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Large deviations for bootstrapped empirical
measures
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We investigate the Large Deviations (LD) properties of bootstrapped empirical measures with exchange-
able weights. Our main results show in great generality how the resulting rate functions combine the LD
properties of both the sample weights and the observations. As an application, we obtain new LD results
and discuss both conditional and unconditional LD-efficiency for many classical choices of entries such as
Efron’s, leave-p-out, i.i.d. weighted, k-blocks bootstraps, etc.
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1. Introduction

In 1979, in a landmark paper [14], Efron proposed the following idea: When given a realization
xn

1 , . . . , xn
n of random variables Xn

1 , . . . ,Xn
n one can easily obtain “additional data” by sampling

independent and 1
n

∑n
i=1 δxn

i
-distributed random variables X∗

1, . . . ,X∗
m, . . . . It amounts to sample

with replacement from an urn which composition is described by 1
n

∑n
i=1 δxn

i
. Often, this is

computationally cheap and theoretical studies are available to assess the quality of the distribution
of 1

m

∑m
i=1 δX∗

i
in approximating the distribution of 1

n

∑n
i=1 δXn

i
which makes it all worthwhile.

It was soon noticed that this urn procedure is not the only possible one: It can be generalized so
that

Ln = 1

n

n∑
i=1

Wn
i δxn

i
(1.1)

is the right object to consider once it is assumed that the sampling weights (Wn
1 , . . . ,Wn

n ) are pos-
itive n-exchangeable random variables such that

∑n
i=1 Wn

i = n. Let us recall that (Wn
1 , . . . ,Wn

n )

is n-exchangeable means that for every element σ of Sn the set of permutations of {1, . . . , n}
both (Wn

1 , . . . ,Wn
n ) and (Wn

σ(1), . . . ,W
n
σ(n)) have the same distribution. For example, Efron’s

bootstrap corresponds to (Wn
1 , . . . ,Wn

n ) distributed according to a Multinomial law. A rich lit-
erature started flourishing on the ground of this idea that developed into two complementary
directions: “conditional” results where xn

1 , . . . , xn
n are fixed observations filling some conditions

and Ln = 1
n

∑n
i=1 Wn

i δxn
i

is considered and “unconditional” results where the xn
1 , . . . , xn

n are
allowed to fluctuate and Ln = 1

n

∑n
i=1 Wn

i δXn
i

is considered instead, see, for example, [2,17,19].
Here we are concerned with the LD properties of (Ln)n≥1 and (Ln)n≥1. Let us recall that a

sequence of random variables (Y n)n≥1 taking values on a topological space Y obeys a Large
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Deviation Principle (LDP) with rate function I if I is a nonnegative, lower semi-continuous
function defined on Y such that

− inf
y∈Ao

I (y) ≤ lim inf
n→∞

1

n
logP
(
Yn ∈ A

)≤ lim sup
n→∞

1

n
logP
(
Yn ∈ A

)≤ − inf
y∈Ā

I (y)

for any measurable set A ⊂ Y , whose interior is denoted by Ao and closure by Ā. If the level sets
{y : I (y) ≤ α} are compact for every α < ∞, I is called a good rate function. For a background
on the theory of large deviations, see Dembo and Zeitouni [9] and references therein. In the
present paper, we prove under natural conditions on ((Wn

1 , . . . ,Wn
n ))n≥1 and ((xn

1 , . . . , xn
n))n≥1

or ((Xn
1 , . . . ,Xn

n))n≥1 that (Ln)n≥1 and (Ln)n≥1 obey a LDP and show how the resulting rate
functions combine the LD properties of the aforementioned random variables.

Classically a bootstrap scheme is said to be efficient when it mimics the behavior of
1
n

∑n
i=1 δXn

i
and one distinguishes between “conditional efficiency” and “unconditional effi-

ciency”. Following Barbe and Bertail [2], we say that a bootstrap scheme is LD-efficient when the
bootstrapped empirical measure has the same LD properties as the original empirical measure. It
is a very strong property: thinking of percentile bootstrap’s confidence intervals, LD-efficiency
says that the relative coverage accuracy tends to 1 exponentially fast. It is related to the notion of
asymptotic efficiency as described in [1]. Applying our general approach, we obtain new LD re-
sults and discuss both conditional and unconditional LD-efficiency for many classical choices of
((Wn

i )1≤i≤n)n≥1 such as Efron’s, leave-p-out, i.i.d. weighted, k-blocks bootstraps, etc. Another
possible application is the quantification of the performance of importance sampling algorithms,
see Hult and Nyquist [21].

Outline of the paper

The paper is structured as follows: In Section 2, we describe our results. As an application, in
Section 3 we discuss LD efficiency issues. To this end, we need sample weights LDPs which are
not the main concern of our work. This is the reason why their proofs are given in the supplemen-
tal article [26]. Section 4 is devoted to the proof of the central result of our paper (Theorem 2.1
below). Section 5 is concerned with the proof of Theorem 2.2. Finally, Section 6 contains the
proof of all other results.

2. Statement of the results

2.1. Notations

Wasserstein distances will play a key role in our paper. Given any Polish space (E,d) we de-
note by M1(E) the set of Borel probability measures on E. We further define on the so-called
Wasserstein space

W1(E) =
{
ρ ∈ M1(E) : there exists some y ∈ E such that

∫
E

d(x, y)ρ(dx) < ∞
}
,
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the Wasserstein distance

Wd
1 (ρ, γ ) = inf

π∈C(ρ,γ )

{∫
E×E

d(x, y)π(dx,dy)

}
,

where C(ρ, γ ) is the subset of M1(E × E) of couplings of ρ and γ , that is, the set of Borel
probability measures π on E × E such that their first marginal π1 is ρ and second marginal
π2 is γ . If d is a bounded distance, then W1(E) = M1(E) and Wd

1 coincides with the weak-

convergence topology (see, e.g., Theorem 7.12 in [27]). We shall denote by
w→ (resp.

Wd
1→) the

weak (resp. Wd
1 ) convergence of probability measures on M1(E) (resp. W1(E)). Let us recall

that μn w→ μ if and only if for every real-valued, bounded and continuous application f defined
on E we have

∫
E

f (x)μn(dx) → ∫
E

f (x)μ(dx). Hence, by introducing W
ζ
1 (resp. Wλ

1 , W
χ

1 ),
the Wasserstein distance defined on M1(R+) (resp. M1(E), M1(R+ × E)) when R+ (resp. E,
R+ × E) is furnished with the bounded distance

ζ(x, z) = β(x, z)

1 + β(x, z)

(
resp. λ(y, t) = d(y, t)

1 + d(y, t)
,χ
(
(x, y), (z, t)

)= ζ(x, z) + λ(y, t)

)
,

where β(x, z) = |x −z| is the usual Euclidean distance on R+, we obtain a user-friendly distance
compatible with the weak-convergence topology.

Key to our paper are the set

M1
1(R+ × E) =

{
ρ ∈ M1(R+ × E) :

∫
R+

wρ1(dw) = 1

}

endowed with the distance �(ρ,γ ) = W
β

1 (ρ1, γ1) + W
χ

1 (ρ, γ ) and the map F defined by

F :M1
1(R+ × E) → M1(E),

ρ(dw,dx) 	→
∫
R+

wρ(dw,dx).
(2.1)

Indeed, Ln = F( 1
n

∑n
i=1 δ(Wn

i ,xn
i )) and F is continuous when M1

1(R+ × E) is equipped with �

and M1(E) with the weak convergence topology. We also consider the natural set of the sampling
weights distributions

M1
1 (R+) =

{
ρ ∈ M1(R+),

∫
R+

wρ(dw) = 1

}
.

Finally, for any two probabilities ρ, ν on a measurable space (E,E) we denote by

H(ν|ρ) =
{∫

E

dν log
dν

dρ
, if ν 
 ρ,

+∞, otherwise,
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the relative entropy of ν with respect to ρ. To any ρ(dw,dx) ∈ M1(R+ × E), we associate
ρx(dw) ∈ M1(R+) (resp. ρw(dx) ∈ M1(E)) a stochastic kernel which is the conditional distri-
bution of the first (resp. second) marginal of ρ given the second (resp. first). We summarize this
by ρ(dw,dx) = ρx(dw)⊗ρ2(dx) (resp. ρ(dw,dx) = ρ1(dw)⊗ρw(dx)). If ν, γ ∈ M1(R+ ×E)

are such that ν1 = γ1 = θ (resp. ν2 = γ2 = θ ), then

H(ν|γ ) =
∫
R+

H(νw|γw)θ(dw) (2.2)

(resp. H(ν|γ ) = ∫
E

H(νx |γx)θ(dx)), see Lemma 1.4.3 in [13].

2.2. Main results

We are given a triangular array ((Wn
i )1≤i≤n)n≥1 of R+-valued random variables defined on a

probability space (�,A,P) such that

(H1) For every n ≥ 1, we have
∑n

i=1 Wn
i = n and (Wn

1 , . . . ,Wn
n ) is n-exchangeable.

(H2) The sequence (Sn = 1
n

∑n
i=1 δWn

i
)n≥1 satisfies a LDP on M1

1 (R+) endowed with the

distance W
β

1 with good rate function IW .

We are further given a triangular array ((xn
i )1≤i≤n)n≥1 of elements of (E,d) such that

(H3) μn = 1
n

∑n
i=1 δxn

i

w→ μ ∈ M1(E).

We are first interested in the LD behavior of

Vn = 1

n

n∑
i=1

δ(Wn
i ,xn

i ).

Theorem 2.1. Under (H1–H2–H3) the sequence (Vn)n≥1 satisfies a LDP on M1
1(R+ × E)

endowed with the distance � with good rate function

J (ρ;μ) =
{

H(ρ|ρ1 ⊗ μ) + IW (ρ1), if ρ2 = μ,
+∞, otherwise.

We prove Theorem 2.1 in Section 4. It is the keystone of the paper. Indeed, since

Ln = 1

n

n∑
i=1

Wn
i δxn

i
= F
(
Vn
)

with F defined in (2.1) a LDP for (Ln)n≥1 immediately follows from Theorem 2.1 by contraction
(see Theorem 4.2.1 in [9]) since � makes F a continuous map.
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Corollary 2.1. Under (H1–H2–H3) the sequence (Ln)n≥1 satisfies a LDP on M1(E) endowed
with the weak convergence topology with good rate function

K(ν;μ) = inf
ρ:F(ρ)=ν

J (ρ;μ)

= inf
ρx :F(ρx⊗μ)=ν

{∫
E

H(ρx |ρ1)μ(dx) + IW (ρ1)

}
.

Next, we allow the xn
i ’s to fluctuate and consider a triangular array ((Xn

i )1≤i≤n)n≥1 of E-
valued random variables defined on (�,A,P) such that

(H4) The sequence (On = 1
n

∑n
i=1 δXn

i
)n≥1 satisfies a LDP on M1(E) endowed with the weak

convergence topology with good rate function IX .
(H5) For every n ≥ 1, the vectors (Xn

1 , . . . ,Xn
n) and (Wn

1 , . . . ,Wn
n ) are independent.

