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We consider finite state space stationary hidden Markov models (HMMs) in the situation where the number
of hidden states is unknown. We provide a frequentist asymptotic evaluation of Bayesian analysis methods.
Our main result gives posterior concentration rates for the marginal densities, that is for the density of a fixed
number of consecutive observations. Using conditions on the prior, we are then able to define a consistent
Bayesian estimator of the number of hidden states. It is known that the likelihood ratio test statistic for
overfitted HMMs has a nonstandard behaviour and is unbounded. Our conditions on the prior may be seen
as a way to penalize parameters to avoid this phenomenon. Inference of parameters is a much more difficult
task than inference of marginal densities, we still provide a precise description of the situation when the
observations are i.i.d. and we allow for 2 possible hidden states.

Keywords: Bayesian statistics; hidden Markov models; number of components; order selection; posterior
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1. Introduction

Finite state space hidden Markov models (which will be shortened to HMMs throughout the pa-
per) are stochastic processes (Xj ,Yj )j≥1 where (Xj )j≥1 is a Markov chain living in a finite state
space X and conditionally on (Xj )j≥1 the Yj ’s are independent with a distribution depending
only on Xj and living in Y . HMMs are useful tools to model time series where the observed
phenomenon is driven by a latent Markov chain. They have been used successfully in a variety of
applications, the books MacDonald and Zucchini [14], Zucchini and MacDonald [23] and Cappé
et al. [2] provide several examples of applications of HMMs and give a recent (for the latter)
state of the art in the statistical analysis of HMMs. Finite state space HMMs may also be seen
as a dynamic extension of finite mixture models and may be used to do unsupervised clustering.
The hidden states often have a practical interpretation in the modelling of the underlying phe-
nomenon. It is thus of importance to be able to infer both the number of hidden states (which we
call the order of the HMM) from the data, and the associated parameters.

The aim of this paper is to provide a frequentist asymptotic analysis of Bayesian methods used
for statistical inference in finite state space HMMs when the order is unknown. Let us first review
what is known on the subject and important questions that still stay unsolved.
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In the frequentist literature, penalized likelihood methods have been proposed to estimate the
order of a HMM, using for instance Bayesian information criteria (BIC for short). These methods
were applied for instance in Leroux and Putterman [13], Rydén et al. [21], but without theoretical
consistency results. Later, it has been observed that the likelihood ratio statistics is unbounded,
in the very simple situation where one wants to test between 1 or 2 hidden states, see Gassiat and
Kéribin [9]. The question whether BIC penalized likelihood methods lead to consistent order
estimation stayed open. Using tools borrowed from information theory, it has been possible to
calibrate heavier penalties in maximum likelihood methods to obtain consistent estimators of the
order, see Gassiat and Boucheron [7], Chambaz et al. [3]. The use of penalized marginal pseudo
likelihood was also proved to lead to weakly consistent estimators by Gassiat [6].

On the Bayesian side, various methods were proposed to deal with an unknown number of
hidden states, but no frequentist theoretical result exists for these methods. Notice though that,
if the number of states is known, de Gunst and Shcherbakova [4] obtain a Bernstein–von Mises
theorem for the posterior distribution, under additional (but usual) regularity conditions. When
the order is unknown, reversible jump methods have been built, leading to satisfactory results
on simulation and real data, see Boys and Henderson [1], Green and Richardson [12], Robert
et al. [19], Spezia [22]. The ideas of variational Bayesian methods were developed in McGrory
and Titterington [15]. Recently, one of the authors proposed a frequentist asymptotic analysis of
the posterior distribution for overfitted mixtures when the observations are i.i.d., see Rousseau
and Mengersen [20]. In this paper, it is proved that one may choose the prior in such a way that
extra components are emptied, or in such a way that extra components merge with true ones.
More precisely, if a Dirichlet prior D(α1, . . . , αk) is considered on the k weights of the mixture
components, small values of the αj ’s imply that the posterior distribution will tend to empty the
extra components of the mixture when the true distribution has a smaller number, say k0 < k of
true components. One aim of our paper is to understand if such an analysis may be extended to
HMMs.

As is well known in the statistical analysis of overfitted finite mixtures, the difficulty of the
problem comes from the non-identifiability of the parameters. But what is specific to HMMs is
that the non-identifiability of the parameters leads to the fact that neighbourhoods of the “true”
parameter values contain transition matrices arbitrarily close to non-ergodic transition matrices.
To understand this on a simple example, just consider the case of HMMs with two hidden states,
say p is the probability of going from state 1 to state 2 and q the probability of going from
state 2 to state 1. If the observations are in fact independently distributed, their distribution may
be seen as a HMM with two hidden states where q = 1 − p. Neighbourhoods of the “true”
values (p,1 − p) contain parameters such that p is small or 1 − p is small, leading to hidden
Markov chains having mixing coefficients very close to 1. Imposing a prior condition such as
δ ≤ p ≤ 1 − δ for some δ > 0 is not satisfactory.

Our first main result Theorem 1 gives concentration rates for the posterior distribution of the
marginal densities of a fixed number of consecutive observations. First, under mild assumptions
on the densities and the prior, we obtain the asymptotic posterior concentration rate

√
n, n the

number of observations, up to a logn factor, when the loss function is the L1 norm between
densities multiplied by some function of the ergodicity coefficient of the hidden Markov chain.
Then, with more stringent assumptions on the prior, we give posterior concentration rates for
the marginal densities in L1 norm only (without the ergodicity coefficient). For instance, con-
sider a finite state space HMM, with k states and with independent Dirichlet prior distributions
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D(α1, . . . , αk) on each row of the transition matrix of the latent Markov chain. Then our theo-
rem says that if the sum of the parameters αj ’s is large enough, the posterior distribution of the
marginal densities in L1 norm concentrates at a polynomial rate in n. These results are obtained
as applications of a general theorem we prove about concentration rates for the posterior distri-
bution of the marginal densities when the state space of the HMM is not constrained to be a finite
set, see Theorem 4.

A byproduct of the non-identifiability for overfitted mixtures or HMMs is the fact that, going
back from marginal densities to the parameters is not easy. The local geometry of finite mixtures
has been understood by Gassiat and van Handel [8], and following their approach in the HMM
context we can go back from the L1 norm between densities to the parameters. We are then able
to propose a Bayesian consistent estimator of the number of hidden states, see Theorem 2, under
the same conditions on the prior as in Theorem 1. To our knowledge, this is the first consistency
result on Bayesian order estimation in the case of HMMs.

Finally, obtaining posterior concentration rates for the parameters themselves seems to be very
difficult, and we propose a more complete analysis in the simple situation of HMMs with 2 hid-
den states and independent observations. In such a case, we prove that, if all the parameters (not
only the sum of them) of the prior Dirichlet distribution are large enough, then extra components
merge with true ones, see Theorem 3. We believe this to be more general but have not been able
to prove it.

The organization of the paper is the following. In Section 2, we first set the model and nota-
tions. In subsequent subsections, we give Theorems 1, 2 and 3. In Section 3, we give the posterior
concentration theorem for general HMMs, Theorem 4, on which Theorem 1 is based. All proofs
are given in Section 4.

2. Finite state space hidden Markov models

2.1. Model and notations

Recall that finite state space HMMs model pairs (Xi, Yi)i≥1 where (Xi)i≥1 is the unobserved
Markov chain living on a finite state space X = {1, . . . , k} and the observations (Yi)i≥1 are con-
ditionally independent given the (Xi)i≥1. The observations take value in Y , which is assumed to
be a Polish space endowed with its σ -field. Throughout the paper, we denote x1:n = (x1, . . . , xn).

The hidden Markov chain (Xi)i≥1 has a Markov transition matrix Q = (qij )1≤i,j≤k . The con-
ditional distribution of Yi given Xi has a density with respect to some given measure ν on Y . We
denote by gγj

(y), j = 1, . . . , k, the conditional density of Yi given Xi = j . Here, γj ∈ � ⊂ R
d

for j = 1, . . . , k, the γj ’s are called the emission parameters. In the following, we parametrize
the transition matrices on {1, . . . , k} as (qij )1≤i≤k,1≤j≤k−1 (implying that qik = 1−∑k−1

j=1 qij for
all i ≤ k) and we denote by �k the set of probability mass functions �k = {(u1, . . . , uk−1) :u1 ≥
0, . . . , uk−1 ≥ 0,

∑k−1
i=1 ui ≤ 1}. We shall also use the set of positive probability mass functions

�0
k = {(u1, . . . , uk−1) :u1 > 0, . . . , uk−1 > 0,

∑k−1
i=1 ui < 1}. Thus, we may denote the overall

parameter by θ = (qij ,1 ≤ i ≤ k,1 ≤ j ≤ k − 1;γ1, . . . , γk) ∈ 
k where 
k = �k
k ×�k . To alle-

viate notations, we will write θ = (Q;γ1, . . . , γk), where Q = (qij )1≤i,j≤k , qik = 1 −∑k−1
j=1 qij

for all i ≤ k.
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Throughout the paper, ∇θh denotes the gradient vector of the function h when considered as
a function of θ , and Di

θh its ith derivative operator with respect to θ , for i ≥ 1. We denote by
Bd(γ, ε) the d dimensional ball centered at γ with radius ε, when γ ∈R

d . The notation an � bn

means that an is larger than bn up to a positive constant that is fixed throughout.
Any Markov chain on a finite state space with transition matrix Q admits a stationary distri-

bution which we denote by μQ, if it admits more than one we choose one of them. Then for
any finite state space Markov chain with transition matrix Q it is possible to define real numbers
ρQ ≥ 1 such that, for any integer m, any j ≤ k

k∑
j=1

∣∣(Qm
)
ij

− μQ(j)
∣∣≤ ρ−m

Q , ρQ =
(

1 −
k∑

j=1

min
1≤i≤k

qij

)−1

, (1)

where Qm is the m-step transition matrix of the Markov chain. If ρQ > 1, the Markov chain
(Xn)n≥1 is uniformly geometrically ergodic and μQ is its unique stationary distribution. In the
following, we shall also denote μθ and ρθ in the place of μQ and ρQ when θ = (Q;γ1, . . . , γk).

We write Pθ for the probability distribution of the stationary HMM (Xj ,Yj )j≥1 with parame-
ter θ . That is, for any integer n, any set A in the Borel σ -field of X n ×Yn:

Pθ

(
(X1, . . . ,Xn,Y1, . . . , Yn) ∈ A

)
(2)

=
k∑

x1,...,xn=1

∫
Yn

1A(x1:n, y1:n)μQ(x1)

n−1∏
i=1

qxixi+1

n∏
i=1

gγxi
(yi)ν(dy1) · · ·ν(dyn).

Thus for any integer n, under Pθ , Y1:n = (Y1, . . . , Yn) has a probability density with respect to
ν(dy1) · · ·ν(dyn) equal to

fn,θ (y1, . . . , yn) =
k∑

x1,...,xn=1

μQ(x1)

n−1∏
i=1

qxixi+1

n∏
i=1

gγxi
(yi). (3)

We note Eθ for the expectation under Pθ .
We denote 
k the prior distribution on 
k . As is often the case in Bayesian analysis of HMMs,

instead of computing the stationary distribution μQ of the hidden Markov chain with transition
matrix Q, we consider a probability distribution πX on the unobserved initial state X0. Denote
�n(θ, x0) the log-likelihood starting from x0, for all x0 ∈ {1, . . . , k}, we have

�n(θ, x0) = log

[
k∑

x1,...,xn=1

n−1∏
i=0

qxixi+1

n∏
i=1

gγxi
(yi)

]
.

The log-likelihood starting from a probability distribution πX on X is then given by
log[∑k

x0=1 e�n(θ,x0)πX (x0)]. This may also be interpreted as taking a prior 
 = 
k ⊗ πX over
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k × {1, . . . , k}. The posterior distribution can then be written as

P

(A|Y1:n) =

∑k
x0=1

∫
A

e�n(θ,x0)
k(dθ)πX (x0)∑k
x0=1

∫



e�n(θ,x0)
k(dθ)πX (x0)
(4)

for any Borel set A ⊂ 
k .
Let Mk be the set of all possible probability distributions Pθ for all θ ∈ 
k . We say that

the HMM Pθ has order k0 if the probability distribution of (Yn)n≥1 under Pθ is in Mk0 and
not in Mk for all k < k0. Notice that a HMM of order k0 may be represented as a HMM of
order k for any k > k0. Indeed, let Q0 be a k0 × k0 transition matrix, and (γ 0

1 , . . . , γ 0
k0

) ∈ �k0

be parameters that define a HMM of order k0. Then, θ = (Q;γ 0
1 , . . . , γ 0

k0
, . . . , γ 0

k0
) ∈ 
k with

Q = (qij ,1 ≤ i, j ≤ k) such that:

qij = q0
ij , i, j < k0,

qij = q0
k0j

, i ≥ k0, j < k0,

k∑
l=k0

qil = q0
ik0

, i ≤ k0, and
k∑

l=k0

qil = q0
k0k0

, i ≥ k0

(5)

gives Pθ = Pθ0 . Indeed, let (Xn)n≥1 be a Markov chain on {1, . . . , k} with transition matrix Q.
Let Z be the function from {1, . . . , k} to {1, . . . , k0} defined by Z(x) = x if x ≤ k0 and Z(x) = k0
if x ≥ k0. Then (Z(Xn))n≥1 is a Markov chain on {1, . . . , k0} with transition matrix Q0.

