Bühlmann and van de Geer [17]) and this quantity tends to be Op(m lnK/n) under regular-
ity conditions. On the other hand, control of the L2 norm (i.e., ISE) also requires control of
(1 −E)|∑K

k=1 X(k)(bkn − bk0)|2n. Sufficient conditions for this term to be Op(m lnK/n) are of-
ten used, but in important cases such as dependent non-mixing random data, this does not seem
to be the case anymore. Hence, this term is more challenging to bound and requires extra care
(see van de Geer [74], for results on how to bound such a term in an i.i.d. case).

2.4.2. Dependence conditions

Absolute regularity is convenient, as it allows to use decoupling inequalities. In consequence,
the same rate of convergence under i.i.d. observations holds under beta mixing when the mixing
coefficients decay fast enough. Many time series models are beta mixing. For example, any fi-
nite order ARMA model with i.i.d. innovations and law absolutely continuous w.r.t. the Lebesgue
measure satisfies geometric mixing rates (Mokkadem [51]). Similarly, GARCH models and more
generally models that can be embedded in some stochastic recursive equations are also beta mix-
ing with geometric mixing rate for innovations possessing a density w.r.t. the Lebesgue measure
(e.g., Basrak, Davis and Mikosch [8], for details: they derive the results for strong mixing, but
the result actually implies beta mixing). Many positive recurrent Markov chains also satisfy geo-
metric absolute regularity (e.g., Mokkadem [52]). Hence, while restrictive, the geometric mixing
rate of Conditions 2 and 3 is a convenient condition satisfied by common time series models.

In Condition 3, (5) is used to control the moments of the random variables. The geometric
mixing decay could be replaced with polynomial mixing at the cost of complications linking
the moments of the random variables (i.e., (5)) and their mixing coefficients (e.g., Rio [60], for
details).

Condition 4 only controls dependence in terms of some conditional moments of the centered
random variables. Hence, if the dependence on the past decreases as we move towards the future,
the centered variables will have conditional moment closer and closer to zero. On the other hand,
Conditions 2 and 3 control dependence in terms of the sigma algebra generated by the future
and the past of the data. This is much stronger than controlling conditional expectations, and
computation of the resulting mixing coefficients can be very complicated unless some Markov
assumptions are made as in Mokkadem [51,52] or Basrak, Davis and Mikosch [8] (see Doukhan
and Louhichi [31], for further discussion and motivation).

2.4.3. Examples for Conditions 3 and 4

To highlight the scope of the conditions and how to establish them in practice, consider a simple
non-trivial example.

Example 2. Let μ0(X) = g(X(k); k ≤ K), where g satisfies

∣∣g(x(k); k ≤ K
)− g

(
z(k); k ≤ K

)∣∣� K∑
k=1

λk

∣∣x(k) − z(k)
∣∣
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for
∑K

k=1 λk ≤ 1, λk ≥ 0 and g(x(k); k ≤ K) = 0 when x(k) = 0 for all k ≤ K . Since K → ∞
with n, it is natural to impose this condition which is of the same flavor as

∑K
k=1 |bk| ≤ B in

the linear model. Suppose that (Zi)i∈Z is a sequence of independent random variables (Z =
Y − E[Y |X]) with finite p moments, and independent of the regressors (Xi)i∈Z. The regressors
admit the following vector autoregressive representation, Xi = HWi , where H is a K ×L matrix
with positive entries and rows summing to one; Wi = AWi−l + εi , A is a diagonal L × L matrix
with entries less than one in absolute values, and (εi)i∈Z is a sequence of i.i.d. L dimensional
random variables with finite 2p moments, that is, E|εi,k|2p < ∞, where εi,k is the kth entry in εi .
Throughout, the K dimensional vectors are column vectors.

If one takes L = K and H to be diagonal, Xi = Wi . As K → ∞, the process is not necessarily
mixing. Hence, one is essentially required to either keep L fixed or impose very restrictive struc-
ture on the innovations in order to derive mixing coefficients. Luz and Bühlmann [15] consider
vector autoregressive models (VAR) with the dimension of the variables increasing to infinity.
They then assume that the model is strongly mixing. However, it is unclear that a VAR of increas-
ing dimensionality can be strongly mixing. The mixing coefficients of functions of independent
random variables are bounded above by the sum of the mixing coefficients of the individual vari-
ables (e.g., Theorem 5.1 in Bradley [14]). If the number of terms in the sum goes to infinity
(i.e., K in the present context, q in Luz and Bühlmann [15]), such VAR may not be strongly
mixing. Even using a known results on Markov chain, it is not possible to show that VAR mod-
els with increasing dimension are mixing without very restrictive conditions on the innovations
(e.g., condition iii in Theorem 1′ in Mokkadem [51]).

Restrictions such as A being diagonal or (Xi)i∈Z and (Zi)i∈Z being independent are only used
to simplify the discussion, so that one can focus on the standard steps required to establish the
validity of the conditions in Example 2. The above model can be used to show how to check
Conditions 3 and 4 and how Condition 3 can fail.

Lemma 2. Consider the model in Example 2. Suppose that εi has a density w.r.t. the Lebesgue
measure and L is bounded. Then Condition 3 is satisfied.

Lemma 3. Consider the model in Example 2. Suppose that εi,k only takes values in {−1,1} with
equal probability for each k, L = K and H is the identity matrix (i.e., Xi = Wi ), while all the
rest is as in Example 2. Then Condition 3 is not satisfied, but Condition 4 is satisfied.

The proof of these two lemmas – postponed to Section 4.6 – shows how the conditions can be
verified.

The next examples provides details on the applicability of Condition 4 to possibly long mem-
ory processes. In particular, the goal is to show that Corollary 5 can be applied. In consequence,
new non-trivial models and conditions are allowed. In these examples, the rates of convergence
implied by Corollary 5 are comparable to, or better than the ones in Bühlmann and van de
Geer [17] which require i.i.d. observations. However, one needs to restrict attention to regressors
whose population Gram matrix has full rank (ρK > 0). The following only requires stationarity
and ergodicity of the error terms.
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Example 3. Let (Zi)i∈Z be a stationary ergodic sequence with moments of all orders, and sup-
pose that (Xi)i∈Z is i.i.d., independent of the Zi ’s, and with zero mean and moments of all
orders and such that ρK > 0. Moreover, suppose that μ0 ∈ L. By independence of Xi and the
Zi ’s, and the fact the that Xi ’s are i.i.d. mean zero, it follows that E0ZiX

(k)
i = 0. Similarly,

E0(1 − E)|X(k)
i |2 = 0 for i > 0. Finally, given that μ0 ∈ L, �(X) = μB(X) − μ0(X) = 0 by

choosing B large enough so that μB = μ0. Hence, this implies that supn dn,p < ∞ in Corol-
lary 5, though for the CGA and FWA it is necessary to assume μ0 ∈ L(B̄) and not just μ0 ∈ L,
or just μ0 ∈ L but B̄ → ∞.

Remarkably, Example 3 shows that if the regressors are i.i.d., it is possible to achieve results
as good as the ones derived in the literature only assuming ergodic stationary noise. The next
example restricts the noise to be i.i.d., but allows for long memory Gaussian regressors and still
derives convergence rates as fast as the ones of Example 3.

Example 4. Let X
(k)
i =∑∞

l=0 alkεi−l,k , where (εi,k)i∈Z is a sequence of i.i.d. standard Gaussian
random variables, and a0k = 1, alk = l−(1+ε)/2 ε ∈ (0,1] for l > 0. Also, suppose that (Xi)i∈Z
is independent of (Zi)i∈Z, which is i.i.d. with moments of all orders. It is shown in Section 4.7
that for this MA(∞) model with Gaussian errors,∣∣E0(1 −E)

∣∣X(k)
i

∣∣2∣∣
p

� i−(1+ε)

when i > 0. Hence, in Condition 4 supn dn,p < ∞ for any p < ∞, and in consequence, one can
apply Corollary 5 if ρK > 0 and the true function is in L or L(B̄) for the CGA and FWA. For
the CGA and FWA, ρK = 0 is allowed.

3. Implementation and numerical comparison

3.1. Vectorized version

Vectorized versions of the algorithms can be constructed. These versions make quite clear the
mechanics behind the algorithms. The vectorized versions are useful when the algorithms are
coded using scripting languages or when n and K are very large, but K = o(n). In this case,
the time dimension n could be about O(107) or even O(108) and the cross-sectional dimension
K = O(103). The memory requirement to store a matrix of doubles of size 107 × 103 is in excess
of 70 gigabytes, often too much to be stored in RAM on most desktops. On the other hand,
sufficient statistics such as XT X and XT Y (X being the n × K matrix of regressors and Y the
n × 1 vector of dependent variables and the subscript T stands for transpose) are manageable
and can be updated through summation.

Figure 5 shows vectorized versions of the algorithms. Of course, it is always assumed that the
regressors have been standardized, that is, diag(XT X/n) = IK , the identity matrix, where diag(·)
stands for the diagonal matrix constructed from the diagonal of its matrix argument. The symbol
0K is the K dimensional vector of zeros, while for other vector quantities, the subscript denotes
the entry in the vector, which are assumed to be column vectors.
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PGA OGA RGA

Set:
C = XT Y/n C = XT Y/n C = XT Y/n

D = XT X/n D = XT X/n D = XT X/n

b = 0K b = 0K b = 0K

ν ∈ (0,1)

For:j = 1,2, . . . ,m

A = C − Db A = C − Db A = C − (1 − 1
j
)Db

s(j) = arg maxk≤K |Ak| s(j) = arg maxk≤K |Ak| s(j) = arg maxk≤K |Ak|
a = 0K P

j
X as in Figure 2 a = 0K

as(j) = As(j) b = P
j
XY as(j) = As(j)

b = b + νa b = (1 − 1
j
)b + 1

j
a

CGA FWA

Set:
C = XT Y/n C = XT Y/n

D = XT X/n D = XT X/n

b = 0K b = 0K

B̄ < ∞ B̄ < ∞
For:j = 1,2, . . . ,m

A = C − (1 − 1
j
)Db A = C − Db

s(j) = arg maxk≤K |Ak| s(j) = arg maxk≤K |Ak|
a = 0K a = 0K

as(j) = sign(As(j))(j |As(j)| ∧ B̄) as(j) = sign(As(j))B̄

b = (1 − 1
j
)b + 1

j
a b = (1 − 2

1+j
)b + 2

1+j
a

Figure 5. Vectorized versions of the algorithms.