A LDP for

V n = 1

n

n∑
i=1

δ(Wn
i ,Xn

i )

holds as a consequence of Theorem 2.1 and Theorem 2.3 in [18].

Theorem 2.2. Under (H1–H2–H4–H5) the sequence (V n)n≥1 satisfies a LDP on M1
1(R+ × E)

endowed with the distance � with good rate function

J (ρ) = H(ρ|ρ1 ⊗ ρ2) + IW (ρ1) + IX(ρ2). (2.3)

Theorem 2.2 is proved in Section 5. Again, by contraction, a LDP for

Ln = 1

n

n∑
i=1

Wn
i δXn

i
= F
(
V n
)

holds as an immediate consequence of Theorem 2.2.

Corollary 2.2. Under (H1–H2–H4–H5) the sequence (Ln)n≥1 satisfies a LDP on M1(E) en-
dowed with the weak convergence topology with good rate function

K(ν) = inf
ρ:F(ρ)=ν

J (ρ) = inf
ρ2∈M1(E)

{
K(ν;ρ2) + IX(ρ2)

}
, (2.4)

where

K(ν;ρ2) = inf
ρx :F(ρx⊗ρ2)=ν

{∫
E

H(ρx |ρ1)ρ2(dx) + IW (ρ1)

}
.

It follows that for every ν ∈ M1(E) we have K(ν) ≤ IX(ν).
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The latter inequality somehow quantifies the fact that the presence of the sampling weights of-
fers more possibilities to the bootstrapped empirical measure Ln to get close to any ν than it is the
case for 1

n

∑n
i=1 δXn

i
. We shall see in most examples that for classical choices of ((Wn

i )1≤i≤n)n≥1

and/or ((Xn
i )1≤i≤n)n≥1 there exists at least one ν ∈ M1(E) such that K(ν) < IX(ν). Neverthe-

less, we have the following corollary.

Corollary 2.3. Under (H1–H2–H4–H5) a necessary and sufficient condition on IW to ensure
that for every ((Xn

i )1≤i≤n)n≥1 and every ν ∈ M1(E) we have K(ν) = IX(ν) is that for every
ν, ζ ∈ M1(E)

K(ν; ζ ) =
{

0, if ν = ζ ,
+∞, otherwise.

(2.5)

Corollary 2.3 is proved in Section 6.1.

2.3. Analysis of the rate functions

2.3.1. Convexity issues

It is a natural question in LD analysis to wonder if the obtained rate functions are convex.

Proposition 2.1. If IW is convex then for every μ ∈ M1(E) the rate functions J (·;μ) and
K(·;μ) are convex as well.

Proposition 2.1 is proved in Section 6.2. Since the so-called mutual information ρ 	→
H(ρ|ρ1 ⊗ ρ2) is neither convex nor concave (see, e.g., Theorem 2.7.4 in [8]) the convex-
ity properties of J and K are less clear. However, if there exists some ξ ∈ M1(R+) and
θ ∈ M1(E) such that for every ρ ∈ M1

1(R+ × E) IW (ρ1) = H(ρ1|ξ) and IX(ρ2) = H(ρ2|θ)

then J (ρ) = H(ρ|ξ ⊗ θ) which is a convex function.

2.3.2. Representation of the rate functions

We shall often see in applications that there exists a ξ ∈ M1(R+) such that for every ν ∈ M1
1 (R+)

we have IW (ν) = H(ν|ξ). Consider the logarithmic moment generating function of ξ defined on
R by

�ξ(α) = log
∫
R+

eαxξ(dx). (2.6)

Necessarily D�ξ = {α ∈ R,�ξ (α) < ∞} is an interval which supremum is denoted a. We further
consider for every θ ∈D�ξ the probability measure ξθ defined on R+ by

ξθ (dx) = eθx∫
R+ eθuξ(du)

ξ(dx) and �∗
ξ (x) = sup

α∈R
{
αx − �ξ(α)

}
(2.7)

the Fenchel–Legendre transform of �ξ . We obtain
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Proposition 2.2. If there exists a ξ ∈ M1(R+) such that for every ν ∈ M1
1 (R+) IW (ν) = H(ν|ξ),

then for every ν,μ ∈ M1(E) we have

K(ν;μ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

E

�∗
ξ

(
dν

dμ
(x)

)
μ(dx) + inf

ρ:ρ2=μ

F(ρ)=ν

∫
R+

inf
θ∈D�ξ

H
(
ρx |ξθ
)
μ(dx),

if ν 
 μ,

+∞, otherwise.

(2.8)

The preceding equality reduces to

K(ν;μ) =
{∫

E

�∗
ξ

(
dν

dμ
(x)

)
μ(dx), if ν 
 μ,

+∞, otherwise,
(2.9)

for every ν,μ ∈ M1(E) if and only if �ξ satisfies

lim
α→−∞�′

ξ (α) = 0 and lim
α→a

�′
ξ (α) = +∞. (2.10)

Proposition 2.2 is proved in Section 6.3. The rate function in (2.8) is the sum of a “regular”
part –

∫
E

�∗
ξ (dν/dμ) – and a “singular” part. The latter cancels out for every ν,μ if and only

for every ν,μ ∈ M1(E) one can find a ρ ∈ M1
1(R+ × E) such that ρ2 = μ,F(ρ) = ν and for μ

a.e. x ∈ Eρx is built on the ground of ξ via an exponential change of measure as in the proof of
Cramér’s theorem lower bound. Condition (2.10) is a necessary and sufficient condition on the
distribution of ξ for this to hold. A typical situation where (2.10) fails to be satisfied is when ξ

has bounded support.
There are references in the LD literature where, as in (2.8), the rate function can be decom-

posed as the sum of a “regular” part and a “singular” part. In [24], a LDP is established for
((1/n)

∑n
i=1 ξiδxn

i
)n≥1 where (ξi)i≥1 is a sequence of independent and identically distributed

random variables, ((xn
i )1≤i≤n)n≥1) satisfies (H3) and μ is a stricly positive measure. It is demon-

strated there that if ξ1 fails to have all its exponential moments finite then an extra “singular” part
is added to the “regular” part of the rate function

∫
E

�∗
ξ1

(dν/dμ). This phenomenon is not of the
same nature as the one we consider here. Indeed if, for example, ξ1 has bounded support the rate
function in [24] reduces to its regular part which is not the case here. See also [23] for a related
situation with a singular component in a LD rate function.

3. Examples of applications

In this section, we investigate the LD properties of (Ln)n≥1 and (Ln)n≥1 for several particular
choices of ((Wn

i )1≤i≤n)n≥1 and/or ((Xn
i )1≤i≤n)n≥1. To this end, we need more notations: For

every λ,γ > 0, we shall denote by F(λ, γ ) the distribution of a random variable Y such that λY

is P(γ ) (Poisson)-distributed and Q(λ) denotes the distribution F(λ,λ). For every positive in-
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tegers m and n and every n-tuple of nonnegative numbers (pn
1 , . . . , pn

n) such that
∑n

i=1 pn
i = 1,

we shall denote by Multn(m, (pn
1 , . . . , pn

n)) the (Multinomial) distribution of (Y1, . . . , Yn) the
numbers of balls found in n urns labeled 1, . . . , n when m balls are thrown in these urns inde-
pendently, each having probability pn

1 to fall in the urn labeled 1, probability pn
2 to fall in the

urn labeled 2, etc. For every positive integer n and p ∈]0,1[ we denote by B(n,p) the Binomial
distribution with parameters n and p.

3.1. Efron’s bootstrap and “m out of n” bootstrap

For every m,n ≥ 1 the weights (Wn
1 , . . . ,Wn

n ) for the “m out of n” bootstrap are defined such
that m

n
(Wn

1 , . . . ,Wn
n ) is Multn(m, (1/n, . . . ,1/n))-distributed. Classical Efron’s bootstrap cor-

responds to m = n. We shall assume that m = m(n) and that the sequence (λn = m(n)/n)n≥1

satisfies limn→∞ λn = λ > 0. Quite surprisingly we could not find in the literature a reference
for the following, which proof is partly related to results in [15,22] and is given in [26].

Theorem 3.1. The sequence (Sn = 1
n

∑n
i=1 δWn

i
)n≥1 obeys a LDP on M1

1 (R+) endowed with

W
β

1 with good rate function IW (γ ) = H(γ |Q(λ)).

Corollary 3.1. Under (H3) the sequence (Ln)n≥1 satisfies a LDP on M1(E) endowed with the
weak convergence topology with good rate function

K(ν;μ) = λH(ν|μ).

Corollary 3.1 is an immediate consequence of Proposition 2.2 since �Q(λ)(α) = λ(eα/λ − 1)

hence �∗
Q(λ)

(x) = λ�∗
P(1)

(x).
Remark that by properly rescaling, we obtain for every λ > 0 and every measurable A ⊂

M1(E) the modified LD result:

− inf
ν∈Ao

H(ν|μ) ≤ lim inf
n→∞

1

m(n)
logP
(
Ln ∈ A

)
≤ lim sup

n→∞
1

m(n)
logP
(
Ln ∈ A

)
(3.1)

≤ − inf
ν∈Ā

H(ν|μ).

The “m out of n” bootstrap has the same conditional LD properties as the unconditional LD
properties of the empirical measure of an m(n)-sample of independent and μ-distributed Xi ’s.

Next, we investigate the LD properties of (Ln)n≥1 without any other assumption than (H4–
H5). To this end, we introduce the set Z = {η ∈ M1(E) : IX(η) = 0}. It follows from Corollar-
ies 2.2 and 3.1 that produce the following corollary.
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Corollary 3.2. Under (H4–H5) the sequence (Ln)n≥1 satisfies a LDP on M1(E) endowed with
the weak convergence topology with good rate function K such that

K(ν) = inf
ζ∈M1(E)

{
λH(ν|ζ ) + IX(ζ )

}≤ λ inf
η∈Z

H(ν|η).

Corollary 3.2 is proved in Section 6.4.
Now we consider some particular cases for ((Xn

i )1≤i≤n)n≥1. First, we assume that for ev-
ery n ≥ 1 the random variables Xn

1 , . . . ,Xn
n are independent and identically μ-distributed. Then

1
n

∑n
i=1 δXn

i

w→ μ a.s. (see Theorem 11.4.1 in [12]) and Corollary 3.1 can be interpreted as a
conditional LDP. Hence, any “m out of n” bootstrap such that limn→∞ m(n)/n = 1 (in particular
Efron’s bootstrap) leads to a conditional LDP that coincides with the original LDP in this case.
This was first established in [3] for Efron’s Bootstrap and in [7] in the general case. Actually the
Xn

1 , . . . ,Xn
n need not be i.i.d., it is sufficient that the associated empirical measures satisfy a LDP

with rate function H(·|μ) for Efron’s bootstrap to be conditionally LD-efficient.
Corollary 3.2 completes the previous result with an unconditional LDP. In this particular case

IX(ζ ) = H(ζ |μ) and by taking, for example, μ = 9
10δ0 + 1

10δ1, ν = 1
10δ0 + 9

10δ1, ζ = 1
2δ0 + 1

2δ1
and λ = 1 we observe that K(ν) ≤ H(ν|ζ ) + H(ζ |μ) < H(ν|μ) hence Efron’s bootstrap is not
unconditionally LD-efficient. Straightforward use of the same kind of arguments shows that this
remark also holds true when Xn

1 , . . . ,Xn
n is the result of sampling without replacement from an

urn with suitable properties (see Theorem 7.2 in [9] for the reference LDP) or when Xn
1 , . . . ,Xn

n

are the n first components of an infinitely exchangeable sequence of random variables (see [10]
for the reference LDP).

