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A basic result of large deviations theory is Sanov’s theorem, which states that the sequence of empirical
measures of independent and identically distributed samples satisfies the large deviation principle with rate
function given by relative entropy with respect to the common distribution. Large deviation principles for
the empirical measures are also known to hold for broad classes of weakly interacting systems. When the
interaction through the empirical measure corresponds to an absolutely continuous change of measure, the
rate function can be expressed as relative entropy of a distribution with respect to the law of the McKean–
Vlasov limit with measure-variable frozen at that distribution. We discuss situations, beyond that of tilted
distributions, in which a large deviation principle holds with rate function in relative entropy form.
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1. Introduction

Weakly interacting systems are families of particle systems whose components, for each fixed
number N of particles, are statistically indistinguishable and interact only through the empir-
ical measure of the N -particle system. The study of weakly interacting systems originates in
statistical mechanics and kinetic theory; in this context, they are often referred to as mean field
systems.

The joint law of the random variables describing the states of the N -particle system of a
weakly interacting system is invariant under permutations of components, hence determined by
the distribution of the associated empirical measure. For large classes of weakly interacting sys-
tems, the law of large numbers is known to hold, that is, the sequence of N -particle empirical
measures converges to a deterministic probability measure as N tends to infinity. The limit mea-
sure can often be characterized in terms of a limit equation, which, by extrapolation from the
important case of Markovian systems, is called McKean–Vlasov equation (cf. McKean [26]). As
with the classical law of large numbers, different kinds of deviations of the prelimit quantities
(the N -particle empirical measures) from the limit quantity (the McKean–Vlasov distribution)
can be studied. Here we are interested in large deviations.

Large deviations for the empirical measures of weakly interacting systems, especially Marko-
vian systems, have been the object of a number of works. The large deviation principle is usu-
ally obtained by transferring Sanov’s theorem, which gives the large deviation principle for the
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empirical measures of independent and identically distributed samples, through an absolutely
continuous change of measure. This approach works when the effect of the interaction through
the empirical measure corresponds to a change of measure which is absolutely continuous with
respect to some fixed reference distribution of product form. Sanov’s theorem can then be trans-
ferred using Varadhan’s lemma. In the case of Markovian dynamics, such a change-of-measure
argument yields the large deviation principle on path space; see Léonard [24] for non-degenerate
jump diffusions, Dai Pra and den Hollander [5] for a model of Brownian particles in a poten-
tial field and random environment, and Del Moral and Guionnet [7] for a class of discrete-time
Markov processes. An extension of Varadhan’s lemma tailored to the change of measure needed
for empirical measures is given in Del Moral and Zajic [8] and applied to a variety of non-
degenerate weakly interacting systems. The large deviation rate function in all those cases can
be written in relative entropy form, that is, expressed as relative entropy of a distribution with
respect to the law of the McKean–Vlasov limit with measure-variable frozen at that distribution;
cf. Remark 3.2 below.

In the case of Markovian dynamics, the large deviation principle on path space can be taken
as the first step in deriving the large deviation principle for the empirical processes; cf. Léonard
[24] or Feng [14,15]. In Dawson and Gärtner [6], the large deviation principle for the empirical
processes of weakly interacting Itô diffusions with non-degenerate and measure-independent dif-
fusion matrix is established in Freidlin–Wentzell form starting from a process level representation
of the rate function for non-interacting Itô diffusions. The large deviation principle for interact-
ing diffusions is then derived by time discretization, local freezing of the measure variable and
an absolutely continuous change of measure with respect to the resulting product distributions.
A similar strategy is applied in Djehiche and Kaj [10] to a class of pure jump processes.

A different approach is taken in the early work of Tanaka [28], where the contraction princi-
ple is employed to derive the large deviation principle on path space for the special case of Itô
diffusions with identity diffusion matrix. The contraction mapping in this case is actually a bi-
jection. Using the invariance of relative entropy under bi-measurable bijections, the rate function
is shown to be of relative entropy form. In Léonard [25], the large deviation upper bound, not
the full principle, is derived by variational methods using Laplace functionals for certain pure
jump Markov processes that do not allow for an absolutely continuous change of measure. In
Budhiraja, Dupuis and Fischer [4], the path space Laplace principle for weakly interacting Itô
processes with measure-dependent and possibly degenerate diffusion matrix is established based
on a variational representation of Laplace functionals, weak convergence methods and ideas from
stochastic optimal control. The rate function is given in variational form.

The aim of this paper is to show that the large deviation principle holds with rate function
in relative entropy form also for weakly interacting systems that do not allow for an absolutely
continuous change of measure with respect to product distributions. The large deviation prin-
ciple in that form is a natural generalization of Sanov’s theorem. Two classes of systems will
be discussed: noise-based systems to which the contraction principle is applicable, and systems
described by weakly interacting Itô processes.

Remark 1.1. The random variables representing the states of the particles will be assumed to
take values in a Polish space. The space of probability measures over a Polish space will be
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equipped, for simplicity, with the standard topology of weak convergence. Continuity of a func-
tional with respect to the topology of weak convergence might be a rather restrictive condition.
This restriction can be alleviated by considering the space of probability measures that satisfy
an integrability condition (e.g., finite moments of a certain order), equipped with the topology
of weak(-star) convergence with respect to the corresponding class of continuous functions (for
instance, Section 2b) in Léonard [24]). The results presented below can be adapted to this more
general situation.

The rest of this paper is organized as follows. In Section 2, we collect basic definitions and
results of the theory of large deviations in the context of Polish spaces that will be used in the
sequel; standard references for our purposes are Dembo and Zeitouni [9] and Dupuis and El-
lis [12]. In Section 3, we introduce a toy model of discrete-time weakly interacting systems to
illustrate the use of Varadhan’s lemma, which in turn yields, at least formally, a representation of
the rate function in relative entropy form. In Section 4, a class of weakly interacting systems is
presented to which the contraction principle is applicable but not necessarily the usual change-
of-measure technique. The large deviation rate function is shown to be of the desired form thanks
to a contraction property of relative entropy. In Section 5, we discuss the case of weakly interact-
ing Itô diffusions with measure-dependent and possibly degenerate diffusion matrix studied in
Budhiraja, Dupuis and Fischer [4]. The variational form of the Laplace principle rate function es-
tablished there is shown to be expressible in relative entropy form. As a by-product, one obtains
a variational representation of relative entropy with respect to Wiener measure. The Appendix
contains two results regarding relative entropy: the contraction property mentioned above, which
extends a well-known invariance property (Appendix A), and a direct proof of the variational
representation of relative entropy with respect to Wiener measure (Appendix B). In Appendix C,
easily verifiable conditions entailing the hypotheses of the Laplace principle of Section 5 are
given.

