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We study the long time behavior of a system of n = 2,3 Brownian hard balls, living in R
d for d ≥ 2,

submitted to a mutual attraction and to elastic collisions.
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1. Introduction and main results

Consider n hard balls with radius r/2 and centers X1, . . . ,Xn located in R
d for some d ≥ 2.

They are moving randomly and when they meet, they are performing elastic collisions. We are
interested in the long time behavior of such a dynamics, where the centers of the balls are mov-
ing according to a Brownian motion in a Gaussian type pair potential. It is modelized by the
following system of stochastic differential equations with reflection

(A)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for i ∈ {1, . . . , n}, t ∈ R
+,

Xi(t) = Xi(0) + Wi(t) − a

n∑
j=1

∫ t

0

(
Xi(s) − Xj(s)

)
ds

+
n∑

j=1

∫ t

0

(
Xi(s) − Xj(s)

)
dLij (s),

Lij (0) = 0,Lij ≡ Lji and Lij (t) =
∫ t

0
1|Xi(s)−Xj (s)|=r dLij (s),Lii ≡ 0,

where W1, . . . ,Wn are n independent standard Wiener processes. The local time Lij describes
the elastic collision (normal mutual reflection) between balls i and j . The parameter a is assumed
to be non-negative. Therefore, the drift term derives from an attractive quadratic potential.
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Note that the Markov process X satisfying (A) admits a unique (up to a multiplicative constant)
unbounded invariant measure μa defined on (Rd)n by:

dμa(x) = e−a
∑

i,j |xi−xj |2/21D(x)dx. (1.1)

Here x = (x1, . . . , xn) ∈ (Rd)n and D is the interior of the set of allowed configurations, that
is,

D = {
x ∈ (

R
d
)n; |xi − xj | > r for all i �= j

}
. (1.2)

Clearly the measure μa is invariant under the simultaneous translations of the n balls, that is
under any transformation of the form (x1, . . . , xn) �→ (x1 + u, . . . , xn + u),u ∈ R

d .
Indeed we are even more interested by the intrinsic dynamics of the system, that is, by the

system of balls viewed from their center of mass, called G := 1
n
(X1 +· · ·+Xn). This (fictitious)

point undergoes a Brownian motion in R
d with covariance 1

n
Id (notice the absence of reflection

term). Choosing G as the (moving) origin of the ambient space R
d , we therefore consider the

process Y of the relative positions, Yi = Xi − G, i = 1, . . . , n, which satisfies

(B)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

for i ∈ {1, . . . , n}, t ∈R
+,

Yi(t) = Yi(0) + Mi(t) − a

n∑
j=1

∫ t

0

(
Yi(s) − Yj (s)

)
ds +

n∑
j=1

∫ t

0

(
Yi(s) − Yj (s)

)
dLij (s),

Lij (0) = 0,Lij ≡ Lji and Lij (t) =
∫ t

0
1|Yi(s)−Yj (s)|=r dLij (s),Lii ≡ 0,

where the martingale term (M1, . . . ,Mn) is a new Brownian motion with covariation 〈Mi,

Mk〉(t) = (n−1
n

δ{i=k} − 1
n
δ{i �=k})tId.

The (Rd)n-valued Markov process Y(t) admits as unique invariant probability measure

dπa(y) = Z−1
a e−a

∑
i,j |yi−yj |2/21D′(y)dy (1.3)

for a well-chosen normalization constant Za . The domain D′, support of πa obtained as linear
transformation of D, is the following unbounded set

D′ :=
{

y ∈ (
R

d
)n; |yi − yj | > r for all i �= j,

n∑
i=1

yi = 0

}
. (1.4)

Our aim is to describe the long time behavior of the process Y , that is of the system of balls
viewed from their center of mass.

Before explaining in more details the contents of the paper, let us give an account of the
existing literature and of related problems.

Existence and uniqueness of a strong solution for system (A) was first obtained in Saisho and
Tanaka [32] with a = 0. Extensions to a > 0 and to n = +∞ are done in Fradon and Rœlly [18,
20], Fradon, Rœlly and Tanemura [22]. Random radii r were also studied in Fradon [17], Fradon
and Roelly [21]. The invariant (in fact reversible) measure for the system is discussed in Saisho
and Tanaka [33] and Fradon and Rœlly [19] for an infinite number of balls.
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The construction of the stationary process (i.e., starting from the invariant measure) can also
be performed by using Dirichlet forms theory. Actually, D intersected with any ball B(0,R) ⊂
(Rd)n is a Lipschitz domain (see the Appendix) so that one can use results in Bass and Hsu [2],
Chen, Fitzsimmons and Williams [13], Fukushima and Tomisaki [24] to build the Hunt process
naturally associated to the Dirichlet form (see, e.g., Fukushima, Oshima and Takeda [23] for the
theory of Dirichlet forms)

ER
a (f ) =

∫
D∩B(0,R)

|∇f |2 dμa. (1.5)

It is then enough to let R go to infinity and show conservativeness of the obtained process which
is equivalent to non-explosion. This is standard.

The solution of (A) built by using stochastic calculus do coincide with the Hunt process asso-
ciated to the Dirichlet form Ea obtained for R = +∞. Some properties, like the decomposition
of the boundary into a non-polar and a polar parts or the Girsanov’s like structure are discussed
in Chen et al. [12].

For an infinite number of balls, such a construction is performed in Osada [31], Tanemura
[35,36].

Let us recall also some regularity of the processes and their associated semi-groups which we
will need in the sequel. For x ∈ D̄, we denote by Pt (x,dy) the transition kernel of the process
X(·) starting from x at time t . It is well known that for all x ∈ D, Pt (x,dy) is absolutely con-
tinuous with respect to the Lebesgue measure restricted to D̄ (in particular does not charge the
boundary ∂D). In addition the density pt(x, y) is smooth as a function of the two variables x and
y in D×D. This follows from standard elliptic estimates (as in Bass and Hsu [3]) or from the use
of Malliavin calculus as explained in Cattiaux [8,10]. Furthermore, this density kernel extends
smoothly up to the smooth part of the boundary (see Cattiaux [9,10]). But since the domain is
(locally) Lipschitz, the potential theoretic tools of Bass and Hsu [3] Sections 3 and 4 can be used
to show that (t, x, y) �→ pt(x, y) extends continuously to R

+ × D̄ × D̄. Actually Section 4 in
Bass and Hsu [3] is written for bounded Lipschitz domain but extends easily to our situation by
localizing the Dirichlet form as we mentioned earlier and using conservativeness (of course the
function is no more uniformly continuous). In particular, the process is Feller (actually strong
Feller thanks to Fukushima and Tomisaki [24]).

Comparison with the killed process at the boundary shows that for any t > 0 and any starting
x ∈ D, pt(x, y) > 0 for any y ∈ D (see, e.g., (3.15) and (3.16) in Bass and Hsu [3] and use
repeatedly the Chapman–Kolmogorov relation to extend the result to all t and y introducing a
chaining from x to y). The previous continuity thus implies that for all t > 0, all compact subsets
K and K ′ of D̄ there exists a constant C(t,K,K ′) > 0 such that

for all x ∈ K and y ∈ K ′ pt(x, y) ≥ C
(
t,K,K ′). (1.6)

In particular compact sets are “petite sets” in the Meyn–Tweedie terminology (Meyn and
Tweedie [30]) and for any compact set K ⊂ D̄ and any t > 0, the

(Local Dobrushin condition) sup
x,x′∈K

∥∥Pt (x,dy) − Pt

(
x′,dy

)∥∥
TV < 2, (1.7)

is fulfilled, where ‖ · ‖TV denotes the total variation distance.
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Another classical consequence is the uniqueness of the invariant measure (since all invariant
measures are actually equivalent) up to a multiplicative constant.

Since Y is deduced from X by a smooth linear transformation, similar statements are available
for Y in D′. In particular, Y is a Feller process satisfying the local Dobrushin condition with a
unique invariant probability measure.

Looking at long time behavior of such systems is not only interesting by itself but relates,
as a → +∞ (low temperature regime in statistical mechanics), to the following finite packing
problem: what is the shape of a cluster of n spheres – with equal radii r/2 – minimizing their
quadratic energy, that is, their second moment about their center of mass. (For a review of dif-
ferent questions on finite packing, see the recent monograph Böröczky [6].) This problem, in
spite of its simple statement and its numerous useful applications, remains mainly open. Even
for d = 2 (so called penny-packings), only the case n ≤ 7 was solved by Temesvári [37]. For
more pennies, the optimal configurations are known only among the specific class of hexagonal
packings (Chow [14]). For d = 3, one finds in Sloane et al. [34] a description of the putatively
optimal arrangements until n ≤ 32. For the case of infinitely many spheres and their celebrated
densest packing, we refer to Conway and Sloane [15] or to Fradon and Rœlly [19], pages 99–100,
for recent references and a more complete discussion.