3.2. I.i.d. weighted bootstrap

The weights (Wn
1 , . . . ,Wn

n ) for an i.i.d.-weighted bootstrap are defined on the ground of a se-
quence Y1, . . . , Yn, . . . of R+-valued independent random variables with common distribution ξ .
We shall assume that for every α > 0 we have �ξ(α) < ∞ and that �∗

ξ (0) = ∞ (or equivalently
P(Y1 = 0) = 0). The weights (Wn

1 , . . . ,Wn
n ) are defined by

Wn
1 = Y1

(1/n)
∑n

i=1 Yi

, . . . , Wn
i = Yi

(1/n)
∑n

i=1 Yi

, . . . ,

Wn
n = Yn

(1/n)
∑n

i=1 Yi

.

In order to describe the LD behavior of (Sn = 1
n

∑n
i=1 δWn

i
)n≥1 we introduce the map

G :W1(R+) ×R
∗+ → W1(R+),

(γ,m) 	→ G(γ,m) :A ∈ BR+ 	→ γ (mA).

The continuity of G when W1(R+) is endowed with W
β

1 is the main argument in the proof of
the following result given in [26].
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Theorem 3.2. The sequence (Sn = 1
n

∑n
i=1 δWn

i
)n≥1 satisfies a LDP on M1

1 (R+) endowed with

W
β

1 with good rate function

IW (γ ) = inf
m>0

{
H
(
γ |G(ξ,m)

)}
.

Theorem 3.2 is proved in [26]. As a consequence of Proposition 2.2, we obtain the following
corollary.

Corollary 3.3. Under (H3) the sequence (Ln)n≥1 satisfies a LDP on M1(E) endowed with the
weak convergence topology with good rate function

K(ν;μ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
inf
m>0

{∫
E

�∗
ξ

(
m

dν

dμ
(x)

)
μ(dx) + inf

ρ:ρ2=μ

F(ρ)=ν

∫
R+

inf
θ∈RH

(
ρx |G(m, ξ)θ

)
μ(dx)

}
,

if ν 
 μ,

+∞, otherwise.

Moreover, the preceding reduces to

K(ν;μ) =
{

inf
m>0

∫
E

�∗
ξ

(
m

dν

dμ
(x)

)
μ(dx), if ν 
 μ,

+∞, otherwise,

for every ν ∈ M1(E) if and only if

lim
α→−∞�′

ξ (α) = 0 and lim
α→+∞�′

ξ (α) = +∞.

Corollary 3.3 is proved in Section 6.5. Similar expression of the rate function are also given in
[6,21].

It follows from the previous corollary that there is no distribution ξ such that for every ν,μ ∈
M1(E) the identity K(ν;μ) = H(ν|μ) holds. Indeed, as soon as there exists ν,μ ∈ M1(E) such
that dν

dμ
(x) = 0 on a set A such that μ(A) > 0 one has K(ν;μ) = ∞ while it could be possible

that H(ν|μ) < ∞. In words there is no choice of ξ for which one gets a conditional LDP that
coincides with the original one for Xn

1 , . . . ,Xn
n independent and μ-distributed. It is clearly due

to the fact that �∗
ξ (0) = ∞ forces all the weights Wn

1 , . . . ,Wn
n to be positive which is to be

compared to, for example, Efron’s bootstrap. Finally, as for Efron’s bootstrap, one can construct
examples to show that in most classical cases the i.i.d.-bootstrap is not unconditionally LD-
efficient.

3.3. The multivariate hypergeometric bootstrap

Let K be a fixed integer number such that K ≥ 2. The multivariate hypergeometric bootstrap
emerges from the following urn scheme: Put K copies of each observed data in an urn so
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that the urn contains Kn elements then draw from this urn a sample of size n without replace-
ment. The sampling weights (Wn

1 , . . . ,Wn
n ) take their values in {0,1, . . . ,K} under the constraint∑n

i=1 Wn
i = n and are distributed according to

P
(
Wn

1 = wn
1 , . . . ,Wn

n = wn
n

)= C
wn

1
K · · ·Cwn

n

K

Cn
nK

.

Theorem 3.3. The sequence (Sn = 1
n

∑n
i=1 δWn

i
)n≥1 satisfies a LDP on M1

1 (R+) endowed with

W
β

1 with good rate function

IW (γ ) = H
(
γ |B(K,K−1)).

Theorem 3.3 is proved in [26]. It immediately follows from the latter result and Proposition 2.2
in the following.

Corollary 3.4. Under (H3) the sequence (Ln)n≥1 satisfies a LDP on M1(E) endowed with the
weak convergence topology with good rate function

K(ν;μ) = inf
ρx :F(ρx⊗μ)=ν

{∫
E

H(ρx |ρ1)μ(dx) + H
(
ρ1|B
(
K,K−1))}.

Notice that B(K,K−1) does not satisfy condition (2.10). Again, there is no integer K such
that for every ν,μ ∈ M1(E) the identity K(ν;μ) = H(ν|μ) holds. Indeed, as soon as there exists
ν,μ ∈ M1(E) such that dν

dμ
(x) > K on a set A such that μ(A) > 0 one has K(ν;μ) = ∞ while

it could be possible that H(ν|μ) < ∞. Thus, all multivariate hypergeometric bootstraps fail to
be conditionally LD-efficients for i.i.d. observations. One can construct examples to show that
in most classical cases the multivariate hypergeometric bootstrap fails to be unconditionally LD-
efficient.

3.4. A bootstrap generated from deterministic weights

The weights for bootstrap schemes defined from deterministic weights are given by(
Wn

1 , . . . ,Wn
n

)= (wn
σn(1), . . . ,w

n
σn(n)

)
,

where for every n ≥ 1 the wn
1 , . . . ,wn

n are fixed nonnegative real numbers such that
∑n

i=1 wn
i = n

and

1

n

n∑
i=1

δwn
i

W
β
1→ π ∈ M1

1 (R+)
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while σn is an uniformly over Sn distributed random variable. Clearly the sequence (Sn =
1
n

∑n
i=1 δWn

i
)n≥1 satisfies a LDP on M1

1 (R+) endowed with W
β

1 with good rate function

IW (γ ) =
{

0, if γ = π ,
+∞, otherwise.

An important special case is the leave-p-out bootstrap, or delete-p jacknife. The leave-p-out
bootstrap is generated by permuting the deterministic weights

(
wn

1 , . . . ,wn
n

)= ( n

n − p
, . . . ,

n

n − p︸ ︷︷ ︸
n−p

,0, . . . ,0︸ ︷︷ ︸
p

)
.

We shall take p = p(n) such that limn→∞ p(n)/n = α ∈ [0,1) so

π = (1 − α)δ1/(1−α) + αδ0.

Corollary 3.5. If α > 0, under (H3) the sequence (Ln)n≥1 satisfies a LDP on M1(E) endowed
with the weak convergence topology with good rate function

K(ν;μ) =
{

(1 − α)H(ν|μ) + αH

(
μ − (1 − α)ν

α

∣∣μ), if
μ − (1 − α)ν

α
∈ M1(E),

+∞, otherwise.

If α = 0 the sequence (Ln)n≥1 satisfies a LDP on M1(E) endowed with the weak convergence
topology with good rate function

K(ν;μ) =
{

0, if ν = μ,
+∞, otherwise.

Corollary 3.5 is proved in Section 6.6. Naturally this result coincides with Theorem 7.2.1 in
[9]. Combining Corollary 2.2 and Corollary 3.5, we obtain an unconditional version of the latter
result. To every ν ∈ M1(E), we associate

Eν =
{
ζ ∈ M1(E) :

ζ − (1 − α)ν

α
∈ M1(E)

}
.

Corollary 3.6. If α > 0, under (H4–H5) the sequence (Ln)n≥1 satisfies a LDP on M1(E) en-
dowed with the weak convergence topology with good rate function K(ν) = infζ∈Eν

U(ν, ζ )

where

U(ν, ζ ) = (1 − α)H(ν|ζ ) + αH

(
ζ − (1 − α)ν

α

∣∣ζ)+ IX(ζ ).

If α = 0, the sequence (Ln)n≥1 satisfies a LDP on M1(E) endowed with the weak convergence
topology with good rate function K(ν) = IX(ν).
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Corollary 3.6 is proved in Section 6.7. Thus when α = 0, for example, the leave-p(n)-out
bootstrap with p(n) = o(n), the bootstrap is unconditionally LD-efficient.

3.5. The k-blocks bootstrap

To conclude, let us consider the (moving or circular) k-blocks bootstrap. Weights from the “m =
n/k out of n” bootstrap are such that 1

k
(Wn

1 , . . . ,Wn
n ) is Multn(m, (1/n, . . . ,1/n))-distributed.

The k-blocks bootstrapped empirical measure is defined as in [20] via the formula

L̃n = 1

n

n∑
i=1

Wn
i

1

k

∑
j∼i

δxn
j
,

where j ∼ i means that the j belong to block i. For the moving k-blocks bootstrap, j ∼ i if
j ∈ {i − k/2, . . . , i + k/2} modulo n. We could also consider the circular k-blocks bootstrap
where j ∼ i if j ∈ {i, . . . , i + k − 1} modulo n. Both schemes are asymptotically equivalent as
soon as k is fixed as it is the case here. Notice that

L̃n = 1

n

n∑
i=1

W̃n
i δxn

i
with W̃n

i = 1

k

∑
j∼i

Wn
j ,

where (W̃ n
1 , . . . , W̃ n

n ) fails to be exchangeable. However, our approach relies on preliminary
results like Theorem 2.1 that are general enough to allow us to handle this situation under some
mild additional hypothesis. Indeed, assume that the observations ((xn

i )1≤i≤n)n≥1 satisfy

(H6) 1
n

∑n
i=1 δ(xn

i ,...,xn
i+k−1)

w→ μ(k) ∈ M1(E
k)

the i’s being taken modulo n. We obtain the following theorem.

Theorem 3.4. Under (H6) the sequence (L̃n)n≥1 satisfies a LDP on M1(E) endowed with the
weak convergence topology with good rate function

K̃(ν;μ) = inf

{
1

k
H
(
ν(k)|μ(k)

)
:ν(k) ∈ M1

(
Ek
)
,

1

k

k∑
i=1

ν
(k)
i = ν

}
.