2. Basic definitions and results

Let S be a Polish space (i.e., a separable topological space metrizable with a complete metric).
Denote by B(S) the σ -algebra of Borel subsets of S and by P(S) the space of probability mea-
sures on B(S) equipped with the topology of weak convergence. For μ,ν ∈ P(S), let R(ν‖μ)

denote the relative entropy of ν with respect to μ, that is,

R(ν‖μ)
.=
⎧⎨
⎩
∫
S

log

(
dν

dμ
(x)

)
ν(dx), if ν absolutely continuous w.r.t. μ,

∞, else.

Relative entropy is well defined as a [0,∞]-valued function, it is lower semicontinuous as a
function of both variables, and R(ν‖μ) = 0 if and only if ν = μ.

Let (ξn)n∈N be a sequence of S-valued random variables. A rate function on S is a lower
semicontinuous function S → [0,∞]. Let I be a rate function on S . By lower semicontinuity,
the sublevel sets of I , that is, the sets I−1([0, c]) for c ∈ [0,∞), are closed. A rate function is
said to be good if its sublevel sets are compact.
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Definition 2.1. The sequence (ξn)n∈N satisfies the large deviation principle with rate function I

if for all B ∈ B(S),

− inf
x∈B◦ I (x) ≤ lim inf

n→∞
1

n
log P

{
ξn ∈ B

}
≤ lim sup

n→∞
1

n
log P

{
ξn ∈ B

} ≤ − inf
x∈cl(B)

I (x),

where cl(B) denotes the closure and B◦ the interior of B .

Definition 2.2. The sequence (ξn) satisfies the Laplace principle with rate function I if for all
G ∈ Cb(S),

lim
n→∞−1

n
log E

[
exp

(−n · G(
ξn

))] = inf
x∈S

{
I (x) + G(x)

}
,

where Cb(S) denotes the space of all bounded continuous functions S → R.

Clearly, the large deviation principle (or Laplace principle) is a distributional property. The
rate function of a large deviation principle is unique; see, for instance, Lemma 4.1.4 in Dembo
and Zeitouni [9], page 117. The large deviation principle holds with a good rate function if and
only if the Laplace principle holds with a good rate function, and the rate function is the same;
see, for instance, Theorem 4.4.13 in Dembo and Zeitouni [9], page 146.

The fact that, for good rate functions, the large deviation principle implies the Laplace princi-
ple is a consequence of Varadhan’s integral lemma; see Theorem 3.4 in Varadhan [30]. Another
consequence of Varadhan’s lemma is the first of the following two basic transfer results, given
here as Theorem 2.1; cf. Theorem II.7.2 in Ellis [13], page 52.

Theorem 2.1 (Change of measure, Varadhan). Let (ξn) be a sequence of S-valued random
variables such that (ξn) satisfies the large deviation principle with good rate function I . Let
(ξ̃ n)n∈N be a second sequence of S-valued random variables. Suppose that, for every n ∈ N,
Law(ξ̃ n) is absolutely continuous with respect to Law(ξn) with density

d Law(ξ̃ n)

d Law(ξn)
(x) = exp

(
n · F(x)

)
, x ∈ S,

where F :S → R is continuous and such that

lim
L→∞ lim sup

n→∞
1

n
log E

[
1[L,∞)

(
F
(
ξn

)) · exp
(
n · F (

ξn
))] = −∞.

Then (ξ̃ n)n∈N satisfies the large deviation principle with good rate function I − F .

The second basic transfer result is the contraction principle, given here as Theorem 2.2; see,
for instance, Theorem 4.2.1 and Remark (c) in Dembo and Zeitouni [9], pages 126 and 127.
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Theorem 2.2 (Contraction principle). Let (ξn) be a sequence of S-valued random variables
such that (ξn) satisfies the large deviation principle with good rate function I . Let ψ :S → Y
be a measurable function, Y a Polish space. If ψ is continuous on I−1([0,∞)), then (ψ(ξn))

satisfies the large deviation principle with good rate function

J (y)
.= inf

x∈ψ−1(y)
I (x), y ∈ Y,

where inf∅= ∞ by convention.

Let X1,X2, . . . be S-valued independent and identically distributed random variables with
common distribution μ ∈ P(S) defined on some probability space (�,F ,P). For n ∈ N, let μn

be the empirical measure of X1, . . . ,Xn, that is,

μn(ω)
.= 1

n

n∑
i=1

δXi(ω), ω ∈ �,

where δx denotes the Dirac measure concentrated in x ∈ S . Sanov’s theorem gives the large devi-
ation principle for (μn)n∈N in terms of relative entropy. For a proof, see, for instance, Section 6.2
in Dembo and Zeitouni [9], pages 260–266, or Chapter 2 in Dupuis and Ellis [12], pages 39–52.
Recall that P(S) is equipped with the topology of weak convergence of measures.

Theorem 2.3 (Sanov). The sequence (μn)n∈N of P(S)-valued random variables satisfies the
large deviation principle with good rate function

I (θ)
.= R(θ‖μ), θ ∈P(S).

We are interested in analogous results for the empirical measures of weakly interacting sys-
tems. For N ∈ N, let XN

1 , . . . ,XN
N be S-valued random variables defined on some probability

space (�N,FN,PN). Denote by μN the empirical measure of XN
1 , . . . ,XN

N .

Definition 2.3. The triangular array (XN
i )N∈N,i∈{1,...,N} is called a weakly interacting system if

the following hold:

(i) for each N ∈ N, XN
1 , . . . ,XN

N is a finite exchangeable sequence;
(ii) the family (μN)N∈N of P(S)-valued random variables is tight.

Recall that a finite sequence Y1, . . . , YN of random variables with values in a common mea-
surable space is called exchangeable if its joint distribution is invariant under permutations of
the components, that is, Law(Y1, . . . , YN) = Law(Yσ(1), . . . , Yσ(N)) for every permutation σ of
{1, . . . ,N}. A weakly interacting system (XN

i ) is said to satisfy the law of large numbers if there
exists μ ∈ P(S) such that (μN) converges to μ in distribution or, equivalently, (PN ◦ (μN)−1)

converges weakly to δμ. Weakly interacting systems are sometimes called mean field systems. In
the situation of Theorem 2.3, setting XN

i

.= Xi , N ∈N, i ∈ {1, . . . ,N}, defines a weakly interact-
ing system that satisfies the law of large numbers, the limit measure being the common sample
distribution.
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3. A toy model and the desired form of the rate function

For N ∈ N, let (YN
i (t))i∈{1,...,N},t∈{0,1} be an independent family of standard normal real ran-

dom variables on some probability space (�,F ,P). Let b :R → R be measurable; below we
will assume b to be bounded and continuous. Define real random variables XN

1 (t), . . . ,XN
N (t),

t ∈ {0,1}, by

XN
i (0)

.= YN
i (0), XN

i (1)
.= XN

i (0) + 1

N

N∑
j=1

b
(
XN

j (0)
)+ YN

i (1). (3.1)

We may interpret the variables XN
i (t) as the states of the components of an N -particle system at

times t ∈ {0,1}. This toy model can be obtained as the first two steps in a discrete time version
of a system of weakly interacting Itô diffusions; cf. the discussion following Example 4.3 below.
Let μN be the empirical measure of the N -particle system on “path space,” that is,

μN
ω

.= 1

N

N∑
i=1

δXN
i (ω) = 1

N

N∑
i=1

δ(XN
i (0,ω),XN

i (1,ω)), ω ∈ �.