2.2. Posterior convergence rates for the finite marginal densities

Let θ0 = (Q0;γ 0
1 , . . . , γ 0

k0
) ∈ 
k0 , Q0 = (q0

ij )1≤i≤k0,1≤j≤k0 , be the parameter of a HMM of order
k0 ≤ k. We now assume that Pθ0 is the distribution of the observations. In this section, we fix an
integer l and study the posterior distribution of the density of l consecutive observations, that is
fl,θ , given by (3) with n = l. We study the posterior concentration rate around fl,θ0 in terms of
the L1 loss function, when Pθ0 is possibly of order k0 < k. In this case, Theorem 2.1 of de Gunst
and Shcherbakova [4] does not apply and there is no result in the literature about the frequentist
asymptotic properties of the posterior distribution. The interesting and difficult feature of this
case is that even though θ0 is parameterized as an ergodic Markov chain Q0 with k states and
some identical emission parameters as described in (5), fl,θ0 can be approached by marginals
fl,θ for which ρθ is arbitrarily close to 1, which deteriorates the posterior concentration rate, see
Theorem 1.

Let π(u1, . . . , uk−1) be a prior density with respect to the Lebesgue measure on �k , and
let ω(γ ) be a prior density on � (with respect to the Lebesgue measure on R

d ). We consider
prior distributions such that the rows of the transitions matrix Q are independently distributed
from π and independent of the component parameters γi , i = 1, . . . , k, which are independently
distributed from ω. Hence, the prior density of 
k (with respect to the Lebesgue measure) is
equal to πk = π⊗k ⊗ ω⊗k . We still denote by πX a probability on {1, . . . , k}, we assume that
πX (x) > 0 for all x ∈ {1, . . . , k} and set 
 = 
k ⊗πX . We shall use the following assumptions.
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A0 q0
ij > 0, 1 ≤ i ≤ k0, 1 ≤ j ≤ k0.

A1 The function γ 	→ gγ (y) is twice continuously differentiable in �, and for any γ ∈ �,
there exists ε > 0 such that∫

sup
γ ′∈Bd(γ,ε)

∥∥∇γ loggγ ′(y)
∥∥2

gγ (y)ν(dy) < +∞,

∫
sup

γ ′∈Bd(γ,ε)

∥∥D2
γ loggγ ′(y)

∥∥2
gγ (y)ν(dy) < +∞,

‖ supγ ′∈Bd(γ,ε) ∇γ gγ ′(y)‖ ∈ L1(ν) and ‖ supγ ′∈Bd(γ,ε) D
2
γ gγ ′(y)‖ ∈ L1(ν).

A2 There exist a > 0 and b > 0 such that

sup
‖γ ‖≤nb

∫ ∥∥∇γ gγ (y)
∥∥dν(y) ≤ na.

A3 π is continuous and positive on �0
k , and there exists C,α1 > 0, . . . , αk > 0 such that

(Dirichlet type priors):

∀(u1, . . . , uk−1) ∈ �0
k, uk = 1 −

k−1∑
i=1

ui,

0 < π(u1, . . . , uk−1) ≤ Cu
α1−1
1 · · ·uαk−1

k

and ω is continuous and positive on � and satisfies∫
‖x‖≥nb

ω(x)dx = o
(
n−k(k−1+d)/2), (6)

with b defined in assumption A2.

We will alternatively replace A3 by

A3bis π is continuous and positive on �0
k , and there exists C such that (exponential type

priors):

∀(u1, . . . , uk−1) ∈ �0
k, uk = 1 −

k−1∑
i=1

ui,

0 < π(u1, . . . , uk−1) ≤ C exp(−C/u1) · · · exp(−C/uk)

and ω is continuous and positive on � and satisfies (6).

Theorem 1. Assume A0–A3. Then, there exists K large enough such that

P



[
θ :‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
logn

n

∣∣∣Y1:n
]

= oPθ0
(1), (7)
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where ρθ = (1 −∑k
j=1 inf1≤i≤k qij )

−1. If moreover ᾱ :=∑1≤i≤k αi > k(k − 1 + d), then

P


[
θ :‖fl,θ − fl,θ0‖1 ≥ 2Kn−(ᾱ−k(k−1+d))/(2ᾱ)(logn)

∣∣Y1:n
]= oPθ0

(1). (8)

If we replace A3 by A3bis, then there exists K large enough such that

P


[
θ :‖fl,θ − fl,θ0‖1 ≥ 2Kn−1/2(logn)3/2

∣∣Y1:n
]= oPθ0

(1). (9)

Theorem 1 is proved in Section 4.1 as a consequence of Theorem 4 stated in Section 3, which
gives posterior concentration rates for general HMMs.

Assumption A0 is the usual ergodic condition on the finite state space Markov chain. Assump-
tions A1 and A2 are mild usual regularity conditions on the emission densities gγ and hold for
instance for multidimensional Gaussian distributions, Poisson distributions, or any regular expo-
nential families. Assumption A3 on the prior distribution of the transition matrix Q is satisfied
for instance if each row of Q follows a Dirichlet distribution or a mixture of Dirichlet distribu-
tions, as used in Nur et al. [16], and assumption (6) is verified for densities ω that have at most
polynomial tails.

The constraint on ᾱ =∑
i αi or condition A3bis are used to ensure that (8) and (9) hold re-

spectively. The posterior concentration result (7) implies that the posterior distribution might put
non-negligible mass on values of θ for which ρθ − 1 is small and ‖fl,θ −fl,θ0‖1 is not. These are
parameter values associated to nearly non-ergodic latent Markov chains. Since ρθ − 1 is small
is equivalent to

∑
j mini qij is small, the condition ᾱ > k(k − 1 + d) prevents such pathological

behaviour by ensuring that the prior mass of such sets is small enough. This condition is therefore
of a different nature than Rousseau and Mengersen’s [20] condition on the prior, which charac-
terizes the asymptotic behaviour of the posterior distribution on the parameter θ . In other words,
their condition allows in (static) mixture models to go from a posterior concentration result on
fl,θ to a posterior concentration result on θ whereas, here, the constraint on ᾱ is used to obtain a
posterior concentration result on fl,θ . Going back from ‖fl,θ −fl,θ0‖1 to the parameters requires
a deeper understanding of the geometry of finite HMMs, similar to the one developed in Gassiat
and van Handel [8]. This will be needed to estimate the order of the HMM in Section 2.3, and
fully explored when k0 = 1 and k = 2 in Section 2.4.

For general priors, we do not know whether the
√

logn factor appearing in (7) could be re-
placed or not by any sequence tending to infinity. In the case where the αi ’s are large enough
(Dirichlet type priors), and when k0 = 1 and k = 2, we obtain a concentration rate without the√

logn factor, see Lemma 2 in Section 3. To do so, we prove Lemma 3 in Section 3 for which we
need to compute explicitly the stationary distribution and the predictive probabilities to obtain a
precise control of the likelihood, for θ ’s such that Pθ is near Pθ0 , and to control local entropies of
slices for θ ’s such that Pθ is near Pθ0 and where ρθ − 1 might be small. It is not clear to us that
extending such computations to the general case is possible in a similar fashion. The logn terms
appearing in (8) and (9) are consequences of the

√
logn term appearing in (7).

2.3. Consistent Bayesian estimation of the number of states

To define a Bayesian estimator of the number of hidden states k0, we need to decide how
many states have enough probability mass, and are such that their emission parameters are
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different enough. We will be able to do it under the assumptions of Theorem 1. Set wn =
n−(ᾱ−k(k+d−1))/(2ᾱ) logn if A3 holds and ᾱ > k(k + d − 1), and set wn = n−1/2(logn)3/2 if
instead A3bis holds. Let (un)n≥1 and (vn)n≥1 be sequences of positive real numbers tending
to 0 as n tends to infinity such that wn = o(unvn). As in Rousseau and Mengersen [20], in the
case of a misspecified model with k0 < k, fl,θ0 can be represented by merging components or by
emptying extra components. For any θ ∈ 
k , we thus define J (θ) as

J (θ) = {j :Pθ (X1 = j) ≥ un

}
,

that is, J (θ) corresponds to the set of non-empty components. To cluster the components that
have similar emission parameters, we define for all j ∈ J (θ)

Aj (θ) = {i ∈ J (θ) :‖γj − γi‖2 ≤ vn

}
and the clusters are defined by: for all j1, j2 ∈ J (θ), j1 and j2 belong to the same cluster (noted
j1 ∼ j2) if and only if there exist r > 1 and i1, . . . , ir ∈ J (θ) with i1 = j1 and ir = j2 such that
for all 1 ≤ l ≤ r − 1, Ail (θ) ∩ Ail+1(θ) �= ∅. We then define the effective order of the HMM
at θ as the number L(θ) of different clusters, that is, as the number of equivalent classes with
respect to the equivalence relation ∼ defined above. By a good choice of un and vn, we construct
a consistent estimator of k0 by considering either the posterior mode of L(θ) or its posterior
median. This is presented in Theorem 2.

To prove that this gives a consistent estimator, we need an inequality that relates the L1 dis-
tance between the l-marginals, ‖fl,θ −fl,θ0‖1, to a distance between the parameter θ and param-
eters θ̃0 in 
k such that fl,θ̃0

= fl,θ0 . Such an inequality will be proved in Section 4.2, under the
following structural assumption.

Let T = {t = (t1, . . . , tk0) ∈ {1, . . . , k}k0 : ti < ti+1, i = 0, . . . , k0 − 1}. If b is a vector, bT de-
notes its transpose.

A4 For any t = (t1, . . . , tk0) ∈ T , any (πi)
k−tk0
i=1 ∈ (R+)k−tk0 (if tk0 < k), any (ai)

k0
i=1, (ci)

k0
i=1 ∈

R
k0 , (bi)

k0
i=1 ∈ (Rd)k0 , any zi,j ∈ R

d , αi,j ∈ R, i = 1, . . . , k0, j = 1, . . . , ti − ti−1 (with

t0 = 0), such that ‖zi,j‖ = 1, αi,j ≥ 0 and
∑ti−ti−1

j=1 αi,j = 1, for any (γi)
k−tk0
i=1 which be-

long to � \ {γ 0
i , i = 1, . . . , k0},

k−tk0∑
i=1

πigγi
+

k0∑
i=1

(
aigγ 0

i
+ bT

i D1gγ 0
i

)+ k0∑
i=1

c2
i

ti−ti−1∑
j=1

αi,j z
T
i,jD

2gγ 0
i
zi,j = 0, (10)

if and only if

ai = 0, bi = 0, ci = 0 ∀i = 1, . . . , k0, πi = 0 ∀i = 1, . . . , k − tk0 .

Assumption A4 is a weak identifiability condition for situations when k0 < k. Notice that A4
is the same condition as in Rousseau and Mengersen [20], it is satisfied in particular for Poisson
mixtures, location-scale Gaussian mixtures and any mixtures of regular exponential families.

The following theorem says that the posterior distribution of L(θ) concentrates on the true
number k0 of hidden states.
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Theorem 2. Assume that assumptions A0–A2 and A4 are verified. If either of the following two
situations holds:

• Under assumption A3 (Dirichlet type prior), if ᾱ > k(k + d − 1) and

unvnn
(ᾱ−k(k+d−1))/(2ᾱ)

logn
→ +∞.