Theorem 3.4 is proved in Section 6.8. Condition (H6) is a.s. satisfied with μ(k) = μ⊗k when
we are given the realization xn

1 , . . . , xn
n of independent and μ-distributed random variables

Xn
1 , . . . ,Xn

n .

Corollary 3.7. Under (H6) with μ(k) = μ⊗k the sequence (L̃n)n≥1 satisfies a LDP on M1(E)

endowed with the weak convergence topology with good rate function

K̃(ν;μ) = H(ν|μ).
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Corollary 3.7 is proved in Section 6.9. The k-blocks bootstrap is thus conditionnally efficient
in this case but fails to be unconditionally efficient for the same reason as Efron’s bootstrap, see
Section 3.1.

When we are given the realization xn
1 , . . . , xn

n of Xn
1 , . . . ,Xn

n the first n components of a sta-
tionary Markov chains (Yi)i≥1 with transition probability P and stationary measure μ as in [11],
we get

1

n

n∑
i=1

δ(Xn
i ,...,Xn

i+k−1)
w→ μ ⊗ P ⊗ · · · ⊗ P︸ ︷︷ ︸

k−1

a.s.

so (H6) is satisfied a.s. with μ(k) = μ ⊗ P ⊗ · · · ⊗ P︸ ︷︷ ︸
k−1

. Applying Theorem 3.4 with ν(k) = ν ⊗

P ′ ⊗ · · · ⊗ P ′ where P ′ belongs to the set MC(ν) of kernels of ergodic Markov chains with
stationary measure ν, we obtain

K̃(ν;μ) ≤ 1

k
H(ν|μ) + k − 1

k
inf

P ′∈MC(ν)

∫
H
(
P ′|P )dν.

It is interesting to note that this upper bound tends to the rate function in the classical LD of [11]
when k → ∞.

4. Proof of Theorem 2.1

First, we describe the ideas behind the proof of Theorem 2.1. Let us recall that we are given
a triangular array ((xn

i )1≤i≤n)n≥1 of elements of E that satisfies (H3). Let A be a measurable
subset of M1

1(R+ × E). For every integer n ≥ 1, we have

P
(
Vn ∈ A

)= ∫
M1

1 (R+)

P

(
Vn ∈ A

∣∣∣1
n

n∑
i=1

δWn
i

= ν

)
Qn(dν),

where Qn stands for the distribution of 1
n

∑n
i=1 δWn

i
. Let (σn)n≥1 be a sequence of random vari-

ables defined on (�,A,P) such that for every n ≥ 1 the distribution of σn is uniform over
Sn the set of permutations of {1, . . . , n}. Since (H1) holds (Wn

1 , . . . ,Wn
n ) is n-exchangeable

hence for every wn
1 , . . . ,wn

n ∈ R+ such that
∑n

i=1 wn
i = n the distribution of Vn conditioned on

1
n

∑n
i=1 δWn

i
= 1

n

∑n
i=1 δwn

i
= νn admits the distribution of

T n = 1

n

n∑
i=1

δ(wn
σn(i)

,xn
i )

as a regular version. Let us denote by P(T n ∈ ·;νn) this distribution and assume that for every

converging sequence νn
W

β
1→ ν it obeys a LDP in M1

1(R+ × E) endowed with � with some good
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rate function I (·;ν). Then the usual LD heuristic writes

P
(
T n ∈ A;νn

)∼ exp
(
−n inf

ρ∈A
I (ρ;ν)

)
and clearly I (ρ;ν) = ∞ if ρ1 �= ν. This conditional LDP is turned into a rigorous statement in
Theorem 4.1 below. It is the main step in the proof of Theorem 2.1. Indeed if we further assume
that (H2) holds and that for every ν ∈ M1

1 (R+) there exists a sequence (νn)n≥1 of elements of

M1
1 (R+) such that νn

W
β
1→ ν then we get

P
(
Vn ∈ A

) = ∫
M1

1 (R+)

P
(
Vn ∈ A;ν)Qn(dν)

∼
∫

M1
1 (R+)

exp
(
−n inf

ρ∈A
I (ρ;ν)

)
exp
(−nIW (ν)

)
dν (4.1)

∼ exp
(
−n inf

ρ∈A

{
I (ρ;ρ1) + IW (ρ1)

})
since I (ρ;ν) = ∞ if ρ1 �= ν. Pasting LDPs as in the latter heuristic is turned into a rigorous
statement by appealing to Theorem 2.3 in [18]. We detail on that in Section 4.2.1. The required
approximation result on (M1

1 (R+),W
β

1 ) is proved in Section 4.2.3.
So the proof of Theorem 2.1 is divided into two main steps: In Section 4.1, we establish

a conditional (on the Wn
i ’s) LDP. Then in Section 4.2 we show how the latter result leads to

Theorem 2.1.

4.1. A conditional LDP

All through Section 4.1 we are given a fixed triangular array ((wn
i )1≤i≤n)n≥1 of elements of R+,

possibly with repetition, such that

(H7) For every n ≥ 1 we have
∑n

i=1 wn
i = n and νn = 1

n

∑n
i=1 δwn

i

W
β
1→ ν ∈ M1

1 (R+).

Let us recall that we are also given a fixed triangular array ((xn
i )1≤i≤n)n≥1 of elements of E that

satisfies (H3), that is, μn = 1
n

∑n
i=1 δxn

i

w→ μ ∈ M1(E).

Theorem 4.1. Under (H3–H7) the sequence (T n)n≥1 satisfies a LDP on M1
1(R+ ×E) endowed

with the distance � with good rate function

I (ρ;ν) =
{

H(ρ|ν ⊗ μ), if ρ1 = ν and ρ2 = μ,
+∞, otherwise.

(4.2)

We shall proceed in two steps in proving Theorem 4.1. First, following the proof of Theorem 1
in [25], we prove in Section 4.1.1 that a LDP for (T n)n≥1 holds in M1(R+ × E) with good rate
function I (·;ν) when M1(R+ × E) is endowed with the weak convergence topology. Then,
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in Section 4.1.2, we strengthen this result up to a LDP in M1
1(R+ × E) furnished with the

distance �.

4.1.1. A LDP in the weak convergence topology

All through Section 4.1.1 M1(R+ × E) is endowed with the weak convergence topology. Let us
introduce some more notations. For every n ≥ 1, we denote by

Pn =
{

ρ ∈M1
1(R+ × E) :∃σ ∈ Sn, ρ = 1

n

n∑
i=1

δ(wn
σ(i)

,xn
i )

}

the set of possible values of T n where ((xn
i )1≤i≤n)n≥1 is defined in (H3) and ((wn

i )1≤i≤n)n≥1
is defined in (H7). Since both (νn)n≥1 and (μn)n≥1 are fixed once for all in Section 4.1, Pn is
fixed once for all in this section as well. We shall say that a sequence (ρn)n≥1 of elements of
M1(R+ × E) satisfies Assumption (A1) if and only if

(A1) For every n ≥ 1, we have ρn ∈ Pn.

We further introduce two triangular arrays ((Ln
i )1≤i≤n)n≥1 and ((Rn

i )1≤i≤n)n≥1 of elements of
R+ and E, respectively, defined on (�,A,P) and such that for every n ≥ 1 the 2n random
variables Ln

1, . . . ,Ln
n,R

n
1 , . . . ,Rn

n are mutually independent. We assume that every Ln
i (resp. Rn

i )
is distributed according to νn (resp. μn). The sequence

T n = 1

n

n∑
i=1

δ(Ln
i ,Rn

i ) ∈ M1(R+ × E)

has the following LD behavior.

Lemma 4.1. The sequence (T n)n≥1 satisfies a LDP on M1(R+ × E) endowed with the weak
convergence topology with good rate function H(ρ|ν ⊗ μ).

Proof. Since νn
W

β
1→ ν we have νn w→ ν according to, for example, Theorem 7.12 in [27]. More-

over, since μn w→ μ we have νn ⊗μn w→ ν ⊗μ (see [4], Chapter 1, Theorem 3.2). The announced
result then follows from Theorem 5 in [3]. �

Our strategy in proving a weak convergence version of Theorem 4.1 consists in comparing
T n to random measures associated to T n. Comparison is possible because the ρ ∈ M1(R+ × E)

such that I (ρ;ν) < +∞ can be approximated in the weak convergence topology by elements
of Pn. The next two lemmas are the crucial arguments of the proof.

Lemma 4.2. Let ρ ∈ M1(R+ × E) be such that ρ1 = ν and ρ2 = μ. There exists a sequence
(ρn)n≥1 satisfying (A1) and such that ρn w→ ρ.

Proof. Let ρ ∈ M1(R+ × E) be such that ρ1 = ν and ρ2 = μ. According to Varadarajan’s
Lemma (see [12], Chapter 11, Theorem 11.4.1) there exists a family ((un

i , v
n
i )1≤i≤n)n≥1 of ele-
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ments of R+ × E such that

γ n = 1

n

n∑
i=1

δ(un
i ,vn

i )
w→ ρ.

For every n ≥ 1, we take ϕn, τn ∈ Sn such that

n∑
i=1

ζ
(
un

i ,w
n
ϕn(i)

)= min
ϕ∈Sn

{
n∑

i=1

ζ
(
un

i ,w
n
ϕ(i)

)}

and
n∑

i=1

λ
(
vn
i , xn

τn(i)

)= min
τ∈Sn

{
n∑

i=1

λ
(
vn
i , xn

τ(i)

)}
.

We shall prove that the sequence of measures ρn = 1
n

∑n
i=1 δ(wn

ϕn(i)
,xn

τn(i)
) ∈ Pn converges weakly

to ρ. Indeed, according to Lemma 2.1 in [16] we have

W
ζ
1

(
ρn

1 , γ n
1

)= min
Q∈C(ρn

1 ,γ n
1 )

∫
R+×R+

ζ(u, v)Q(du,dv) = min
κ∈Sn

1

n

n∑
i=1

ζ
(
un

i ,w
n
κ(i)

)
,

hence 1
n

∑n
i=1 ζ(un

i ,w
n
ϕn(i)

) = W
ζ
1 (ρn

1 , γ n
1 ) → 0 since both ρn

1
w→ ν and γ n

1 = νn w→ ν. One can

prove the same way that 1
n

∑n
i=1 λ(vn

i , xn
τn(i)) → 0 since Wλ

1 is compatible with the weak con-
vergence topology. Finally,

W
χ

1

(
ρn, γ n

) = min
Q∈C(ρn,γ n)

∫
R+×E

χ(u, v)Q(du,dv)

= min
κ∈Sn

1

n

n∑
i=1

χ
((

un
i , v

n
i

)
,
(
wn

κ◦ϕn(i), x
n
κ◦τn(i)

))
≤ 1

n

n∑
i=1

ζ
(
un

i ,w
n
ϕn(i)

)+ 1

n

n∑
i=1

λ
(
vn
i , xn

τn(i)

)
so W

χ
1 (ρn, γ n) → 0 hence ρn w→ ρ since γ n w→ ρ. �

To every n ≥ 1 and every realization of T n, we associate two elements T̃ n and T̂ n of M1(R+ ×
E) by

W
χ
1

(
T n, T̃ n

)= min
ν∈Pn

{
W

χ
1

(
T n, ν
)}

(4.3)

and

W
χ

1

(
T n, T̂ n

)= max
ν∈Pn

{
W

χ

1

(
T n, ν
)}

. (4.4)
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In case there are several elements of Pn achieving the min (resp. the max) T̃ n (resp. T̂ n) is picked
uniformly at random among these measures.