Notice that the components of XN are identically distributed and interact only through μN since

1

N

N∑
j=1

b
(
XN

j (0)
) =

∫
R2

b(x)dμN(x, x̃)

and the variables YN
i (t) are independent and identically distributed. The sequence XN

1 , . . . ,XN
N

of R2-valued random variables is exchangeable.
Let λN denote the empirical measure of YN

1 , . . . , YN
N . By Sanov’s theorem, (λN)N∈N satisfies

the large deviation principle with good rate function R(·‖γ0), where γ0 is the bivariate standard
normal distribution. Following the usual way of deriving the large deviation principle, we observe
that, for every N ∈ N, the law of μN is absolutely continuous with respect to the law of λN . To
see this, set, for y, ỹ ∈R

N , θ ∈ P(R2),

νN
(y,ỹ)

.= 1

N

N∑
i=1

δ(yi ,ỹi ), mb(θ)
.=
∫

b(x)dθ(x, x̃),

νN
y

.= 1

N

N∑
i=1

δyi
, mb(y)

.=
(∫

b(x)νN
y (dx), . . . ,

∫
b(x)νN

y (dx)

)T

.

Define functions f :P(R2) ×R →R and F :P(R2) → [−∞,∞) according to

f
(
θ, (y, ỹ)

) .= (
y + mb(θ)

) · ỹ − 1

2

∣∣y + mb(θ)
∣∣2,

F (θ)
.=
{∫

R2
f
(
θ, (y, ỹ)

)
dθ(y, ỹ), if f (θ, ·) is θ -integrable,

−∞, otherwise.
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Then the law of XN is absolutely continuous with respect to the law of YN with density given
by

d Law(XN)

d Law(YN)
(y, ỹ) = exp

(〈
y + mb(y), ỹ

〉− 1

2

∣∣y + mb(y)
∣∣2) (3.2)

= exp
(
N · F (

μN
(y,ỹ)

))
.

Since μN = νN
(XN(0),XN (1))

and λN = νN
(YN (0),YN (1))

, it follows from (3.2) that

d Law(μN)

d Law(λN)
(θ) = exp

(
N · F(θ)

)
, θ ∈ P

(
R

2). (3.3)

The densities given by (3.3) are of the form required by Theorem 2.1, the change of measure
version of Varadhan’s lemma. Assume from now on that b is bounded and continuous. Then
F is upper semicontinuous and the tail condition in Theorem 2.1 is satisfied. However, F is
discontinuous at any θ ∈ P(R2) such that F(θ) > −∞. Indeed, let η be the univariate standard
Cauchy distribution and set θn

.= (1− 1
n
)θ + 1

n
δ0 ⊗η, n ∈N. Then θn → θ weakly, while F(θn) =

−∞ for all n.
Although Theorem 2.1 cannot be applied directly, an approximation argument based on Varad-

han’s lemma could be used to show (cf. Remark 3.1 below) that the sequence of empirical mea-
sures (μN)N∈N satisfies the large deviation principle with good rate function

I (θ)
.= R(θ‖γ0) − F(θ), θ ∈P

(
R

2). (3.4)

The function I in (3.4) can be rewritten in terms of relative entropy as follows. Define a mapping
R :P(R2) ×R

2 →R
2 by

ψ
(
θ, (y, ỹ)

) .= (
y, y + mb(θ) + ỹ

)
. (3.5)

For θ ∈ P(R2), let 
γ0(θ) be the image measure of γ0 under ψ(θ, ·). Then 
γ0(θ) is equivalent
to γ0 with density given by

d
γ0(θ)

dγ0
(y, ỹ) = exp

(
f
(
θ, (y, ỹ)

))
.

If θ is not absolutely continuous with respect to 
γ0(θ), then R(θ‖
γ0(θ)) = ∞ = R(θ‖γ0). If
θ is absolutely continuous with respect to 
γ0(θ), then

R
(
θ‖
γ0(θ)

) =
∫

log

(
dθ

d
γ0(θ)

)
dθ

=
∫

log

(
dθ

γ0

)
dθ −

∫
log

(
d
γ0(γ0)

dγ0

)
dθ

= R(θ‖γ0) − F(θ).
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Consequently, for all θ ∈ P(R2),

I (θ) = R
(
θ‖
γ0(θ)

)
. (3.6)

Notice that 
γ0(θ) is the law of a one-particle system with measure variable frozen at θ ; 
γ0(θ)

can also be interpreted as the solution of the McKean–Vlasov equation for the toy model with
measure variable frozen at θ .

Remark 3.1. A version of Varadhan’s lemma (or Theorem 2.1) that allows to rigorously derive
the large deviation principle for (μN) with rate function in relative entropy form is provided by
Lemma 1.1 in Del Moral and Zajic [8]. Observe that the density of Law(XN) may be computed
with respect to product measures different from Law(YN) = ⊗Nγ0. A natural alternative is the
product ⊗N
γ0(μ∗), where μ∗ is the (unique) solution of the fixed point equation μ = 
γ0(μ);
μ∗ can be seen as the McKean–Vlasov distribution of the toy model. We do not give the details
here. The results of Section 4, based on different arguments, will imply that (μN)N∈N satisfies
the large deviation principle with good rate function I as given by (3.6); see Example 4.1 below.

Remark 3.2. Equation (3.6) gives the desired form of the rate function in terms of relative en-
tropy. More generally, suppose that 
 :P(S) → P(S) is continuous, where S is a Polish space.
Then the function

J (θ)
.= R

(
θ‖
(θ)

)
, θ ∈ P(S),

is lower semicontinuous with values in [0,∞], hence a rate function, and it is in relative entropy
form. The lower semicontinuity of J follows from the lower semicontinuity of relative entropy
jointly in both its arguments and the continuity of 
 . If, in addition, range(
)

.= {
(θ): θ ∈
P(S)} is compact in P(S), then the sublevel sets of J are compact and J is a good rate function.
Indeed, compactness of range(
) implies tightness, and the compactness of the sublevel sets
of J , which are closed by lower semicontinuity, follows as in the proof of Lemma 1.4.3(c) in
Dupuis and Ellis [12], pages 29–31.