• Under assumption A3bis (exponential type prior), if unvnn
1/2/(logn)3/2 → +∞,

then

P


[
θ :L(θ) �= k0|Y1:n

]= oPθ0
(1). (11)

If k̂n is either the mode or the median of the posterior distribution of L(θ), then

k̂n = k0 + oPθ0
(1). (12)

One of the advantages of using such an estimate of the order of the HMM, is that we do not
need to consider a prior on k and use reversible-jump methods, see Richardson and Green [17],
which can be tricky to implement. In particular, we can consider a two-stage procedure where
k̂n is computed based on a model with k components where k is a reasonable upper bound on k0

and then, fixing k = k̂n an empirical Bayes procedure is defined on (Qi,j , i, j ≤ k̂n, γ1, . . . , γk̂n
).

On the event k̂n = k0, which has probability going to 1 under Pθ0 the model is regular and
using the Bernstein–von Mises theorem of de Gunst and Shcherbakova [4], we obtain that with
probability Pθ0 going to 1, the posterior distribution of

√
n(θ − θ̂n) converges in distribution to

the centered Gaussian with variance V0, the inverse of Fisher information at parameter θ0, where
θ̂n is an efficient estimator of θ0 when the order is known to be k0, and

√
n(θ̂n − θ0) converges

in distribution to the centered Gaussian with variance V0 under Pθ0 .
The main point in the proof of Theorem 2 is to prove an inequality that relates the L1 distance

between the l-marginals, to a distance between the parameters of the HMM. Under condition A4,
we prove that there exists a constant c(θ0) > 0 such that for any small enough positive ε,

‖fl,θ − fl,θ0‖1

c(θ0)

≥
∑

1≤j≤k:∀i,‖γj −γ 0
i ‖>ε

Pθ (X1 = j) +
k0∑

i=1

∣∣Pθ

(
X1 ∈ B(i)

)− Pθ0(X1 = i)
∣∣ (13)

+
k0∑

i=1

[∥∥∥∥ ∑
j∈B(i)

Pθ (X1 = j)
(
γj − γ 0

i

)∥∥∥∥+ 1

2

∑
j∈B(i)

Pθ (X1 = j)
∥∥γj − γ 0

i

∥∥2
]
,

where B(i) = {j :‖γj − γ 0
i ‖ ≤ ε}. The above lower bound essentially corresponds to a partition

of {1, . . . , k} into k0 + 1 groups, where the first k0 groups correspond to the components that
are close to true distinct components in the multivariate mixture and the last corresponds to
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components that are emptied. The first term on the right-hand side controls the weights of the
components that are emptied (group k0 + 1), the second term controls the sum of the weights of
the components belonging to the ith group, for i = 1, . . . , k0 (components merging with the true
ith component), the third term controls the distance between the mean value over the group i and
the true value of the ith component in the true mixture while the last term controls the distance
between each parameter value in group i and the true value of the ith component. A general
inequality implying (13), obtained under a weaker condition, namely A4bis, holds and is stated
and proved in Section 4.2.

As we have seen with Theorem 2, we can recover the true parameter θ0 using a two-stage
procedure where first k̂n is estimated. However, it is also of interest to understand better the
behaviour of the posterior distribution in the first stage procedure and see if some behaviour
similar to what was observed in Rousseau and Mengersen [20] holds in the case of HMMs. From
Theorem 1, it appears that HMMs present an extra difficulty due to the fact that, when the order is
overestimated, the neighbourhood of θ ’s such that Pθ = Pθ0 contains parameters leading to non-
ergodic HMMs. To have a more refined understanding of the posterior distribution, we restrict
our attention in Section 2.4 to the case where k = 2 and k0 = 1 which is still nontrivial, see also
Gassiat and Kéribin [9] for the description of pathological behaviours of the likelihood in such a
case.

2.4. Posterior concentration for the parameters: The case k0 = 1 and k = 2

In this section, we restrict our attention to the simpler case where k0 = 1 and k = 2. In Theorem 3
below, we prove that if a Dirichlet type prior is considered on the rows of the transition matrix
with parameters αj ’s that are large enough the posterior distribution concentrates on the configu-
ration where the two components (states) are merged (γ1 and γ2 are close to one another). When
k = 2, we can parameterize θ as θ = (p, q, γ1, γ2), with 0 ≤ p ≤ 1, 0 ≤ q ≤ 1, so that

Qθ =
(

1 − p p

q 1 − q

)
, μθ =

(
q

p + q
,

p

p + q

)

when p �= 0 or q �= 0. If p = 0 and q = 0, set μθ = ( 1
2 , 1

2 ), for instance. Also, we may take

ρθ − 1 = (p + q) ∧ (2 − (p + q)
)
.

When k0 = 1, the observations are i.i.d. with distribution gγ 0 dν, so that one may take θ0 =
(p,1 − p,γ 0, γ 0) for any 0 < p < 1, or θ0 = (0, q, γ 0, γ ) for any 0 < q ≤ 1 and any γ , or
θ0 = (p,0, γ, γ 0) for any 0 < p ≤ 1 and any γ . Also, for any x ∈X , Pθ0,x = Pθ0 and

�n(θ, x) − �n(θ0, x0) = �n(θ, x) − �n(θ0, x).

We take independent Beta priors on (p, q):


2(dp,dq) = Cα,βpα−1(1 − p)β−1qα−1(1 − q)β−110<p<110<q<1 dp dq,

thus satisfying A3. Then the following holds.
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Theorem 3. Assume that assumptions A0–A2 together with assumption A4 are verified and
consider the prior described above with ω(·) verifying A3. Assume moreover that for all x,
γ 	→ gγ (x) is four times continuously differentiable on �, and that for any γ ∈ � there exists
ε > 0 such that for any i ≤ 4,

∫
sup

γ ′∈Bd(γ,ε)

∥∥∥∥Di
γ gγ ′

gγ ′
(y)

∥∥∥∥
4

gγ (y)ν(dy) < +∞. (14)

Then, as soon as α > 3d/4 and β > 3d/4, for any sequence εn tending to 0,

P



(
p

p + q
≤ εn or

q

p + q
≤ εn

∣∣Y1:n
)

= oPθ0
(1),

and for any sequence Mn going to infinity,

P


(‖γ1 − γ0‖ + ‖γ2 − γ0‖ ≤ Mnn

−1/4
∣∣Y1:n

)= 1 + oPθ0
(1).

Theorem 3 says that the extra component cannot be emptied at rate εn, where the sequence εn

can be chosen to converge to 0 as slowly as we want, so that asymptotically, under the posterior
distribution neither p/(p+q) nor q/(p+p) are small, and the posterior distribution concentrates
on the configuration where the components merge, with the emission parameters merging at
rate n−1/4. Similarly in Rousseau and Mengersen [20] the authors obtain that, for independent
variables, under a Dirichlet D(α1, . . . , αk) prior on the weights of the mixture and if minαi >

d/2, the posterior distribution concentrates on configurations which do not empty the extra-
components but merge them to true components. The threshold here is 3d/2 instead of d/2. This
is due to the fact that there are more parameters involved in a HMM model associated to k states
than in a k-components mixture model. No result is obtained here in the case where the αi ’s are
small. This is due to the existence of non ergodic Pθ in the vicinity of Pθ0 that are not penalized
by the prior in such cases. Our conclusion is thus to favour large values of the αi ’s.

3. A general theorem

In this section, we present a general theorem which is used to prove Theorem 1 but which
can be of interest in more general HMMs. We assume here that the unobserved Markov chain
(Xi)i≥1 lives in a Polish space X and the observations (Yi)i≥1 are conditionally independent
given (Xi)i≥1 and live in a Polish space Y . X , Y are endowed with their Borel σ -fields. We
denote by θ ∈ 
, where 
 is a subset of an Euclidean space, the parameter describing the dis-
tribution of the HMM, so that Qθ , θ ∈ 
 is the Markov kernel of (Xi)i≥1 and the conditional
distribution of Yi given Xi has density with respect to some given measure ν on Y denoted by
gθ (y|x), x ∈X , θ ∈ 
. We assume that the Markov kernels Qθ admit a (not necessarily unique)
stationary distribution μθ , for each θ ∈ 
. We still write Pθ for the probability distribution of the
stationary HMM (Xj ,Yj )j≥1 with parameter θ . That is, for any integer n, any set A in the Borel
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σ -field of X n ×Yn:

Pθ

(
(X1, . . . ,Xn,Y1, . . . , Yn) ∈ A

)
(15)

=
∫

A

μθ(dx1)

n−1∏
i=1

Qθ(xi,dxi+1)

n∏
i=1

gθ (yi |xi)ν(dy1) · · ·ν(dyn).

Thus for any integer n, under Pθ , Y1:n = (Y1, . . . , Yn) has a probability density with respect to
ν(dy1) · · ·ν(dyn) equal to

fn,θ (y1, . . . , yn) =
∫
X n

μθ (dx1)

n−1∏
i=1

Qθ(xi,dxi+1)

n∏
i=1

gθ (yi |xi). (16)

We denote by 

 the prior distribution on 
 and by πX the prior probability on the unobserved
initial state, which might be different from the stationary distribution μθ . We set 
 = 

 ⊗πX .
Similarly to before, denote �n(θ, x) the log-likelihood starting from x, for all x ∈X .

We assume that we are given a stationary HMM (Xj ,Yj )j≥1 with distribution Pθ0 for some
θ0 ∈ 
.

For any θ ∈ 
, it is possible to define real numbers ρθ ≥ 1 and 0 < Rθ ≤ 2 such that, for any
integer m, any x ∈ X ∥∥Qm

θ (x, ·) − μθ

∥∥
TV ≤ Rθρ

−m
θ , (17)

where ‖ · ‖TV is the total variation norm. If it is possible to set ρθ > 1, the Markov chain (Xn)n≥1
is uniformly ergodic and μθ is its unique stationary distribution. The following theorem provides
a posterior concentration result in a general HMM setting, be it parametric or nonparametric
and is an adaptation of Ghosal and van der Vaart [10] to the setup of HMMs. We present the
assumptions needed to derive the posterior concentration rate.

C1 There exists A > 0 such that for any (x0, x1) ∈ X 2, Pθ0 almost surely, ∀n ∈ N,
|�n(θ0, x0) − �n(θ0, x1)| ≤ A, and there exist Sn ⊂ 
 × X , Cn > 0 and ε̃n > 0 a se-
quence going to 0 with nε̃2

n → +∞ such that

sup
(θ,x)∈Sn

Pθ0

[
�n(θ, x) − �n(θ0, x0) ≤ −nε̃2

n

]= o(1), 
[Sn] � e−Cnnε̃2
n .

C2 There exists a sequence (Fn)n≥1 of subsets of 






(
Fc

n

)= o
(
e−nε̃2

n(1+Cn)
)
.

C3 There exists a sequence εn ≥ ε̃n going to 0, such that (nε̃2
n(1 + Cn))/(nε2

n) goes to 0
and

N

(
εn

12
,Fn, dl(·, ·)

)
≤ e(nε2

n(ρθ0 −1)2)/(16l(2Rθ0 +ρθ0 −1)2),

where N(δ,Fn, dl(·, ·)) is the smallest number of θj ∈Fn such that for all θ ∈ Fn there
exists a θj with dl(θj , θ) ≤ δ.
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Here dl(θ, θj ) = ‖fl,θ − fl,θj
‖1 := ∫Y l |fl,θ − fl,θj

|(y)dν⊗l (y).
C3bis There exists a sequence εn ≥ ε̃n going to 0 such that

∑
m≥1



(An,m(εn))


(Sn)
e−(nm2ε2

n)/(32l) = o
(
e−nε̃2

n
)

and

N

(
mεn

12
,An,m(εn), dl(·, ·)

)
≤ e(nm2ε2

n(ρθ0 −1)2)/(16l(2Rθ0 +ρθ0 −1)2),

where

An,m(ε) =Fn ∩
{
θ :mε ≤ ‖fl,θ − fl,θ0‖1

ρθ − 1

2Rθ + ρθ − 1
≤ (m + 1)ε

}
.

Theorem 4. Assume that ρθ0 > 1 and that assumptions C1–C2 are satisfied, together with either
assumption C3 or C3bis. Then

P



[
θ :‖fl,θ − fl,θ0‖1

ρθ − 1

2Rθ + ρθ − 1
≥ εn

∣∣∣Y1:n
]

= oPθ0
(1).

Theorem 4 gives the posterior concentration rate of ‖fl,θ − fl,θ0‖1 up to the parameter
ρθ−1

2Rθ+ρθ−1 . In Ghosal and van der Vaart [10], for models of non independent variables, the au-
thors consider a parameter space where the mixing coefficient term (for us ρθ − 1) is uniformly
bounded from below by a positive constant over 
 (see their assumption (4.1) for the applica-
tion to Markov chains or their assumption on F in Theorem 7 for the application to Gaussian
time series), or equivalently they consider a prior whose support in 
 is included in a set where

ρθ−1
2Rθ+ρθ−1 is uniformly bounded from below, so that their posterior concentration rate is directly
expressed in terms of ‖fl,θ − fl,θ0‖1. Since we do not restrict ourselves to such frameworks the
penalty term ρθ − 1 is incorporated in our result. However Theorem 4, is proved along the same
lines as Theorem 1 of Ghosal and van der Vaart [10].