Lemma 4.3. For every n ≥ 1 the random measures T̃ n, T̂ n and T n are identically distributed
over M1(R+ × E).

Proof. We shall only prove that T̃ n and T n are identically distributed since the proof with T̂ n

and T n is similar. Let n ≥ 1 be fixed. For the sake of clarity, let us assume that there is no repe-
tition among the wn

1 , . . . ,wn
n and the xn

1 , . . . , xn
n . We are thus left to prove that T̃ n is uniformly

distributed over Pn. Since there are no repetitions every ρ ∈ Pn corresponds to a single τ ∈ Sn

by

ρ = 1

n

n∑
i=1

δ(wn
τ(i)

,xn
i ). (4.5)

Let us consider a fixed realization (lni , rn
i )1≤i≤n of (Ln

i ,R
n
i )1≤i≤n. We denote by tn the corre-

sponding value of T n. Due to Lemma 2.1 in [16] for every ρ ∈ Pn (i.e., every τ ∈ Sn according
to (4.5)), there exists a σ ∈Sn such that

W
χ
1

(
tn, ρ
) = min

κ∈Sn

{
1

n

n∑
i=1

χ
((

lni , rn
i

)
,
(
wn

κ◦τ(i), x
n
κ(i)

))}

= 1

n

n∑
i=1

χ
((

lni , rn
i

)
,
(
wn

σ◦τ(i), x
n
σ(i)

))
= 1

n

n∑
i=1

ζ
(
lni ,wn

σ◦τ(i)

)+ 1

n

n∑
i=1

λ
(
rn
i , xn

σ(i)

)
.

Hence, for this realization (lni , rn
i )1≤i≤n of (Ln

i ,R
n
i )1≤i≤n, the associated T̃ n is found by com-

puting η1, η2 ∈Sn such that

n∑
i=1

ζ
(
lni ,wn

η1(i)

)= min
φ∈Sn

{
n∑

i=1

ζ
(
lni ,wn

φ(i)

)}
(4.6)

and
n∑

i=1

λ
(
rn
i , xn

η2(i)

)= min
φ∈Sn

{
n∑

i=1

λ
(
rn
i , xn

φ(i)

)}
(4.7)

and taking 1
n

∑n
i=1 δ(wn

η1(i)
,xn

η2(i)
) as the corresponding value of T̃ n. In case several η1 and/or η2

realize the minima in the displays above, those defining the corresponding value of T̃ n are picked
among them uniformly at random. To every possible realization (lni , rn

i )1≤i≤n of (Ln
i ,R

n
i )1≤i≤n

we associate An((l
n
i , rn

i )1≤i≤n) ⊂Sn ×Sn the set of couples of permutations (η1, η2) associated
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to (lni , rn
i )1≤i≤n by (4.6) and (4.7). This set may not be reduced to a single element due the

possible multiplicity of minimizers. Conversely, for every (η1, η2) ∈ Sn ×Sn consider

A−1
n (η1, η2) = {(lni , rn

i

)
1≤i≤n

: (η1, η2) ∈ An

((
lni , rn

i

)
1≤i≤n

)}
.

Let (γ1, γ2) and (φ1, φ2) be two different elements of Sn ×Sn: there exists (ϕ1, ϕ2) ∈ Sn ×Sn

such that γ1 ◦ ϕ1 = φ1 and γ2 ◦ ϕ2 = φ2. Now, for every (lni , rn
i )1≤i≤n ∈ A−1

n (γ1, γ2) we
have (lnϕ1(i)

, rn
ϕ2(i)

)1≤i≤n ∈ A−1
n (φ1, φ2) and for every (lni , rn

i )1≤i≤n ∈ A−1
n (φ1, φ2) we have

(ln
ϕ−1

1 (i)
, rn

ϕ−1
2 (i)

)1≤i≤n ∈ A−1
n (γ1, γ2). Since for every (lni , rn

i )1≤i≤n and every κ1, κ2 ∈ Sn, ob-

serving (lnκ1(i)
, rn

κ2(i)
)1≤i≤n as a realization of (Ln

i ,R
n
i )1≤i≤n has the same probability as observ-

ing (lni , rn
i )1≤i≤n we conclude that all the (κ1, κ2) ∈ Sn × Sn have the same probability to be

observed as minimizers in the problem (4.6)–(4.7) above. Hence, every possible value of T̃ n has
the same probability to be observed whence T̃ n is uniformly distributed over Pn. This proof
extends easily to the case when there are repetitions among the wn

1 , . . . ,wn
n or xn

1 , . . . , xn
n . �

We start the proof of the LD bounds in the weak convergence topology by proving the follow-
ing lemma.

Lemma 4.4. We have:

1. I (·;ν) is a good rate function.
2. The sequence (T n)n≥1 is exponentially tight.

Proof. (1) Let α ≥ 0. We have

Nα = {ρ ∈ M1(R+ × E) : I (ρ;ν) ≤ α
}

= {ρ ∈ M1(R+ × E) :H(ρ|ν ⊗ μ) ≤ α
}∩ {ρ ∈ M1(R+ × E) :ρ1 = ν and ρ2 = μ

}
.

Thus, for every α ≥ 0, Nα is the intersection of a compact and a closed subset of M1(R+ × E),
therefore it is compact.

(2) For every measurable A ⊂ M1(R+ × E), we have

lim sup
n→∞

1

n
logP
(
T n ∈ Ac

) = lim sup
n→∞

1

n
logP

(
T n ∈ Ac

∣∣∣1
n

n∑
i=1

δLn
i
= νn,

1

n

n∑
i=1

δRn
i
= μn

)

≤ lim sup
n→∞

1

n
logP
(
T n ∈ Ac

)
(4.8)

− lim inf
n→∞

1

n
logP

(
1

n

n∑
i=1

δLn
i
= νn

)

− lim inf
n→∞

1

n
logP

(
1

n

n∑
i=1

δRn
i

= μn

)
.
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Since (T n)n≥1 satisfies a LDP on M1(R+ ×E) with a good rate function it is exponentially tight
(see [9], Remark a), p. 8). Thus for every α ≥ 0, we can chose a compact set Aα ⊂ M1(R+ × E)

that makes the first term in the last display smaller than −α − 2. Below we prove that

− lim inf
n→∞

1

n
logP

(
1

n

n∑
i=1

δLn
i
= νn

)
≤ 1, (4.9)

which combined with (4.8) completes the proof since the same LD inequality holds for
P( 1

n

∑n
i=1 δRn

i
= μn). Indeed, for every fixed integer n ≥ 1 let us denote by M(n) the number of

different values taken by the wn
1 , . . . ,wn

n’s, for example, M(n) = n when there are no ties among
the wn

1 , . . . ,wn
n’s and M(n) = 1 when they are all equals. Let us further denote by A1, . . . ,AM(n)

the number of elements of wn
1 , . . . ,wn

n’s of each type, for example, A1 = · · · = AM(n) = 1 when
there are no ties among the wn

1 , . . . ,wn
n’s while AM(n) = n when they are all equals. Notice that

we always have A1 + · · · + AM(n) = n. We obtain

P

(
1

n

n∑
i=1

δLn
i
= νn

)
= CA1

n C
A2
n−A1

· · ·CAM(n)

n−(A1+···+AM(n)−1)

(
A1

n

)A1

· · ·
(

AM(n)

n

)AM(n)

= n!
A1! · · ·AM(n)!

(
A1

n

)A1

· · ·
(

AM(n)

n

)AM(n)

= n!
nA1+···+AM(n)

A
A1
1

A1! · · · A
AM(n)

M(n)

AM(n)! ,

hence

P

(
1

n

n∑
i=1

δLn
i
= νn

)
≥ n! 1

nn

since for every integer m ≥ 1 we have mm ≥ m!. Display (4.9) immediately follows. �

Proof of the lower bound. It is sufficient in order to prove the lower bound of the LDP to prove
that

−I (ρ;ν) ≤ lim inf
n→∞

1

n
logP
(
T n ∈ B(ρ, ε)

)
holds for every ρ ∈ M1(R+×E) and every ε > 0, where B(ρ, ε) stands for the open ball centered
at ρ ∈ M1(R+ × E) of radius ε > 0 for the W

χ

1 metric. So let ε > 0 and ρ ∈ M1(R+ × E) be
such that I (ρ;ν) < +∞. In particular ρ1 = ν and ρ2 = μ. According to Lemma 4.2 there exists
a sequence (ρn)n≥1 of elements of M1(R+ × E) such that for every n ≥ 1 we have ρn ∈Pn and

ρn w→ ρ. According to Lemma 4.3

P
(
T n ∈ B(ρ, ε)

)
= P
(
T̃ n ∈ B(ρ, ε)

)
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≥ P

(
W

χ

1

(
T̃ n,T n

)
<

ε

3
,W

χ

1

(
T n, ρn

)
<

ε

3
,W

χ

1

(
ρn,ρ
)
<

ε

6

)
≥ P

(
W

χ

1

(
ρn,T n

)
<

ε

3
,W

χ

1

(
ρn,ρ
)
<

ε

6

)
since it follows from the definition of T̃ n that for every ρn ∈ Pn we have

W
χ
1

(
T̃ n,T n

)≤ W
χ
1

(
ρn,T n

)
.

On the other hand since ρn w→ ρ we get that for n large enough {Wχ

1 (ρn,ρ) < ε
6 } = �. Thus, for

those n’s

P

(
W

χ
1

(
ρn,T n

)
<

ε

3
,W

χ
1

(
ρn,ρ
)
<

ε

6

)
≥ P

(
W

χ
1

(
ρ,T n
)
<

ε

6
,W

χ
1

(
ρn,ρ
)
<

ε

6

)
≥ P

(
W

χ

1

(
T n, ρ
)
<

ε

6

)
.

Finally, it follows from Lemma 4.1 that

lim inf
n→∞

1

n
logP
(
T n ∈ B(ρ, ε)

) ≥ lim inf
n→∞

1

n
logP

(
W

χ

1

(
ρ,T n
)
<

ε

6

)
≥ −H(ρ|ν ⊗ μ) = −I (ρ;ν).