3.2. Choosing the number of iterations

In order to achieve the bounds in the theorem, m needs to be chosen large enough for the algo-
rithm to perform well in terms of approximation error (see Lemmas 4, 5 and 6). Nevertheless,
an excessively large m can produce poor results as shown in the theorems with the exception of
CGA and FWA. In consequence, guidance on the number of iterations m is needed. The number
of regressors can be left unconstrained in many situations, as long as the dependence is not too
strong. The number of iterations can be chosen following results in the literature. Suppose the
Fm estimator in the algorithm can be represented as Fm(X) = P mY for some suitable projec-
tion operator P m. Then one may choose the number of iterations according the following AIC
criterion:

ln
(∣∣Y − Fm(X)

∣∣2
n

)+ 2df
(
P m

)
/n,
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where df(P m) are the degrees of freedom of the prediction rule P m, which are equal to the sum
of the eigenvalues of P m, or equivalently they are equal to the trace of the operator. Bühlmann
[15] actually suggests using the modified AIC based on Hurvich, Simonoff and Tsai [41]:

ln
(∣∣Y − Fm(X)

∣∣2
n

)+ 1 + df(P m)/n

1 − (df(P m) + 2)/n
.

For ease of exposition, let Xm be the n × m matrix of selected regressors and denote by Xs(j)
m

the j th column of Xm. For the PGA, Bühlmann and Yu [18] show that the degrees of freedom
are given by the trace of

Bm := In −
m∏

j=1

(
In − ν

Xs(j)
m (Xs(j)

m )′

(Xs(j)
m )′Xs(j)

m

)
,

where In is the n dimensional identity matrix.
The trace of the hat matrix Bm := Xm(XT

mXm)−1XT
m gives the degrees of freedom for the

OGA, that is, Trace(Bm) = m.
Unfortunately, the projection matrix of the RGA is complicated and the author could not find

a simple expression. Nevertheless, the degrees of freedom could be estimated (e.g., Algorithm 1
in Jianming [78]).

Choice of B̄ is equivalent to the choice of the penalty constant in Lasso. Hence, under regu-
larity conditions (Zou et al. [82], Tibshirani and Taylor [70]) the degrees of freedom of the CGA
and FWA are approximated by the number of non-zero coefficients or the rank of the population
Gram matrix of the selected variables. Alternatively, one has to rely on cross-validation to choose
m for the PGA, OGA, RGA and B̄ for the CGA and FWA.

3.3. Numerical results

To assess the finite performance of the algorithms a comprehensive set of simulations is carried
out for all the algorithms. It is worth mentioning that the CGA and FWA are equivalent to Lasso,
hence, conclusions also apply to the Lasso, even though the conditions used for consistency are
very different.

For each Monte Carlo set up, 100 simulations are run, where the sample size is n = 20,100.
Consider the model

Yi =
K∑

k=1

X
(k)
i bk + Zi, X

(k)
i =

S∑
s=0

θsεi−s,k, Zi = κ

σ

S∑
s=0

θsεi−s,0,

where K = 100, κ2 = Var(
∑K

k=1 X
(k)
i bk)

Var(
∑S

s=0 θsεi−s,0)
, so that σ 2 ∈ {8,0.25} is the signal to noise ratio, cor-

responding roughly to an R2 of 0.89,0.2. The innovations {(εi,k)i∈Z: k = 0,1, . . . ,K} are col-
lections of i.i.d. standard normal random variables. For k, l > 0, Eεi,kεi,l = ω|k−l| with ω =
{0,0.75} with convention 00 = 1, that is, a Toeplitz covariance matrix. Moreover, Eεi,0εi,k = 0
for any k > 0. Finally, {θs : s = 0,1, . . . , S} is as follows:
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Case ID: θ0 = 1 and θs = 0 if s > 0;
Case WD: θs = (0.95)s with S = 100 + n;
Case SD: θs = (s + 1)−1/2 with S = 1000 + n.

In other words, the above model allows for time dependent Zi ’s and Xi ’s as well for correlated
regressors (when ω > 0). However, the X and the Z are independent by construction. By different
choice of regression coefficients bk’s, it is possible to define different scenarios for the evaluation
of the algorithms. These are listed in the relevant subsections below. For each different scenario,
the mean integrated square error (MISE) from the simulations is computed: that is, the Monte
Carlo approximation of E[E′|μ0(X

′) − Fm(X′)|2]. Standard errors were all relatively small, so
they are not reported, but available upon requests together with more detailed results.

The number of greedy steps m or the bound B̄ were chosen by a cross-validation method for
each of the algorithms (details are available upon request). Hence, results also need to be in-
terpreted bearing this in mind, as cross-validation can be unstable at small sample sizes (e.g.,
Efron [33], see also Sancetta [61], for some simulation evidence and alternatives, amongst many
others). Moreover, cross-validation is usually inappropriate for dependent data, often leading to
larger than optimal models (e.g., Burman and Nolan [22], Burman, Chow and Nolan [21], for dis-
cussions and alternatives). Nevertheless, this also allows one to assess how robust is the practical
implementation of the algorithms. Given the large amount of results, Section 3.8 summarizes the
main conclusions.

3.4. Low-dimensional model

The true regression function has coefficients bk = 1/3 for k = 1,2,3, and bk = 0 for k > 3.

3.5. High-dimensional small equal coefficients

The true regression function has coefficients bk = 1/K , k ≤ K .

3.6. High-dimensional decaying coefficients

The true regression function has coefficients bk = k−1, k ≤ K .

3.7. High-dimensional slowly decaying coefficients

The true regression function has coefficients bk = k−1/2, k ≤ K .

3.8. Remarks on numerical results

Results from the simulations are reported in Tables 2–5. These results show that the algorithms
are somehow comparable, within a ±10% relative performance. Overall, the PGA (L2-Boosting)
is robust and often delivers the best results despite the theoretically slower convergence rates.

On the other hand, the performance of the OGA is somehow disappointing given the good
theoretical performance. Table 2 shows that the OGA can perform remarkably well under very



1252 A. Sancetta

Table 2. MISE: low-dimensional, K = 100

n = 20 n = 100

(ω,σ 2) PGA OGA RGA CGA FWA PGA OGA RGA CGA FWA

Case ID
(0,8) 0.40 0.51 0.36 0.36 0.40 0.08 0.03 0.09 0.09 0.09
(0,0.20) 0.59 0.87 0.93 0.75 0.77 0.47 0.52 0.49 0.44 0.44
(0.75,8) 0.25 0.39 0.26 0.36 0.35 0.09 0.15 0.07 0.13 0.13
(0.75,0.25) 0.86 1.20 1.29 1.00 1.14 0.50 0.45 0.49 0.48 0.47

Case WD
(0,8) 1.65 2.06 1.56 1.51 1.52 0.67 0.68 0.54 0.56 0.54
(0,0.20) 2.81 2.95 2.97 3.49 3.01 3.07 4.01 2.82 2.93 2.95
(0.75,8) 1.25 2.21 1.24 1.35 1.32 0.87 1.18 0.79 0.85 0.89
(0.75,0.25) 4.36 4.29 4.56 5.34 5.28 4.43 5.55 4.18 4.45 4.56

Case SD
(0,8) 1.26 1.63 1.26 1.24 1.25 0.50 0.50 0.43 0.42 0.41
(0,0.20) 2.31 2.36 2.55 2.61 2.53 2.20 2.72 2.16 2.15 2.14
(0.75,8) 0.88 1.82 0.91 0.98 1.00 0.63 0.86 0.58 0.58 0.58
(0.75,0.25) 3.28 3.37 3.58 3.88 4.14 3.13 3.74 3.05 3.11 3.12

Table 3. MISE: high-dimensional small coefficients, K = 100

n = 20 n = 100

(ω,σ 2) PGA OGA RGA CGA FWA PGA OGA RGA CGA FWA

Case ID
(0,8) 0.10 0.12 0.11 0.10 0.10 0.08 0.10 0.08 0.08 0.09
(0,0.20) 0.11 0.16 0.16 0.13 0.14 0.10 0.11 0.12 0.10 0.10
(0.75,8) 0.20 0.27 0.17 0.17 0.14 0.09 0.12 0.08 0.09 0.09
(0.75,0.25) 0.26 0.38 0.38 0.29 0.33 0.23 0.28 0.25 0.22 0.22

Case WD
(0,8) 0.35 0.40 0.35 0.37 0.33 0.27 0.36 0.25 0.25 0.22
(0,0.20) 0.50 0.56 0.53 0.59 0.52 0.53 0.68 0.51 0.54 0.56
(0.75,8) 0.65 0.88 0.65 0.63 0.50 0.34 0.44 0.29 0.31 0.33
(0.75,0.25) 1.28 1.28 1.34 1.58 1.50 1.27 1.62 1.22 1.32 1.37

Case SD
(0,8) 0.28 0.30 0.28 0.28 0.26 0.22 0.29 0.21 0.21 0.19
(0,0.20) 0.38 0.39 0.45 0.45 0.43 0.38 0.49 0.40 0.40 0.39
(0.75,8) 0.51 0.70 0.51 0.50 0.43 0.25 0.37 0.24 0.26 0.27
(0.75,0.25) 0.95 1.00 1.05 1.07 1.12 0.90 1.15 0.88 0.93 0.91
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Table 4. MISE: high-dimensional decaying coefficients, K = 100

n = 20 n = 100

(ω,σ 2) PGA OGA RGA CGA FWA PGA OGA RGA CGA FWA

Case ID
(0,8) 2.28 2.60 2.33 2.26 2.13 1.44 2.03 1.39 1.59 1.78
(0,0.20) 2.42 3.61 3.72 3.02 3.12 2.23 2.48 2.56 2.22 2.25
(0.75,8) 3.98 5.32 3.25 3.19 2.80 1.70 2.38 1.56 1.75 1.79
(0.75,0.25) 5.51 7.89 8.18 6.27 7.02 4.46 5.49 5.07 4.33 4.37