4. Noise-based systems

Let X , Y be Polish spaces. For N ∈ N, let XN
1 , . . . ,XN

N be X -valued random variables de-
fined on some probability space (�N,FN,PN). Denote by μN the empirical measure of
XN

1 , . . . ,XN
N . We suppose that there are a probability measure γ0 ∈ P(Y) and a Borel measur-

able mapping ψ :P(X ) ×Y → X such that the following representation for the triangular array
(XN

i )i∈{1,...,N},N∈N holds: for each N ∈ N, there is a sequence YN
1 , . . . , YN

N of independent and
identically distributed Y-valued random variables on (�N,FN,PN) with common distribution
γ0 such that for all i ∈ {1, . . . ,N},

XN
i (ω) = ψ

(
μN

ω ,YN
i (ω)

)
, PN -almost all ω ∈ �N. (4.1)
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The above representation entails by symmetry that, for N fixed, the sequence XN
1 , . . . ,XN

N is
exchangeable. Representation (4.1) also implies that μN satisfies the equation

μN = 1

N

N∑
i=1

δψ(μN ,YN
i ), PN -almost surely. (4.2)

In order to describe the limit behavior of the sequence of empirical measures (μN)N∈N, define
a mapping 
 :P(Y) ×P(X ) → P(X ) by

(γ,μ) 
→ 
γ (μ)
.= γ ◦ ψ−1(μ, ·). (4.3)

Thus 
γ (μ) is the image measure of γ under the mapping Y � y 
→ ψ(μ,y). Equivalently,

γ (μ) = Law(ψ(μ,Y )) with Y any Y-valued random variable with distribution γ . Limit points
of (μN)N∈N will be described in terms of solutions to the fixed point equation

μ = 
γ (μ). (4.4)

Assume that there is a Borel measurable set D ⊂ P(Y) such that the following properties
hold:

(A1) Equation (4.4) has a unique fixed point μ∗(γ ) for every γ ∈ D, and the mapping D �
γ 
→ μ∗(γ ) ∈ P(X ) is Borel measurable.

(A2) For all N ∈ N,

⊗Nγ0

{
(y1, . . . , yN) ∈ YN :

1

N

N∑
i=1

δyi
∈ D

}
= 1.

(A3) If γ ∈ P(Y) is such that R(γ ‖γ0) < ∞, then γ ∈ D and μ∗|D is continuous at γ .

Assumption (A2) implies that (4.4) possesses a unique solution for almost all (with respect to
products of γ0) probability measures of empirical measure form. Such probability measures are
therefore in the domain of definition of the mapping μ∗|D . According to assumption (A3), also
all probability measures γ with finite γ0-relative entropy are in the domain of definition of μ∗|D ,
which is continuous at any such γ in the topology of weak convergence.

Theorem 4.1. Grant (A1)–(A3). Then the sequence (μN)N∈N satisfies the large deviation prin-
ciple with good rate function I :P(X ) → [0,∞] given by

I (η) = inf
γ∈D:μ∗(γ )=η

R(γ ‖γ0),

where inf∅= ∞ by convention.
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Proof. The assertion follows from Sanov’s theorem and the contraction principle. To see this,
let λN denote the empirical measure of YN

1 , . . . , YN
N . Then for PN -almost all ω ∈ �N ,

μN
ω = 1

N

N∑
i=1

δψ(μN
ω ,YN

i (ω)) = λN
ω ◦ ψ−1(μN

ω , ·) = 
λN
ω

(
μN

ω

)
. (4.5)

Thus, μN = 
λN (μN) with probability one. For PN -almost all ω ∈ �N , λN
ω ∈ D by assumption

(A2) and, by uniqueness according to (A1), μ∗(λN
ω ) = μN

ω . By Theorem 2.3 (Sanov), (λN)N∈N
satisfies the large deviation principle with good rate function R(·‖γ0). By assumption (A3),
μ∗(·) is defined and continuous on {γ ∈ P(Y): R(γ ‖γ0) < ∞}. Theorem 2.2 (contraction prin-
ciple) therefore applies, and it follows that (μ∗(λN))N∈N, hence (μN)N∈N, satisfies the large
deviation principle with good rate function

P(X ) � η 
→ inf
γ∈D:μ∗(γ )=η

R(γ ‖γ0). �

The rate function of Theorem 4.1 can be expressed in relative entropy form as in Remark 3.2.
The key observation is the contraction property of relative entropy established in Lemma A.1 in
the Appendix.

Corollary 4.2. Let I be the rate function of Theorem 4.1. Then for all η ∈P(X ),

I (η) = R
(
η‖
γ0(η)

)
.

Proof. Let η ∈ P(X ). The mapping P(Y) � γ 
→ 
γ (η) ∈ P(X ) is Borel measurable. Since
{γ ∈P(X ): R(γ ‖γ0) < ∞} ⊂ D and inf∅ = ∞,

inf
γ∈D:μ∗(γ )=η

R(γ ‖γ0) = inf
γ∈D:
γ (η)=η

R(γ ‖γ0) = inf
γ∈P(Y):
γ (η)=η

R(γ ‖γ0).

By Lemma A.1, it follows that

inf
γ∈P(Y):
γ (η)=η

R(γ ‖γ0) = R
(
η‖
γ0(η)

)
. �

Example 4.1. Consider the toy model of Section 3. Suppose that b ∈ Cb(R). Then θ 
→ mb(θ)
.=∫

b(x)dθ(x, x̃) is bounded and continuous as a mapping P(R2) → R. Observe that mb(θ) de-
pends only on the first marginal of θ . Set X .=R

2, Y .=R
2, let γ0 be the bivariate standard normal

distribution, and define ψ :P(R2) × R
2 → R

2 according to (3.5). Recalling (3.1), one sees that
the toy model satisfies representation (4.1). Based on ψ , define 
 according to (4.3). Given any
γ ∈ P(R2), the mapping μ 
→ 
γ (μ) possesses a unique fixed point μ∗(γ ). To see this, sup-
pose that θ ∈ P(R2) is a fixed point, that is, θ = 
γ (θ) = γ ◦ ψ(θ, ·)−1. Let X = (X(0),X(1)),
Y = (Y (0), Y (1)) be two R

2-valued random variables on some probability space (�,F ,P) with
distribution θ and γ , respectively. By the fixed point property, Law(X) = Law(ψ(θ,Y )). By def-
inition of ψ , Law(X(0)) = Law(Y (0)). Since mb(θ) depends on θ = Law(X) only through its
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first marginal, which is equal to Law(X(0)) = Law(Y (0)), we have mb(θ) = mb(γ ). It follows
that, for all B0,B1 ∈ B(R),

P
(
X(1) ∈ B1|X(0) ∈ B0

) = P
(
Y(0) + mb(γ ) + Y(1) ∈ B1|Y(0) ∈ B0

)
.