Proof of the upper bound. In order to prove the upper bound of the LDP, it is sufficient to prove
that it holds for compact subsets of M1(R+ ×E). Indeed, since (T n)n≥1 is an exponentially tight
sequence (see Lemma 4.4) the full upper bound will follow from Lemma 1.2.18 in [9]. Let A be
a compact subset of M1(R+ × E) and let us denote by

Aν,μ = {ρ ∈ A :ρ1 = ν and ρ2 = μ},
which is a compact subset of M1(R+ × E) as well. Since the weak convergence topology on
M1(R+ × E) is compatible with the W

χ

1 metric, it makes M1(R+ × E) a regular topological
space: For every ρ ∈ A such that ρ ∈ Ac

ν,μ there exists ερ > 0 such that B(ρ,2ερ) ∩ Aν,μ =
∅. In particular, B̄(ρ, ερ) ∩ Aν,μ = ∅ where B̄(ρ, ε) denotes the closed ball centered on ρ ∈
M1(R+ × E) of radius ε > 0 for the W

χ
1 metric. On the other hand, since ρ 	→ H(ρ|ν ⊗ μ) is

lower semi-continuous, for every ρ ∈ Aν,μ and every δ > 0 there exists a ϕ(ρ, δ) > 0 such that

inf
γ∈B̄(ρ,ϕ(ρ,δ))

H(γ |ν ⊗ μ) ≥ (H(ρ|ν ⊗ μ) − δ
)∧ 1

δ
.

For every δ > 0, we consider the coverage

A ⊂
( ⋃

ρ∈A∩Ac
ν,μ

B(ρ, ερ)

)
∪
( ⋃

ρ∈Aν,μ

B

(
ρ,

ϕ(ρ, δ)

8

))
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from which we extract a finite coverage

A ⊂
(⋃

ρ∈I1

B(ρ, ερ)

)
∪
(⋃

ρ∈I2

B

(
ρ,

ϕ(ρ, δ)

8

))
,

where I1 ⊂ A ∩ Ac
ν,μ and I2 ⊂ Aν,μ are finite sets. According to Lemma 1.2.15 in [9]

lim sup
n→∞

1

n
logP
(
T n ∈ A

)≤ max

{
lim sup
n→∞

1

n
logP

(
T n ∈
⋃
ρ∈I1

B̄(ρ, ερ) ∩ A

)
,

lim sup
n→∞

1

n
logP

(
T n ∈
⋃
ρ∈I2

B

(
ρ,

ϕ(ρ, δ)

8

))}
.

For every ρ ∈ I1 there can not be an infinite number of integers nk such that

P
(
T nk ∈ B̄(ρ, ερ) ∩ A

) �= 0

for otherwise we would get B̄(ρ, ερ) ∩ Aν1,ν2 �= ∅. The first term in the max is then equal to
−∞. We are left with the second term and according to Lemmas 4.1, 4.2 and 4.3, we have

lim sup
n→∞

1

n
logP
(
T n ∈ A

) ≤ lim sup
n→∞

1

n
logP

(
T n ∈
⋃
ρ∈I2

B

(
ν,

ϕ(ρ, δ)

8

))

≤ max
ρ∈I2

{
lim sup
n→∞

1

n
logP

(
T̂ n ∈ B

(
ρ,

ϕ(ρ, δ)

8

))}
≤ max

ρ∈I2

{
lim sup
n→∞

1

n
logP

(
W

χ

1

(
ρn, T̂ n

)
<

ϕ(ρ, δ)

4

)}
≤ max

ρ∈I2

{
lim sup
n→∞

1

n
logP

(
W

χ

1

(
ρ,T n
)
<

ϕ(ρ, δ)

2

)}
≤ max

ρ∈I2

{
− inf

γ∈B̄(ρ,ϕ(ρ,δ))
H(γ |ν ⊗ μ)

}
≤ max

ρ∈I2

{
−(H(ρ|ν ⊗ μ) − δ

)∧ 1

δ

}
≤ max

ρ∈I2

{
−(I (ρ;ν) − δ

)∧ 1

δ

}
≤ − inf

ρ∈A

{(
I (ρ;ν) − δ

)∧ 1

δ

}
.

By letting δ → 0, we obtain the announced upper bound, see Remark 1.2.10 in [9].
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4.1.2. Conclusion of the proof of Theorem 4.1

First, notice that

N 1
1 (R+ × E) =

{
ρ ∈ M1(R+ × E) :

∫
R+

xρ1(dx) ≤ 1

}
(4.10)

is a closed subset of M1(R+ × E) when the latter is endowed with the weak convergence topol-
ogy. Since for every n ≥ 1 we have P(Tn ∈ N 1

1 (R+ × E)) = 1, Lemma 4.1.5 in [9] implies that
(Tn)n≥1 obeys a LDP on N 1

1 (R+ ×E) endowed with the weak convergence topology, with good
rate function I .

Next, we prove that the same remains true when N 1
1 (R+ ×E) is endowed with the distance �.

Indeed, since (T n)n≥1 satisfies a LDP on the Polish space (M1(R+ × E),W
χ

1 ) with a good rate
function it is exponentially tight: For every L > 0 there exists a A ⊂ M1(R+ × E), compact for
the weak-convergence topology, such that

lim sup
n→∞

1

n
logP
(
T n ∈ Ac

)≤ −L.

Let us show that the set A ∩ K with

K =
{

ρ ∈ M1(R+ × E) :ρ1 = ν or ρ1 ∈
∞⋃

n=1

{
νn
}}

is a compact subset of N 1
1 (R+ × E) endowed with �.

A ∩ K is closed. Let (γ n)n≥1 be a converging sequence of elements of A ∩ K which
limit we denote γ . Since �(γ n, γ ) = W

β

1 (γ n
1 , γ1) + W

χ

1 (γ n, γ ) → 0 necessarily γ1 = ν or
γ1 ∈ ⋃∞

n=1{νn} due to the particular form of K and γ ∈ A since A is closed for the weak-
convergence topology, hence γ ∈ A ∩ K .

A ∩ K is sequentially compact. We prove that any sequence (γ n)n≥1 of elements of A ∩ K

necessarily admits a �-converging sub-sequence. Due to the definition of K , (γ n
1 )n≥1 admits a

W
β

1 -converging sub-sequence. Along this sub-sequence (γ n)n≥1 also admits a weakly converg-
ing (sub-)sub-sequence since A is compact for the weak convergence topology. The sub-sequence
obtained by this double extraction is �-convergent. Moreover,

lim sup
n→∞

1

n
logP
(
T n ∈ (A ∩ K)c

) ≤ lim sup
n→∞

1

n
logP
(
T n ∈ Ac

)
+ lim sup

n→∞
1

n
logP
(
T n ∈ Kc

)
≤ −L.

Hence, (Tn)n≥1 obeys a LDP on (N 1
1 (R+ × E),�) see Corollary 4.2.6 in [9]. To conclude

notice that M1
1(R+ × E) is a closed subset of (N 1

1 (R+ × E),�) and that for every n ≥ 1, we
have P(Tn ∈ M1

1(R+ × E)) = 1 so, due to Lemma 4.1.5 in [9], the sequence (Tn)n≥1 obeys a
LDP on M1

1(R+ × E) endowed with the distance � with good rate function I .
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4.2. From a conditional to an unconditional LDP

In this section, we give a precise meaning to (4.1). Theorem 2.1 follows from Theorem 4.1 by a
simple application of Theorem 2.3 in [18]. Nevertheless, let us give a hint of the ideas standing
behind the latter result. To this end, we need to introduce the sequence of sets

M
1,n
1 (R+) =

{
θ ∈ M1

1 (R+) :∃(w1, . . . ,wn) ∈ (R+)n, θ = 1

n

n∑
i=1

δwi

}
.

It follows from Theorem 4.1 that for every closed C ⊂ M1
1(R+ × E) and every ν ∈ M1

1 (R+)

satisfying I (C;ν) := infρ∈C I (ρ;ν) < ∞ there exists for each δ > 0 a neighborhood Uν of ν in

(M1
1 (R+),W

β

1 ) such that

lim sup
n→∞

1

n
log sup

ν′∈Uν∩M
1,n
1 (R+)

P
(
T n ∈ C;ν′)≤ −I (C;ν) + δ.

If I (C;ν) = ∞, there exists for each L ∈ R a neighborhood Uν of ν such that the l.h.s. of
the previous display is smaller than −L. Now, due to the goodness of IW we get for every
L > 0 and every ε > 0 a finite covering

⋃k
i=1 Uν(i) of �L = {ν ∈ M1

1 (R+), IW (ν) < L} by such
neighborhoods such that

P
(
Vn ∈ A

)≤ ∫
�c

L

P
(
Vn ∈ A;ν)Qn(dν) +

k∑
i=1

∫
Uν(i)∩M

1,n
1 (R+)

P
(
Vn ∈ A;ν)Qn(dν).

This finite sum leads to the upper LD bound in a straightforward way. The proof of the lower LD
bound follows the same idea and is even simpler due to the local nature of such bounds.

4.2.1. A Large Deviations System

In order to conclude the proof of Theorem 2.1, it is sufficient to establish that the distribution of
Vn on M1

1(R+ ×E) is a mixture of Large Deviation Systems (LDS) in the sense of [18]. For the
sake of clarity, we recover the notations of [18] when identifying the components of the LDS:

• Z = M1
1(R+ × E) is a Polish space when endowed with the distance �, see Section 4.2.2

below.
• X = M1

1 (R+) is a Polish space when endowed with W
β

1 since it is a closed subset of the

Polish space (W1(R+),W
β

1 ) (see, e.g., [5]).

• For every n ≥ 1, we note Xn = M
1,n
1 (R+) and for every ν ∈X and every n ≥ 1 there exists

a νn ∈Xn such that νn
W

β
1→ ν, see Lemma 4.5 in Section 4.2.3 below.

• The map π :Z →X defined by π(ν) = ν1 is continuous and surjective.
• For every n ≥ 1 and every ν = 1

n

∑n
i=1 δwi

∈ Xn let P n
ν be the distribution of Tn =

1
n

∑n
i=1 δ(wσn(i),x

n
i ) under P. The family � = {P n

ν , ν ∈ Xn, n ≥ 1} of finite measures
on the Borel σ -field on Z is such that for every n ≥ 1 and every ν ∈ Xn we have
P n

ν (π−1({ν}c)) = 0.
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• Let Qn be the distribution of 1
n

∑n
i=1 δWn

i
. For every n ≥ 1 and every measurable A ⊂

M1
1(R+ × E)

P
(
Vn ∈ A

)= ∫
Xn

P n
ν (A)Qn(dν).

All the requirements of Definition 2.1 in [18] are satisfied by our model thanks to Theorem 4.1.
It follows from Theorem 2.3 in [18] that the sequence (Vn)n≥1 obeys a LDP on M1

1(R+ × E)

with distance � with good rate function

J (ρ) =
{

H(ρ|ρ1 ⊗ μ) + IW (ρ1), if ρ2 = μ,
+∞, otherwise.