Case WD
(0,8) 7.80 8.72 7.91 8.01 7.28 5.34 7.23 4.60 4.53 4.43
(0,0.20) 11.27 12.83 11.96 13.43 11.79 12.31 15.83 11.55 12.15 12.54
(0.75,8) 13.01 17.84 12.66 12.10 10.22 6.65 8.78 5.86 6.30 6.62
(0.75,0.25) 26.36 28.49 27.94 32.07 31.17 26.81 33.34 25.27 27.41 28.33

Case SD
(0,8) 6.19 6.74 6.35 6.38 5.92 4.20 5.69 3.98 4.00 3.96
(0,0.20) 8.95 8.86 10.40 10.45 10.04 8.81 10.91 9.14 9.06 8.91
(0.75,8) 10.50 14.23 10.34 9.81 8.72 5.19 7.31 4.74 4.99 5.13
(0.75,0.25) 19.90 21.25 22.46 23.48 24.58 19.10 24.36 18.51 19.45 19.07

Table 5. MISE: high-dimensional slow decay, K = 100

n = 20 n = 100

(ω,σ 2) PGA OGA RGA CGA FWA PGA OGA RGA CGA FWA

Case ID
(0,8) 0.97 0.94 0.92 0.93 1.00 0.42 0.51 0.46 0.42 0.42
(0,0.20) 1.34 1.95 2.05 1.67 1.69 1.01 0.95 1.05 0.97 0.99
(0.75,8) 1.10 1.56 1.08 1.07 1.08 0.51 0.77 0.53 0.56 0.56
(0.75,0.25) 2.28 3.22 3.50 2.70 3.03 1.54 1.71 1.68 1.47 1.50

Case WD
(0,8) 3.54 4.31 3.49 3.52 3.41 1.88 2.22 1.62 1.70 1.68
(0,0.20) 6.16 7.68 6.59 7.51 6.58 6.73 8.38 6.11 6.40 6.71
(0.75,8) 4.48 6.73 3.99 4.03 3.89 2.46 3.33 2.21 2.44 2.55
(0.75,0.25) 11.53 12.31 11.96 13.67 13.55 11.55 14.42 10.99 11.66 12.09

Case SD
(0,8) 2.83 3.40 2.72 2.76 2.74 1.45 1.81 1.36 1.37 1.35
(0,0.20) 5.04 4.81 5.82 5.89 5.60 4.81 5.90 4.85 4.84 4.69
(0.75,8) 3.37 5.08 3.24 3.41 3.22 1.97 2.60 1.75 1.80 1.82
(0.75,0.25) 8.51 8.82 9.57 10.07 10.51 8.12 10.00 7.98 8.11 8.16
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special circumstance, that is, relatively large sample size (n = 100), time independent and un-
correlated regressors and high signal to noise ratio. To some extent, these are the conditions used
by Zhang [81] to show optimality of the OGA.

The RGA, CGA and FWA provide good performance comparable to the PGA and in some
cases better, especially when the signal to noise ration is higher. For example, Table 2 shows
that these algorithms perform well as long as the regressors are either uncorrelated or the time
dependence is low. Intuitively, time dependence leads to an implicit reduction of information,
hence it is somehow equivalent to estimation with a smaller sample. This confirms the view that
the PGA is usually the most robust of the methods.

While somehow equivalent, the FWA updates the coefficients in a slightly cruder way than the
CGA. This seems to lead the FWA to have slightly different performance than the CGA in some
cases, with no definite conclusion on which one is best. No attempt was made to use a line search
for wj (e.g., (14)) instead of the deterministic weights.

4. Proofs

The proof for the results requires first to show that the estimators nearly minimize the objective
function |Y − μ(X)|2n for μ ∈ L(B). Then uniform law of large numbers for |Y − μ(X)|2n with
μ ∈ L(B) or related quantities are established.

To avoid cumbersome notation, for any functions of (Y,X), say f and g, write 〈f,g〉P :=∫
f (y, x)g(y, x)dP(y, x) where P is the marginal distribution of (Y,X); moreover, |f |2P,2 :=

〈f,f 〉P . In the context of the paper, this means that |Y − μn|2P,2 = ∫ |y − μn(x)|2 dP(y, x) for
a possibly random function μn(x) (e.g., a sample estimator). Clearly, if μn = μ is not random,
|Y − μ|2P,2 = |Y − μ|22. Consequently, the norm | · |2P,2 means that |μn − μ|2P,2 := E

′|μn(X
′) −

μ(X′)|2, where X′ and E
′ are as defined just before (4).

For any μ(X) :=∑K
k=1 bkX

(k) ∈ L, |μ|L =∑K
k=1 |bk| denotes the l1 norm of the linear coef-

ficients. Throughout, Rm := (Y − Fm) denotes the residual in the approximation.

4.1. Approximation rates for the algorithms

The following provide approximation rates of the algorithms and show that the resulting mini-
mum converges to the global minimum, which might not be unique, as the number of iterations
m goes to infinity.

Lemma 4. For the PGA, for any μ ∈ L(B),

|Rm|2n ≤ ∣∣Y − μ(X)
∣∣2
n
+
(

4|Y |4nB2

ν(2 − ν)m

)1/3

.

Proof. Let R̃0 = μ ∈ L(B), and

R̃m = R̃m−1 − ν
〈
Xs(m), Y − Fm−1

〉
n
Xs(m)
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so that R̃m ∈ L(Bm), where B0 := B ,

Bm := Bm−1 + ν
∣∣〈Xs(m), Y − Fm−1

〉
n

∣∣. (16)

Also note that R̃m = Rm − (Y −μ), where Rm = Y −Fm, F0 = 0. Unlike R0, R̃0 has coefficients
that are controlled in terms of Bm, hence, it will be used to derive a recursion for the gain at each
greedy step. Hence, using these remarks,

|R̃m|2n = 〈R̃m, R̃m〉n = 〈R̃m,Rm〉n − 〈R̃m,Y − μ〉n ≤ Bm max
k

∣∣〈X(k),Rm

〉
n

∣∣− 〈R̃m,Y − μ〉n

because R̃m ∈ L(Bm), which, by definition of Xs(m+1) implies

∣∣〈X(m+1),Rm

〉
n

∣∣ ≥ 〈R̃m, R̃m + Y − μ〉n
Bm

= 〈R̃m,Rm〉n
Bm

= 〈Rm,Rm〉n − 〈Rm,Y − μ〉n
Bm

using the definition of R̃m in the last equality. Then, by the scalar inequality ab ≤ (a2 + b2)/2
the above becomes

∣∣〈X(m+1),Rm

〉
n

∣∣≥ |Rm|2n − |Y − μ|2n
2Bm

. (17)

Note that the right-hand side is positive, if not, |Y − Fm|2n ≤ |Y − μ|2n and the lemma is proved
(recall that Rm = Y − Fm). Now, note that Rm = Rm−1 − ν〈Xs(m),Rm−1〉nXs(m), so that

|Rm|2n = |Rm−1|2n + ν2
∣∣〈Xs(m),Rm−1

〉
n

∣∣2 − 2ν
∣∣〈Xs(m),Rm−1

〉
n

∣∣2
= |Rm−1|2n − ν(2 − ν)

∣∣〈Xs(m),Rm−1
〉
n

∣∣2.
The above two displays imply

|Rm|2n ≤ |Rm−1|2n − ν(2 − ν)

4B2
m−1

(|Rm−1|2n − |Y − μ|2n
)2

.

Subtracting |Y − μ|2n on both sides, and defining am := |Rm|2n − |Y − μ|2n, and τ := ν(2 − ν)/4,
the above display is

am ≤ am−1
(
1 − τam−1B

−2
m−1

)
. (18)

The proof then exactly follows the proof of Theorem 3.6 in DeVore and Temlyakov [29]. For
completeness, the details are provided. Define

ρ(Rm) := a
−1/2
m

∣∣〈Xs(m+1),Rm

〉
n

∣∣≥ a
1/2
m B−1

m . (19)
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Since Bm ≥ Bm−1,

amB−2
m ≤ am−1B

−2
m−1

(
1 − τam−1B

−2
m−1

)≤ 1

τm
(20)

using Lemma 3.4 in DeVore and Temlyakov [29] in the second step in order to bound the recur-
sion. Then (16) and (19) give

Bm = Bm−1
(
1 + νρ(Rm−1)a

1/2
m−1B

−1
m−1

)
≤ Bm−1

(
1 + νρ(Rm−1)

2).
Multiply both sides of (18) by Bm, and substitute the lower bound (19) into (18), so that using
the above display,

amBm ≤ am−1Bm−1
(
1 + νρ(Rm−1)

2)(1 − τρ(Rm−1)
2)

= am−1Bm−1
(
1 − ντρ(Rm−1)

4)≤ |Y |2nB,

where the last inequality follows after iterating because 1−ντρ(Rm−1)
4 ∈ (0,1) and substituting

B0 = B and a0 = |Y |2n. If am > 0, it is obvious that 1 − ντρ(Rm−1)
4 ∈ (0,1). If this were not the

case, the lemma would hold automatically at step m, by definition of am. Hence, by the above
display together with (20),

a3
m = (amBm)2amB−2

m ≤ 4|Y |4nB2

ν(2 − ν)m

using the definition of τ = ν(2 − ν)/4, so that am ≤ [4|Y |4nB/(ν(2 − ν)m)]1/3. �

The following bound for the OGA is Theorem 2.3 in Barron et al. [6].

Lemma 5. For the OGA, for any μ ∈ L(B),

|Rm|2n ≤ ∣∣Y − μ(X)
∣∣2
n
+ 4

B2

m
.

The following Lemma 6 is Theorem 2.4 in Barron et al. ([6], equation (2.41)), where the CGA
bound is inferred from their proof (in their proof set their β on page 78 equal to wkB̄ to satisfy
the CGA constraint).