Indeed, as a → +∞, the invariant measure πa concentrates on the set of configurations with
minimal quadratic energy that is, the set

Emin =
{

y ∈ D′;V (y) :=
∑
i,j

|yi − yj |2 = inf
z∈D′

∑
i,j

|zi − zj |2
}
,

which obviously depends on n, r and d . So looking simultaneously at large t and large a furnishes
some simulated annealing algorithm for the uniform measure on Emin (see Theorem 3.1 for the
case n = 3).

A similar (but different) algorithmic point of view is discussed in the recent paper Diaconis,
Lebeau and Michel [16], where the problem under discussion is: how can we place randomly
n hard balls of radius r in a given large ball (or hypercube)? According to the introduction of
Diaconis, Lebeau and Michel [16] this problem is the origin of Metropolis algorithm. The authors
relate the asymptotics of the spectral gap of a discrete Metropolis algorithm to the first Neumann
eigenvalue (called ν1) for the Laplace operator in D′ intersected with a large hypercube (see their
Theorem 4.6).

There are several methods to attack the study of long time behavior for Markov processes. In
this paper, we will restrict ourselves to exponential (or geometric) ergodicity. Moreover, we will
try to give some controls on the rate of exponential ergodicity. Let us first recall some definitions.

Definition 1.1. A Markov process Z with transition distribution Pt and invariant measure π is
said to be exponentially ergodic if there exists β > 0 such that for all initial condition z,∥∥Pt (z, ·) − π

∥∥
TV ≤ C(z)e−βt .

If the function z �→ C(z) is μ-integrable, the previous extends to any initial distribution μ.
Our main result reads as follows.
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Theorem 1.2. Consider a system of n hard balls in R
d submitted to the dynamics described

by (A). If n = 2,3, the process Y of their relative positions viewed from their center of mass,
described by the system (B), is exponentially ergodic.

Remark that, if we are only interested in the convergence of the ball system to the set of
configurations with minimal energy in the large attraction regime, the quantity of interest reduces
to the (R+)n-valued system of the distances between the centers of the n balls and their center
of mass. Its rate of convergence to equilibrium is much faster that those of the (Rd)n-valued
process Y . For two balls, the difference is explicit when comparing Theorems 2.1 and 2.2 in the
next section.

Exponential ergodicity is connected to the existence of an exponential coupling, as explained
in Kulik [26,27], and is strongly dependent on the existence of exponential moments for the
hitting time of compact subsets. This method can be traced back to Veretennikov [38]. Let us
give a precise statement taken from Kulik [27], Theorem 2.2.

Theorem 1.3. Suppose that the process Z satisfies the local Dobrushin condition. Assume that
we can find a real valued function � and a compact set K and positive constants c,α such that:

1. � is larger than 1 and �(z) → +∞ as |z| → +∞,
2. there exists α > 0 and c > 0 such that for all initial condition z,

Ez

(
�

(
Z(t)

)
1τK>t

) ≤ ce−αt�(z),

where τK denotes the hitting time of K ,
3. supz∈K,t>0 Ez(�(Z(t))1�(Z(t))>M) → 0 as M → +∞.

Then the process Z is exponentially ergodic.

Though the result is only stated in the case c = 1 in Kulik [27], the method extends to any c > 0
without difficulty. It is instructive to compare this result with other forms of Harris-type theorems
for exponential ergodicity, frequently used in the literature. Typically such theorems assume an
irreducibility of the process on a set K (in our case this is the local Dobrushin condition) and its
recurrence. Recurrence assumption is formulated usually in the terms of the generator L of the
process, like the Foster–Lyapunov condition, see, for example, Meyn and Tweedie [30],

L� ≤ −α� + C1K. (1.8)

In Theorem 1.3, assumptions (2) and (3) can be interpreted as a recurrence assumption, but since
the generator L is not involved therein, we call it an integral Lyapunov condition, while (1.8) is
a differential one. In our framework, because of the presence of several local time terms in (B), it
is very difficult to find a Lyapunov function which satisfy (1.8) but we succeeded in showing that
the quadratic energy of the system, V , satisfies the more tractable integral Lyapunov condition
presented in Theorem 1.3.

It should be noted that, unfortunately, the exponential rate of convergence β in Theorem 1.3
is difficult to express explicitly in a compact form, as it depends on α but also on other constants
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connected with the behavior of the process, in particular a quantitative version of the local Do-
brushin condition in K . For an example of such an explicit expression, we refer the reader to
the end of Section 3.2 in Kulik [26]. Similar formulae should appear in the framework of The-
orem 1.3 too, but in order not to overextend the exposition we do not analyse it here in a very
detailed way.

Another classical approach of exponential ergodicity is the spectral approach, that is, the exis-
tence of a spectral gap. Recall the well known equivalence

Proposition 1.4. Pick θ > 0. For any f ∈ L
2(π),

Varπ (Ptf ) ≤ e−θt Varπ (f )

if and only if π satisfies the following Poincaré inequality

Varπ (f ) ≤ 1

θ

∫
|∇f |2 dπ.

When π is not only invariant but reversible, it is known that both approaches coincide, that is,
the following theorem holds.

Theorem 1.5. The process Z is exponentially ergodic if and only if π satisfies some Poincaré
inequality. Furthermore if π satisfies a Poincaré inequality, we may choose β = θ/2, while if the
process is exponentially ergodic we may choose θ = β .

The difficult part of this equivalence (i.e., exponential ergodicity implies Poincaré) is shown in
Bakry, Cattiaux and Guillin [1], Theorem 2.1, or Kulik [27], Theorem 3.4. The converse direction
is explained in Cattiaux, Guillin and Zitt [11].

As it was pointed out in details in the recent papers Kulik [28] and Cattiaux, Guillin and
Zitt [11] (which despite the dates of publication were achieved simultaneously), these two for-
mulations of exponential ergodicity are also equivalent to the existence of exponential moments
for the hitting time of a compact set, in the case of usual diffusion processes. For the reflected
processes we are looking at, some extra work is necessary.

In this paper, we use the second approach related to Theorem 1.5 to analyse the 2-ball system
in the next section, and the first method presented in Theorem 1.3 to prove the ergodicity of the
3-ball system developed in the third section. For that system, we prove geometric ergodicity in
Theorem 3.1, but during the proof (see, e.g., the statement of Proposition 3.3) we show that the
total quadratic energy V is a Lyapunov function in the sense of the function � of Theorem 1.3.

The proof is quite intricate. The key idea is to study and control the hitting time of a cluster,
that is, a set of relatively small quadratic energy. It turns out that the most practical way to
describe the triangle configuration built by the three centers is to look at the medians of this
triangle. The reason is that one has to control a single local time term.

We expect that for any n = 4,5, . . . the system of n stochastic hard balls will exhibit the same
principal behavior: the hitting time of a (properly defined) cluster should verify an analogue
of Proposition 3.3 which would yield an exponential convergence rate to the invariant measure.
However, the proof for n = 3 uses specific and comparatively simple geometry of a 3-ball system:
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essentially, there exists only one type of non-clustered configuration which is bad in the sense
that some collision could happen and increase a local time term: two balls are close, while one
is distant. For greater n this method does not work straightforwardly, and one should take into
account the more complicated structure of sub-clusters of close balls: The analysis of local time
terms, generated by the collisions of the balls in this sub-cluster, is much more delicate. This is a
subject of our further research, and we plan to control the impact of sub-clusters using induction
by n. Note that the proof of Proposition 3.3 implicitly contains the induction step from n = 2 to
n = 3.

Throughout the proofs, we have tried to trace the constants as precisely as possible, in particu-
lar to obtain the convergence rate as an explicit function of a. This goal was achieved completely
in the case n = 2 and partially in the case n = 3, where we give explicit estimates on exponential
moments of hitting times of clusters. Clearly, these estimates then would yield a bound for the
convergence rate, but we do not give it explicitly because of the lack of explicit formula for β in
Theorem 1.3.