This determines the conditional distribution of X(1) given X(0) and, since Law(X(0)) =
Law(Y (0)), also the joint law of X(0) and X(1). In fact, Law(X) = 
γ (γ ). Consequently,
μ∗(γ )

.= 
γ (γ ) is the unique solution of (4.4). By the extended mapping theorem for weak
convergence (Theorem 5.5 in Billingsley [1], page 34) and since mb(·) ∈ Cb(P(R2)), the map-
ping (γ,μ) 
→ 
γ (γ ) is continuous as a function P(R2) × P(R2) → P(R2). It follows that
the mapping γ 
→ μ∗(γ ) = 
γ (γ ) is continuous. Assumptions (A1)–(A3) are therefore satisfied
with the choice D .= P(R2). By Corollary 4.2, the sequence of empirical measures (μN) for the
toy model satisfies the large deviation principle with good rate function I given by (3.6). Ob-
serve that the distribution γ0 need not be the bivariate standard normal distribution for the large
deviation principle to hold; it can be any probability measure on B(R2).

Example 4.2. Consider the following variation on the toy model of Section 3 and Example 4.1.
For N ∈ N, let (YN

i (t))i∈{1,...,N},t∈{0,1} be independent standard normal real random variables
as above. Denote by γ0 the bivariate standard normal distribution and let B ∈ B(R) be a γ0-
continuity set, that is, γ0(∂(B ×R)) = 0, where ∂(B ×R) is the boundary of B ×R. Define real
random variables XN

1 (t), . . . ,XN
N (t), t ∈ {0,1}, by

XN
i (0)

.= YN
i (0), XN

i (1)
.= XN

i (0) + 1

N

(
N∑

j=1

1B

(
XN

j (0)
)) · YN

i (1).

For this new toy model, define ψ :P(R2) ×R
2 →R

2 by

ψ
(
μ, (y, ỹ)

) .= (
y, y + μ(B ×R) · ỹ).

With this choice of ψ , representation (4.1) holds and ψ is measurable as composition of measur-
able maps since μ 
→ μ(B ×R) is measurable with respect to the Borel σ -algebra induced by the
topology of weak convergence. Based on ψ , define 
 according to (4.3). As in Example 4.1, one
checks that the fixed point equation (4.4) possesses a unique solution μ∗(γ )

.= 
γ (γ ) for every
γ ∈ P(R2). However, if ∂(B × R) 
= ∅, then μ∗(·) is not continuous on P(R2). On the other
hand, if γ ∈ P(R2) is such that R(γ ‖γ0) < ∞, then γ is absolutely continuous with respect to
γ0, so that B × R is also a γ -continuity set. By the extended mapping theorem, it follows that
μ∗(·) is continuous at any such γ . Assumptions (A1)–(A3) are therefore satisfied, again with
the choice D .=P(R2), and Corollary 4.2 yields the large deviation principle. In this example, if
γ0(B ×R) < 1, then the distribution of μN , the empirical measure of XN

1 , . . . ,XN
N , is not abso-

lutely continuous with respect to λN , the empirical measure of YN
1 , . . . , YN

N . Indeed, in this case,
the event {νN

(y,y) : y ∈ R
N } ⊂ P(R2), where νN

(y,y) is defined as in Section 3, has strictly positive

probability with respect to P ◦ (μN)−1, while it has probability zero with respect to P ◦ (λN)−1.
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Example 4.3 (Discrete time systems). Let T ∈ N. Let X0, Y0 be Polish spaces, and let X , Y be
the Polish product spaces X .= (X0)

T +1 and Y .= (Y0)
T +1, respectively. Let

ϕ0 :Y0 → X0, ϕ : {1, . . . , T } ×X0 ×P(X0) ×Y0 → X0

be measurable maps. Let γ0 ∈ P(Y) and, for N ∈ N, let YN
1 , . . . , YN

N be independent and iden-
tically distributed Y-valued random variables defined on some probability space (�N,FN,PN)

with common distribution γ0. Write YN
i = (YN

i (t))t∈{0,...,T } and define X -valued random vari-
ables XN

1 , . . . ,XN
N with XN

i = (XN
i (t))t∈{0,...,T } recursively by

XN
i (0)

.= ϕ0
(
YN

i (0)
)
, (4.6)

XN
i (t + 1)

.= ϕ
(
t + 1,XN

i (t),μN(t), YN
i (t + 1)

)
, t ∈ {0, . . . , T − 1},

where μN(t)
.= 1

N

∑N
i=1 δXN

i (t) is the empirical measure of XN
1 , . . . ,XN

N at marginal (or time) t .
In analogy with (4.6), define ψ :P(X ) × Y → X according to (μ,y) = (μ, (y0, . . . , yT )) 
→
ψ(μ,y)

.= x with x = (x0, . . . , xT ) given by

x0
.= ϕ0(y0),

(4.7)
xt+1

.= ϕ
(
t + 1, xt ,μ(t), yt+1

)
, t ∈ {0, . . . , T − 1},

where μ(t) is the marginal of μ ∈ P(X ) at time t . Then ψ is measurable as a composition of
measurable maps, and representation (4.1) holds. Based on ψ , define 
 according to (4.3). Using
the recursive structure of (4.6) and the components of ψ according to (4.7), one checks that the
fixed point equation (4.4) has a unique solution μ∗(γ ) given any γ ∈ D .= P(Y). To be more
precise, define functions ϕ̄t :P(X0)

t ×Y → X0, t ∈ {0, . . . , T }, recursively by

ϕ̄0(y)
.= ϕ0(y0),

(4.8)
ϕ̄t

(
(α0, . . . , αt−1), y

) .= ϕ
(
t, ϕ̄t−1

(
(α0, . . . , αt−2), y

)
, αt−1, yt

)
.

Notice that ϕ̄t depends on y = (y0, . . . , yT ) ∈ Y only through (y0, . . . , yt ). Given γ ∈ P(Y),
recursively define probability measures αt (γ ) ∈P(X0), t ∈ {0, . . . , T }, according to

α0(γ )
.= γ ◦ ϕ̄−1

0 ,
(4.9)

αt (γ )
.= γ ◦ ϕ̄t

((
α0(γ ), . . . , αt−1(γ )

)
, ·)−1

, t ∈ {1, . . . , T }.
The mapping P(Y) � γ 
→ αt (γ ) ∈ P(X0) is measurable for every t ∈ {0, . . . , T }. Define
� :P(X0)

T ×Y → X by

�
(
(α0, . . . , αT −1), y

) .= (
ϕ̄0(y), ϕ̄1(α0, y), . . . , ϕ̄T

(
(α0, . . . , αT −1), y

))
. (4.10)

Then the mapping γ 
→ γ ◦�((α0(γ ), . . . , αT −1(γ )), ·)−1 is measurable and provides the unique
fixed point of (4.4) with noise distribution γ ∈ P(Y). In fact,

μ∗(γ ) = γ ◦ �
((

α0(γ ), . . . , αT −1(γ )
)
, ·)−1

. (4.11)
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Writing μ∗(t, γ ) for the t -marginal of μ∗(γ ), we also notice that

μ∗(t, γ ) = αt (γ ) = γ ◦ ϕ̄t

((
α0(γ ), . . . , αt−1(γ )

)
, ·)−1

.