Lemma 6. For the RGA, for any μ ∈ L(B),

|Rm|2n ≤ ∣∣Y − μ(X)
∣∣2
n
+ B2

m
.

For the CGA the above holds with B replaced by B̄ in the above display and any μ ∈ L(B̄).
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Lemma 7. For the FWA, for any μ ∈ L(B̄), and m > 0,

|Rm|2n ≤ ∣∣Y − μ(X)
∣∣2
n
+ 4B̄2

m
,

when wm = 2/(1 + m).

Proof. From Jaggi ([42], equations (3)–(4), see also Frank and Wolfe [35]), for every m =
1,2,3, . . . , infer the first inequality in the following display:

|Rm|2n − ∣∣Y − μ(X)
∣∣2
n

≤ (1 − wm)
(|Rm−1|2n − ∣∣Y − μ(X)

∣∣2
n

)

+ w2
m max∑K

k=1 |bk |≤B̄,
∑K

k=1 |c′
k |≤B̄

∣∣∣∣∣
K∑

k=1

(
bk − b′

k

)
X(k)

∣∣∣∣∣
2

n

≤ (1 − wm)
(|Rm−1|2n − ∣∣Y − μ(X)

∣∣2
n

)+ w2
m4B̄2 max

k≤K

∣∣X(k)
∣∣2
n
,

where the second inequality follows because the maximum over the simplex is at one of the
edges of the simplex. Moreover, maxk≤K |X(k)|2n = 1 by construction. The result then follows by
Theorem 1 in Jaggi [42] when wm = 2/(1 + m). �

4.2. Size of the functions generated by the algorithms

The following gives a bound for the size of Fm in terms of the norm | · |L; Fm is the function
generated by each algorithm.

Lemma 8. As n → ∞, Pr(Fm ∈ L(Bm)) → 1, where:

PGA: Bm � |Y |2m1/2;
OGA: Bm � |Y |2[( m

ρm,n
)1/2 ∧ m ∧ K] with ρm,n as in (1);

RGA: Bm � |Y |2[( m
ρm,n

)1/2 ∧ m ∧ K] with ρm,n as in (1), as long as in Lemma 6 B2/m =
O(1);

CGA and FWA: Bm ≤ B̄ .

Proof. Note that Fm(X) =∑m
k=1 bkX

s(k), where to ease notation bk does not make explicit the
dependence on m. A loose bound for |Fm|L is found by noting that∣∣〈X(k),X(l)

〉
n

∣∣≤ max
k

∣∣〈X(k),X(k)
〉
n

∣∣= 1,

so that each coefficient is bounded by |Y |n. Since at the mth iteration we have at most m different
terms and no more than K , |Fm|L ≤ (m ∧ K)|Y |n. Given that |Y |2n = Op(1), one can infer the
crude bound |Fm|L = Op(m ∧ K). This is the worse case scenario, and can be improved for all
the algorithms.
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For the PGA, at the first iteration, |b1| := maxk |〈X(k), Y 〉n| ≤ |Y |n, hence there is an α1 ∈
[0,1] such that |b1| = α

1/2
1 |Y |n (the root exponent is used to ease notation in the following

steps). Then, by the properties of projections

|R1|2n = ∣∣Y − Xs(1)b1
∣∣2
n

= |Y |2n − |b1|2 = |Y |2n(1 − α1),

where the second inequality follows from |X(k)|2n = 1 for any k. By similar arguments, there is

an α2 ∈ [0,1] such that |b2| = α
1/2
2 |R1|n and |R2|2n = |R1|2n(1 − α2). So by induction |bm| =

α
1/2
m |Rm−1|n and |Rm|2n = |Rm−1|2n(1 − αm). By recursion, this implies that

|bm|2 = αm(1 − αm−1) · · · (1 − α1)|Y |2n
and in consequence that

m∑
k=1

|bk| =
m∑

k=1

α
1/2
k

∏
l<k

(1 − αl)
1/2|Y |n,

where the empty product is 1. It is clear that if any αk ∈ {0,1} for k < m then bm = 0, hence one
can assume that all the αk’s are in (0,1). The above display is maximized if αl → 0 fast enough,
as otherwise, the product converges to zero exponentially fast and the result follows immediately.
Suppose that

∑∞
l=1 α2

l < ∞. Then, using the fact that ln(1 − αl) = −αl + O(α2
l ),

∏
l<k

(1 − αl) = · · · = exp

{
k−1∑
l=1

ln(1 − αl)

}
= exp

{
−

k−1∑
l=1

αl + O

(
k−1∑
l=1

α2
l

)}


 exp

{
−

k−1∑
l=1

αl

}
.

The above converges exponentially fast to 0 if αl 
 l−α for α ∈ (0.5,1). While the argument is
not valid for α ∈ (0,0.5], it is clear, that the convergence is even faster in this case. Hence, restrict
attention to α = 1, in which case,

∏
l<k(1 −αl) 
 k−c for some c > 0, that is, polynomial decay.

On the other hand for α > 1, the product converges. Hence, it must be the case that the maximum
is achieved by setting αl 
 l−1 and assuming that the product converges. This implies that for
the PGA,

m∑
k=1

|bk| � |Y |n
m∑

k=1

(
k−1)1/2 � |Y |nm1/2.

Now, consider the OGA and the RGA. The following just follows by standard inequalities:

(ρm,n/m)1/2
m∑

k=1

|bk| ≤ ρ
1/2
m,n

(
m∑

k=1

|bk|2
)1/2

≤ |Fm|n. (21)



Greedy algorithms for prediction 1259

For the OGA, by definition of the OLS estimator, |Fm|n ≤ |Y |n implying the result for the OGA
using the above display and the crude bound. For the RGA, consider the case when |Fm|n is
small and large, separately. If |Fm|n = op(1), then clearly, |Fm|n = o(|Y |n), because Y is not
degenerate. By this remark, the above display implies that

|Fm|L :=
m∑

k=1

|bk| = op

(√
m/ρm,n|Y |n

)

and the result for the RGA would follow. Hence, one can assume that |Fm|n � 1 in probability,
eventually as m → ∞. In this case, by the approximating Lemma 6, if B2/m = O(1),

|Y − Fm|2n ≤ |Y |2n + O(1)

which implies

|Fm|2n ≤ 2〈Y,Fm〉n + O(1) ≤ 2|Y |n|Fm|n + O(1)

and in consequence

|Fm|n ≤ 2|Y |n + O
(|Fm|−1

n

)= 2|Y |n + Op(1)

by the fact that |Fm|n � 1, in probablity. Hence, using the above display together with (21), the
result follows for the RGA as well.

For the CGA, the bk’s are all bounded in absolute value by B̄ . Since by construction, Fm(X) =
m−1 ∑m

k=1 bkX
s(k), |Fm|L ≤ B̄ . A similar argument holds for the FWA. �

It is natural to replace the random eigenvalue ρm,n with the population one. This is achieved
next.

Lemma 9. Suppose Conditions 1 and 4 hold. Then ρm,n ≥ ρm −Op(dn,pmK2/pn−1/2) implying
that if dn,pmK2/pn−1/2 = o(ρm), then ρ−1

m,n = Op(ρ−1
m ).

Proof. Note that

ρm,n = inf|b|0≤m,|b|2≤1

1

n

n∑
i=1

(
K∑

k=1

bkX
(k)
i

)2

, ρm = inf|b|0≤m,|b|2≤1

1

n

n∑
i=1

E

(
K∑

k=1

bkX
(k)
i

)2

,

where |b|0 = ∑K
k=1{bk 	= 0} and |b|22 = ∑K

k=1 |bk|2, that is, the number of non-zero bk’s and
their squared l2 norm, respectively. By obvious manipulations, using the above display, and the
definition of ρm,

ρm,n ≥ ρm − sup
|b|0≤m,|b|2≤1

∣∣∣∣∣1

n

n∑
i=1

(1 −E)

(
K∑

k=1

bkX
(k)
i

)2∣∣∣∣∣,
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hence it is sufficient to bound the r.h.s. of the above display. Using similar arguments as in the
control of II in the proof of Lemma 15 in Section 4.4,

E sup
|b|0≤m,|b|2≤1

∣∣∣∣∣1

n

n∑
i=1

(1 −E)

(
K∑

k=1

bkX
(k)
i

)2∣∣∣∣∣
≤ mE max

k,l≤K

∣∣∣∣∣1

n

n∑
i=1

(1 −E)X
(k)
i X

(l)
i

∣∣∣∣∣� dn,pmK2/p

√
n

,

and the first result follows. The second part is directly inferred from the first. �

4.3. Inequalities for dependent random variables

Two different inequalities will be needed depending on whether one assumes absolute regular-
ity or mixingales. The following is suitable for beta mixing random variables. It is somewhat
standard, but proved for completeness due to some adjustments to the present context.

Lemma 10. Suppose that F is a measurable class of functions with cardinality K . Let (Wi)i∈Z
be strictly stationary and beta mixing with mixing coefficients β(i) � βi , β ∈ [0,1). Suppose that
for all f ∈ F, E|f (W1)|p < ∞ for some p > 2. Then

Emax
f ∈F

1√
n

∣∣∣∣∣
n∑

i=1

(1 −E)f (Wi)

∣∣∣∣∣ �
√

lnK

if K � nα for some α < (p − 2)/2. If maxf ∈F |f | is bounded, the result holds for K � exp{nα},
α ∈ [0,1).