2. The case of two balls

In this section, we consider the “baby model” case n = 2. The relative position of the two balls
is described by the R

d -valued process Y := Y1 = X1−X2
2 which satisfies

Y(t) = Y(0) + B1(t) − 2a

∫ t

0
Y(s)ds + 2

∫ t

0
Y(s)dL1(s),

where B1 is a Brownian motion with covariance (1/2)Id and L1 is the local time of Y on the
centered sphere with radius r/2, that is, Y is simply an Ornstein–Uhlenbeck process outside the
ball of radius r/2 and normally reflected on the boundary of this ball. In particular

πa(dy) = Z−1
a e−4a|y|21|y|>r/2 dy

is simply a centered Gaussian measure restricted to D′ =R
d − B(0, r/2).

This measure is thus spherically symmetric and radially log-concave, so that one can use the
method in Bobkov [4] in order to evaluate the Poincaré constant. The following result is a direct
consequence of Boissard et al. [5]

Theorem 2.1. πa satisfies a Poincaré inequality with constant CP (πa) = 1/θa satisfying

1

2

(
1

8a
+ r2

4d

)
≤ max

(
1

8a
,

r2

4d

)
≤ CP (πa) ≤ 1

4a
+ r2

4d
.

As we explained before, this result captures both the rate of convergence to a “well packed”
configuration and the rate of stabilization of an uniform rotation. If we want to avoid the last
property, we are led to look at the R+-valued process y(t) := |Y(t)| which is the radial Ornstein–
Uhlenbeck process reflected at r/2 that is, solves the following one dimensional (at r/2) reflected



688 Cattiaux, Fradon, Kulik and Roelly

SDE

dy(t) = 1√
2

dW(t) − 2ay(t)dt + d − 1

4y(t)
dt + 2y(t)dL(t), (2.1)

with a standard Brownian motion W . Its one dimensional reversible probability measure is

νa(dρ) = Z−1
a ρd−1e−4aρ2

1ρ>r/2 dρ, (2.2)

for which we have the following result which furnishes a bound of the rate of “packing” of two
balls.

Theorem 2.2. Let (Pt )t≥0 be the transition distribution of the half distance (y(t))t≥0 between
the centers of the two balls moving according to the dynamics (A).

∀y >
r

2

∥∥Pt (y, ·) − νa

∥∥
TV ≤ C(y)e−4at .

Proof. Theorem 2.2 holds as soon as νa satisfies a Poincaré inequality with constant CP (νa)

satisfying CP (νa) ≤ 1
8a

. This latter result is a simple application of Bakry–Emery criterion on
the interval ρ ≥ r/2. Recall that Bakry–Emery criterion tells us that provided V ′′(ρ) ≥ A > 0
for all ρ ∈ R, then the (supposed to be finite) measure e−V (ρ) dρ satisfies a Poincaré inequal-
ity with constant 1/A. The measure e−V (ρ)1ρ>r/2 dρ can be approximated, as N → +∞, by

e−(V (ρ)+N((r/2)−ρ)4+) dρ which still satisfies the same lower bound for the second derivative, uni-
formly in N , showing that Bakry–Emery criterion extends to the case of an interval. Finally, it is
immediately seen that νa satisfies Bakry–Emery criterion with A = 8a. �

Sketch of the proof of Theorem 2.1. Actually νa is the radial part of πa . In polar coordinates
(ρ, s) ∈R× Sd−1, πa factorizes as νa ⊗ ds where ds is the normalized uniform measure on the
sphere Sd−1, which satisfies a Poincaré inequality with constant 1/d . Bobkov’s method exposed
in Bobkov [4] and detailed in Boissard et al. [5], Proposition 2.1, allows us to deduce the upper
bound of Theorem 2.1. For the lower bound, it is enough to consider linear functions. �

Remark 2.3. The spectral gap (θ/2 in Proposition 1.4) of linear diffusion processes can be stud-

ied by solving some O.D.E. For instance in our case, if we consider the process z(t) := y(t)2 − r2

4 ,
it is an affine diffusion reflected at 0, that is, it solves the reflected SDE

dz(t) = √
2
√

z(t) + (
r2/4

)
dBt + 4a

(
d

8a
− r2

4
− z(t)

)
dt + dLz(t),

where Lz(·) is proportional to the local time of the process z at 0. For such linear processes, it is
shown in Linetsky [29], Section 6.2, that the spectral gap is given by θ/2 = −4ax where xa is
the first negative zero of the Tricomi confluent hypergeometric function

x �→ U

(
x + 1,1 + d

2
, ar2

)
,
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Figure 1. 3-dimensional plot of the function (a,x) �→ U(x + 1,2, a).

which is not easy to calculate. Nevertheless the following Figures 1 to 3 – done by simulations
using Mathematica9 and the built-in functions FindRoot and HypergeometricU for d = 2 and
r = 1 – lead to conjecture that a �→ xa is bounded, and therefore the spectral gap of the process z

is sublinear in a. In the Figure 2 the curve, being the upper most one, corresponds to the function
a �→ xa . Scrolling the picture from up to down, one meets the curve corresponding to the second
negative zero and so on.

Remark 2.4. It is well known that �(z) = |z|2 plays the role of a Lyapunov function for the
Ornstein–Uhlenbeck process. But for the radial Ornstein–Uhlenbeck process y(·) the situation is

Figure 2. The zeros of the function (a,x) �→ U(x + 1,2, a).
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Figure 3. The logarithm of −xa as function of a.

still better. Indeed its infinitesimal generator denoted by L is given, for ρ > r/2, by

Lg(ρ) = 1

4
g′′(ρ) −

(
2aρ − d − 1

4ρ

)
g′(ρ),

so that, if g(ρ) = ϕ(ρ) = ρ2, it holds

Lϕ(ρ) = d

2
− 4aρ2 provided ρ > r/2,

so that Lϕ ≤ −4aεϕ as soon as 1
1−ε

≤ 2ar2

d
for some ε > 0.

It follows that the process t �→ e4aεt y2(t) is a supermartingale up to the first time τr the process
y hits the value r/2.

This yields the following proposition.

Proposition 2.5. Assume that a > d

2r2 and define τr = inf{t;y(t) = |Y(t)| = r/2} the hitting
time of a packing configuration. Then

P(τr > t) ≤ 4E(|Y(0)|2)
r2

e−4(a−d/(2r2))t .

This means that the system reaches a packing configuration y = |Y | = r/2 before time t with

a probability at least equal to 1 − 4E(|Y(0)|2)
r2 e−4(a−d/(2r2))t . This statement should be particularly

interesting to generalize to a higher number of balls.
In the next section, we shall look at the case of three hard balls, where real difficulties begin

to occur.
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3. The case of three balls

We now address the case of three Brownian hard balls with attractive interaction. That is, we
consider the dynamics (A) and (B) with n = 3 and a > 0. For simplicity, from now on we assume
that r = 1.

Our aim is to prove Theorem 1.2 for n = 3. Recall that the relative positions

Yi = Xi − (X1 + X2 + X3)/3

of the three hard balls follow the dynamics

(B)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for i ∈ {1,2,3}, t ∈R
+,

Yi(t) = Yi(0) + Wi(t) − W(t) − a

3∑
j=1

∫ t

0

(
Yi(s) − Yj (s)

)
ds

+
3∑

j=1

∫ t

0

(
Yi(s) − Yj (s)

)
dLij (s),

Lij (0) = 0,Lij ≡ Lji and Lij (t) =
∫ t

0
1|Yi(s)−Yj (s)|=1 dLij (s),Lii ≡ 0,

where W1, W2, W3 are independent standard d-dimensional Brownian motions and W := (W1 +
W2 + W3)/3. We noted in Section 1 that the process Y is a D̄′-valued Feller process satisfying
the local Dobrushin condition, where

D′ = {
y ∈ (

R
d
)3; |y1 − y2| > 1, |y2 − y3| > 1, |y3 − y1| > 1 and y1 + y2 + y3 = 0

}
.

The invariant probability measure for the system (B) is given by

dπa(y) = Z−1
a e−(a/2)V (y)1D′(y)dy,

where Za is the normalization constant. The function V (y) = |y1 −y2|2 +|y2 −y3|2 +|y3 −y1|2
is, as before, the quadratic energy of the system. The configurations with minimal quadratic
energy are triangular packings and build the set

Emin = {
y ∈ D′;V (y) = 3

}
.

We will prove in the sequel the following theorem.