If ϕ0, ϕ are continuous maps, then it follows by (4.11) and the extended mapping theorem that
μ∗(·) is continuous on D = P(Y), and Corollary 4.2 yields the large deviation principle for the
sequence of “path space” empirical measures (μN)N∈N.

Example 4.3 comprises a large class of discrete time weakly interacting systems. The se-
quence of (X0)

N -valued random variables XN(0), . . . ,XN(T ) given by (4.6) enjoys the Markov
property if the (Y0)

N -valued random variables YN(0), . . . , YN(T ) are independent (since
YN

1 , . . . , YN
N are assumed to be independent and identically distributed with common distribu-

tion γ0, this amounts to requiring that γ0 be of product form, that is, γ0 = ⊗T
t=0 νt for some

ν0, . . . , νT ∈ P(Y0)). In particular, discrete time versions of weakly interacting Itô processes as
considered in Section 5 are covered by Example 4.3. More precisely, assuming coefficients of
diffusion type and using a standard Euler–Maruyana scheme for the system of stochastic differ-
ential equations (5.1) and the corresponding limit equation (5.2), one would choose T ∈ N and
h > 0 so that h · T corresponds to the continuous time horizon, set X0

.= R
d , Y0

.= R
d1 , define

ϕ : {1, . . . , T } ×R
d ×P(X0) ×Y0 → X0 according to

ϕ(t, x, ν, y)
.= x + b̃

(
(t − 1)h, x, ν

)
h + √

h · σ̃ ((t − 1)h, x, ν
)
y,

and set γ0
.= ⊗T +1ν for some ν ∈ P(Rd1) with mean zero and identity covariance matrix (in

particular, ν
.= N(0, Idd1) the d1-variate standard normal distribution). In Section 5 we assume

for simplicity that all component processes have the same deterministic initial condition; this
corresponds to setting ϕ0 ≡ x0 for some x0 ∈ R

d . If the drift coefficient b and the dispersion
coefficient σ are continuous, then so is ϕ, and Corollary 4.2 applies.

Example 4.3 also applies to finite state discrete time weakly interacting Markov chains, which
arise as discrete time versions of the mean field systems found, for instance, in the analy-
sis of large communication networks, especially WLANs (cf. Duffy [11], for an overview).
In this situation, the functions ϕ0, ϕ are in general discontinuous in y ∈ Y0; yet the hy-
potheses of Corollary 4.2 are still satisfied. To be more precise, let S .= {s1, . . . , sM} be a fi-
nite set, and let ι :S → {1, . . . ,M} be the natural bijection between elements of S and their
indices (thus ι(si) = i for every i ∈ {1, . . . ,M}). The space of probability measures P(S)

can be identified with {p ∈ [0,1]M :
∑M

k=1 pk = 1} endowed with the standard metric. For
t ∈ N0, let aij (t, ·) :P(S) → [0,1], i, j ∈ {1, . . . ,M}, be measurable maps such that, for every
p ∈ P(S), A(t,p)

.= (aij (t,p))i,j∈{1,...,M} is a transition probability matrix on S ≡ {1, . . . ,M}.
Let q ∈P(S). Using the notation of Example 4.3, fix T ∈ N, set X0

.= S , Y0
.= [0,1], X .=X T +1

0 ,
and Y .= YT +1

0 ; define ϕ : {1, . . . , T } ×X0 ×P(X0) ×Y0 → X0 by

ϕ(t, x,p, y)
.=

M∑
j=1

sj · 1
(
∑j−1

k=1 aι(x)k(t−1,p),
∑j

k=1 aι(x)k(t−1,p)](y),
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and let ϕ0 :Y0 → X0 be given by

ϕ0(y)
.=

M∑
j=1

sj · 1
(
∑j−1

k=1 qk,
∑j

k=1 qk](y).

Set γ0
.= ⊗T +1λ[0,1] with λ[0,1] Lebesgue measure on B([0,1]) = B(Y0). For N ∈ N, let

YN
1 , . . . , YN

N be independent and identically distributed Y-valued random variables with common
distribution γ0, and define X -valued random variables XN

1 , . . . ,XN
N with XN

i = (XN
i (t))t∈{0,...,T }

recursively by (4.6). Observe that XN
1 (0), . . . ,XN

N (0) are independent and identically distributed
with common distribution q . Moreover, for all t ∈ {0, . . . , T − 1}, all z ∈ SN ,

PN

(
XN(t + 1) = z|XN(0), . . . ,XN(t)

)
=

N∏
i=1

aι(XN
i (t))ι(zi )

(
t,μN(t)

)
(4.12)

= exp

(
N ·

∫
S

log
(
aι(x)ι(zi )

(
t,μN(t)

))
μN(t,dx)

)
,

where log(0) = −∞, e−∞ = 0. It follows that (XN(t))t∈{0,...,T } is a Markov chain with state
space SN . Equation (4.12) also implies that (μN(t))t∈{0,...,T } is a Markov chain with transition
probabilities given by

PN

(
μN(t + 1) = 1

N

N∑
i=1

δzi

∣∣∣XN(0), . . . ,XN(t)

)

=
∑

z̃∈p(z)

exp

(
N ·

∫
S

log
(
aι(x)ι(z̃i )

(
t,μN(t)

))
μN(t,dx)

)
,

where p(z) indicates the set of elements of SN that arise by permuting the components of z ∈ SN .
For i ∈ {1, . . . ,N}, again by (4.12), the process couple ((XN

i (t),μN(t)))t∈{0,...,T } is a Markov
chain with state space S × P(S), and its law does not depend on the component i. Define the
function ψ according to (4.7), and define 
 according to (4.3). As in the more general situation
of Example 4.3, equation (4.4) (i.e., the fixed point equation 
γ (μ) = μ) has a unique solution
μ∗(γ ) given any γ ∈D .=P(Y), representation (4.11) holds for μ∗(γ ), and the mapping P(Y) �
γ 
→ μ∗(γ ) ∈P(X ) is measurable. Let us assume that the maps p 
→ aij (t,p) are continuous for
all i, j ∈ {1, . . . ,M}, t ∈ N0. In order to verify the hypotheses of Corollary 4.2, it then remains
to check that μ∗(·) is continuous at any γ̃ ∈ P(Y) such that R(γ̃ |γ0) < ∞. To do this, take
γ̃ ∈ P(Y) absolutely continuous with respect to γ0, and let (γ̃n) ⊂ P(Y) be such that γ̃n → γ̃

as n → ∞. Recall (4.8), the definition of the functions ϕ̄t , and (4.9), the definition of the maps
γ 
→ αt (γ ). For t ∈ {0, . . . , T } set

Dt
.= {

y ∈ Y : ∃(yn
)
n∈N ⊂ Y such that, as n → ∞, yn → y but

ϕ̄t

((
α0(γ̃n), . . . , αt−1(γ̃n)

)
, yn

)
� ϕ̄t

((
α0(γ̃ ), . . . , αt−1(γ̃ )

)
, y

)}
.
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By definition of ϕ̄0 and ϕ0, we have

D0 ⊆
{

y ∈ Y : y0 ∈
{

j∑
k=1

qk: j ∈ {0, . . . ,M}
}}

.