Proof. Note that

Emax
f ∈F

1√
n

∣∣∣∣∣
n∑

i=1

(1 −E)f (Wi)

∣∣∣∣∣
≤ Emax

f ∈F
1√
n

∣∣∣∣∣
n∑

i=1

(1 −E)f (Wi)
{

max
f ∈F

∣∣f (Wi)
∣∣≤ M

}∣∣∣∣∣
+Emax

f ∈F
1√
n

∣∣∣∣∣
n∑

i=1

(1 −E)f (Wi)
{

max
f ∈F

∣∣f (Wi)
∣∣> M

}∣∣∣∣∣
≤ Emax

f ∈F
1√
n

∣∣∣∣∣
n∑

i=1

(1 −E)f (Wi)
{

max
f ∈F

∣∣f (Wi)
∣∣≤ M

}∣∣∣∣∣
+ 2

√
nEmax

f ∈F
∣∣f (Wi)

∣∣{max
f ∈F

∣∣f (Wi)
∣∣> M

}
=: I + II,
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where in the last inequality one uses Minkowski’s inequality. (Here, {·} is the indicator of a set.)
By Hölder’s inequality,

II ≤ 2
√

n
(
Emax

f ∈F
∣∣f (Wi)

∣∣p)1/p

Pr
(

max
f ∈F

∣∣f (Wi)
∣∣> M

)(p−1)/p

≤ 2
√

n
(
Emax

f ∈F
∣∣f (Wi)

∣∣p)1/p

K(p−1)/pM−(p−1)

�
√

nKM−(p−1)

because by Markov inequality and the union bound,

Pr
(

max
f ∈F

∣∣f (Wi)
∣∣> M

)
� KM−p,

while Emaxf ∈F |f (Wi)|p � K (e.g., Lemma 2.2.2 in van der Vaart and Wellner [77]). Hence,
set M = (

√
nK/

√
lnK)1/(p−1) to ensure that II = O(

√
lnK). Pollard ([58], equation (8)) shows

that if the Wi ’s are beta mixing, for any integer sequence an = o(n),

I �
√

lnK|f |2βE
(

Man

√
2 lnK

|f |2β

√
n

)
+ Mβ(an)

√
n, (22)

where E is some positive increasing function such that limx→∞ E(x) = ∞ and | · |2β is the
beta mixing norm introduced by Doukhan et al. [32] (see also Rio [60], equation (8.21)). The
exact form of the norm is irrelevant for the present purposes, however, |f |2β ≤ c1 < ∞ for
some constant c1 under the condition on the mixing coefficients (e.g., Rio [60], p. 15). Since
β(an) � βan , for an 
 lnn/ ln(1/β), and using the value for M set in II, deduce

I + II �
√

lnKE
(

c2 lnn(
√

nK/
√

lnK)1/(p−1)
√

lnK√
n

)
+ √

lnK,

for some finite positive constant c2. Substituting K 
 nα for any positive α < (p − 2)/2, the
argument in the continuous increasing function E(·) is bounded and the result follows. Notice
that this choice of K also makes Mβ(an)

√
n � 1.

For the case of bounded maxf ∈F |f |, one can take M large enough, but finite so that II = 0.
Given that M is finite, K � exp{nα}, and with an as before, (22) becomes

I �
√

lnK|f |2βE
(

c3 lnn
√

nα

√
n

)

for some finite constant c3, and the argument of E(·) is bounded because α < 1. Some tidying up
gives the last result. �

The following is an extension of Burkhölder inequality to mixingales (see Peligrad, Utev and
Wu [55], Corollary 1 for the exact constants).
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Lemma 11. Suppose that (Wi)i∈Z is a mean zero stationary sequence of random variables. Let

dn,p(W) :=
n∑

i=0

(i + 1)−1/2
∣∣E[Wi |F0]

∣∣
p
,

where F0 := σ(Wi : i ≤ 0) is the sigma algebra generated by (Wi : i ≤ 0). Then, for all p ≥ 2,
such that |Wi |p < ∞, ∣∣∣∣∣

n∑
i=1

Wi

∣∣∣∣∣
p

≤ C
1/p
p n1/2dn,p(W),

where for p ∈ [2,4), Cp � pp while for p ≥ 4, Cp � (2p)p/2.

4.4. Uniform control of the estimator

Next, one needs a uniform control of the objective function. Recall that μB is the best approxi-
mation in L(B) to μ0 in the L2 sense.

Define

L0(B) :=
{

μ: μ(X) =
K∑

k=1

bkX
(k),

K∑
k=1

{bk 	= 0} ≤ B

}
.

These are linear functions with l0 norm less or equal to B , that is, linear functions with at most B

non-zero coefficients. The following is Lemma 5.1 in van de Geer [74] with minor differences.
The proof is given for completeness.

Lemma 12. Let μ′ ∈ L(B) be an arbitrary but fixed function and m a positive integer. Suppose
that in probability, for some δ1 ∈ (0,1) and δ2, δ3 > 0:

1. supμ∈L0(2m): |μ|2≤1 |(1 −E)|μ|2n| ≤ δ1,
2. supμ∈L0(2m): |μ|2≤1 |2(1 −E)〈Y − μ′,μ〉n| ≤ δ2,
3. the sequence μn ∈ L0(m) satisfies |Y − μn|2n ≤ |Y − μ′|2n + δ2

3 ,
4. the moment condition 〈Y − μ′,μn〉P = 0 holds.

Then |μn − μ′|P,2 ≤ (δ2 + δ3)/(1 − δ1) in probability (recall the definition of | · |P,2 at the
beginning of Section 4).

Proof. Starting from the assumption

|Y − μn|2n ≤ ∣∣Y − μ′∣∣2
n
+ δ2

3,

by algebraic manipulations, |μn −μ′|2n ≤ 2〈Y −μ′,μn −μ′〉n + δ2
3 . Assume that |μn −μ′|P,2 ≥

δ3 otherwise, there is nothing to prove. Hence, δ2
3 ≤ δ3|μn −μ′|P,2. Also note that 〈Y −μ′,μn −
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μ′〉P = 0 by definition of μ′ (point 4 in the statement). Adding and subtracting |μn − μ′|2n, and
using the just derived bounds

∣∣μn − μ′∣∣2
P,2 ≤ ∣∣μn − μ′∣∣2

P,2 − ∣∣μn − μ′∣∣2
n
+ 2

(〈
Y − μ′,μn − μ′〉

n
− 〈

Y − μ′,μn − μ′〉
P

)
+ 2

〈
Y − μ′,μn − μ′〉

P
+ δ2

3

≤
∣∣∣∣ |μn − μ′|2P,2 − |μn − μ′|2n

|μn − μ′|2P,2

∣∣∣∣∣∣μn − μ′∣∣2
P,2

+ 2

∣∣∣∣ 〈Y − μ′,μn − μ′〉n − 〈Y − μ′,μn − μ′〉P
|μn − μ′|P,2

∣∣∣∣∣∣μn − μ′∣∣
P,2 + δ3

∣∣μn − μ′∣∣
P,2.

Given that μn and μ′ are linear with at most m non-zero coefficients, then �μ := (μn −
μ′)/|μn − μ′|2 is linear with at most 2m-non-zero coefficients and |�μ|2 = 1 by construction.
Hence, in probability

∣∣μn − μ′∣∣2
P,2 ≤ sup

�μ∈L0(2m): |μ|2≤1

∣∣(1 −E)|�μ|2n
∣∣∣∣μn − μ′∣∣2

P,2

+ sup
�μ∈L0(2m): |μ|2≤1

∣∣2(1 −E)
〈
Y − μ′,�μ

〉
n

∣∣∣∣μn − μ′∣∣
P,2 + δ3

∣∣μn − μ′∣∣
P,2

≤ δ1
∣∣μn − μ′∣∣2

P,2 + (δ2 + δ3)
∣∣μn − μ′∣∣

P,2.

Solving for |μn − μ′|2P,2 gives the result as long as δ1 ∈ [0,1). �

The next result is used to verify some of the conditions in the previous lemma.

Lemma 13. Under Condition 1 and either Condition 2 or 3, for any arbitrary but fixed μ′ ∈ L,
and positive integer m, the following hold with probability going to one:

1. supμ∈L0(m): |μ|2≤1 |(1 −E)|μ|2n| �
√

m lnK
n

,

2. supμ∈L0(m): |μ|2≤1 |(1 −E)〈Y − μ′,μ〉n| �
√

m lnK
n

.

Proof. Let S be an arbitrary but fixed subset of {1,2, . . . ,K} with cardinality |S|. Then, having
fixed S , FS := {μS := ∑

k∈S bkX
(k): |μS |2 ≤ A} is a linear vector space of dimension |S|.

In particular let �S be the m × m dimensional matrix with entries {EX(k)X(l): k, l ∈ S}, and
bS the m dimensional vector with entries {bk: k ∈ S}. Then |μS |22 = bT

S�SbS ≥ 0, where the

superscript T stands for the transpose. In consequence, �S = CCT for some m×m matrix C. It
follows that there is an isometry between FS and {a ∈R

m: a = CT bS}. Any vector a in this last
set satisfies aT a = |μS |22, hence it is contained into the m dimensional sphere of radius A (under
the Euclidean norm). By Lemma 14.27 in Bühlmann and van de Geer [55], such sphere has a δ

cover of cardinality bounded by ( 2A+δ
δ

)m (under the Euclidean norm). Then note that the class
of functions L02(m,A) := {μ ∈ L0(m): |μ|2 ≤ A} = ⋃

|S|≤m FS . Given that the union is over
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∑m
s=1

(
K
s

)
< mKm number of elements, the covering number of L02(m,A) is bounded above by

mKm( 2A+δ
δ

)m.
An argument in Loh and Wainwright ([48], proof of Lemma 15) allows one to replace the

supremum over L02(m,A) with the maximum over a finite set. Let {μ(l): l = 1,2, . . . ,N} be an
L2 1/3 cover for L02(m,A), that is, for any μ ∈ L02(m,A) there is a μ(l) such that |�μ|2 ≤ 1/3,
where �μ := μ − μ(l). An upper bound for the cardinality N of such cover has been derived
above for arbitrary δ, so for δ = 1/3, N < mKm(6A + 1)m. For a 1/3 cover, one has that 3�μ ∈
L02(m,A) or equivalently �μ ∈ L02(m,A/3). This will be used next. By adding and subtracting
quantities such as (1−E)〈μ(l),μ〉n and using simple bounds, infer that (e.g., Loh and Wainwright
[48], proof of Lemma 15),

I := sup
μ∈L02(m,A)

∣∣(1 −E)|μ|2n
∣∣

≤ max
l≤N

∣∣(1 −E)
∣∣μ(l)

∣∣2
n

∣∣+ 2 sup
�μ∈L02(m,A/3)

max
l≤N

∣∣(1 −E)
〈
μ(l),�μ

〉
n

∣∣
+ sup

�μ∈L02(m,A/3)

∣∣(1 −E)|�μ|2n
∣∣

= max
l≤N

∣∣(1 −E)
∣∣μ(l)

∣∣2
n

∣∣+ 2

3
sup

�μ∈L02(m,A)

max
l≤N

∣∣(1 −E)
〈
μ(l),�μ

〉
n

∣∣
+ 1

9
sup

�μ∈L02(m,A)

∣∣(1 −E)|�μ|2n
∣∣

= max
l≤N

∣∣(1 −E)
∣∣μ(l)

∣∣2
n

∣∣+ 2

3
sup

μ∈L02(m,A)

∣∣(1 −E)|μ|2n
∣∣

+ 1

9
sup

μ∈L02(m,A)

∣∣(1 −E)|μ|2n
∣∣.