4.2.2. (M1
1(R+ × E),�) is a Polish space

(M1
1(R+ × E),�) is complete. Let (ρn)n≥1 be a Cauchy sequence of elements of (M1

1(R+ ×
E),�). In particular (ρn

1 )n≥1 is a Cauchy sequence of elements of (M1
1 (R+),W

β

1 ) which

is a complete space as a closed subset of (W1(R+),W
β

1 ) (see, e.g., [5]). So there exists a

ρ1 ∈ M1
1 (R+) such that W

β

1 (ρn
1 , ρ1) → 0. Furthermore, (ρn)n≥1 is a Cauchy sequence of ele-

ments of the Polish space (M1(R+ × E),W
χ
1 ) hence there exists a γ ∈ M1(R+ × E) such that

W
χ

1 (ρn, γ ) → 0. Necessarily, γ1 = ρ1 hence �(ρn, γ ) → 0.

(M1
1(R+ ×E),�) is separable. Let R and S be dense countable subsets of R+ and E, respec-

tively. It is sufficient to prove that

⋃
n≥1

{
1

n

n∑
i=1

δ(un
i ,vn

i ) : for every 1 ≤ i ≤ n,un
i ∈ R and vn

i ∈ S

}

is dense in N 1
1 (R+ × E) defined in (4.10) endowed with the distance � (see (4.10)). Indeed,

since M1
1(R+ × E) is a closed subset of N 1

1 (R+ × E) the announced claim will follow. So let
ρ ∈N 1

1 (R+×E). In particular,
∫
R+ xρ1(dx) < ∞. Lets us denote by (Z1, T1), . . . , (Zn,Tn), . . . a

sequence of independent random variables with common distribution ρ. According to Varadara-
jan’s lemma,

1

n

n∑
i=1

δ(Zi,Ti )
w→ ρ almost surely (4.11)

and according to the Strong Law of Large Numbers

1

n

n∑
i=1

Zi →
∫
R+

xρ1(dx) almost surely. (4.12)
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So there exists a family ((zi , ti )1≤i≤n)n≥1 of elements of R+ × E such that

1

n

n∑
i=1

δ(zi ,ti )
w→ ρ and

1

n

n∑
i=1

zi →
∫
R+

xρ1(dx),

hence �(ρ, 1
n

∑n
i=1 δ(zi ,ti )) → 0, see Theorem 7.12 in [27]. Since R × S is dense in R+ × E

for every n ≥ 1 and every 1 ≤ i ≤ n there exists (un
i , v

n
i ) ∈ R × S such that max{ξ((un

i , v
n
i ),

(zi , ti))} ≤ 2−n. Clearly,

W
χ
1

(
1

n

n∑
i=1

δ(un
i ,vn

i ),
1

n

n∑
i=1

δ(xn
i ,yn

i )

)
≤ 2−n,

hence W
χ
1 ( 1

n

∑n
i=1 δ(un

i ,vn
i ), ρ) → 0.

4.2.3. An approximation result in (M1
1 (R+),W

β

1 )

Lemma 4.5. For every γ ∈ M1
1 (R+) there exists a sequence (γ n)n≥1 of elements of M1

1 (R+)

such that for every n ≥ 1 γ n = 1
n

∑n
i=1 δvn

i
and γ n

W
β
1→ γ .

Proof. By the same kind of argument as in the separability proof above, one can construct a

sequence ( 1
n

∑n
i=1 δun

i
)n≥1 such that 1

n

∑n
i=1 δun

i

W
β
1→ ρ. In particular 1

n

∑n
i=1 un

i → 1. So we only
need to modify the un

i ’s in such a way that for every n ≥ 1 their total sum equals n. For a fixed
n, we have three possibilities:

• If
∑n

i=1 un
i = n, we take vn

i = un
i for every 1 ≤ i ≤ n.

• If
∑n

i=1 un
i > n, we look at the un

i ’s as the occupation masses of n cells by a mass un
i

each. We pick uniformly at random the excess of mass until we get new occupation masses
vn

1 , . . . , vn
n such that

∑n
i=1 vn

i = n.
• If
∑n

i=1 un
i < n again, we look at the ui ’s as the occupation masses and add mass uniformly

at random into the n cells until they contain a total mass of n. We call vn
1 , . . . , vn

n the final
occupation masses.

Due to Lemma 2.1 in [16], in all the cases considered above we have

W
β

1

(
1

n

n∑
i=1

δun
i
,

1

n

n∑
i=1

δvn
i

)
= min

τ∈Sn

1

n

n∑
i=1

∣∣un
i − vn

τ(i)

∣∣≤ 1

n

n∑
i=1

∣∣un
i − wn

i

∣∣
=
∣∣∣∣∣1n

n∑
i=1

un
i − 1

n

n∑
i=1

wn
i

∣∣∣∣∣
=
∣∣∣∣∣1n

n∑
i=1

un
i − 1

∣∣∣∣∣→ 0,

which conclude the proof. �
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5. Proof of Theorem 2.2

In order to prove Theorem 2.2 it is sufficient to establish that the distribution of V n on M1
1(R+ ×

E) is a mixture of LDS. Again we recover the notations of [18] when identifying the components
of the LDS:

• Z =M1
1(R+ × E) is a Polish space when endowed with the distance �.

• X = M1(E) is a Polish space when endowed with the weak convergence topology.
• For every n ≥ 1, we note

Xn =
{

ν ∈ M1
1 (E) :∃(x1, . . . , xn) ∈ En, ν = 1

n

n∑
i=1

δxi

}

and according to Varadarajan’s lemma for every ν ∈ X and every n ≥ 1 there exists a νn ∈
Xn such that νn w→ ν.

• The map π :Z → X defined by π(ν) = ν2 is continuous and surjective.
• For every n ≥ 1 and every ν = 1

n

∑n
i=1 δxi

∈ Xn let P n
ν be the distribution of Tn =

1
n

∑n
i=1 δWn

i ,xi
under P. The family � = {P n

ν , ν ∈ Xn, n ≥ 1} of finite measures on the Borel

σ -field on Z is such that for every n ≥ 1 and every ν ∈ Xn we have P n
ν (π−1({ν}c)) = 0.

• Let Qn be the distribution of 1
n

∑n
i=1 δXn

i
. For every n ≥ 1 and every measurable A ⊂

M1
1(R+ × E)

P
(
Vn ∈ A

)= ∫
Xn

P n
ν (A)Qn(dν).

All the requirements of Definition 2.1 in [18] are satisfied by our model thanks to Theorem 2.1.
It follows from Theorem 2.3 in [18] that the sequence (V n)n≥1 obeys a LDP on M1

1(R+ × E)

with distance � with good rate function

J (ρ) = H(ρ|ρ1 ⊗ ρ2) + IW (ρ1) + IX(ρ2).

6. Some more proofs

6.1. Proof of Corollary 2.3

In view of (2.4), a necessary condition on ((Wn
i )1≤i≤n)n≥1 for K = IX is that for every ν, ζ ∈

M1(E) and every ((Xn
i )1≤i≤n)n≥1

IX(ν) − IX(ζ ) ≤ K(ν, ζ ).

If we consider Xn
1 , . . . ,Xn

n resulting from sampling without replacement on an urn which compo-
sition xn

1 , . . . , xn
n satisfies 1

n

∑n
i=1 δxn

i

w→ ζ we know that 1
n

∑n
i=1 δXn

i
satisfies a LDP with good

rate function

IX(θ) =
{

0, if θ = ζ ,
∞, otherwise,
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so the announced condition is necessary. It is also clearly sufficient and the claimed result fol-
lows.

6.2. Proof of Proposition 2.1

Let ρ,γ ∈M1
1(R+ ×E) and λ ∈]0,1[ be such that λJ (ρ;μ)+ (1 −λ)J (γ ;μ) < ∞ for other-

wise the inequality to be proved trivially holds. In particular, ρ2 = γ2 = (λρ + (1 − λ)γ )2 = μ.
Since H(·|·) is convex in its two arguments (see, e.g., Lemma 1.4.3 in [13]) we have

J
(
λρ + (1 − λ)γ

) = H
(
λρ + (1 − λ)γ |(λρ1 + (1 − λ)γ1

)⊗ μ
)+ IW

(
λ1ρ + (1 − λ)γ1

)
≤ H
(
λρ + (1 − λ)γ |λ(ρ1 ⊗ μ) + (1 − λ)(γ1 ⊗ μ)

)+ IW
(
λ1ρ + (1 − λ)γ1

)
= λ
(
H(ρ|ρ1 ⊗ μ) + IW (ρ1)

)+ (1 − λ)
(
H(γ |γ1 ⊗ μ) + IW (γ1)

)
.

Proving that K(·;μ) is convex works the same way.

6.3. Proof of Proposition 2.2

We start the proof of Proposition 2.2 by proving (2.8). To this end, we first establish that for
every ν,μ ∈ M1(E)K(ν;μ) < ∞ implies ν 
 μ. Indeed, if the former condition holds there
necessarily exists a ρ ∈ M1

1(R+ × E) such that ρ2 = μ and F(ρ) = ν. For every such ρ the
latter reads

ν(A) =
∫
R+×A

wρx(dw)μ(dx)

for every measurable A ⊂ E, hence ν 
 μ and

dν

dμ
(x) =

∫
R+

wρx(dw) (6.1)

μ a.s. Thus, if ν 
 μ does not hold we necessarily have K(ν;μ) = ∞.
Now let us assume that ν 
 μ. First, we show that

Hν,μ = {ρ ∈M1
1(R+ × E) :ρ2 = μ and F(ρ) = ν

}
is not empty. Consider ρ ∈M1

1(R+ × E) defined by ρ2 = μ while the regular conditional distri-
bution of its first marginal given the second is

ρx(dw) =
⎧⎨⎩P
(

dν

dμ
(x)

)
(dw), if

dν

dμ
(x) > 0,

δ0(dw), otherwise.
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Let us check that F(ρ) = ν. Indeed, every measurable A ⊂ E can be decomposed into A =
Aν ∪ A⊥

ν where Aν = A ∩ Support(ν) and

F(ρ)(A) =
∫
R+×A

wρx(dw)μ(dx)

=
∫

Aν

(∫
R+

wP
(

dν

dμ
(x)

)
(dw)

)
μ(dx) +

∫
A⊥

ν

(∫
R+

wδ0(dw)

)
μ(dx)

=
∫

Aν

dν

dμ
(x)μ(dx)

= ν(Aν) = ν(A).

For every ρ ∈Hν,μ, every θ ∈D�ξ and μ a.e. x ∈ E, we have

H(ρx |ξ) = H
(
ρx |ξθ
)+ ∫

R+
log

dξθ

dξ
(w)ρx(dw)

= H
(
ρx |ξθ
)+ θ

∫
R+

wρx(dw) − log
∫
R+

eθuξ(du) (6.2)

= H
(
ρx |ξθ
)+ θ

dν

dμ
(x) − log

∫
R+

eθuξ(du),

hence

H(ρx |ξ) − sup
θ∈D�ξ

{
θ

dν

dμ
(x) − log

∫
R+

eθuξ(du)

}
= inf

θ∈D�ξ

H
(
ρx |ξθ
)

whence ∫
E

H(ρx |ξ)μ(dx) −
∫

E

�∗
ξ

(
dν

dμ
(x)

)
μ(dx) =

∫
E

inf
θ∈D�ξ

H
(
ρx |ξθ
)
μ(dx). (6.3)

Since J (ρ;μ) = H(ρ|ρ1 ⊗ μ) + H(ρ1|ξ) = H(ρ|ξ ⊗ μ) = ∫
E

H(ρx |ξ)μ(dx) it follows from
(6.3) that if ν 
 μ then

K(ν;μ) =
∫

E

�∗
ξ

(
dν

dμ
(x)

)
μ(dx) + inf

ρ∈Hν,μ

∫
E

inf
θ∈D�ξ

H
(
ρx |ξθ
)
μ(dx).