It follows that γ0(D0) = 0 and, since γ̃ is absolutely continuous with respect to γ0, γ̃ (D0) = 0.
The extended mapping theorem implies that α0(γ̃n) → α0(γ̃ ) as n → ∞. Using this conver-
gence, the definition of ϕ̄1 in terms of ϕ, the continuity of p 
→ aij (t,p), and the fact that ϕ̄0 is
continuous on Y \ D0, we find that

D1 ⊆ D0 ∪
{

y ∈ Y : y1 ∈
{

j∑
k=1

aι(ϕ̄0(y))k

(
0, α0(γ̃ )

)
: j ∈ {0, . . . ,M}

}}
.

Since ϕ̄0(y) depends on y only through y0 (in fact, ϕ̄0(y) = ϕ0(y0)), it follows that γ0(D1) = 0,
hence γ̃ (D1) = 0. The extended mapping theorem in the version of Theorem 5.5 in Billings-
ley [1], page 34, implies that α1(γ̃n) → α1(γ̃ ) as n → ∞. Proceeding by induction over t , one
checks that

Dt ⊆ D0 ∪ · · · ∪ Dt−1

∪
{

y ∈ Y : yt ∈
{

j∑
k=1

aι(ϕ̄t−1((α0(γ̃ ),...,αt−1(γ̃ )),y))k

(
t − 1, αt−1(γ̃ )

)
: j ∈ {0, . . . ,M}

}}

and, since ϕ̄t−1((α0(γ̃ ), . . . , αt−1(γ̃ )), y) depends on y only through the components (y0, . . . ,

yt−1), γ0(Dt ) = 0 = γ̃ (Dt ), which implies that αt (γ̃n) → αt (γ̃ ) as n → ∞. Set D
.= ⋃T

t=0 Dt

and recall (4.10), the definition of �. Let y ∈ Y , (yn)n∈N ⊂ Y be such that yn → y as n → ∞.
Then

�
((

α0(γ̃n), . . . , αT −1(γ̃n)
)
, yn

) n→∞−→ �
((

α0(γ̃ ), . . . , αT −1(γ̃ )
)
, y

)
if y /∈ D.

Since γ0(D) = 0 = γ̃ (D), the extended mapping theorem yields

γ̃n ◦ �
((

α0(γ̃n), . . . , αT −1(γ̃n)
)
, ·)−1 n→∞−→ γ̃ ◦ �

((
α0(γ̃ ), . . . , αT −1(γ̃ )

)
, ·)−1

.

Recalling representation (4.11) we conclude that

μ∗(γ̃n)
n→∞−→ μ∗(γ̃ ),

which establishes continuity of μ∗(·) at any γ̃ with R(γ̃ ‖γ0) < ∞ since any such γ̃ is abso-
lutely continuous with respect to γ0. Under the assumption that the maps p 
→ aij (t,p) are
continuous, we have thus derived the large deviation principle for (μN)N∈N with rate func-
tion η 
→ R(η‖
γ0(η)); here 
γ0(η) coincides with the law of a time-inhomogeneous S-valued
Markov chain with initial distribution q and transition matrices A(t, η(t)), t ∈ {0, . . . , T −1}. The
same arguments and a completely analogous construction work for weakly interacting Markov
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chains with countably infinite state space S . Notice that we need not require the transition prob-
abilities aij (t,p) to be bounded away from zero; in particular, whether aij (t,p) is equal to zero
or strictly positive may depend on the measure variable p.

5. Weakly interacting Itô processes

In this section, we consider weakly interacting systems described by Itô processes as studied in
Budhiraja, Dupuis and Fischer [4]. We show that the Laplace principle rate function derived there
in variational form can be expressed in non-variational form in terms of relative entropy. We do
not give the most general conditions under which the results hold; in particular, we assume here
that all particles obey the same deterministic initial condition.

Let T > 0 be a finite time horizon, let d, d1 ∈ N, and let x0 ∈ R
d . Set X .= C([0, T ],Rd),

Y .= C([0, T ],Rd1), equipped with the maximum norm topology. Let b, σ be predictable func-
tionals defined on [0, T ] × X × P(Rd) with values in R

d and R
d×d1 , respectively. For N ∈ N,

let ((�N,FN,PN), (FN
t )) be a stochastic basis satisfying the usual hypotheses and carrying N

independent d1-dimensional (FN
t ))-Wiener processes WN

1 , . . . ,WN
N . The N -particle system is

described by the solution to the system of stochastic differential equations

dXN
i (t) = b

(
t,XN

i ,μN(t)
)

dt + σ
(
t,XN

i ,μN(t)
)

dWN
i (t) (5.1)

with initial condition XN
i (0) = x0, i ∈ {1, . . . ,N}, where μN(t) is the empirical measure of

XN
1 , . . . ,XN

N at time t ∈ [0, T ], that is,

μN(t,ω)
.= 1

N

N∑
i=1

δXN
i (t,ω), ω ∈ �N.

The coefficients b, σ in (5.1) may depend on the entire history of the solution trajectory, not
only its current value as in the diffusion case. In the diffusion case, in fact, one has b(t, ϕ, ν) =
b̃(t, ϕ(t), ν), σ(t, ϕ, ν) = σ̃ (t, ϕ(t), ν) for some functions b̃, σ̃ defined on [0, T ]×R

d ×P(Rd),
and the solution process XN is a Markov process with state space R

N×d .
Denote by μN the empirical measure of (XN

1 , . . . ,XN
N ) over the time interval [0, T ], that is,

μN is the P(X )-valued random variable defined by

μN
ω

.= 1

N

N∑
i=1

δXN
i (·,ω), ω ∈ �N.

The asymptotic behavior of μN as N tends to infinity can be characterized in terms of solutions
to the “non-linear” stochastic differential equation

dX(t) = b
(
t,X,Law

(
X(t)

))
dt + σ

(
t,X,Law

(
X(t)

))
dW(t) (5.2)

with Law(X(0)) = δx0 , where W is a standard d1-dimensional Wiener process defined on some
stochastic basis. Notice that the law of the solution itself appears in the coefficients of (5.2).
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In the diffusion case, the corresponding Kolmogorov forward equation is therefore a non-linear
parabolic partial differential equation, and it corresponds to the McKean–Vlasov equation of the
weakly interacting system defined by (5.1).