This implies that I := supμ∈L02(m,A) |(1 − E)|μ|2n| ≤ 9
2 maxl≤N |(1 − E)|μ(l)|2n|. By a similar

argument,

II := sup
μ∈L02(m,A)

∣∣(1 −E)
〈
Y − μ′,μ

〉
n

∣∣
≤ max

l≤N

∣∣(1 −E)
〈
Y − μ′,μ(l)

〉
n

∣∣+ sup
�μ∈L02(m,A/3)

∣∣(1 −E)
〈
Y − μ′,�μ

〉
n

∣∣
= max

l≤N

∣∣(1 −E)
〈
Y − μ′,μ(l)

〉
n

∣∣+ 1

3
sup

μ∈L02(m,A)

∣∣(1 −E)
〈
Y − μ′,μ

〉
n

∣∣
implying II := supμ∈L02(m,A) |(1−E)〈Y −μ′,μ〉n| ≤ 3

2 maxl≤N |(1−E)〈Y −μ′,μ(l)〉n|. Hence,
to bound I and II use the above upper bounds together with Lemma 10 and the upper bound for
N (N < mKm(6A + 1)m with A = 1). �
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The following is a modification of a standard crude result often used to derive consistency,
but not convergence rates. However, for the CGA and FWA this will be enough to obtain sharp
convergence rates independently of the number of iterations m. Recall μ0(X) := E[Y |X].

Lemma 14. Let μ′ ∈ L be arbitrary, but fixed. Suppose that in probability, for some δ1 ∈ (0,1)

and δ2, δ3 > 0, and for a positive Bm:

1. supμ∈L(Bm) |(1 −E)(|Y − μ|2n − |Y − μ′|2n)| ≤ δ1;
2. |μ′ − μ0|22 ≤ δ2;
3. the sequence μn ∈ L(Bm) satisfies |Y − μn|2n − |Y − μ′|2n ≤ δ3.

Then |μn − μ0|P,2 ≤ √
δ1 + δ2 + δ3 in probability.

Proof. By simple algebra, |Y − μn|2P,2 − |Y − μ′|2P,2 = |μn − μ0|2P,2 − |μ′ − μ0|2P,2. Adding

and subtracting |Y − μn|2n − |Y − μ′|2n,

|μn − μ0|2P,2 ≤ ∣∣μ′ − μ0
∣∣2
P,2 + [|Y − μn|2P,2 − ∣∣Y − μ′∣∣2

P,2

]− [|Y − μn|2n − ∣∣Y − μ′∣∣2
n

]
+ [|Y − μn|2n − ∣∣Y − μ′∣∣2

n

]
≤ δ2 + [|Y − μn|2P,2 − ∣∣Y − μ′∣∣2

P,2

]− [|Y − μn|2n − ∣∣Y − μ′∣∣2
n

]+ δ3,

where the last step follows by points 2 and 3 in the lemma. However,

(|Y − μn|2P,2 − ∣∣Y − μ′∣∣2
P,2

)− (|Y − μn|2n − ∣∣Y − μ′∣∣2
n

)
≤ sup

μ∈L(Bm)

∣∣|Y − μ|2P,2 − ∣∣Y − μ′∣∣2
P,2 − (|Y − μ|2n − ∣∣Y − μ′∣∣2

n

)∣∣
= sup

μ∈L(Bm)

∣∣(1 −E)
(|Y − μ|2n − ∣∣Y − μ′∣∣2

n

)∣∣≤ δ1,

where the last inequality follows by assumption. Putting everything together the result fol-
lows. �

In what follows, define L01(m,B) := L0(m) ∩ L1(B), where L1(B) = L(B) the usual linear
space of functions with absolute sum of coefficients bounded by B . The next result will be used
to verify the conditions of the previous lemma in the case of the CGA and FWA but also as main
ingredient to derive consistency rates for non-mixing data in a variety of situations.

Lemma 15. Suppose Condition 1. For any arbitrary, but fixed μ′ ∈ L01(m,B), and Bm < ∞,

E sup
μ∈L01(m,Bm): |μ−μ′|2≤δ

∣∣(1 −E)
(∣∣Y − μ(X)

∣∣2
n
− ∣∣Y − μ′(X)

∣∣2
n

)∣∣ � error(δ),
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where, under either Condition 2 or 3,

error(δ) = min

{
δ

√
m

ρ2m

,B + Bm

}(
1 + min

{
δ

√
m

ρ2m

,B + Bm

})(√
lnK

n

)

while under Condition 4,

error(δ) = min

{
δ

√
m

ρ2m

,B + Bm

}(
1 + K1/p min

{
δ

√
m

ρ2m

,B + Bm

})(
dn,pK1/p

√
n

)
.

Proof. Note that Y = μ0 + Z, where Z is mean zero conditionally on X. Then, by standard
algebra

(1 −E)|Y − μ|2n − (1 −E)
∣∣Y − μ′∣∣2

n

= 1

n

n∑
i=1

2Zi

(
μ′(Xi) − μ(Xi)

)

+ 1

n

n∑
i=1

(1 −E)
(
μ(Xi) − μ′(Xi)

)(
μ(Xi) + μ′(Xi) − 2μ0(Xi)

)
=: I + II,

using the fact that E[Z|X] = 0 in the equality. The two terms above can be bounded separately,
uniformly in μ such that |μ − μ′|2 ≤ δ. First, let μ′(X) = ∑K

k=1 b′
kX

(k)
i , where by definition of

L01(m,B), only m coefficients are non-zero. Note that for μ(X) = ∑K
k=1 bkX

(k) in L01(m,B),
(μ′ − μ) ∈ L01(2m,B + Bm), because μ and μ′ are arbitrary, hence do not need to have any
variables in common for 2m ≤ K (recall that there are K variables X(k), k ≤ K). Define ck :=
sign(b′

k − bk)
∑K

k=1 |b′
k − bk|, λk := (b′

k − bk)/
∑K

k=1 |b′
k − bk|, where there are at most 2m

non-zero λk’s by the restriction imposed by L01(2m,B + Bm). Hence,

μ′(X) − μ(X) =
K∑

k=1

(
b′

k − bk

)
X(k) =

K∑
k=1

λkckX
(k),

with |ck| ≤ |μ′ − μ|L, and λk’s in the 2m dimensional unit simplex. Given this restrictions, also
note that √

ρ2m

2m

K∑
k=1

∣∣b′
k − bk

∣∣≤
√√√√ρ2m

K∑
k=1

(
b′

k − bk

)2 ≤ ∣∣μ′ − μ
∣∣
2

so that for any δ > 0, |μ − μ′|2 ≤ δ implies |μ′ − μ|L ≤ δ
√

2m/ρ2m or equivalently |ck| ≤
min{δ√2m/ρ2m,B + Bm}. Going from right to left, the above inequality is obtained from the
Rayleigh quotient, and by bounding the l1 norm by

√
2m times the l2 norm (e.g., use Jensen in-

equality of Cauchy–Schwarz). To ease notation, write sup|μ−μ′|2≤δ for supμ∈L01(m,B): |μ−μ′|2≤δ .
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Then, using the previous remarks, and also noting that the supremum over the unit simplex is
achieved at one of the edges of the simplex,

E sup
|μ−μ′|2≤δ

|I | = 2E sup
|μ−μ′|2≤δ

∣∣∣∣∣1

n

n∑
i=1

Zi

(
K∑

k=1

(
b′

k − bk

)
X

(k)
i

)∣∣∣∣∣
= 2E sup

|∑K
k=1 λkckX

(k)|2≤δ

∣∣∣∣∣
K∑

k=1

λkck

1

n

n∑
i=1

ZiX
(k)
i

∣∣∣∣∣
= 2Emax

k≤K
sup

|ck |≤min{δ√2m/ρ2m,B+Bm}

∣∣∣∣∣ck

1

n

n∑
i=1

ZiX
(k)
i

∣∣∣∣∣
= 2 min

{
δ

√
2m

ρ2m

,B + Bm

}
Emax

k≤K

∣∣∣∣∣1

n

n∑
i=1

ZiX
(k)
i

∣∣∣∣∣.
Hence, it is sufficient to bound the expectation of the sequence (ZiX

(k)
i )i≥1, which is mean zero

by construction. Under Conditions 2 or 3, Emaxk≤K | 1
n

∑n
i=1 ZiX

(k)
i | �

√
lnK
n

, by Lemma 10,
while under Condition 4,

Emax
k≤K

∣∣∣∣∣1

n

n∑
i=1

ZiX
(k)
i

∣∣∣∣∣� K1/p max
k≤K

(
E

∣∣∣∣∣1

n

n∑
i=1

ZiX
(k)
i

∣∣∣∣∣
p)1/p

� dn,pK1/p

√
n

by Lemma 11. To bound the terms in II, note that

μ + μ′ − 2μ0 = μ − μ′ + 2
(
μ′ − μ0

)
.