The assumption ρθ0 > 1 implies that the hidden Markov chain X is uniformly ergodic. As-
sumptions C1–C2 and either C3 or C3bis are similar in spirit to those considered in general
theorems on posterior consistency or posterior convergence rates, see, for instance, Ghosh and
Ramamoorthi [11] and Ghosal and van der Vaart [10]. Assumption C3bis is often used to elimi-
nate some extra logn term which typically appear in nonparametric posterior concentration rates
and is used in particular in the proof of Theorem 3.

4. Proofs

4.1. Proof of Theorem 1

The proof consists in showing that the assumptions of Theorem 4 are satisfied.
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Following the proof of Lemma 2 of Douc et al. [5] we find that, since ρθ0 > 1, for any x0 ∈X ,

∣∣�n(θ0, x0) − �n(θ0, x1)
∣∣≤ 2

(
ρθ0

ρθ0 − 1

)2

so that setting A = 2(
ρθ0

ρθ0 −1 )2 the first point of C1 holds.

We shall verify assumption C1 with ε̃n = Mn/
√

n for some Mn tending slowly enough to
infinity and that will be chosen later. Note that the assumption A0 and the construction (5) allow
to define a θ̃0 ∈ 
k such that, writing θ̃0 = (Q̃0, γ̃ 0

1 , . . . , γ̃ 0
k ) with Q̃0 = (q̃0

i,j , i, j ≤ k), if V is a

bounded subset of {θ = (Q,γ1, . . . , γk); |qi,j − q̃0
i,j | ≤ ε̃n}, then

inf
θ∈V

ρθ > 1, (18)

for large enough n, and

sup
θ∈V

sup
x,x0∈X

∣∣�n(θ, x) − �n(θ, x0)
∣∣≤ 2 sup

θ∈V

(
ρθ

ρθ − 1

)2

.

Following the proof of Lemma 2 of Douc et al. [5] gives that, if A0 and A1 hold, for all θ ∈ V

Pθ0 -a.s.,

�n(θ, x0) − �n(θ0, x0) = (θ − θ0)
T ∇θ �n(θ0, x0)

(19)

+
∫ 1

0
(θ − θ0)

T D2
θ �n

(
θ0 + u(θ − θ0), x0

)
(θ − θ0)(1 − u)du.

Following Theorem 2 in Douc et al. [5], n−1/2∇θ �n(θ0, x) converges in distribution under Pθ0 to
N (0,V0) for some positive definite matrix V0, and following Theorem 3 in Douc et al. [5], we
get that supθ∈V n−1D2

θ �n(θ, x0) converges Pθ0 a.s. to V0. Thus, we may set:

Sn = {θ ∈ V ;∥∥γj − γ 0
j

∥∥≤ 1/
√

n ∀j ≤ k
}×X

so that

sup
(θ,x)∈Sn

Pθ0

[
�n(θ, x) − �n(θ0, x0) < −Mn

]= o(1). (20)

Moreover, letting D = k(k − 1 + d), we have 
 ⊗ 
X (Sn) � n−D/2 and C1 is then satisfied
setting Cn = D logn/(2M2

n).
Let now vn = n−D/(2 min1≤i≤k αi )/

√
logn and un = n−D/(2

∑
1≤i≤k αi )/

√
logn, and define

Fn =
{

θ = (qij ,1 ≤ i ≤ k,1 ≤ j ≤ k − 1;γ1, . . . , γk) :qij ≥ vn,1 ≤ i ≤ k,1 ≤ j ≤ k,

k∑
j=1

inf
1≤i≤k

qij ≥ un,‖γi‖ ≤ nb,1 ≤ i ≤ k

}
.
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Now, if θ ∈ Fc
n , then there exist 1 ≤ i, j ≤ k such that qij ≤ vn, or

∑k
j=1 inf1≤i≤k qij ≤ un,

or there exists 1 ≤ i ≤ k such that ‖γi‖ ≥ nb . Using A3 we easily obtain that for fixed i and j ,

({θ :qij ≤ vn}) = O(v

αj
n ) and 
({θ :‖γi‖ ≥ nb}) = o(n−D/2). Also, if

∑k
j=1 inf1≤i≤k qij ≤ un,

then there exists a function i(·) from {1, . . . , k} to {1, . . . , k} whose image set has cardinality at
least 2 such that

∑k
j=1 qi(j)j ≤ un. This gives, using A3, 
({θ :

∑k
j=1 inf1≤i≤k qij ≤ un}) =

O(u

∑
1≤i≤k αi

n ). Thus,



(
Fc

n

)= O
(
v

min1≤i≤k αi
n + u

∑
1≤i≤k αi

n

)+ o
(
n−D/2).

We may now choose Mn tending to infinity slowly enough so that v
min1≤i≤k αi
n + u

∑
1≤i≤k αi

n =
o(e−Mnn−D/2) and 
(Fc

n) = o(e−Mnn−D/2). Then, C2 holds.
Now, using the definition of fl,θ , we obtain that

‖fl,θ1 − fl,θ2‖1 ≤
k∑

j=1

|μθ1 − μθ2 | + l

k∑
i,j=1

∣∣Q1
i,j − Q2

i,j

∣∣+ l max
j≤k

‖gγ 1
j

− gγ 2
j
‖1

so that using Lemma 1 below, A1 and A2 we get that for some constant B , ∀(θ1, θ2) ∈F2
n

‖fl,θ1 − fl,θ2‖1 ≤ B

(
1

v2c
n

+ na

)
‖θ1 − θ2‖.

Thus for some other constant B̃ ,

N
(
δ,Fn, d(·, ·))≤

[
B̃

δ

(
1

v2c
n

+ na

)]k(k−1)+kd

and C3 holds when setting εn = K

√
logn

n
with K large enough.

We have proved that under assumptions A0, A1, A2, A3, Theorem 4 applies with εn =
K

√
logn

n
so that

P



[
‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
logn

n

∣∣∣Y1:n
]

= oPθ0
(1)

and the first part of Theorem 1 is proved. Now

oPθ0
(1) = P




[
‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
logn

n

∣∣∣Y1:n
]

= P



[
θ ∈Fn and ‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
logn

n

∣∣∣Y1:n
]

+ oPθ0
(1).
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Since ρθ − 1 ≥∑k
j=1 min1≤i≤k qij , for all θ ∈Fn, ρθ − 1 ≥ un,

P



[
‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
logn

n

∣∣∣Y1:n
]

≥ P



[
‖fl,θ − fl,θ0‖1 ≥ 2K

1

un

√
logn

n

∣∣∣Y1:n
]
,

and the theorem follows when A3 holds. If now A3bis holds instead of A3, one gets, taking
un = vn = h/ logn, with h > 2C/(k + d − 1)



(
Fc

n

)= O
(
vn exp(−C/vn)

)+ o
(
n−D/2)= o

(
e−Mnn−D/2)

by choosing Mn increasing to infinity slowly enough so that C2 and C3 hold. The end of the
proof follows similarly as before.

To finish the proof of Theorem 1, we need to prove the following lemma.

Lemma 1. The function θ 	→ μθ is continuously differentiable in (�0
k)

k ×�k and there exists an
integer c > 0 and a constant C > 0 such that for any 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1, any m = 1, . . . , k,∣∣∣∣∂μθ (m)

∂qij

∣∣∣∣≤ C

(infi′ �=j ′ qi′j ′)2c
.

One may take c = k − 1.

Let θ = (qij ,1 ≤ i ≤ k,1 ≤ j ≤ k − 1;γ1, . . . , γk) be such that (qij ,1 ≤ i ≤ k,1 ≤ j ≤ k −
1) ∈ �k

0, Qθ = (qij ,1 ≤ i ≤ k,1 ≤ j ≤ k) is a k × k stochastic matrix with positive entries, and
μθ is uniquely defined by the equation

μT
θ Qθ = μT

θ

if μθ is the vector (μθ (m))1≤m≤k . This equation is solved by linear algebra as

μθ(m) = Pm(qij ,1 ≤ i ≤ k,1 ≤ j ≤ k − 1)

R(qij ,1 ≤ i ≤ k,1 ≤ j ≤ k − 1)
, m = 1, . . . , k − 1,

(21)

μθ(k) = 1 −
k−1∑
m=1

μθ(m),

where Pm, l = 1, . . . , k − 1 and R are polynomials where the coefficients are integers (bounded
by k) and the monomials are all of degree k − 1, each variable qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1
appearing with power 0 or 1. Now, since the equation has a unique solution as soon as (qij ,1 ≤
i ≤ k,1 ≤ j ≤ k − 1) ∈ �k

0, then R is never 0 on �k
0, so it may be 0 only at the boundary. Thus,

as a fraction of polynomials with nonzero denominator, θ 	→ μθ is infinitely differentiable in
(�0

k)
k × �k , and the derivative has components all of form

P(qij ,1 ≤ i ≤ k,1 ≤ j ≤ k − 1)

R(qij ,1 ≤ i ≤ k,1 ≤ j ≤ k − 1)2
,
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where again P is a polynomial where the coefficients are integers (bounded by 2k) and the
monomials are all of degree k − 1, each variable qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1 appearing with
power 0 or 1. Thus, since all qij ’s are bounded by 1 there exists a constant C such that for all
m = 1, . . . , k, i = 1, . . . , k, j = 1, . . . , k − 1,∣∣∣∣∂μθ (m)

∂qij

∣∣∣∣≤ C

R(qij ,1 ≤ i ≤ k,1 ≤ j ≤ k − 1)2
. (22)

We shall now prove that

R(qij ,1 ≤ i ≤ k,1 ≤ j ≤ k − 1) ≥
(

inf
1≤i≤k,1≤j≤k,i �=j

qij

)k−1
, (23)

which combined with (22) and (23) implies Lemma 1. Note that we can express R as a polyno-
mial function of Q = qij , 1 ≤ i ≤ k,1 ≤ j ≤ k, i �= j . Indeed, μ := (μθ (i))1≤i≤k−1 is solution
of

μT · M = V T ,

where V is the (k − 1)-dimensional vector (qkj )1≤j≤k−1, and M is the (k − 1) × (k − 1)-matrix
with components Mi,j = qkj −qij +1i=j . Since R is the determinant of M , this leads to, for any
k ≥ 2:

R =
∑

σ∈Sk−1

ε(σ )
∏

1≤i≤k−1,σ (i)=i

(
qki +

∑
1≤j≤k−1,j �=i

qij

) ∏
1≤i≤k−1,σ (i)�=i

(qki − qσ(i)i), (24)

where for any integer n, Sn is the set of permutations of {1, . . . , n}, and for each permutation σ ,
ε(σ ) is its signature. Thus, R is a polynomial in the components of Q where each monomial has
integer coefficient and has k − 1 different factors. The possible monomials are of form

β
∏
i∈A

qki

∏
i∈B

qij (i),

where (A,B) is a partition of {1, . . . , k −1}, and for all i ∈ B , j (i) ∈ {1, . . . , k −1} and j (i) �= i.
In case B =∅, the coefficient β of the monomial is

∑
σ∈Sk−1

ε(σ ) = 0, so that we only consider
partitions such that B �= ∅. Fix such a monomial with non-null coefficient, let (A,B) be the
associated partition. Let Q be such that, for all i ∈ A, qki > 0, for all i /∈ A, qki = 0 and qkk > 0
(used to handle the case A = ∅). Fix also qij (i) = 1 for all i ∈ B . Then, if (A′,B ′) is another
partition of {1, . . . , k − 1} with B ′ �= ∅, the monomial

∏
i∈A′ qki

∏
i∈B ′ qij (i) = 0. Thus, R(Q)

equals
∏

i∈A qki

∏
i∈B qij (i) times the coefficient of the monomial. But R(Q) ≥ 0, so that this

coefficient is a positive integer and (23) follows.

4.2. Proof of Theorem 2

Applying Theorem 1, we get that under the assumptions of Theorem 2, there exists K such that

Pθ0

(‖fl,θ − fl,θ0‖1 ≤ 2Kwn|Y1:n
)= 1 + oPθ0

(1).
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But if inequality (13) holds, then as soon as

‖fl,θ − fl,θ0‖1 � wn (25)

we get that, for any j ∈ {1, . . . , k}, either Pθ (X1 = j) � wn, or

∃i ∈ {1, . . . , k0}, Pθ (X1 = j)
∥∥γj − γ 0

i

∥∥2 � wn.