Theorem 3.1. Let Y satisfying (B) be the process of the relative positions of three hard balls and
let (Pt )t be its transition distribution. There exists β > 0 such that

∀y ∈ D′ ∥∥Pt (y, ·) − πa

∥∥
TV ≤ C(y)e−βt .
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In the large attraction regime, we obtain asymptotically in time the concentration of the system
around packing triangular configurations in the sense that, for all y ∈ D′,

∀ε, η > 0,∃a0, t0 s.t. a > a0 and
(3.1)

t > t0 ⇒ P
(
dist

(
Y(t),Emin

) ≤ η|Y(0) = y
) ≥ 1 − ε.

Proof of (3.1). Let Eη
min = {y ∈ D′;V (y) ≤ 3 + η} be the set of configurations with η-minimal

energy. Clearly, πa(E
η
min) is large for a large enough:

∀ε > 0 ∃a0 s.t. ∀a > a0 πa

(
Eη

min

) ≥ 1 − ε

because

πa

((
Eη

min

)c) =
∫
D′ e−(a/2)V (y)1V (y)>3+η dy∫

D′ e−(a/2)V (y) dy
≤

∫
D′ e−(a/2)(V (y)−3−η)1V (y)>3+η dy∫
D′ e−(a/2)(V (y)−3−η)1V (y)≤3+η dy

hence

πa

((
Eη

min

)c) ≤ 1∫
D′ 1V (y)≤3+η dy

∫
D′

e−(a/2)(V (y)−3−η)1V (y)>3+η dy,

which vanishes for a tending to infinity. On the other side, the convergence in total variation
implies

lim
t→+∞ P

(
Y(t) ∈ Eη

min|Y(0) = y
) = πa

(
Eη

min

)
.

Using the continuity of V , this yields (3.1).
The same technique obviously works for any number n of balls. �

The technique we will use in order to prove the main part of the above theorem, that is, the
exponential ergodicity, is very intricate. It relies on hitting time estimates and is the subject of
the rest of the paper.

3.1. Quadratic energy and hitting time of clusters

In this Section 3.1, we present the energy as a Lyapounov function, define the compact set of
cluster patterns and state that Y satisfies the assumptions of Theorem 1.3.

For a configuration x = (x1, x2, x3) ∈ R
3d , or equivalently for a pattern y = (y1, y2, y3) ∈R

3d

of relative positions (with yi = xi − (x1 + x2 + x3)/3), recall that the quadratic (total) energy
satisfies

V (y) = 3
(|y1|2 + |y2|2 + |y3|2

) = |x1 − x2|2 + |x2 − x3|2 + |x3 − x1|2.

Definition 3.2. Fix R > 0. We say that a relative position y = (y1, y2, y3) ∈ R
3d forms an R-

cluster, if there exists a permutation σ on {1,2,3} such that

|yσ(1) − yσ(2)|2 ≤ 1 + R and |yσ(2) − yσ(3)|2 ≤ 1 + R,
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or equivalently,

∀i ∈ {1,2,3},∃j �= i, |yi − yj |2 ≤ 1 + R.

Note that, since y1 + y2 + y3 = 0,

KR := {
y ∈ (

R
d
)3;y forms an R-cluster

}
is a compact set of R3d .

In order to check the assumptions of Theorem 1.3, we would like to control the time needed
by the process Y in such a way that its value forms an R-cluster.

Proposition 3.3. The relative positions process Y has the following properties:

1. Its Lyapounov quadratic energy V fulfills

∀y ∈ D′ V (y) ≥ 3 and lim|y|→+∞V (y) = +∞. (3.2)

2. The KR-hitting time

τ := inf
{
t ≥ 0, Y (t) = (

Y1(t), Y2(t), Y3(t)
)

forms an R-cluster
}

satisfies inequalities

∀y ∈ D′ Ey
(
eλτV

(
Y(τ)

)) ≤ V (y) (3.3)

and

∀y ∈ D′ Ey
(
V

(
Y(t)

)
1τ>t

) ≤ 2e−λtV (y) (3.4)

for

λ = min
(
a, a2) and any R ≥ 48a + 16d + 60

a
e10 505/a. (3.5)

3. The quadratic energy of the system is uniformly bounded in time for any initial R-cluster
position, that is, for R as above

sup
y∈KR

sup
t>0

Ey
(
V

(
Y(t)

))
< +∞. (3.6)

Proof of Proposition 3.3. The properties (3.2) are an obvious consequence of the definition
of V .

The proofs of (3.3) and (3.4) rely on a study of the length of the largest median in the triangle
of particles, as a function of the time. These proofs are postponed to Section 3.2.

In order to prove (3.6), we first establish the following consequence of (3.4)

∃T > 0 ∃D1 > 0 s.t. sup
y∈KR

sup
t∈[0;T ]

Ey
(
V

(
Y(t)

)) ≤ D1. (3.7)
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Take R as in Proposition 3.3 part (2) and take some larger R̄ > R. Construct a sequence of
stopping times ξk, k ≥ 0 in the following way. Assume that Y(0) = y ∈ KR and define ξ0 = 0,

ξ2j−1 = inf
{
t > ξ2j−2: Y(t) /∈ KR̄

}
, ξ2j = inf

{
t > ξ2j−1: Y(t) ∈ KR

}
, j ≥ 1.

Then

Ey
(
V

(
Y(t)

)) =
∞∑

k=1

Ey
(
V

(
Y(t)

)
1t∈[ξk−1,ξk)

) =:
∑

k is even

+
∑

k is odd

.

Let

‖V ‖KR̄
:= max

y∈KR̄

V (y) = 6(1 + R̄).

When k is odd and t ∈ [ξk−1, ξk), we have Y(t) ∈ KR̄ , which means that

∑
k is odd

≤ ‖V ‖KR̄
.

When k is even, we have

Ey
(
V

(
Y(t)

)
1t∈[ξk−1,ξk)

) ≤ Ey
(
1t≥ξk−1

(
E
[
V

(
Y(t)

)
1ξk>t |Fξk−1

]))
.

Note that, by the continuity of trajectories, Y(ξk−1) ∈ KR̄ . Then, applying the strong Markov
property at the time moment ξk−1 and (3.4), we get

Ey
(
V

(
Y(t)

)
1t∈[ξk−1,ξk)

) ≤ 2‖V ‖KR̄
Py(t ≥ ξk−1).

Hence, ∑
k is even

≤ 2‖V ‖KR̄

∑
k is even

Py(t ≥ ξk−1),

and to prove (3.7) it is enough to prove that for some T

sup
y∈KR

sup
t≤T

∑
k is even

Py(t ≥ ξk−1) < ∞.

By the Chebyshev–Markov inequality, for any fixed c > 0 and T > 0

Py(t ≥ ξk−1) ≤ ectEy
(
e−cξk−1

) ≤ ecT Ey
(
e−cξk−1

) ∀t ≤ T .

Clearly, the exponential moment Ey(e−cξk−1) can be expressed iteratively via the conditional
exponential moments of the differences ξj − ξj−1 w.r.t. Fξj−1, j = 1, . . . , k − 1. When j is odd,
this conditional exponential moment can be estimated as follows:

Ey
[
e−c(ξj −ξj−1)|Fξj−1

] ≤ sup
y∈KR

Ey
(
e−cς

)
, ς = inf

{
t : X(t) /∈ KR̄

}
.
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Note that

q := sup
y∈KR

Ey
(
e−cς

)
< 1

because otherwise, by the Feller property of the process Y , there would exist y ∈ KR such that
ς = 0 Py-a.s., which would contradict the continuity of the trajectories of Y . Then

Ey
(
e−cξk−1

) ≤ qk/2,

sup
y∈KR

sup
t≤T

∑
k is even

Py(t ≥ ξk−1) ≤ ecT
∑

k is even

qk/2 < ∞,

which completes the proof of (3.7).
Let us now deduce the uniform bound (3.6) from the finite time bound (3.7). This proof is

simple and similar to that of Lemma A.4 in Kulik [27]. Indeed, let τ ′ be the first time moment
for X(t) to form an R-cluster after T

τ ′ := inf
{
t ≥ T s.t. Y(t) forms an R-cluster

}
.

Then for t > T

Ey
(
V

(
Y(t)

)) = Ey
(
V

(
Y(t)

)
1τ ′>t

) + Ey
(
V

(
Y(t)

)
1τ ′≤t

)
.