Next, we prove that (2.8) reduces to (2.9) if and only if (2.10) holds. In view of (6.2) it amounts
to show that (2.10) is a necessary and sufficient condition for the following to hold: for every
ν,μ ∈ M1(E) there exists a ρ ∈ M1

1(R+ × E) such that

1. ρ2 = μ,
2. for μ a.e. x ∈ E ρx = ξθx for some θx ∈D�ξ ,

3. for μ a.e. x ∈ E such that dν
dμ

(x) > 0 we have
∫
R+ wρx(dw) = dν

dμ
(x).
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Let us recall that �ξ is C∞ in
◦

D�ξ , that for every α ∈ ◦
D�ξ

�′
ξ (α) =

∫
R+ weαwξ(dw)∫
R+ eαwξ(dw)

= 1

Z

∫
R+

weαwξ(dw)

and that �′′
ξ (α) > 0 for every α ∈ ◦

D�ξ , see Section 2.2.1 in [9]. So finally it appears that

lim
α→−∞�′

ξ (α) = 0 and lim
α→a

�′
ξ (α) = +∞

is a necessary and sufficient condition to get for every ν,μ ∈ M1(E) and every x ∈ E such
that dν

dμ
(x) > 0 a ρx of the form ξθ with

∫
R+ wρx(dw) = dν

dμ
(x) and H(ρx |ξ) = �∗

ξ (
dν
dμ

(x)).

If dν
dμ

(x) = 0, then one takes ρx = δ0 and still gets
∫
R+ wρx(dw) = dν

dμ
(x) and H(ρx |ξ) =

�∗
ξ (

dν
dμ

(x)) = �∗
ξ (0). Finally, by properly choosing ν,μ ∈ M1(E) one can see that (2.10) is also

necessary to ensure that (2.9) holds for every ν,μ ∈ M1(E).

6.4. Proof of Corollary 3.2

Let ν ∈ M1(E) be such that infη∈Z H(ν|η) < ∞. Necessarily for every η ∈ Z such that
H(ν|η) < ∞ we have ν 
 η. Now for every such η consider ρ ∈ M1

1(R+ × E) defined by
ρ2 = η while the regular conditional distribution of its first marginal given the second is

ρx(dw) =
⎧⎨⎩F
(

λ,λ
dν

dη
(x)

)
(dw), if

dν

dη
(x) > 0,

δ0(dw), otherwise.

Following the proof of Proposition 2.2, we get F(ρ) = ν. Moreover by taking E1 = E∩{ dν
dη

(x) >

0} and E2 = E ∩ { dν
dη

(x) = 0}, we get

H(ρ|ρ1 ⊗ η) + H
(
ρ1|Q(λ)

)+ IX(η)

= H
(
ρ|Q(λ) ⊗ η

)
=
∫

E

H
(
ρx(·)|Q(λ)

)
η(dx)

=
∫

E1

H

(
P
(

λ
dν

dη
(x)

)∣∣P(λ)

)
η(dx) +

∫
E2

H
(
δ0|P(λ)

)
η(dx)

=
∫

E1

λ

(
1 − dν

dη
(x) + dν

dη
(x) log

dν

dη
(x)

)
η(dx) + λη(E2)

= λH(ν|η),

hence K(ν) ≤ λ infη∈Z H(ν|η).
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6.5. Proof of Corollary 3.3

Let ν ∈ M1(E) be such that ν 
 μ for otherwise we already know that K(ν;μ) = +∞. We have

K(ν;μ) = inf
ρx :F(ρx⊗μ)=ν

{
H(ρ|ρ1 ⊗ μ) + inf

m>0

{
H
(
ρ1|G(ξ,m)

)}}
= inf

m>0
inf

ρx :F(ρx⊗μ)=ν

{
H(ρ|ρ1 ⊗ μ) + H

(
ρ1|G(ξ,m)

)}
= inf

m>0
inf

ρx :F(ρx⊗μ)=ν

{
H
(
ρ|G(ξ,m) ⊗ μ

)}
= inf

m>0
inf

ρx :F(ρx⊗μ)=ν

{∫
E

H
(
ρx |G(ξ,m)

)
μ(dx)

}
,

where, to establish the result, we proceed as in the proof of Proposition 2.2.

6.6. Proof of Corollary 3.5

First, we consider α > 0. Let ν ∈ M1(E) be such that μ−(1−α)ν
α

∈ M1(E). Then ρ ∈ M1
1(R+ ×

E) defined by ρ1 = π while the regular conditional distribution of its second marginal given the
first is

ρ1/(1−α)(dx) = ν(dx) and ρ0(dx) = μ(dx) − (1 − α)ν(dx)

α

is the only element of M1
1(R+ × E) that satisfies F(ρ) = ν,ρ1 = π and ρ2 = μ. Since for this

particular ρ we have

H(ρ|ρ1 ⊗ ρ2) = (1 − α)H(ν|μ) + αH

(
μ − (1 − α)ν

α

∣∣μ)
we obtain an upper-bound on K as announced. To prove the reverse inequality let ν ∈ M1(E)

be such that K(ν;μ) < ∞ for otherwise the announced result trivially holds. Necessarily there
exists a ρ ∈ M1

1(R+ × E) such that F(ρ) = ν,ρ1 = π and ρ2 = μ. These conditions are only

met by the probability measure ρ introduced above. In particular μ−(1−α)ν
α

must be a probability
and the reverse inequality holds.

If α = 0, then π = δ1 so the only ν ∈ M1(E) such that there exists ρ ∈ M1
1(R+ ×E) such that

F(ρ) = ν and ρ2 = μ is μ and necessarily ρ = δ1 ⊗ μ. The announced result follows.

6.7. Proof of Corollary 3.6

First, we consider α > 0. Let ν ∈ M1(E) be such that infζ∈Eν
U(ν, ζ ) < ∞ holds. Then for every

ζ ∈ Eν we have ζ−(1−α)ν
α

∈ M1(E) and ρ ∈M1
1(R+ × E) defined by ρ1 = π and

ρ1/(1−α)(dx) = ν(dx) and ρ0(dx) = ζ(dx) − (1 − α)ν(dx)

α
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satisfies F(ρ) = ν,ρ1 = π and ρ2 = ζ and

H(ρ|ρ1 ⊗ ρ2) + IW (ρ1) + IX(ρ2) = (1 − α)H(ν|ζ ) + αH

(
ζ − (1 − α)ν

α

∣∣ζ)+ IX(ζ )

hence K(ν) ≤ infζ∈Eν
U(ν, ζ ). To prove the reverse inequality, let us assume that K(ν) <

∞. Then there exists a ρ ∈ M1
1(R+ × E) such that F(ρ) = ν and ρ1 = π . Necessarily

ρ1/(1−α)(dx) = ν(dx) and ρ2 is such that ρ0(dx) = ρ2(dx)−(1−α)ν(dx)
α

∈ M1(E). Thus, Eν is non-
empty and

H(ρ|ρ1 ⊗ ρ2) + IW (ρ1) + IX(ρ2) = (1 − α)H(ν|ρ2) + αH

(
ρ2 − (1 − α)ν

α

∣∣ρ2

)
+ IX(ρ2)

≥ inf
ρ2∈Eν

U(ν, ρ2).

If α = 0, then π = δ1 and for every ν ∈ M1(E) there is only one ρ ∈ M1
1(R+ × E) such that

F(ρ) = ν which is ρ = δ1 ⊗ ν and the announced result immediately follows.

6.8. Proof of Theorem 3.4

According to Corollary 3.1, Theorem 3.1 and Proposition 2.2 the sequence (Ln = 1
n

×∑n
i=1 Wn

i δ(xn
i ,...,xn

i+k−1)
)n≥1 obeys a LDP on M1(E

k) endowed with the weak convergence topol-

ogy with good rate function K(ν(k);μ(k)) = 1
k
H(ν(k)|μ(k)). The announced result follows since

the map H defined on M1(E
k) by H(ρ(k)) = 1

k

∑k
i=1 ρ

(k)
i is continuous.

6.9. Proof of Corollary 3.7

Let ν ∈ M1(E). Since H(ν⊗k) = ν and in this particular case μ(k) = μ⊗k we get K̃(ν;μ) ≤
1
k
H(ν⊗k|μ⊗k) = H(ν|μ). On the other hand for every ρ(k) such that H(ρ(k)) = ν we

have H(ν|μ) = H( 1
k

∑k
i=1ρ

(k)
i |μ) ≤ 1

k

∑k
i=1 H(ρ

(k)
i |μ) since H(·|μ) is convex. To con-

clude the proof, just notice that H(ρ(k)|μ⊗k) = H(ρ(k)|⊗k
i=1 ρ

(k)
i ) + H(

⊗k
i=1 ρ

(k)
i |μ⊗k) ≥

H(
⊗k

i=1 ρ
(k)
i |μ⊗k) =∑k

i=1 H(ρ
(k)
i |μ).

Supplementary Material

Large deviations for bootstrapped empirical measures (DOI: 10.3150/13-BEJ544SUPP;
.pdf). In the supplemental article [26], we give the proofs of the sample weights LDPs stated
in Section 3: Theorems 3.1, 3.2 and 3.3.

http://dx.doi.org/10.3150/13-BEJ544SUPP


Large deviations for bootstrapped empirical measures 1877

References

[1] Bahadur, R.R. (1969). Some Limit Theorems in Statistics. Philadelphia, PA: SIAM. MR0315820
[2] Barbe, P. and Bertail, P. (1995). The Weighted Bootstrap. Lecture Notes in Statistics 98. New York:

Springer. MR2195545
[3] Baxter, J.R. and Jain, N.C. (1988). A comparison principle for large deviations. Proc. Amer. Math.

Soc. 103 1235–1240. MR0955016
[4] Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley. MR0233396
[5] Bolley, F. (2008). Separability and completeness for the Wasserstein distance. In Séminaire de Prob-

abilités XLI. Lecture Notes in Math. 1934 371–377. Berlin: Springer. MR2483740
[6] Broniatowski, M. and Cao, Z. (2013). Weighted sampling, maximum likelihood and minimum diver-

gence estimators. Preprint, Université Pierre et Marie Curie, Paris, France.
[7] Chaganty, N.R. and Karandikar, R.L. (1996). Some properties of the Kullback–Leibler number.
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