Let us choose ε ≤ mini �=j ‖γ 0
i − γ 0

j ‖/4 in the definition of B(i) in (13). We then obtain that for
large enough n, all j1, j2 ∈ J (θ), we have j1 ∼ j2 if and only if they belong to the same B(i),
i = 1, . . . , k0, so that L(θ) ≤ k0. On the other hand, L(θ) < k0 would mean that at least one B(i)

would be empty which contradicts the fact that∣∣Pθ

(
X1 ∈ B(i)

)− Pθ0(X1 = i)
∣∣≤ wn.

Thus, for large enough n, if (25) holds, then L(θ) = k0, so that

P 

[
L(θ) = k0|Yn

]= 1 + oPθ0
(1).

To finish the proof, we now prove that (13) holds under the assumptions of Theorem 2. This
will follow from Proposition 1 below which is slightly more general.

An inequality that relates the L1 distance of the l-marginals to the parameters of the HMM
is proved in Gassiat and van Handel [8] for translation mixture models, with the strength of be-
ing uniform over the number (possibly infinite) of populations in the mixture. However, for our
purpose, we do not need such a general result, and it is possible to obtain it for more general
situations than families of translated distributions, under the structural assumption A4. The in-
equality following Theorem 3.10 of Gassiat and van Handel [8] says that there exists a constant
c(θ0) > 0 such that for any small enough positive ε,

‖fl,θ − fl,θ0‖1

c(θ0)

≥
∑

1≤j≤k:∀i,‖γj −γ 0
i ‖>ε

Pθ (X1 = j)

+
∑

1≤i1,...,il≤k0

[∣∣Pθ

(
X1:l ∈ A(i1, . . . , il)

)− Pθ0(X1:l = i1 · · · il)
∣∣ (26)

+
∥∥∥∥∥∥

∑
(j1,...,jl )∈A(i1,...,il )

Pθ (X1:l = j1 · · · jl)

{(
γj1· · ·
γjl

)
−
(

γ 0
i1· · ·

γ 0
il

)}∥∥∥∥∥∥
+ 1

2

∑
(j1,...,jl )∈A(i1,...,il )

Pθ (X1:l = j1 · · · jl)

∥∥∥∥∥
(

γj1· · ·
γjl

)
−
(

γ 0
i1· · ·

γ 0
il

)∥∥∥∥∥
2⎤⎦ ,
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where A(i1, . . . , il) = {(j1, . . . , jl) :‖γj1 −γ 0
i1
‖ ≤ ε, . . . ,‖γjl

−γ 0
il
‖ ≤ ε}. The above lower bound

essentially corresponds to a partition of {1, . . . , k}l into kl
0 + 1 groups, where the first kl

0 groups
correspond to the components that are close to true distinct components in the multivariate mix-
ture and the last corresponds to components that are emptied. The first term on the right-hand
side controls the weights of the components that are emptied (group kl

0 + 1), the second term
controls the sum of the weights of the components belonging to the ith group, for i = 1, . . . , kl

0
(components merging with the true ith component), the third term controls the distance between
the mean value over the group i and the true value of the ith component in the true mixture while
the last term controls the distance between each parameter value in group i and the true value of
the ith component.

Notice that (13) is a consequence of (26). We shall prove that (26) holds under an assump-
tion slightly more general than A4. For this, we need to introduce some notations. For all
I = (i1, . . . , il) ∈ {1, . . . , k}l , define γI = (γi1, . . . , γil ), GγI

= ∏l
t=1 gγit

(yt ), D1GγI
the vec-

tor of first derivatives of GγI
with respect to each of the distinct elements in γI , note that it has

dimension d × |I |, where |I | denotes the number of distinct indices in I , and similarly define
D2GγI

the symmetric matrix in Rd|I |×d|I | made of second derivatives of GγI
with respect to the

distinct elements (indices) in γI . For any t = (t1, . . . , tk0) ∈ T , define for all i ∈ {1, . . . , k0} the
set J (i) = {ti−1 + 1, . . . , ti}, using t0 = 0.

We then consider the following condition:

A4bis For any t = (t1, . . . , tk0) ∈ T , for all collections (πI )I , (γI )I , I /∈{1, . . . , tk0}l satisfying
πI ≥ 0, γI = (γi1, . . . , γil ) such that γij = γ 0

i when ij ∈ J (i) for some i ≤ k0 and
γij ∈ � \ {γ 0

i , i = 1, . . . , k0} when ij /∈ {1, . . . , tk0}, for all collections (aI )I , (cI )I ,
(bI )I , I ∈ {1, . . . , k0}l , aI ∈ R, cI ≥ 0 and bI ∈ R

d|I |, for all collection of vectors
zI,J ∈ R

d|I | with I ∈ {1, . . . , k0}l and J ∈ J (i1) × · · · × J (il) satisfying ‖zI,J ‖ = 1,
and all sequences (αI,J ), satisfying αI,J ≥ 0 and

∑
J∈J (i1)×···×J (il )

αI,J = 1,

∑
I /∈{1,...,tk0 }l

πIGγI
+

∑
I∈{1,...,k0}l

(
aIGγ 0

I
+ bT

I D1Gγ 0
I

)

+
∑

I∈{1,...,k0}l
cI

∑
J∈J (i1)×···×J (il )

αI,J zT
I,J D2Gγ 0

I
zI,J = 0

(27)
⇔∑

I /∈{1,...,tk0 }l
πI +

∑
I∈{1,...,k0}l

(|aI | + ‖bI‖ + cI

)= 0.

We have the following proposition.

Proposition 1. Assume that the function γ 	→ gγ (y) is twice continuously differentiable in �

and that for all y, gγ (y) vanishes as ‖γ ‖ tends to infinity. Then, if assumption A4bis is verified,
(26) holds. Moreover, condition A4bis is verified as soon as condition A4 (corresponding to
l = 1) is verified.
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Let us now prove Proposition 1. To prove the first part of the proposition, we follow the ideas
of the beginning of the proof of Theorem 5.11 in Gassiat and van Handel [8]. If (26) does not
hold, there exist a sequence of l-marginals (fl,θn)n≥1 with parameters (θn)n≥1 such that for some
positive sequence εn tending to 0, ‖fl,θn − fl,θ0‖1/Nn(θ

n) tends to 0 as n tends to infinity, with

Nn(θ) =
∑

1≤j≤l:∀i,‖γj −γ 0
i ‖>εn

Pθ (X1 = j)

+
∑

1≤i1,...,il≤k0

⎡
⎣∣∣∣∣ ∑

(j1,...,jl )∈An(i1,...,il )

Pθ (X1:l = j1 · · · jl) − Pθ0(X1:l = i1 · · · il)
∣∣∣∣

+
∥∥∥∥∥∥

∑
(j1,...,jl )∈An(i1,...,il )

Pθ (X1:l = j1 · · · jl)

{(
γj1· · ·
γjl

)
−
(

γ 0
i1· · ·

γ 0
il

)}∥∥∥∥∥∥
+ 1

2

∑
(j1,...,jl )∈An(i1,...,il )

Pθ (X1:l = j1 · · · jl)

∥∥∥∥∥
(

γj1· · ·
γjl

)
−
(

γ 0
i1· · ·

γ 0
il

)∥∥∥∥∥
2⎤⎦

with An(i1, . . . , il) = {(j1, . . . , jl) :‖γj1 − γ 0
i1
‖ ≤ εn, . . . ,‖γjl

− γ 0
il
‖ ≤ εn}.

Now, fl,θn = ∑
I∈{1,...,k}l Pθn(X1, . . . ,Xl = I )Gγ n

I
where θn = (Qn, (γ n

1 , . . . , γ n
k )), Qn a

transition matrix on {1, . . . , k}. It is possible to extract a subsequence along which, for all
i = 1, . . . , k, either γ n

i converges to some limit γi or ‖γ n
i ‖ tends to infinity. Choose now the

indexation such that for i = 1, . . . , t1, γ n
i converges to γ 0

1 , for i = t1 + 1, . . . , t2, γ n
i converges to

γ 0
2 , and so on, for i = tk0−1 + 1, . . . , tk0 , γ n

i converges to γ 0
k0

, and if tk0 < k, for some k̃ ≤ k, for

i = tk0 + 1, . . . , k̃, γ n
i converges to some γi /∈ {γ 0

1 , . . . , γ 0
k0

}, and for i = k̃ + 1, . . . , k, ‖γ n
i ‖ tends

to infinity. It is possible that k̃ = tk0 in which case no γ n
i converges to some γi /∈ {γ 0

1 , . . . , γ 0
k0

}.
Such a t = (t1, . . . , tk0) ∈ T exists, because if ‖fl,θn − fl,θ0‖1/Nn(θ

n) tends to 0 as n tends to
infinity, ‖fl,θn − fl,θ0‖1, and Nn(θ

n) tends to 0 as n tends to infinity (if it was not the case, using
the regularity of θ 	→ fl,θ we would have a contradiction). Now along the subsequence we may
write, for large enough n:

Nn

(
θn
) =

∑
I /∈{1,...,tk0 }l

Pθ (X1:l = I )

+
∑

I∈{1,...,k0}l

[∣∣∣∣ ∑
J∈J (i1)×···×J (il )

Pθ (X1:l = J ) − Pθ0(X1:l = I )

∣∣∣∣
+
∥∥∥∥ ∑

J∈J (i1)×···×J (il )

Pθ (X1:l = J )
(
γJ − γ 0

I

)∥∥∥∥
+ 1

2

∑
J∈J (i1)×···×J (il )

Pθ (X1:l = J )
∥∥γJ − γ 0

I

∥∥2
]
.
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We shall use a Taylor expansion till order 2. To be perfectly rigorous in the following,
we need to express explicitly I in terms of its distinct indices, (ĩ1, . . . , ĩ|I |), so that GγI

=∏|I |
t=1

∏
j :ij =ĩt

gγ
ĩt
(yj ), but to keep notations concise we do not make such a distinction and

for instance (γ n
J − γ 0

I )T D1Gγ 0
I

means

|I |∑
t=1

(
γ

ĩt
− γ 0

ĩt

)T ∂GγI

∂γ
ĩt

,

and similarly for the second derivatives. We have

fl,θn − fl,θ0 =
∑

I /∈{1,...,tk0 }l
Pθ (X1:l = I )Gγ n

I

+
∑

I∈{1,...,k0}l

{[ ∑
J∈J (i1)×···×J (il )

Pθ (X1:l = J ) − Pθ0(X1:l = I )

]
Gγ 0

I

+
∑

J∈J (i1)×···×J (il )

Pθ (X1:l = J )
(
γJ − γ 0

I

)T
D1Gγ 0

I

+ 1

2

∑
J∈J (i1)×···×J (il )

Pθ (X1:l = J )
(
γJ − γ 0

I

)T
D2Gγ ∗

I

(
γJ − γ 0

I

)}

with γ ∗
I ∈ (γ n

I , γ 0
I ). Thus, using the fact that for all y, gγ (y) vanishes as ‖γ ‖ tends to infinity,

fl,θn − fl,θ0/Nn(θ
n) converges pointwise along a subsequence to a function h of form

h =
∑

I /∈{1,...,tk0 }l
πIGγI

+
∑

I∈{1,...,k0}l

(
aIGγ 0

I
+ bT

I D1Gγ 0
I

)

+
∑

I∈{1,...,k0}l
cI

∑
J∈J (i1)×···×J (il )

αI,J zT
I,J D2Gγ 0

I
zI,J

as in condition L(l), with
∑

I /∈{1,...,tk0 }l πI +∑I∈{1,...,k0}l (|aI |+ ‖bI‖+ cI ) = 1. But as ‖fl,θn −
fl,θ0‖1/Nn(θ

n) tends to 0 as n tends to infinity, we have ‖h‖1 = 0 by Fatou’s lemma, and thus
h = 0, contradicting the assumption.