We have by the Markov property of Y , for λ small enough and R large enough for (3.4) to hold

Ey
(
V

(
Y(t)

)
1τ ′>t

) =
∫
R3d

(
Ex

(
V

(
Y(t − T )

)
1τ>t−T

))
PT (y,dx) ≤ 2e−λ(t−T )Ey

(
V

(
Y(T )

))
.

On the other hand, by the strong Markov property of Y , we have

Ey
(
V

(
Y(t)

)
1τ ′≤t

) = Ey
((

EY(τ ′)V
(
Y

(
t − τ ′)))1τ ′≤t

) ≤ sup
y∈KR

sup
s≤t−T

Ey
(
V

(
Y(s)

))
.

Let Dk = supy∈KR
supt≤kT Ey(V (Y (t))). Then the above estimates and (3.7) yield for every y ∈

KR and (k − 1)T ≤ t ≤ kT

Ey
(
V

(
Y(t)

)) ≤ 2e−λ(k−2)T sup
y∈KR

Ey
(
V

(
Y(T )

)) + Dk−1 ≤ 2e−λ(k−2)T D1 + Dk−1.

Then

Dk = max
(
Dk−1, sup

y∈KR

sup
(k−1)T ≤t≤kT

Ey
(
V

(
Y(t)

))) ≤ 2e−λ(k−2)T D1 + Dk−1,

and consequently

sup
y∈KR

sup
t≥0

Ey
(
V

(
Y(t)

)) ≤ D1 + D1

∑
k=2

2e−λ(k−2)T = D1 + 2D1
[
1 − e−λT

]−1
< ∞.

�
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3.2. Cluster hitting time estimates

This section is devoted to the proof of assertion (2) of Proposition 3.3, that is (3.3) and (3.4).
It will complete the proof of Theorem 3.3. From now on, R and λ are fixed parameters. If the
starting configuration Y(0) = y ∈ R

3d already forms an R-cluster, τ = 0 and (3.3), (3.4) are
trivial. In the sequel, we assume that y /∈ KR .

Let us reduce the problem to the study of the time the farthest ball need to come closer to
the others. Since Y(0) = y /∈ KR , some ball i has a center yi which is farther than

√
1 + R from

the other two centers. Suppose, for instance, i = 1. We construct a sequence of stopping times
corresponding to hitting times of levels for the distance between the balls 2 and 3. These levels
depend on two parameters δ > δ′ > 0 which will be chosen later. Put σ0 = 0, and for k ≥ 1,

σ2k−1 := inf
{
t > σ2k−2: |Y2 − Y3|2 ≤ 1 + 2δ′},

σ2k := inf
{
t > σ2k−1: |Y2 − Y3|2 ≥ 1 + 2δ

}
,

and define a time-depending border level as

R(t) =
∞∑

k=1

[
R1t∈[σ2k−2,σ2k−1) + R′1t∈[σ2k−1,σ2k)

]
, t ∈ [0,∞)

for some 0 < R′ < R. Let us now define the first time the ball number 1 comes closer than R(·)
to one of the others

τ1 := inf
{
t ≥ 0;min

(∣∣Y1(t) − Y2(t)
∣∣2

,
∣∣Y1(t) − Y3(t)

∣∣2) ≤ 1 + R(t)
}
.

Consider the configuration Y(τ1). If it forms an R-cluster, then put τ2 = τ1. Otherwise, there
exists some ball whose center is farther than

√
1 + R from the other two centers. Since R(t) ≤ R,

this ball should be either 2 or 3. Define then the new sequence of stopping times corresponding
to level hitting times of the distance between the other two balls (with the same values δ, δ′) and
the corresponding time-depending border level and respective τ2, and so on. By monotonicity,
there exists an a.s. limit, τ∞ = limn τn.

To obtain the desired estimates on the KR-hitting time for Y , we only have to prove the fol-
lowing proposition.

Proposition 3.4. If R and λ are as in (3.5), for any starting configuration y ∈ D′

Ey
(
eλτ1V

(
Y(τ1)

)) ≤ V (y)

and for any y ∈ D′ and any finite time horizon T ∈R
+

Ey
(
eλτ1V

(
Y(τ1)

) + eλ(τ1∧T )V
(
Y(τ1 ∧ T )

)) ≤ 2V (y).

Remark that Proposition 3.4 implies Proposition 3.3 part (2).
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Indeed, by construction and by the strong Markov property of Y(t), t ≥ 0, it follows from
Proposition 3.4 and its analogous for τ2 − τ1, τ3 − τ2, . . . , that

Ey
(
eλτnV

(
Y(τn)

)) ≤ V (y), n ≥ 1. (3.8)

Because V is bounded from below, this implies that τ∞ < ∞ a.s. On the other hand, by the
construction and by the continuity of the trajectories of Y(t), t ≥ 0 it is easy to see that Y(τ∞)

forms an R-cluster as soon as τ∞ < ∞, and consequently τ ≤ τ∞ a.s. Hence, (3.3) follows
from (3.8) by the Fatou lemma.

By Fatou lemma again, the second inequality in Proposition 3.4 implies

Ey
(
eλ(τ∞∧T )V

(
Y(τ∞ ∧ T )

)) ≤ 2V (y).

Since τ∞ ∧ T ≥ τ ∧ T this gives

Ey
(
eλ(τ∧T )V

(
Y(τ∞ ∧ T )

)) ≤ 2V (y),

which implies (3.4) because eλT 1τ>T ≤ eλ(τ∧T ) and 1τ>T V (Y (τ∞ ∧ T )) = 1τ>T V (Y (T )).
Our aim now is to prove Proposition 3.4.

3.3. Dynamics of the medians of the triangle

Let us introduce the following vectors describing the triangle Y1, Y2, Y3:

U1 :=
√

2

3

(
Y2 + Y3

2
− Y1

)
, U23 := 1√

2
(Y2 − Y3).

U1 is the (scaled) median starting from Y1 and U23 is its (scaled) opposite side.
In order to prove Proposition 3.4, we only have to consider the behaviour of Y up to time τ1.

But, before the time moment τ1, the ball 1 does not hit any other ball. Therefore, on the (random)
time interval [0, τ1] processes U1, U23 satisfy the following simple SDEs:{

dU1(t) = dB1(t) − 3aU1(t)dt,

dU23(t) = dB23(t) − 3aU23(t)dt + 2U23(t)dL23(t).
(3.9)

Note that the martingale terms B1, B23 are independent Rd -valued Brownian motions and that
the dynamics of the median U1 does not include a local time term up to time τ1.

Also note that the quadratic energy has a simple expression as a function of the median and its
opposite side, and that these two lengths control the size of the triangle Y .

Lemma 3.5.

V (Y ) = 3
(|U1|2 + |U23|2

)
and for j = 2 or j = 3

1
3 |Y2 − Y1|2 + 1

3 |Y3 − Y1|2 − 1
3 |U23|2 = |U1|2 ≤ 4

3 |Yj − Y1|2 + 2
3 |U23|2. (3.10)
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Proof. The equalities are simple norm computations and U1 = 1√
6
((Y3 −Y2)− 2(Y1 −Y2)), that

is, |U1|2 = 1
6 |2(Y2 − Y1) − √

2U23|2 gives the upper bound for j = 2. �

3.4. The time weighted energy decreases

Define the time weighted energy of the system by

H(t) := eλtV
(
Y(t)

) = 3eλt
∣∣U1(t)

∣∣2 + 3eλt
∣∣U23(t)

∣∣2

and compute its mean value Ey(H(ζk)) at the random time ζk := T ∧ τ1 ∧ σk for a fixed time
horizon T which may be finite (T ∈ R

+ and ζk := T ∧ τ1 ∧ σk) or infinite (T = +∞ and ζk :=
τ1 ∧ σk).

Ey
(
H(T ∧ τ1 ∧ σk) + H(τ1 ∧ σk)

)
= Ey

((
H(T ∧ τ1 ∧ σk) + H(τ1 ∧ σk)

)
1T ∧τ1>σk−1

)
(3.11)

+ Ey
((

H(T ∧ τ1 ∧ σk−1) + H(τ1 ∧ σk)
)
1τ1>σk−1≥T

)
+ Ey

((
H(T ∧ τ1 ∧ σk−1) + H(τ1 ∧ σk−1)

)
1σk−1≥τ1

)
.

But

Ey
(
H(T ∧ τ1 ∧ σk)1T ∧τ1>σk−1

) = Ey
(
1T ∧τ1>σk−1 eλσk−1Ey

[
Hσk−1(T ∧ τ1 ∧ σk)|Fσk−1

])
,

where

Hσ (t) := eλ(t−σ∧t)V
(
Y(t)

)
.