Then, recalling �(X) := (μ′(X) − μ0(X)),

E sup
|μ−μ′|2≤δ

|II| ≤ E sup
|∑K

k=1 λkckX
(k)|2≤δ

∣∣∣∣∣1

n

n∑
i=1

(1 −E)

(
K∑

k=1

λkckX
(k)
i

)2∣∣∣∣∣
+E sup

|∑K
k=1 λkckX

(k)|2≤δ

∣∣∣∣∣2

n

n∑
i=1

(1 −E)

(
K∑

k=1

λkckX
(k)
i

)
�(Xi)

∣∣∣∣∣
=: III + IV.

Using arguments similar for the bound of I ,

III ≤ E sup
|∑K

k=1 λkckX
(k)|2≤δ,|∑K

l=1 λlclX
(l)|2≤δ

∣∣∣∣∣
K∑

k=1

λkck

K∑
l=1

λlcl

1

n

n∑
i=1

(1 −E)X
(k)
i X

(l)
i

∣∣∣∣∣
= E max

k,l≤K
sup

|ck |,|cl |≤min{δ√2m/ρ2m,B+Bm}

∣∣∣∣∣ckcl

1

n

n∑
i=1

(1 −E)X
(k)
i X

(l)
i

∣∣∣∣∣
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≤
(

min

{
δ

√
2m

ρ2m

,B + Bm

})2

E max
k,l≤K

∣∣∣∣∣1

n

n∑
i=1

(1 −E)X
(k)
i X

(l)
i

∣∣∣∣∣.
To finish the control of III, one can then proceed along the lines of the control of the I term:

E max
k,l≤K

∣∣∣∣∣1

n

n∑
i=1

(1 −E)X
(k)
i X

(l)
i

∣∣∣∣∣�
⎧⎪⎨
⎪⎩
√

lnK2, under Condition 2 or 3,

dn,pK2/p

√
n

, under Condition 4.

Similar arguments are used to bound IV . Putting these bounds together, and disregarding irrele-
vant constants, the result follows. �

4.5. Proof of theorems

Proof of Theorem 1. At first, prove the result for the PGA, OGA and RGA. The estimators
satisfy Fm ∈ L0(m). Hence, apply Lemma 12. Verify points 1–2 in Lemma 12, using Lemma 13,

so that δ1, δ2 �
√

m lnK
n

in Lemma 12. By Lemmas 4, 5 and 6, point 3 in Lemma 12 is verified

with δ3 proportional to B1/3m−1/6 for the PGA, Bm−1/2 for the OGA and RGA with μ′ = μB .
Point 4 is satisfied by the remark around (6) for B ≥ B0 as required in (8). Hence, in probability,
by the triangle inequality,

|μ0 − Fm|P,2 �
√

m lnK

n
+ |μ0 − μB |2 + algo(B,m),

where algo(B,m) is the appropriate error term in Lemmas 4, 5, 6.
For the CGA and FWA use Lemma 14 with μ′ = μB ∈ L(B), B = Bm = B̄ , and μn = Fm;

recall μB is the minimizer in (3). In Lemma 14, δ1 � B̄

√
lnK
n

by Lemma 15 with m = K , so that

L01(m,B) = L(B). By definition of μB , in Lemma 14, δ2 = γ 2(B̄). Moreover, δ3 � B̄2m−1 by
Lemmas 6 and 7. Hence, Lemma 14 is verified. �

The proof of Theorem 2 is next.

Proof of Theorem 2. By Lemma 8, Fm ∈ L(Bm) in probability, for some suitable Bm depending
on the algorithm. The theorem then follows by an application of Lemma 14 with μ′ = μB ∈ L(B)

for arbitrary B , and μn = Fm. In Lemma 14, δ1 � (B + Bm)2(
dn,pK2/p

√
n

) by Lemma 15. Then

substitute Bm with the upper bounds given in Lemma 8. Finally, in Lemma 14, δ2 = γ (B) and
δ3 = algo(B,m) by Lemmas 4, 5, or 6. Hence, Lemma 14 and the fact that

√
δ1 + δ2 + δ3 ≤√

δ1 + √
δ2 + √

δ3 imply the result. �

Theorem 3 relies on Theorem 3.4.1 in van der Vaart and Wellner [77], which is here recalled
as a lemma for convenience, using the present notation and adapted to the current purposes.
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Lemma 16. Suppose that for any δ > δn > 0, and for Bm ≥ B , and fixed function μ′ ∈
L0,1(m,B):

1. E|Y − μ(X)|2n − E|Y − μ′(X)|2n � E|μ(X) − μ′(X)|2n for any μ ∈ L0,1(m,Bm) such that
|μ − μ′|2 ≤ δ;

2. E supμ∈L0,1(m,Bm): |μ−μ′|2≤δ |(1−E)|Y −μ(X)|2n − (1−E)|Y −μ′(X)|2n| � δ an

n1/2 for some

sequence an = o(n1/2);
3. there is a sequence rn such that rn � δ−1

n and rn � n1/2

an
;

4. Pr(Fm ∈ L0,1(m,Bm)) → 1, and |Y − Fm|2n ≤ |Y − μ′(X)|2n + OP (r−2
n ).

Then (E|μ0(X
′) − Fm(X′)|2n)1/2 � |μ0 − μ′|2 + r−1

n in probability.

Here is the proof of Theorem 3.

Proof of Theorem 3. It is enough to verify the conditions in Lemma 16 and then show that one
can replace the approximation error w.r.t. μ′ ∈ L0,1(m,B) with the one w.r.t. μB . To verify point
1 in Lemma 16, restrict attention to μ such that E|μ(X)−μ′(X)|2n ≥ 4E|μ0(X)−μ′(X)|2n. If this
is not the case, the convergence rate (error) is proportional to E|μ0(X)−μ′(X)|2n and Lemma 16
would apply trivially. Hence, suppose this is not the case. By standard algebra,

E
∣∣Y − μ(X)

∣∣2
n
−E

∣∣Y − μ′(X)
∣∣2
n

= E
∣∣μ0(X) − μ(X)

∣∣2
n
−E

∣∣μ0(X) − μ′(X)
∣∣2
n

≥ 1
4E

∣∣μ(X) − μ′(X)
∣∣2
n
,

where the inequality follows by problem 3.4.5 in van der Vaart and Wellner [77]. Hence, point 1
in Lemma 16 is satisfied. By construction, Fm has at most m non-zero coefficients. By this remark
and Lemma 8, Fm ∈ L0,1(m,Bm) with Bm = Op(m1/2) for the PGA, Bm = Op(m1/2/ρ

1/2
m ) for

the OGA, and Bm = Op(m1/2/ρ
1/2
m,n) for the RGA if algo(B,m) = B2/m = O(1), which holds

by the conditions in the theorem. The equality algo(B,m) = B2/m follows by Lemma 6. By
Lemma 9, if dn,pmK2/pn−1/2 = o(ρm), then ρ−1

m,n = Op(ρ−1
m ). By the conditions in the theorem,

ρm > 0, and dn,pmK2/pn−1/2 � error(B,K,n,m) = o(1). Hence, infer that Bm = Op(m1/2) for
the OGA and RGA. Hence, point 2 in Lemma 16, is satisfied for any δ and an = m1/2(B +
m1/2)dn,pK2/p by Lemma 15, where

error(δ) � δm1/2(B + m1/2)(dn,pK2/p

√
n

)

using the fact that ρ2m > 0 and Bm = Op(m1/2).
It follows that point 3 in Lemma 16 is satisfied by rn = n1/2/[m1/2(B + m1/2)dn,pK2/p].

Moreover, by Lemma 4, 5 and 6

|Y − Fm|2n ≤ ∣∣Y − μ′(X)
∣∣2
n
+ Op

(
u−2

n

)
,

with u−2
n as given in the aforementioned lemmas because μ′ ∈ L0,1(m,B) ⊆ L(B). Since point 4

in Lemma 16 requires un = O(rn), the actual rate of convergence is u−1
n ∨ r−1

n ≤ u−1
n + r−1

n as
stated in the theorem.
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It is now necessary to replace the approximation error E|μ0(X) − μ′(X)|2n with γ (B) :=
E|μ0(X) − μB(X)|2n. To this end, consider Lemmas 4, 5 and 6 with the empirical norm | · |n
replaced by | · |P,2. Going through the proof, the results are seen to hold as well with the same
error rate (implicitly using Condition 1). Hence, note that, by standard algebra,

∣∣Y − μ′(X)
∣∣2
P,2 −E

∣∣Y − μB(X)
∣∣2
P,2 = E

∣∣μ0(X) − μ′(X)
∣∣2
P,2 −E

∣∣μ0(X) − μB(X)
∣∣2
P,2.

The above display together with the previous remark and Lemmas 4, 5 and 6 imply that

E
∣∣μ0(X) − μ′(X)

∣∣2
2 ≤ E

∣∣μ0(X) − μB(X)
∣∣2
n
+ O

(
u−2

n

)
,

with un as defined above. Hence, Lemma 16 together with the above display gives the result
which is valid for any B . �

4.6. Proof of Lemmas 1, 2 and 3

Proof of Lemma 1. If B ′ ≥ B , the lemma is clearly true because L(B) ⊆ L(B ′). Hence, as-
sume B ′ < B . W.n.l.g. assume that

∑
k |bk| = B , as μ ∈ L(B). Let λk = (|bk|/B) ≥ 0, and

ck = B(bk/|bk|). Then μ =∑
k λkckX

(k). Define

μ′′ =
∑

k

λk

(
B ′

B

)
ckX

(k)

and note that μ′′ ∈ L(B ′) by construction and B ′/B < 1. Then

inf
μ′∈L(B ′)

∣∣μ′ − μ
∣∣2
2 ≤

∣∣∣∣∑
k

λkckX
(k) −

∑
k

λk

(
B ′

B

)
ckX

(k)

∣∣∣∣
2

2

=
[

1 −
(

B ′

B

)]2 ∑
k,l

λkckλlclEX(k)X(l)

≤
[

1 −
(

B ′

B

)]2(∑
k

|λkck|
)2

=
[

1 −
(

B ′

B

)]2

B2,

where the second inequality follows using the fact that |EX(k)X(l)| ≤ E|X(k)|2 = 1 and the last
equality because

∑
k |λkck| =∑

k |bk| = B . �

Proof of Lemma 2. At first, show (5). By independence, |ZX(k)|p = |Z|p|X(k)|p < ∞. Let Akl

be the (k, l) entry in A and similarly for Hkl . By stationarity, and the fact that A is diagonal,
the lth entry in Wi is Wil = ∑∞

s=0 As
llεi−s,l , and by definition X

(k)
i = ∑L

l=1 Hkl

∑∞
s=0 As

llεi−s,l .
Hence, by Minkowski inequality, and the fact that As

ll decays exponentially fast because less than
one in absolute value, and the fact that {Hkl : l = 1,2, . . . ,L} is in the unit simplex, |X(k)|2p ≤



Greedy algorithms for prediction 1271

maxl≤L

∑∞
s=0 |As

ll ||εi−s,l |2p < ∞. Finally, by Hölder’s inequality, the Lipschitz condition for g,

and Minkowski inequality, for any μB(X) =∑K
k=1 X(k)bk ,

∣∣�(X)X(k)
∣∣
p

≤
∣∣∣∣∣

K∑
l=1

(
λl + |bl |

)∣∣X(l)
∣∣∣∣∣∣∣

2p

∣∣X(k)
∣∣
2p

� (1 + B)max
l

∣∣X(l)
∣∣
2p

∣∣X(k)
∣∣
2p

≤ (1 + B)max
k

∣∣X(k)
∣∣2
2p

< ∞.