Let us now prove that A4 implies A4bis. Let∑
I /∈{1,...,tk0 }l

πIGγI
+

∑
I∈{1,...,k0}l

(
aIGγ 0

I
+ bT

I D1Gγ 0
I

)

+
∑

I∈{1,...,k0}l
cI

∑
J∈J (i1)×···×J (il )

αI,J zT
I,J D2Gγ 0

I
zI,J = 0

⇔∑
I /∈{1,...,tk0 }l

πI +
∑

I∈{1,...,k0}l

(|aI | + ‖bI‖ + cI

)= 0
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with πI , aI , bI , αI,J and zI,J be as in assumption A4bis. We group the terms depending only on
y1 and we can rewrite the equation as

k∑
i=tk0+1

π ′
i (y2, . . . , yl)gγi

(y1) +
k0∑

i=1

(
a′
i (y2, . . . , yl)gγ 0

i
(y1) + b′T

i (y2, . . . , yl)D
1gγ 0

i
(y1)

)
(28)

+
k0∑

i=1

ti−ti−1∑
j=1

k0∑
i2,...,il=1

c′
I

∑
(j2,...,jl )∈J (i2)×···×J (il )

αI,J zI,J (i)T D2gγ 0
i
(y1)zI,J (i) = 0,

where we have written

zI,J = (zI,J (i1), . . . , zI,J (il)
)
, with I = (i, i2, . . . , il), J = (j1, . . . , jl), zI,J (i) ∈ R

d

and

c′
I = cI

l∏
t=2

gγ 0
it

(yt ).

Note that if for i = 1, . . . , k0 and j = 1, . . . , ti − ti−1, there exists wi,j ∈R
d such that

k0∑
i2,...,il=1

c′
I

∑
(j2,...,jl )∈J (i2)×···×J (il )

αI,J zI,J (i)T D2gγ 0
i
(y1)zI,J (i) = wT

i,jD
2gγ 0

i
(y1)wi,j ,

where possibly wi,j = 0. Let αi,j = ‖wi,j‖2/(
∑ti−ti−1

j=1 ‖wi,j‖2) if there exists j such that

‖wi,j‖2 > 0 and c′
i =∑i2,...,il

c′
I

∑ti−ti−1
j=1 ‖wi,j‖2, then

ti−ti−1∑
j=1

k0∑
i2,...,il=1

c′
I

∑
(j2,...,jl )∈J (i2)×···×J (il )

αI,J zI,J (i)T D2gγ 0
i
(y1)zI,J (i)

= c′
i

ti−ti−1∑
j=1

αi,jw
T
i,jD

2gγ 0
i
(y1)wi,j

and (10) implies that

a′
i = c′

i = 0, b′
i = 0, i = 1, . . . , k0, π ′

i = 0, i = tk0 + 1, . . . , k.

Simple calculations imply that

π ′
i =

k∑
i2,...,il=1

πI

l∏
t=2

gγ 0
it

(yt ) = 0 ⇔ ∀(i2, . . . , il) ∈ {1, . . . , k}l−2πi,i2,...,il = 0
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and similarly if i is such that there exists j = 1, . . . , ti − ti−1, I = (i, i2, . . . , il) and J =
(j, j2, . . . , jl) ∈ J (i) × · · · × J (il) such that cI > 0, αJ > 0 and ‖zI,J (i)‖ > 0, then ci,i2,...,il = 0
for all i2, . . . , il . Else, by considering yt for some other t , we obtain that (28) implies that

πI = 0 ∀I /∈ {1, . . . , tk0}l , cI = 0 ∀I ∈ {1, . . . , tk0}l .
This leads to

b′
i =

k0∑
i2,...,il=1

bI

∏
t≥2

gγ 0
it

(yt ) = 0 ∀i = 1, . . . , k0.

A simple recursive argument implies that bI = 0 for all I ∈ {1, . . . , tk0}l which in turns implies
that aI = 0 for all I ∈ {1, . . . , tk0}l and condition A4bis is verified.

4.3. Proof of Theorem 3

First, we obtain the following lemma.

Lemma 2. Under the assumptions of Theorem 3, for any sequence Mn tending to infinity,

P



(
(p + q) ∧ (2 − (p + q)

)‖f2,θ − f2,θ0‖1 ≤ Mn√
n

)
= 1 + oPθ0

(1).

We prove Lemma 2 by applying Theorem 4, using some of the computations of the proof of
Theorem 1 but verifying assumption C3bis instead of C3. Set Sn = Un ×X with

Un =
{
θ = (p, q, γ1, γ2) :

∥∥γ1 − γ 0
∥∥2 ≤ 1√

n
,
∥∥γ2 − γ 0

∥∥2 ≤ 1√
n
,

∥∥q(γ1 − γ 0)+ p
(
γ2 − γ 0)∥∥≤ 1√

n
,

∣∣∣∣q − 1

2

∣∣∣∣≤ ε,

∣∣∣∣p − 1

2

∣∣∣∣≤ ε

}

for small but fixed ε. We shall prove later the following lemma.

Lemma 3. Let Mn tend to infinity. Then

sup
(θ,x)∈Sn

Pθ0

[
�n(θ, x) − �n(θ0, x0) < −Mn

]= o(1)

and


(Sn) � n−3d/4. (29)

Now we prove that assumption C3bis holds with εn = Mn/
√

n, which will finish the proof of
Lemma 2. By Proposition 1, we obtain that there exists c(θ0) > 0 and η > 0 such that:
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• If ‖γ1 − γ 0‖ ≤ η and ‖γ2 − γ 0‖ ≤ η,

‖f2,θ − f2,θ0‖1

≥ c(θ0)
1

p + q

[∥∥q(γ1 − γ 0)+ p
(
γ2 − γ 0)∥∥+ q

∥∥γ1 − γ 0
∥∥2 + p

∥∥γ2 − γ 0
∥∥2]

.

• If ‖γ1 − γ 0‖ ≤ η and ‖γ1 − γ 0‖ + ‖γ2 − γ 0‖ > 2η,

‖f2,θ − f2,θ0‖1 ≥ c(θ0)

[
p

p + q
+ q

p + q

∥∥γ1 − γ 0
∥∥].

• If ‖γ2 − γ 0‖ ≤ η and ‖γ1 − γ 0‖ + ‖γ2 − γ 0‖ > 2η,

‖f2,θ − f2,θ0‖1 ≥ c(θ0)

[
q

p + q
+ p

p + q

∥∥γ2 − γ 0
∥∥].

• If ‖γ1 − γ 0‖ > η and ‖γ2 − γ 0‖ > η,

‖f2,θ − f2,θ0‖1 ≥ c(θ0).

Similar upper bounds hold also by Taylor expansion. Thus, for any m, An,m(εn) is a subset of
the set of θ ’s such that

min

{
(p + q) ∧ (2 − (p + q))

p + q

[∥∥q(γ1 − γ 0)+ p
(
γ2 − γ 0)∥∥+ q

∥∥γ1 − γ 0
∥∥2 + p

∥∥γ2 − γ 0
∥∥2];

(p + q) ∧ (2 − (p + q))

p + q

[
p + q

∥∥γ1 − γ 0
∥∥];

(p + q) ∧ (2 − (p + q))

p + q

[
q + p

∥∥γ2 − γ 0
∥∥]; (p + q) ∧ (2 − (p + q)

)}
� (m + 1)εn.

This leads to


2
(
An,m(εn)

)
�
[
(m + 1)εn

]2α + [(m + 1)εn

]2β + [(m + 1)εn

]α+d

so that if α,β > 3d/4 and (29) holds, there exists δ > 0 such that


2(An,m(εn))e−(nm2ε2
n)/(32l)


(Sn)
� n−δ

[
(Mnm)2α + (Mnm)2β + (Mnm)α+d

]
e−(M2

nm2)/(32l).

Also for all ε > 0 small enough An,m(ε) contains the set of θ ’s such that

max

{
(p + q) ∧ (2 − (p + q))

p + q

× [∥∥q(γ1 − γ 0)+ p
(
γ2 − γ 0)∥∥+ q

∥∥γ1 − γ 0
∥∥2 + p

∥∥γ2 − γ 0
∥∥2];
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(p + q) ∧ (2 − (p + q))

p + q

[
p + q

∥∥γ1 − γ 0
∥∥];

(p + q) ∧ (2 − (p + q))

p + q

[
q + p

∥∥γ2 − γ 0
∥∥]; (p + q) ∧ (2 − (p + q)

)}
� (m + 1)ε

therefore

N

(
mεn

12
,An,m(εn), dl(·, ·)

)
� m2+2d � e(nε2

nm2(ρθ0 −1)2)/(16l(2+ρθ0 −1)2),

so that assumption C3bis is verified.
We now prove Theorem 3. Notice first that, by setting

Dn =
∫


×X
e�n(θ,x)−�n(θ0,x0)
2(dθ)πX (dx),

as in the proof of Theorem 4 we get that for any sequence Cn tending to infinity,

Pθ0

(
Dn ≤ Cnn

−D/2)= o(1) (30)

with D = d + d/2.
Let now εn be any sequence going to 0 and let An = { p

p+q
≤ εn or q

p+q
≤ εn}. For some

sequence Mn going to infinity and δn = Mn/
√

n, let Bn = {(p + q) ∧ (2 − (p + q))‖f2,θ −
f2,θ0‖1 ≤ δn}. We then control with D = d + d/2, using Lemma 2

Eθ0

[
P


(An|Y1:n)
] = Eθ0

[
P


(An ∩ Bn|Y1:n)
]+ o(1)

= Eθ0

[∫
An∩Bn×X e�n(θ,x)−�n(θ0,x0)
2(dθ)πX (dx)∫


×X e�n(θ,x)−�n(θ0,x0)
2(dθ)πX (dx)

]
+ o(1)

:= Eθ0

[
Nn

Dn

]
+ o(1)

≤ Pθ0

(
Dn ≤ Cnn

−D/2)+ nD/2

Cn


2(An ∩ Bn) + o(1).

Thus using (30), the first part of Theorem 3 is proved by showing that


2(An ∩ Bn) � δ2α
n + δα+d

n + δ
d+d/2
n ε

α−d/2
n . (31)

Then, the second part of Theorem 3 follows from its first part and Lemma 2.
We now prove that (31) holds. Define

B1
n =

{
(p + q) ∧ (2 − (p + q))

p + q

× [∥∥q(γ1 − γ 0)+ p
(
γ2 − γ 0)∥∥+ q

∥∥γ1 − γ 0
∥∥2 + p

∥∥γ2 − γ 0
∥∥2]≤ δn

}
,
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B2
n =

{
(p + q) ∧ (2 − (p + q))

p + q

[
p + q

∥∥γ1 − γ 0
∥∥]≤ δn

}
,

B3
n =

{
(p + q) ∧ (2 − (p + q))

p + q

[
q + p

∥∥γ2 − γ 0
∥∥]≤ δn

}

and

B4
n = {(p + q) ∧ (2 − (p + q)

)≤ δn

}
.

Then


2(An ∩ Bn) ≤ 
2
(
An ∩ B1

n

)+ 
2
(
An ∩ B2

n

)+ 
2
(
An ∩ B3

n

)+ 
2
(
An ∩ B4

n

)
.

Notice that on An, if p + q ≥ 1, then p ≤ εn and q ≥ 1 − εn, or q ≤ εn and p ≥ 1 − εn, so that
also 2 − (p + q) ≥ 1 − εn.

• On An ∩ B1
n , ‖q(γ1 − γ 0) + p(γ2 − γ 0)‖ � δn, q‖γ1 − γ 0‖2 � δn, p‖γ2 − γ 0‖2 � δn, and

p � εn or q � εn. This gives 
2(An ∩ B1
n) � δ

d+d/2
n ε

α−d/2
n .

• On An ∩ B2
n , p � δn and q‖γ1 − γ 0‖ � δn in case p + q ≤ 1, and p � δn, 1 − q � δn and

q‖γ1 − γ 0‖ � δn in case p + q ≥ 1, leading to 
2(An ∩ B2
n) � δα+d

n + δ
α+β+d
n .

• For symmetry reasons, 
2(An ∩ B3
n) = 
2(An ∩ B2

n).
• On An ∩ B4

n , p � δn and q � δn, so that 
2(An ∩ B4
n) � δ2α

n .

Keeping only the leading terms, we see that (31) holds and this terminates the proof Theorem 3.
We now prove Lemma 3. We easily get 
2(Un) � n−3d/4, and

Dn ≥
∫

Un×X
e�n(θ,x)−�n(θ0,x)
2(dθ)πX (dx).

Let us now study �n(θ, x) − �n(θ0, x). First, following the proof of Lemma 2 of Douc et al. [5]
we find that, for any θ ∈ Un, for any x,

∣∣�n(θ) − �n(θ, x)
∣∣≤ (1 + 2ε

1 − 2ε

)2

,

where �n(θ) =∑k
x=1 μθ(x)�n(θ, x). Thus, for any θ ∈ Un and any x, and since �n(θ0, x) does

not depend on x,

�n(θ, x) − �n(θ0, x) ≥ �n(θ) − �n(θ0) −
(

1 + 2ε

1 − 2ε

)2

. (32)

Let us now study �n(θ) − �n(θ0).