Proposition 3.6. Under a proper choice of λ, R′ and R, for every k ≥ 1

Ey
[
Hσk−1(τ1 ∧ σk)|Fσk−1

] ≤ Hσk−1(σk−1) on the set {τ1 > σk−1} (3.12)

and for each finite time horizon T ∈R
+

Ey
[
Hσk−1(T ∧ τ1 ∧ σk) + Hσk−1(τ1 ∧ σk)|Fσk−1

] ≤ 2Hσk−1(σk−1)
(3.13)

on the set {T ∧ τ1 > σk−1}.

Once this proposition is proven, by (3.11) we will have

Ey
(
H(τ1 ∧ σk)

) ≤ Ey
(
H(τ1 ∧ σk−1)

)
,

Ey
(
H(T ∧ τ1 ∧ σk) + H(τ1 ∧ σk)

) ≤ Ey
(
H(T ∧ τ1 ∧ σk−1) + H(τ1 ∧ σk−1)

)
and iterating these inequalities we obtain Proposition 3.4 because H(0) = V (y). In order to prove
Proposition 3.6, we have to consider two cases.
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Proof of Proposition 3.6 when k is odd (i.e., |U23|2 goes downhill). Suppose τ1 > σk−1 and
look at the dynamics during the interval [σk−1, σk ∧ τ1). This case is simple because no balls can
collide, hence the local time term L23 in (3.9) vanishes. Therefore by (3.9), we have, on this time
interval,

dHσk−1(t) = 6eλ(t−σk−1)
(
U1(t),dB1(t)

) + 6eλ(t−σk−1)
(
U23(t),dB23(t)

)
(martingale part)

+ Hσk−1(t)

(
6d

V (Y (t))
+ λ − 6a

)
dt.

On [σk−1, σk ∧ τ1) the border level R(t) equals R, so we have V (Y (t)) > 2(R +1)+2( 1
2 + δ′) =

2R + 3 + 2δ′. Therefore,

Ey
[
Hσk−1(τ1 ∧ σk)|Fσk−1

] ≤ Hσk−1(σk−1)

+
(

6d

2R + 3 + 2δ′ + λ − 6a

)
Ey

[∫ τ1∧σk

σk−1

Hσk−1(t)dt

∣∣∣Fσk−1

]
.

Since Hσk−1(σk−1) = V (Y (σk−1)), this yields (3.12) provided that

λ ≤ 6a − 6d

2R + 3 + 2δ′ . (3.14)

Note that for any fixed time horizon T ∈ R
+, the above calculation also holds with τ1 replaced

by τ1 ∧ T . �

Proof of Proposition 3.6 when k is even (i.e., |U23|2 goes uphill). We look at the dynamics
during the interval [σk−1, σk ∧ τ1) again.

Up to a martingale term, Hσk−1(τ1 ∧ σk) − Hσk−1(σk−1) is equal to

(λ − 6a)

∫ τ1∧σk

σk−1

3eλ(s−σk−1)
∣∣U1(s)

∣∣2 ds + 3d

λ

(
eλ(τ1∧σk−σk−1) − 1

)
+ 3eλ(τ1∧σk−σk−1)

∣∣U23(τ1 ∧ σk)
∣∣2 − 3

∣∣U23(σk−1)
∣∣2

.

In this case, on [σk−1, σk ∧ τ1), thanks to (3.10), |U1(s)|2 ≥ 1
3 (1 + R′) − 1

3 ( 1
2 + δ).

Moreover, |U23(σk−1)|2 = 1
2 + δ′ and |U23(τ1 ∧ σk)|2 ≤ 1

2 + δ.
Thus for any λ < 6a

Ey
(
Hσk−1(τ1 ∧ σk) − Hσk−1(σk−1)|Fσk−1

)
≤

(
(λ − 6a)

(
1

2
+ R′ − δ

)
+ 3d

)
Ey

(
eλ(τ1∧σk−σk−1) − 1

λ

∣∣∣Fσk−1

)
(3.15)

+ 3

(
1

2
+ δ

)
Ey

(
eλ(τ1∧σk−σk−1)|Fσk−1

) − 3

(
1

2
+ δ′

)

= (
R′(λ − 6a) + 2λ(1 + δ) − 3a(1 − 2δ) + 3d

)
Ey

(
eλ(τ1∧σk−σk−1) − 1

λ

∣∣∣Fσk−1

)
+ 3(δ − δ′).
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The key point in the whole proof is the fact that, under an appropriate choice of the parameters,
this last expectation is finite and admits a uniform lower bound.

Lemma 3.7. There exists C depending only on δ, δ′ such that for each even k and for λ small
enough

0 < C ≤ Ey

(
eλ(τ1∧σk−σk−1) − 1

λ

∣∣∣Fσk−1

)
< +∞.

Once this lemma is proved, there will be an R′ large enough (hence an R large enough) for

(
R′(λ − 6a) + 2λ(1 + δ) − 3a(1 − 2δ) + 3d

)
C + 3(δ − δ′) ≤ 0 (3.16)

to hold and this will imply for τ1 > σk−1

Ey
(
Hσk−1(τ1 ∧ σk) − Hσk−1(σk−1)|Fσk−1

) ≤ 0, (3.17)

which rewrites into (3.12).
Note that, as in the previous case, calculation (3.15) also holds with τ1 replaced by τ1 ∧ T for

any fixed time horizon T ∈ R
+. Summing the expressions with and without finite time horizon,

and using the lower bound 0 for Ey(
eλ(τ1∧σk∧T −σk−1)−1

λ
|Fσk−1), we obtain that on T ∧ τ1 > σk−1

Ey
(
Hσk−1(τ1 ∧ σk) + Hσk−1(T ∧ τ1 ∧ σk) − 2Hσk−1(σk−1)|Fσk−1

) ≤ 0

as soon as (
R′(λ − 6a) + 2λ(1 + δ) − 3a(1 − 2δ) + 3d

)
C + 6(δ − δ′) ≤ 0. (3.18)

�

Clearly, we can forget about condition (3.16) as any set of parameter satisfying condi-
tion (3.18) will satisfy (3.16) too. From now on, our aim is to prove Lemma 3.7. The finiteness of

Ey(
eλ(τ1∧σk−σk−1)−1

λ
|Fσk−1) is obtained in Section 3.5 and the uniform lower bound is constructed

in Section 3.6.

3.5. Existence of exponential moments of τ1 ∧ σk − σk−1 for even k

We need a proof that for small enough λ’s the exponential moment Ey(eλ(τ1∧σk−σk−1)|Fσk−1)

is finite. We use a comparison argument. Since a similar comparison argument will be needed
to obtain a lower bound on the exponential moment, we directly construct a double inequality,
though an upper bound is sufficient for our purpose in this section.
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3.5.1. Comparison with the level hitting time of a simple reflected SDE

Consider a Wiener process BU , independent on W1, such that

BU(t) =
∫ t

0

1

|U23(s)|
(
U23(s),dB23(s)

)
, t < τ1,

and the process U solution to the following one-dimensional SDE with reflection at the point 1
2 :

U(t) = ∣∣U23(0)
∣∣2 +

∫ t

0

(
d − 6aU(s)

)
ds + 2

∫ t

0
U1/2(s)dBU(s) + LU(t).

Then the processes |U23(t)|2 and U(t) coincide up to the time τ1, and LU(t) = 2L23(t) for
t < τ1. It is sufficient to prove the finiteness of E 1

2 +δ′(eλσ ) where σ = inf{t : U(t) = 1
2 + δ}. We

make a time change, that is, we put

ζt =
∫ t

0
4U(s)ds, χt = inf{r: ζr ≥ t}, Ũ (t) = U(χt ).

Then Ũ satisfies the one-dimensional SDE with reflection at the point 1
2

dŨ (t) = d − 6aŨ(t)

4Ũ(t)
dt + dB̃(t) + dL̃(t),

where B̃ is a Wiener process. Since 1
2 ≤ Ũ (t) ≤ 1

2 + δ up to time σ , then

(2 + 4δ)σ ≥ σ̃ := ζσ = inf
{
t : Ũ(t) = 1

2 + δ
} ≥ σ.