This completes the proof of (5). Geometric absolute regularity follows using the fact that by
construction, the mixing coefficients of (Xi)i∈Z are equal to the mixing coefficients of (Wi)i∈Z
because Xi is just a linear transformation of Wi (i.e., the sigma algebras generated by the two pro-
cesses are the same). The process (Wi)i∈Z follows a L dimensional stationary AR(1) model with
i.i.d. innovations having a density w.r.t. the Lebesgue measure. Hence, Theorem 1 in Mokkadem
[51] says that the vector autoregressive process (Wi)i∈Z is absolutely regular with geometrically
decaying mixing coefficients as long as L is bounded. By independence, the sigma algebra gen-
erated by (Wi)i∈Z and (Zi)i∈Z are independent. Then Theorem 5.1 Bradley [14] says that the
mixing coefficient of (Wi,Zi)∈Z are bounded by the sum of the mixing coefficients of (Wi)∈Z
and (Zi)i∈Z. Since the latter mixing coefficients are zero at any non-zero lags because of inde-
pendence, geometric beta mixing follows, and Condition 3 holds. �

Proof of Lemma 3. By assumption Xi = Wi . Andrews [1] and Bradley [13] show that the AR(1)
model as in the lemma is not strong mixing, hence is not absolutely regular and Condition 3 fails.
Consider each term in the sum in Condition 4 separately. First, by independence, |E0ZiX

(k)
i |p =

0 for any i > 0. Second, using the infinite MA representation of the AR(1), the fact that the error
terms are i.i.d., and then the triangle inequality

∣∣E0(1 −E)
∣∣X(k)

i

∣∣2∣∣
p

=
∣∣∣∣∣

∞∑
s,r=i

As
kkA

r
kk(1 −E)εi−s,kεi−r,k

∣∣∣∣∣
p

≤ 2
∞∑

s,r=i

∣∣As
kk

∣∣∣∣Ar
kk

∣∣|εi−s,kεi−r,k|p � A2i
kk

which is summable. Third, by the triangle inequality,

∣∣E0(1 −E)�(Xi)X
(k)
i

∣∣
p

=
∣∣∣∣∣E0(1 −E)

(
g
(
X

(l)
i ; l ≤ K

)−
K∑

k=1

X
(l)
i bl

)
X

(k)
i

∣∣∣∣∣
p

≤ ∣∣E0(1 −E)g
(
X

(l)
i ; l ≤ K

)
X

(k)
i

∣∣
p

+
∣∣∣∣∣E0(1 −E)X

(k)
i

K∑
l=1

X
(l)
i bl

∣∣∣∣∣
p

=: I + II.
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Consider each term separately. Define X
(k)
i0 :=∑i−1

s=0 As
kkεi−s,k and X

(k)
i1 :=∑∞

s=i A
s
kkεi−s,k , and

note that X
(k)
i = X

(k)
i0 +X

(k)
i1 . By simple algebraic manipulations and repeated use of Minkowski

inequality,

I ≤ ∣∣E0(1 −E)g
(
X

(l)
i0 ; l ≤ K

)
X

(k)
i

∣∣
p

+ ∣∣E0(1 −E)
(
g
(
X

(l)
i ; l ≤ K

)− g
(
X

(l)
i0 ; l ≤ K

))
X

(k)
i

∣∣
p

≤ ∣∣(E0 −E)g
(
X

(l)
i0 ; l ≤ K

)
X

(k)
i0

∣∣
p

+ ∣∣(E0 −E)g
(
X

(l)
i0 ; l ≤ K

)
X

(k)
i1

∣∣
p

+ ∣∣(E0 −E)
(
g
(
X

(l)
i ; l ≤ K

)− g
(
X

(l)
i0 ; l ≤ K

))
X

(k)
i0

∣∣
p
.

The first term on the right-hand side of the second inequality is zero by construction when taking
expectations (E0 −E). To bound the second term, note that by the properties of g, and Minkowski
inequality,

∣∣(E0 −E)g
(
X

(l)
i0 ; l ≤ K

)
X

(k)
i1

∣∣
p

≤
∣∣∣∣(E0 +E)

∑
l≤K

λl

∣∣X(l)
i0

∣∣∣∣X(k)
i1

∣∣∣∣∣∣
p

≤
∣∣∣∣
(∑

l≤K

λlE0
∣∣X(l)

i0

∣∣)∣∣X(k)
i1

∣∣∣∣∣∣
p

+
∣∣∣∣∑
l≤K

λlE
∣∣X(l)

i0

∣∣E∣∣X(k)
i1

∣∣∣∣∣∣
p

�
∣∣X(k)

i1

∣∣
p

�
∞∑
s=i

∣∣As
kk

∣∣
by the independence of X

(k)
i0 and X

(k)
i1 and the existence of p moments. The third term was

bounded in a similar way. Hence, I �
∑∞

s=i |As
kk| � |Ai

kk|. Finally,

II ≤ B max
l

∣∣E0(1 −E)X
(k)
i X

(l)
i

∣∣
p

≤
∣∣∣∣∣

i−1∑
s,r=0

As
kkA

r
ll(E0 −E)εi−s,kεi−r,l

∣∣∣∣∣
p

+
∣∣∣∣∣

∞∑
s,r=i

As
kkA

r
ll(E0 −E)εi−s,kεi−r,l

∣∣∣∣∣
p

� A2i
kk

as the first term is exactly zero. Clearly, both I and II are summable and the lemma is proved. �

4.7. Proof of Example 4

For simplicity, write εi in place of εi,k . By independence of the εi ’s and stationarity,

E0(1 −E)
∣∣X(k)

i

∣∣2 = E0(1 −E)

∞∑
s,r=0

asarεi−sεi−r =
∑
s,r≥i

asar

[
(1 −E)εi−sεi−r

]

=
∑
s≥i

a2
s (1 −E)ε2

i−s + 2
∑

r>s≥i

asarεi−sεi−r =: I + II.
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For i > 0, define ās = i(1+ε)a2
s and ā := ∑

s≥i ās and note that ā depends on i but is finite for
any i because i(1+ε)a2

s = i(1+ε)s−(1+ε) ≤ 1 for s ≥ i (recall the definition of as ). Then, by the
definition of ās and then by Jensen inequality,

E|I |p ≤ E

∑
s≥i

(
ās

ā

)∣∣i−(1+ε)ā(1 −E)ε2
i−s

∣∣p

=
∑
s≥i

(
ās

ā

)
i−(1+ε)pāp

E
∣∣(1 −E)ε2

i−s

∣∣p
≤ i−(1+ε)pāp max

s
E
∣∣(1 −E)ε2

s

∣∣p
because

∑
s≥i (

ās

ā
) = 1 and the ās ≥ 0. The above display implies that |I |p � i−(1+ε). It remains

to bound II. For any random variable W such that E exp{|W |/τ } ≤ 4 for some τ > 0, it is clear
that

E|W/τ |p ≤ p!(E exp
{|W |/τ}− 1

)≤ p! × 3

using Taylor series expansion. This implies that (E|W |p)1/p ≤ 3pτ for such τ if it exists.
Hence, apply this inequality to bound E|II|p . Noting that E exp{τ−1|II|} ≤ E exp{τ−1II} +
E exp{−τ−1II}, it is enough to bound E exp{τ−1II}. By Gaussianity, independence of the εi ’s,
and the fact that exp{·} is non-negative, letting Ei be expectation conditional on εi and its past,

E exp
{
τ−1II

} =
∏

r>s≥i

E exp
{
τ−12asεi−sarεi−r

}=
∏

r>s≥i

E exp
{
Ei−r

(
τ−12asεi−sarεi−r

)2}

=
∏

r>s≥i

E exp
{(

τ−12asar

)2
ε2
i−r

}=
∏

r>s≥i

E exp

{
4ā2i−2(1+ε)τ−2 ās

ā

ār

ā
ε2
i−r

}
,

where the last three steps use the properties of the moment generating function of a Gaussian
random variable and the definition of ās and ā, as used in the control of I . Hence, setting τ =
4āi−(1+ε), and recalling that ās/ā ≤ 1 by construction, the above is then bounded by

max
r≥i

E exp

{
ε2
i−r

4

}
=
∫
R

ez2/4 e−z2/2

√
2π

dz = √
2,

where the two equalities follow from the fact that ε2
i−r is a standard normal random vari-

able, and then performing the integration. The above two display show that for τ = 4āi−(1+ε),
E exp{τ−1|II|} ≤ exp{τ−1II} + exp{−τ−1II} ≤ 2

√
2 < 4, which implies |II|p � āi−(1+ε). The

upper bounds for the Lp norms of I and II imply that |E0(1 −E)|X(k)
i |2|p � i−(1+ε).
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