�n(θ) − �n(θ0)

=
n∑

k=1

log

[
Pθ (Xk = 1|Y1:k−1)

gγ1

gγ 0
(Yk) + Pθ (Xk = 2|Y1:k−1)

gγ2

gγ 0
(Yk)

]
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and we set for k = 1

Pθ (Xk = 1|Y1:k−1) = Pθ (X1 = 1) = q

p + q
,

Pθ (Xk = 2|Y1:k−1) = Pθ (X1 = 2) = p

p + q
.

Denote pk(θ) the random variable Pθ (Xk = 1|Y1:k−1), which is a function of Y1:k−1 and thus
independent of Yk . We have the recursion

pk+1(θ) = (1 − p)pk(θ)gγ1(Yk) + q(1 − pk(θ))gγ2(Yk)

pk(θ)gγ1(Yk) + (1 − pk(θ))gγ2(Yk)
. (33)

Note that, for any p, q in ]0,1[, for any k ≥ 1,

pk

(
p,q, γ 0, γ 0)= q

p + q
.

We shall denote by Di
(γ1)

j ,(γ2)
i−j the ith partial derivative operator j times with respect to γ1

and i − j times with respect to γ2 (0 ≤ j ≤ i, the order in which derivatives are taken does not
matter). Fix θ = (p, q, γ1, γ2) ∈ Un. When derivatives are taken at point (p, q, γ 0, γ 0), they are
written with 0 as superscript.

Using Taylor expansion till order 4, there exists t ∈ [0,1] such that denoting θt = tθ + (1 −
t)(p, q, γ 0, γ 0):

�n(θ) − �n(θ0) = (γ1 − γ 0)D1
γ1

�0
n + (γ2 − γ 0)D1

γ2
�0
n + Sn(θ) + Tn(θ) + Rn(θ, t), (34)

where Sn(θ) denotes the term of order 2, Tn(θ) denotes the term of order 3, and Rn(θ, t) the
remainder, that is

Sn(θ) = (
γ1 − γ 0)2D2

(γ1)
2�

0
n + 2

(
γ1 − γ 0)(γ2 − γ 0)D2

γ1,γ2
�0
n + (γ2 − γ 0)2D2

(γ2)
2�

0
n,

Tn(θ) = (
γ1 − γ 0)3D3

(γ1)
3�

0
n + 3

(
γ1 − γ 0)2(γ2 − γ 0)D3

(γ1)
2,γ2

�0
n

+ 3
(
γ1 − γ 0)(γ2 − γ 0)2D3

γ1,(γ2)
2�

0
n + (γ2 − γ 0)3D3

(γ2)
3�

0
n

and

Rn(θ, t) =
4∑

k=0

(
k

4

)(
γ1 − γ 0)k(γ2 − γ 0)4−k

D4
(γ1)

k,(γ2)
4−k �n(θt ).

Easy but tedious computations lead to the following results.

(
γ1 − γ 0)D1

γ1
�0
n + (γ2 − γ 0)D1

γ2
�0
n =

[
n∑

k=1

D1
γ gγ0

gγ0

(Yk)

][
q(γ1 − γ 0) + p(γ2 − γ 0)

p + q

]

=
[

1√
n

n∑
k=1

D1
γ gγ0

gγ0

(Yk)

][√
n
q(γ1 − γ 0) + p(γ2 − γ 0)

p + q

]



2066 E. Gassiat and J. Rousseau

so that

sup
θ∈Un

∣∣(γ1 − γ 0)D1
γ1

�0
n + (γ2 − γ 0)D1

γ2
�0
n

∣∣= OPθ0
(1). (35)

Also,

Sn(θ) = −
[

1

n

n∑
k=1

(
D1

γ gγ0

gγ0

(Yk)

)2
][√

n
q(γ1 − γ 0) + p(γ2 − γ 0)

p + q

]2

+
[

1√
n

n∑
k=1

D2
γ 2gγ0

gγ0

(Yk)

][
q

p + q

(
n1/4(γ1 − γ 0))2 + p

p + q

(
n1/4(γ2 − γ 0))2]

+ 2
(
n1/4(γ1 − γ 0))2[ 1√

n

n∑
k=1

(
D1

γ1
p0

k

)D1
γ gγ0

gγ0

(Yk)

]

− 2
(
n1/4(γ2 − γ 0))2[ 1√

n

n∑
k=1

(
D1

γ2
p0

k

)D1
γ gγ0

gγ0

(Yk)

]

+ 2
(
n1/4(γ1 − γ 0)(γ2 − γ 0))[ 1√

n

n∑
k=1

(
D1

γ2
p0

k − D1
γ1

p0
k

)D1
γ gγ0

gγ0

(Yk)

]
.

Using (33) one gets that for all integer k ≥ 2 (D1
γ1

p0
1 = 0 and D1

γ2
p0

1 = 0):

D1
γ1

p0
k = pq

(p + q)2

k−1∑
l=1

(1 − p − q)k−l
D1

γ gγ0

gγ0

(Yl)

and

D1
γ2

p0
k = −D1

γ1
p0

k

which leads to

Eθ0

[(
1√
n

n∑
k=1

(
D1

γ1
p0

k

)D1
γ gγ0

gγ0

(Yk)

)2]
≤
(

Eθ0

(
D1

γ gγ0

gγ0

(Y1)

)2)2

and

Eθ0

[(
1√
n

n∑
k=1

(
D1

γ2
p0

k

)D1
γ gγ0

gγ0

(Yk)

)2]
≤
(

Eθ0

(
D1

γ gγ0

gγ0

(Y1)

)2)2

.

Thus, we obtain

sup
θ∈Un

∣∣Sn(θ)
∣∣= OPθ0

(1). (36)
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For the order 3 term, as soon as θ ∈ Un:

Tn(θ) = −
[

n∑
k=1

(
D1

γ gγ0

gγ0

(Yk)

)3
][

q(γ1 − γ 0) + p(γ2 − γ 0)

p + q

]3

+
[

n∑
k=1

D3
γ 3gγ0

gγ0

(Yk)

][
q

p + q

(
γ1 − γ 0)3 + p

p + q

(
γ2 − γ 0)3]

− 3

[
n∑

k=1

D1
γ gγ0

gγ0

(Yk)
D2

γ 2gγ0

gγ0

(Yk)

][
q(γ1 − γ 0) + p(γ2 − γ 0)

p + q

]

×
[

q

(p + q)2

(
γ1 − γ 0)2 + p

(p + q)2

(
γ2 − γ 0)2]

+ O
(
n−3/4){ n∑

k=1

(
D1

γ1
p0

k

)(D1
γ gγ0

gγ0

(Yk)

)2

+
n∑

k=1

(
D1

γ1
p0

k

)D2
γ 2gγ0

gγ0

(Yk) +
n∑

k=1

(
D2

(γ1)
2p

0
k

)D1
γ gγ0

gγ0

(Yk)

+
n∑

k=1

(
D2

(γ2)
2p

0
k

)D1
γ gγ0

gγ0

(Yk) +
n∑

k=1

(
D2

(γ1,γ2)
p0

k

)D1
γ gγ0

gγ0

(Yk)

}

so that using assumptions (14)

sup
θ∈Un

∣∣Tn(θ)
∣∣= OPθ0

(
n−1/4)+ OPθ0

(1) + O
(
n−1/4)Zn

with

Zn = 1√
n

n∑
k=1

{[(
D1

γ gγ0

gγ0

(Yk)

)2

+
D2

γ 2gγ0

gγ0

(Yk)

]
D1

γ1
p0

k

+ D1
γ gγ0

gγ0

(Yk)
[
D2

(γ1)
2p

0
k + D2

(γ2)
2p

0
k + D2

(γ1,γ2)
p0

k

]}
.

Now using (33) one gets that for all integer k ≥ 1,

1

1 − p − q
D2

(γ1)
2p

0
k+1 = −2

pq2

(p + q)3

(
D1

γ gγ0

gγ0

(Yk)

)2

+ 2
(
D1

γ1
p0

k

)D1
γ gγ0

gγ0

(Yk) + pq

(p + q)2

D2
γ 2gγ0

gγ0

(Yk) + D2
(γ1)

2p
0
k ,
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1

1 − p − q
D2

(γ2)
2p

0
k+1 = 2

p2q

(p + q)3

(
D1

γ gγ0

gγ0

(Yk)

)2

− 2
(
D1

γ1
p0

k

)D1
γ gγ0

gγ0

(Yk) − pq

(p + q)2

D2
γ 2gγ0

gγ0

(Yk) + D2
(γ2)

2p
0
k ,

1

1 − p − q
D2

(γ1,γ2)
p0

k+1 = 2
pq(q − p)

(p + q)3

(
D1

γ gγ0

gγ0

(Yk)

)2

+ 2
(
D1

γ1
p0

k

)D1
γ gγ0

gγ0

(Yk) + D2
(γ1,γ2)

p0
k ,

and using D2
(γ1)

2p
0
1 = 0,D2

(γ2)
2p

0
1 = 0,D2

(γ1,γ2)
p0

1 = 0 and easy but tedious computations one
gets that for some finite C > 0,

Eθ0

(
Z2

n

)≤ CEθ0

(
D1

γ gγ0

gγ0

(Y1)

)2[
Eθ0

(
D1

γ gγ0

gγ0

(Y1)

)4

+ Eθ0

(D2
γ 2gγ0

gγ0

(Y1)

)2

+
(

Eθ0

(
D1

γ gγ0

gγ0

(Y1)

)2)2]

so that we finally obtain

sup
θ∈Un

∣∣Tn(θ)
∣∣= OPθ0

(1). (37)

Let us finally study the fourth order remainder Rn(θ, t). We have

sup
θ∈Un

∣∣Rn(θ, t)
∣∣≤ 1

n

n∑
k=1

Ak,nBk,n,

where, for big enough n, Ak,n is a polynomial of degree at most 4 in supγ ′∈Bd(γ 0,ε) ‖Di
γ gγ ′
gγ ′ (Yk)‖,

and Bk,n is a sum of terms of form

sup
θ∈Un

∣∣∣∣∣
4∏

i=1

i∏
j=0

(
Di

(γ1)
j ,(γ2)

i−j pk(θt )
)ai,j

∣∣∣∣∣, (38)

where the ai,j are non-negative integers such that
∑4

i=1
∑

j=0 iai,j ≤ 4.
To prove that

sup
θ∈Un

∣∣Rn(θ, t)
∣∣= OPθ0

(1) (39)

holds, it is enough to prove that Eθ0 |
∑n

k=1 Ak,nBk,n| = O(n). But for each k, pk(θ) and its
derivatives depend on Y1, . . . , Yk−1 only, so that Ak,n and Bk,n are independent random variables,
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and

Eθ0

∣∣∣∣∣
n∑

k=1

Ak,nBk,n

∣∣∣∣∣ ≤
n∑

k=1

Eθ0 |Ak,n|Eθ0 |Bk,n|

≤ C max
i=1,2,3,4

Eθ0

(
sup

γ ′∈Bd(γ 0,ε)

∥∥∥∥Di
γ gγ ′

gγ ′
(Y1)

∥∥∥∥
4) n∑

k=1

Eθ0 |Bk,n|

for some finite C > 0. Now, using (33) one gets that for all integer k ≥ 1 and for any θ ,

D1
γ1

pk+1(θ)

= (1 − p − q)

{
pk(θ)(1 − pk(θ))gγ2(Yk)D

1
γ gγ1(Yk) + gγ1(Yk)gγ2(Yk)D

1
γ1

pk(θ)

(pk(θ)gγ1(Yk) + (1 − pk(θ))gγ2(Yk))2

}
,

D1
γ2

pk+1(θ)

= (1 − p − q)

{−pk(θ)(1 − pk(θ))gγ1(Yk)D
1
γ gγ2(Yk) + gγ1(Yk)gγ2(Yk)D

1
γ2

pk(θ)

(pk(θ)gγ1(Yk) + (1 − pk(θ))gγ2(Yk))2

}
.