Since the drift of Ũ (t) is bounded from above and from below by some constants

C1 := −3

2
a ≤ d − 6aŨ(t)

4Ũ (t)
≤ d

2
− 3

2
a <

d

2
=: C2,

we can compare Ũ (t) with reflected Brownian motions with constant drifts C1 and C2, as in
Ward and Glynn [39], Proposition 2. We then obtain Û1 ≤ Ũ ≤ Û2 where Ûi , i = 1,2 satisfy the
one-dimensional SDEs with reflection at the point 1

2

dÛi(t) = Ci dt + dB̂(t) + dL̂i(t), Ûi(0) = 1
2 + δ′,

where B̂ is an R-valued Brownian motion and L̂i(t) = ∫ t

0 1
Ûi (s)= 1

2
dL̂i(s). This allows us to

compare the δ-level hitting times of the three processes:

σ̂1 := inf
{
t : Û1(t) ≥ 1

2 + δ
} ≥ σ̃ ≥ σ̂2 := inf

{
t : Û2(t) ≥ 1

2 + δ
}
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and we obtain

σ̂2

2 + 4δ
≤ σ ≤ σ̂1. (3.19)

In the sequel, we compute the exponential moments of hitting times σ̂i , i ∈ {1,2}. For the time
being, we drop the indices on σ̂i , Ci and L̂i .

3.5.2. Exponential moments of level hitting times

It is equivalent to consider the hitting time of 1
2 + δ for a Brownian motion starting from 1

2 + δ′
with constant drift C and reflection at 1/2 or to consider the hitting time of δ for a Brownian
motion starting from δ′ with constant drift C and reflection at 0. Girsanov theorem for processes
with reflection Kinkladze [25] and Doob’s optional sampling theorem implies that for all nega-
tive λ

E1/2+δ′
(
eλσ̂

) = eC(δ−δ′)E
(
e(λ−C2/2) inf{t;|δ′+B̂(t)|=δ}e−(C/2) limε→0(1/ε)

∫ t
0 1[0;ε[(|δ′+B̂(t)|)).

Suppose C �= 0. Then using Formula 2.3.3 in Borodin and Salminen [7] for r = 0, x = δ′, z =
δ,α = C2/2 − λ,γ = C/2, which holds for any λ < C2/2,

E1/2+δ′
(
eλσ̂

) = eC(δ−δ′) v cosh(Cδ′v) + sinh(Cδ′v)

v cosh(Cδv) + sinh(Cδv)
=: �(v), (3.20)

where v(λ) :=
√

1 − 2 λ

C2 . This is an analytical function of λ thus the formula holds as long

as v(λ) is well defined and the denominator does not vanish. But any positive v such that the
denominator vanishes satisfies x cosh(x)

sinh(x)
= −Cδ for x = Cδv. Since the function x �→ x cosh(x)

sinh(x)
is

larger than 1 on the whole R, the condition −Cδ < 1 ensures that the λ-exponential moment
exists for positive λ’s satisfying λ < C2/2.

σ ≤ σ̃ ≤ σ̂1 thus E1/2+δ′(eλσ ) is finite as soon as λ < C2
1/2 and −C1δ < 1, hence

λ <
9

8
a2 and δ <

2

3a
�⇒ Ey

(
eλ(τ1∧σk−σk−1)|Fσk−1

)
< +∞. (3.21)

From now on, we assume λ < 9
8a2 and δ < 2

3a
.

3.6. Lower bound for the exponential moment of τ1 ∧ σk − σk−1 for even k

We replace in the definition of Ey(
eλ(τ1∧σk−σk−1)−1

λ
|Fσk−1) the stopping time τ1, which is expressed

in the terms of the minimum of |Y1 −Y2|2 and |Y1 −Y3|2, by another one, expressed in the terms
of U1.

Note that if τ1 ∈ [σk−1, σk) with k even, then |U23(τ1)|2 ≤ 1
2 + δ and thanks to (3.10)

∣∣U1(τ1)
∣∣2 ≤ 4

3

(
1 + R′) + 2

3

(
1

2
+ δ

)
= 5 + 4R′ + 2δ

3
.
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Thus, τ1 ∧ σk ≥ ρk ∧ σk for ρk = inf{t ≥ σk−1; |U1(t)|2 ≤ 5+4R′+2δ
3 }. Observe that, because we

have assumed that τ1 > σk−1, equality (3.10) also implies∣∣U1(σk−1)
∣∣2 ≥ 2

3 (1 + R) − 1
3

( 1
2 + δ′) = 1

3

( 3
2 + 2R − δ′).

Using the fact that (eλs − 1)/λ ≥ s for s, λ > 0, we have

Ey

(
eλ(τ1∧σk−σk−1) − 1

λ

∣∣∣Fσk−1

)
≥ Ey(τ1 ∧ σk − σk−1|Fσk−1)

(3.22)

≥ inf E

(
ρ ∧ σ |U1(0) = u1, |U23|2(0) = 1

2
+ δ′

)
,

where the infimum is taken among all initial conditions u1 such that |u1|2 ≥ 1
3 ( 3

2 + 2R − δ′),

ρ = inf

{
t ≥ 0:

∣∣U1(t)
∣∣2 ≤ 5 + 4R′ + 2δ

3

}

and

σ = inf
{
t ≥ 0:

∣∣U23(t)
∣∣2 ≥ 1

2 + δ
}
.

Because U1 and U23 are independent up to time τ1, we can estimate the right-hand side in (3.23)
in the following way: for an arbitrary Q > 0 which will be chosen later,

inf
|u1|2≥(1/3)(3/2+2R−δ′)

E

[
ρ ∧ σ |U1(0) = u1, |U23|2(0) = 1

2
+ δ′

]
(3.23)

≥ E

(
σ ∧ Q||U23|2(0) = 1

2
+ δ′

)
inf

|u1|2≥(1/3)(3/2+2R−δ′)
P
(
ρ > Q|U1(0) = u1

)
.

Let us compute a lower bound for each factor.

3.6.1. Lower bound for P(ρ > Q)

By Itô formula d|U1(t)|2 = 2(U1(t),dB1(t)) − 6a|U1(t)|2 dt + d dt , and d log(|U1(t)|2) =
2|U1(t)|−2(U1(t),dB1(t)) − 6a dt + (d − 2)|U1(t)|−2 dt .

Denote

Mt = 2
∫ t

0

∣∣U1(s)
∣∣−2(

U1(s),dB1(s)
)
,

then, for d ≥ 2,

log
(∣∣U1(t)

∣∣2) ≥ log
(∣∣U1(0)

∣∣2) + Mt − 6at.

Note that |U1(s)|2 ≥ 5+4R′+2δ
3 up to time ρ thus

E
(
M2

t∧ρ

) = 4E

∫ t∧ρ

0

∣∣U1(s)
∣∣−2 ds ≤ 12t

5 + 4R′ + 2δ
,
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so that, by the Doob inequality,

P

(
sup
s≤Q

|Ms∧ρ | ≥
√

24Q

5 + 4R′ + 2δ

)
≤ 5 + 4R′ + 2δ

24Q
E
(
M2

Q∧ρ

) ≤ 1

2
.

Then, with probability at least 1/2,

inf
s≤Q

log
(∣∣U1(s ∧ ρ)

∣∣2) ≥ log
(∣∣U1(0)

∣∣2) −
√

24Q

5 + 4R′ + 2δ
− 6aQ

≥ log
(∣∣U1(0)

∣∣2) − √
6Q/R′ − 6aQ.

This means that

P
(
ρ > Q|U1(0) = u1

) ≥ 1/2 ∀|u1|2 ≥ 1
3

( 3
2 + 2R − δ′) (3.24)

holds true as soon as (large) R, Q and R′ are chosen in such a way that

log

(
1

3

(
3

2
+ 2R − δ′

))
− √

6Q/R′ − 6aQ > log

(
5 + 4R′ + 2δ

3

)

that is,

3
2 + 2R − δ′ > e

√
6Q/R′+6aQ

(
5 + 4R′ + 2δ

)
. (3.25)

3.6.2. Lower bound for E(σ ∧ Q)

We have σ ∧ Q = σ − (σ − Q)1σ>Q ≥ σ − (σ − Q) σ
Q

hence

E(σ ∧ Q) ≥ 2E(σ ) − 1

Q
E
(
σ 2).

The comparison argument developed in Section 3.5 leads to

E(σ ∧ Q) ≥ 2

2 + 4δ
E(σ̂2) − 1

Q
E
(
σ̂ 2

1

)
. (3.26)

We need a lower bound for the first moment of σ̂2 and an upper bound for the second moment
of σ̂1. To this end, we use the exponential moment of σ̂ given by (3.20) for C �= 0 with −Cδ < 1,
on a neighbourhood of zero for λ. Differentiating twice in (3.20) at λ = 0, we obtain the first and
second moment of σ̂ . In order to simplify the derivative computations, from now on we make the
simplifying choice

δ′ = δ/2.