Notice that for any θ , any k ≥ 2, pk(θ) ∈ (1 − p,q) so that for any θ ∈ Un, any k ≥ 2, pk(θ) ∈
[ 1

2 − ε, 1
2 + ε]. We obtain easily that for i = 1,2, k ≥ 2,

sup
θ∈Un

∣∣D1
γi

pk+1(θ)
∣∣≤ ( 2ε

1 − 8ε

){
sup

γ ′∈Bd(γ 0,ε)

∥∥∥∥D1
γ gγ ′

gγ ′
(Yk)

∥∥∥∥+ sup
θ∈Un

∣∣D1
γi

pk(θ)
∣∣}.

Using similar tricks, it is possible to get that there exists a finite constant C > 0 such that for any
i = 1,2,3,4, any j = 0, . . . , i, any k ≥ 2,

sup
θ∈Un

∣∣Di
(γ1)

j ,(γ2)
i−j pk+1(θ)

∣∣

≤ Cε

{
sup

γ ′∈Bd(γ 0,ε)

∥∥∥∥∥
i∑

l=1

Dl
γ l gγ ′

gγ ′
(Yk)

∥∥∥∥∥
i+1−l

+
i∑

l=1

l∑
m=0

sup
θ∈Un

∣∣Dl
(γ1)

j ,(γ2)
l−j pk(θ)

∣∣i+1−l

}
.

By recursion, we obtain that there exists a finite C > 0 such that any term of form (38) has
expectation uniformly bounded:

Eθ0

[
sup
θ∈Un

∣∣∣∣∣
4∏

i=1

i∏
j=0

(
Di

(γ1)
j ,(γ2)

i−j pk(θt )
)ai,j

∣∣∣∣∣
]

≤ C max
m=1,2,3,4

max
r=1,2,3,4

Eθ0

(
sup

γ ′∈Bd(γ 0,ε)

∥∥∥∥Dm
γ gγ ′

gγ ′
(Y1)

∥∥∥∥
r)
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which concludes the proof of (39). Now, using (32), (34), (35), (36), (37) and (39), we get

Dn ≥ e
−OPθ0

(1)

2(Un)

so that (20) holds with Sn satisfying (29).

4.4. Proof of Theorem 4

The proof follows the same lines as in Ghosal and van der Vaart [10]. We write

P



[
‖fl,θ − fl,θ0‖1

ρθ − 1

2Rθ + ρθ − 1
≥ εn

∣∣∣Y1:n
]

=
∫
An×X e�n(θ,x)−�n(θ0,x0)

(dθ)πX (dx)∫

×X e�n(θ,x)−�n(θ0,x0)

(dθ)πX (dx)

:= Nn

Dn

,

where An = {θ :‖fl,θ −fl,θ0‖1
ρθ−1

2Rθ+ρθ−1 ≥ εn}. A lower bound on Dn is obtained in the following

usual way. Set �n = {(θ, x);�n(θ, x) − �n(θ0, x0) ≥ −nε̃2
n}, which is a random subset of 
 ×X

(depending on Y1:n),

Dn ≥
∫

Sn

1�ne�n(θ,x)−�n(θ0,x0)

(dθ)πX (dx)

≥ e−nε̃2
n
(Sn ∩ �n),

therefore

Pθ0

[
Dn < e−nε̃2

n
(Sn)/2
] ≤ Pθ0

[


(
Sn ∩ �c

n

)≥ 
(Sn)/2
]

≤ 2

∫
Sn
Pθ0[�n(θ, x) − �n(θ0, x0) ≤ −nε̃2

n]

(dθ)πX (dx)


(Sn)

= o(1)

and

P



[
‖fl,θ − fl,θ0‖1

ρθ − 1

2Rθ + ρθ − 1
≥ εn

∣∣∣Y1:n
]

= oPθ0
(1) + Nn

Dn

1
2Dn≥e−nε̃2

n
(Sn)
.

But

Nn =
∫

(An∩Fn)×X
e�n(θ,x)−�n(θ0,x0)

(dθ)πX (dx)

+
∫

(An∩F c
n)×X

e�n(θ,x)−�n(θ0,x0)

(dθ)πX (dx)
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and

Eθ0

[∫
(An∩F c

n)×X
e�n(θ,x)−�n(θ0,x0)

(dθ)πX (dx)

]

= O
[




(
An ∩Fc

n

)]= o
(
e−nε̃2

n(Cn+1)
)

by Fubini’s theorem and assumption C2 together with the fact that �n(θ0) − �n(θ0, x0) is uni-
formly upper bounded. This implies using assumption C1 that

P



[
‖fl,θ − fl,θ0‖1

ρθ − 1

2Rθ + ρθ − 1
≥ εn

∣∣∣Y1:n
]

= oPθ0
(1) + Ñn

Dn

1
2Dn≥e−nε̃2

n
(Sn)
, (40)

where Ñn = ∫
(An∩Fn)×X e�n(θ,x)−�n(θ0,x0)

(dθ)πX (dx). Let now (θj )j=1,...,N , N = N(δ,Fn,

dl(·, ·)), be the sequence of θj ’s in Fn such for all θ ∈ Fn there exists a θj with dl(θj , θ) ≤ δ

with δ = εn/12. Assume for simplicity’s sake and without loss of generality that n is a multiple
of the integer l, and define

φj = 1∑n/l
i=1(1(Yli−l+1,...,Yli )∈Aj

−Pθ0 ((Y1,...,Yl )∈Aj ))>tj
,

where

Aj = {(y1, . . . , yl) ∈ Y l :fl,θ0(y1, . . . , yl) ≤ fl,θj
(y1, . . . , yl)

}
for some positive real number tj to be fixed later also. Note that

Pθj

(
(Y1, . . . , Yl) ∈ Aj

)− Pθ0

(
(Y1, . . . , Yl) ∈ Aj

)= 1
2‖fl,θj

− fl,θ0‖1.

Define also

ψn = max
1≤j≤N :θj ∈An

φj .

Then

Eθ0

(
Ñn

Dn

ψn

)
≤ Eθ0ψn ≤ N

(
δ,Fn, d(·, ·)) max

1≤j≤N :θj ∈An

Eθ0φj (41)

and

Eθ0

(
Ñn(1 − ψn)

) =
∫
X

Eθ0,x0

(
Ñn(1 − ψn)

)
μθ0(dx0)

(42)

=
∫

(An∩Fn)×X
Eθ,x

(
(1 − ψn)

)


(dθ)πX (dx).

Now

Eθ0[φj ] = Pθ0

[
n/l∑
i=1

(
1(Yli−l+1,...,Yli )∈Aj

− Pθ0

(
(Y1, . . . , Yl) ∈ Aj

))
> tj

]
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and

Eθ,x(1 − φj )

= Pθ,x

[
n/l∑
i=1

(−1(Yli−l+1,...,Yli )∈Aj
+ Pθ,x

(
(Yli−l+1, . . . , Yli) ∈ Aj

))

> −tj +
n/l∑
i=1

(
Pθ,x

(
(Yli−l+1, . . . , Yli) ∈ Aj

)− Pθ0

(
(Y1, . . . , Yl) ∈ Aj

))]
.

Consider the sequence (Zi)i≥1 with for all i ≥ 1, Zi = (Xli−l+1, . . . ,Xli, Yli−l+1, . . . , Yli),
which is, under Pθ , a Markov chain with transition kernel Q̄θ given by

Q̄θ

(
z,dz′)

= gθ

(
y′

1|x′
1

) · · ·gθ

(
y′
l |x′

l

)
Qθ

(
xl,dx′

1

)
Qθ

(
x′

1,dx′
2

) · · ·Qθ

(
x′
l−1,dx′

l

)
μ
(
dy′

1

) · · ·μ(dy′
l

)
.

This kernel satisfies the same uniform ergodic property as Qθ , with the same coefficients, that
is condition (17) holds with the coefficients Rθ and ρθ with the replacement of Qθ by Q̄θ , and
we may use Rio’s [18] exponential inequality (Corollary 1) with uniform mixing coefficients (as
defined in Rio [18]) satisfying φ(m) ≤ Rθρ

−m
θ . Indeed, by the Markov property,

φ(m) = sup
A∈σ(Z1),B∈σ(Zm+1)

(
Pθ (B) − Pθ (B|A)

)
≤ sup

z

∣∣Pθ (Zm+1 ∈ B) − Pθ (Zm+1 ∈ B|Z1 = z)
∣∣

≤ Rθρ
−m
θ .

We thus obtain that, for any positive real number u,

Pθ0

[
n/l∑
i=1

(
1(Yli−l+1,...,Yli )∈Aj

− Pθ0

(
(Y1, . . . , Yl) ∈ Aj

))
> u

]
(43)

≤ exp

{ −2lu2(ρθ0 − 1)2

n(2Rθ0 + ρθ0 − 1)2

}

and

Pθ,x

[
n/l∑
i=1

(−1(Yli−l+1,...,Yli )∈Aj
+ Pθ,x

(
(Yli−l+1, . . . , Yli) ∈ Aj

))
> u

]
(44)

≤ exp

{ −2lu2(ρθ − 1)2

n(2Rθ + ρθ − 1)2

}
.
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Set now

tj = n‖fl,θj
− fl,θ0‖1

4l
.

Since for any θ , ρθ−1
2Rθ+ρθ−1 ≤ 1 and since consequently for θj ∈ An, ‖fl,θj

−fl,θ0‖1 ≥ εn, we first
get, using (43),

Eθ0[φj ] ≤ exp

{ −nε2
n(ρθ0 − 1)2

8l(2Rθ0 + ρθ0 − 1)2

}
. (45)

Now, for any θ ∈ An,

−tj +
n/l∑
i=1

(
Pθ,x

(
(Yli−l+1, . . . , Yli) ∈ Aj

)− Pθ0

(
(Y1, . . . , Yl) ∈ Aj

))

= −n‖fl,θj
− fl,θ0‖1

4l
+ n

l

{
Pθj

(
(Y1, . . . , Yl) ∈ Aj

)− Pθ0

(
(Y1, . . . , Yl) ∈ Aj

)}
+ n

l

{
Pθ

(
(Y1, . . . , Yl) ∈ Aj

)− Pθj

(
(Y1, . . . , Yl) ∈ Aj

)}

+
n/l∑
i=1

(
Pθ,x

(
(Yli−l+1, . . . , Yli) ∈ Aj

)− Pθ

(
(Y1, . . . , Yl) ∈ Aj

))

≥ n‖fl,θj
− fl,θ0‖1

4l
− n‖fl,θj

− fl,θ‖1

l
−

n/l∑
i=1

Rθρ
−i
θ

≥ n‖fl,θj
− fl,θ0‖1

4l
− n‖fl,θj

− fl,θ‖1

l
− Rθρθ

ρθ − 1

≥ n

4l

(
1 − 5

12
− 4l

12nεn

)
‖fl,θ − fl,θ0‖1 ≥ n

8l
‖fl,θ − fl,θ0‖1

for large enough n, using the triangular inequality and the fact that ‖fl,θj
− fl,θ‖1 ≤ εn

12 ≤
‖fl,θ−fl,θ0 ‖1

12
ρθ−1

2Rθ+ρθ−1 since θ ∈ An and ρθ−1
2Rθ+ρθ−1 ≤ 1. Then for θ ∈ An and large enough n,

Eθ,x(1 − φj ) ≤ exp

{
−nε2

n

32l

}
. (46)

Combining (40), with (41), (45), (42), (46) and using assumptions C1 and C3 we finally obtain
for large enough n

Pθ0

(
P




[
‖fl,θj

− fl,θ0‖1
ρθ − 1

2Rθ + ρθ − 1
≥ εn

∣∣∣Y1:n
])

≤ o(1) + O
(
enε̃2

n(1+Cn)
)

exp

{
−nε2

n

32l

}
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+ exp

{ −nε2
n(ρθ0 − 1)2

8l(2Rθ0 + ρθ0 − 1)2

}
exp

{
nε2

n(ρθ0 − 1)2

16l(2Rθ0 + ρθ0 − 1)2

}

= o(1).

Assume now that assumption C3bis holds. By writing An ∩ Fn = ⋃
m≥1 An,m(εn) and using

same reasoning, one gets, for some positive constant c:

Pθ0

(
P




[
‖fl,θj

− fl,θ0‖1
ρθ − 1

2Rθ + ρθ − 1
≥ εn

∣∣∣Y1:n
])

= o(1) + enε̃2
n

∑
m≥1



(An,m(εn))


(Sn)
exp

{
−nm2ε2

n

32l

}

+
∑
m≥1

N

(
mεn

12
,An,m(εn), dl(·, ·)

)
exp

{
− nm2ε2

n(ρθ0 − 1)2

8l(2Rθ0 + ρθ0 − 1)2

}

= o(1)

and the second part of Theorem 4 is proved.
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