We obtain

E1/2+δ′(σ̂ ) = −� ′(1)

C2
= e−2Cδ − e−Cδ

2C2
+ δ

2C
= 3

4
δ2 − 7

12
Cδ3 + 1

2C2

+∞∑
k=4

(−Cδ)k

k!
(
2k − 1

)
.
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The right-hand side series is positive as soon as Cδ ≤ 2 because the sequence uk := 2k−1
k! satisfies

uk > 2uk+1 for all k ≥ 4. So, since C2 = d
2 , if δ ≤ 4

d

E1/2+δ′(σ̂2) ≥ 3

4
δ2 − 7

12
C2δ

3 = δ2

12

(
9 − 7

d

2
δ

)

and in particular

E1/2+δ′(σ̂2) ≥ δ2

6
as soon as δ ≤ 2

d
.

Moreover,

E1/2+δ′
(
σ̂ 2) = � ′′(1) − � ′(1)

C4
= −1

C3

∫ δ

δ′

(
e−2Cx − 1

)(
e−2Cδ + 2Cδ + 1

)+ 2Cx
(
e−2Cx + 1

)
dx.

For any negative C1 such that −C1δ < 1, one has

E1/2+δ′
(
σ̂ 2

1

) ≤ −1

C3
1

∫ δ

δ′

(
e−2C1x − 1

)(
e−2C1δ + 1

)
dx ≤ δ

2(−C1)3

(
e−4C1δ − 1

) ≤ 2
δ2

C2
1

e4

because e4x − 1 ≤ 4e4x for x between 0 and 1.
Since C1 = −3a

2 , inequality (3.26) leads to

E1/2+δ′(σ ∧ Q) ≥ δ2

6(1 + 2δ)
− 8δ2

9a2Q
e4 (3.27)

under the conditions that δ ≤ min( 2
3a

, 2
d
).

Using (3.22), (3.23), (3.24) and (3.27), we have obtained

Ey

(
eλ(τ1∧σk−σk−1) − 1

λ

∣∣∣Fσk−1

)
≥ δ2

2

(
1

6 + 12δ
− 8e4

9a2Q

)
. (3.28)

This induces our choice of Q to simplify the right-hand side of (3.28):

Q = 32(1 + 2δ)e4

3a2
⇔ 8e4

9a2Q
= 1

12 + 24δ

and we obtain the lower bound

Ey

(
eλ(τ1∧σk−σk−1) − 1

λ

∣∣∣Fσk−1

)
≥ δ2

24(1 + 2δ)
if δ <

2

3a
and δ ≤ 2

d
. (3.29)
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3.7. Choice of the parameters

Recall that δ′ = δ/2. We have to choose four parameters δ,R,R′ and λ, which should satisfy the
following five conditions:

δ <
2

3a
and δ ≤ 2

d
from (3.29),

λ <
9

8
a2 from (3.21),

λ ≤ 6a − 6d

2R + 3 + δ
from (3.14),

(
R′(λ − 6a) + 2λ(1 + δ) − 3a(1 − 2δ) + 3d

) δ2

24(1 + 2δ)
+ 3δ ≤ 0

that is,

R′(6a − λ) − 2λ(1 + δ) + 3a(1 − 2δ) − 3d ≥ 72

(
1

δ
+ 2

)
from (3.18),

3 − δ

2
+ 2R > e

√
6Q/R′+6aQ

(
5 + 4R′ + 2δ

)
for Q = 32(1 + 2δ)e4

3a2
from (3.25).

We choose δ = 2
3a+d

≤ 1 which complies with (3.29). We fix λ = min(a, a2). Condition (3.18)

is satisfied as soon as R′(6a − λ) ≥ 72( 3a+d
2 + 2) + 3d − 3a + 6aδ + 2λ + 4λ

3a+d
. Since 6aδ ≤ 4

and λ ≤ a, (3.18) holds in particular if

R′ = 22a + 8d + 30

a
.

The last parameter R will be taken large enough to satisfy 2R ≥ e
√

6Q/R′+6aQ(7 + 4R′) which
implies (3.25). First, remark that R′ > 22 with our choice, hence

√
6Q/R′ + 6aQ ≤

√
64(1 + 2δ)e4

22a2
+ 64(1 + 2δ)e4

a
≤ 10 505

a
.

Noticing that 7 + 4R′ ≤ (95a + 32d + 120)/a with the choice of R′ we made, we obtain a
sufficient condition for (3.25) to hold:

R ≥ 48a + 16d + 60

a
e10 505/a.

Such an R satisfies R > 16d/a hence is more than sufficient for (3.14) to hold.
This completes the proofs of Lemma 3.7 and Proposition 3.6, hence Proposition 3.4 holds.

This in turn completes the proof of Proposition 3.3.
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Appendix: D has a Lipschitz boundary

The following lemma is useful to apply results from Bass and Hsu [2], Chen, Fitzsimmons and
Williams [13], Fukushima and Tomisaki [24] to the hard ball process X.

Lemma A.1. The domain

D = {
x ∈ (

R
d
)n; |xi − xj | > r for all i �= j

}
has a Lipschitz boundary.

Proof. Define the function fij on (Rd)n by fij (x) = |xi − xj |2 − r2. Fix x ∈ ∂D. Proceeding
like in the proof of Proposition 4.1 in Fradon [17], one can show that there exits a unit vector
v such that, for each pair (i, j ) of colliding balls of x, ∇fij (x) · v ≥ r

n
√

2n
> 0. Indeed v is the

direction in which each colliding ball goes away from the gravity center of the collision.
Take m := nd . By continuity,

ε(x) = inf
{∣∣x′ − x

∣∣,x′ ∈ ∂D and ∃(i, j) s.t. |xi − xj | > r and
∣∣x′

i − x′
j

∣∣ = r
}

is positive. On the ball with center x and radius ε(x), we choose an orthonormal coordinate
system (y1, . . . , ym) with point x as the origin and direction v as the last axis, that is, x′ has
coordinates (y1, . . . , ym) with ym = (x′ − x) · v.

Let us write fij ◦ h for the function fij expressed in this coordinates system. The partial
derivative of fij at the origin with respect to the last coordinate is given by

∂(fij ◦ h)

∂ym

(0) = lim
η→0

fij (x + ηv) − fij (x)

η
= ∇fij (x) · v > 0.

Therefore, due to the implicit function theorem, there exists a C1-function gij on R
m such that

fij (h(y1, . . . , gij (y1, . . . , ym−1, ·))) = Id for each h(y1, . . . , ym) ∈ B(x, ε) where ε < ε(x) is
such that, on B(x, ε), all the functions ∇fij (·).v stay positive for any pair (i, j ) of colliding balls
of x. The maps ym �→ fij (h(y1, . . . , ym)) are increasing, so that for h(y1, . . . , ym) in B(x, ε):

ym > max
{
gij (y1, . . . , ym−1,0) s.t. |xi − xj | = r

}
⇔ ∀i < j s.t. |xi − xj | = r, ym > gij (y1, . . . , ym−1,0)

⇔ ∀i < j s.t. |xi − xj | = r,

fij

(
h(y1, . . . , ym−1, ym)

)
> fij

(
h
(
y1, . . . , gij (y1, . . . , ym−1,0)

)) = 0

⇔ ∀i < j fij

(
h(y1, . . . , ym−1, ym)

)
> 0

⇔ h(y1, . . . , ym) ∈ D.

Note that, since the gij are C1, they are Lipschitz continuous with Lipschitz constant Cij , which
leads to the Lipschitz continuity of the function

(y1, . . . , ym−1) �→ max
{
gij (y1, . . . , ym−1,0) for (i, j) with |xi − xj | = r

}
.
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Indeed

max{i<j :|xi−xj |=r}gij (y) − max{i<j :|xi−xj |=r}gij

(
y′)

= gi0j0(y) − max{i<j :|xi−xj |=r}gij

(
y′) for some i0, j0

≤ gi0j0(y) − gi0j0

(
y′) ≤ Ci0j0

∣∣y − y′∣∣
≤

(
max{i<j :|xi−xj |=r}Cij

)∣∣y − y′∣∣.
Hence, D is a Lipschitz domain. �
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