For the statement of the Laplace principle, we need to consider controlled versions of (5.1)
and (5.2), respectively. For N ∈ N, let UN be the space of all (FN

t )-progressively measurable
functions u : [0, T ] × �N →R

N×d1 such that

EN

[
N∑

i=1

∫ T

0

∣∣ui(t)
∣∣2 dt

]
< ∞,

where u = (u1, . . . , uN) and EN denotes expectation with respect to PN . Given u ∈ UN , the
counterpart of (5.1) is the system of controlled stochastic differential equations

dX̄N
i (t) = b

(
t, X̄N

i , μ̄N (t)
)

dt + σ
(
t, X̄N

i , μ̄N (t)
)
ui(t)dt

(5.3)
+ σ

(
t, X̄N

i , μ̄N (t)
)

dWN
i (t)

with initial condition X̄N
i (0) = x0, where μ̄N (t) denotes the empirical measure of X̄N

1 , . . . , X̄N
N

at time t .
Let U be the set of quadruples ((�,F ,P), (Ft ), u,W) such that the pair ((�,F ,P), (Ft ))

forms a stochastic basis satisfying the usual hypotheses, W is a d1-dimensional (Ft )-Wiener
process, and u is an R

d1 -valued (Ft )-progressively measurable process such that

E
[∫ T

0

∣∣u(t)
∣∣2 dt

]
< ∞.

For simplicity, we may write u ∈ U instead of ((�,F ,P), (Ft ), u,W) ∈ U . Given u ∈ U , the
counterpart of (5.2) is the controlled “non-linear” stochastic differential equation

dX̄(t) = b
(
t, X̄,Law

(
X̄(t)

))
dt + σ

(
t, X̄,Law

(
X̄(t)

))
u(t)dt

(5.4)
+ σ

(
t, X̄,Law

(
X̄(t)

))
dW(t)

with initial condition Law(X̄(0)) = δx0 . A solution of (5.4) under u ∈ U is a continuous R
d -

valued process X̄ defined on the given stochastic basis and adapted to the given filtration such
that the integral version of (5.4) holds with probability one. Denote by R1 the space of determin-
istic relaxed controls with finite first moments, that is, R1 is the set of all positive measures on
B(Rd1 ×[0, T ]) such that r(Rd1 ×[0, t]) = t for all t ∈ [0, T ] and

∫
R

d1×[0,T ] |y|r(dy × dt) < ∞.
Equip R1 with the topology of weak convergence of measures plus convergence of first mo-
ments. Let u ∈ U . The joint distribution of (u,W) can be identified with a probability measure
on B(R1 ×Y). If X̄ is a solution of (5.4) under u, then the joint distribution of (X̄, u,W) can be
identified with a probability measure on B(Z), where Z .=X ×R1 ×Y .

Definition 5.1. Weak uniqueness of solutions is said to hold for (5.4) if, whenever u, ũ ∈ U and
X̄, X̃ are two solutions of (5.4) under u and ũ, respectively, such that P ◦ X̄(0)−1 = P̃ ◦ X̃(0)−1,
then P ◦ (X̄, u,W)−1 = P̃ ◦ (X̃, ũ, W̃ )−1 as probability measures on B(X ×R1 ×Y).
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Notice that here we give a process version of what can be equivalently formulated in terms of
probability measures on B(Z). Indeed, any integrable control process u corresponds to an R1-
valued random variable. On the other hand, since the control appears linearly in (5.3) and (5.4),
given any adapted R1-valued random variable, one can find an integrable control process that
produces the same solution process X̄ (cf. Sections 2 and 6 in Budhiraja, Dupuis and Fischer [4]).

Remark 5.1. In Budhiraja, Dupuis and Fischer [4], weak uniqueness for (5.4) is required to hold
over the class of all � ∈ P(Z) that correspond to a weak solution of (5.4). This requirement is
stronger than necessary. As can be seen from the definition of the rate function and the proof
of Theorem 3.1 (and Theorem 7.1) there,1 it suffices to have weak uniqueness for (5.4) over the
class of all � ∈P(Z) that correspond to a weak solution of (5.4) and are such that∫

Z

∫
R

d1 ×[0,T ]
|y|2r(dy × dt)�(dϕ × dr × dw) < ∞.

This is equivalent to requiring weak uniqueness of solutions for (5.4) with respect to U as in
Definition 5.1 above.

The Laplace principle given in Theorem 5.1 below is a version of Theorem 7.1 in Budhiraja,
Dupuis and Fischer [4]; also cf. Theorem 3.1 and Remark 3.2 there. The following assumptions
are sufficient for the Laplace principle to hold:

(H1) The functions b(t, ·, ·), σ(t, ·, ·) are uniformly continuous and bounded on sets B × P

whenever B ⊂X is bounded and P ⊂P(Rd) is compact, uniformly in t ∈ [0, T ].
(H2) For all N ∈ N, existence and uniqueness of solutions holds in the strong sense for the

system of N equations given by (5.1).
(H3) Weak uniqueness of solutions holds for (5.4).
(H4) If uN ∈ UN , N ∈N, are such that

sup
N∈N

E

[
1

N

N∑
i=1

∫ T

0

∣∣uN
i (t)

∣∣2 dt

]
< ∞,

then {μ̄N : N ∈ N} is tight as a family of P(X )-valued random variables, where μ̄N is the em-
pirical measure of the solution to the system of equations (5.3) under uN .

Theorem 5.1 (Budhiraja, Dupuis and Fischer [4]). Grant (H1)–(H4). Then the sequence
(μN)N∈N of P(X )-valued random variables satisfies the Laplace principle with rate function

1In the notation of Budhiraja, Dupuis and Fischer [4], it follows from the proof of Lemma 5.1 there and a version
of Fatou’s lemma, that if Q is a limit point in the sense of convergence in distribution of the sequence of P(Z)-
valued random variables QN , then

∫
Z

∫
R

d1 ×[0,T ] |y|2r(dy × dt)Q(dϕ × dr × dw) < ∞ with probability one. As to

the rate function and the Laplace upper bound, notice that the class P∞ only contains measures � ∈ P(Z) such that∫
Z

∫
R

d1 ×[0,T ] |y|2r(dy × dt)�(dϕ × dr × dw) < ∞.
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I :P(X ) → [0,∞] given by

I (θ) = inf
u∈U :Law(X̄u)=θ

E
[

1

2

∫ T

0

∣∣u(t)
∣∣2 dt

]
,

where X̄u is a solution of (5.4) over the time interval [0, T ] with Law(X(0)) = δx0 , and inf∅ =
∞ by convention.

Remark 5.2. The function I of Theorem 5.1 is indeed a rate function, that is, I is lower semi-
continuous with values in [0,∞]. The following hypothesis, which is analogous to the stability
condition (H4), is sufficient to guarantee goodness of the rate function.

(H′) If (un)n∈N ⊂ U is such that supn∈N En[
∫ T

0 |un(t)|2 dt] < ∞, then {Law(X̄un): n ∈ N} is
tight in P(X ).

Under this additional assumption, I is a good rate function and the Laplace principle implies the
large deviation principle.

Consider the special case in which d = d1, x0 = 0, b ≡ 0, and σ ≡ Idd . In this case, X = Y
and μN is the empirical measure of N independent Wiener processes WN

1 , . . . ,WN
N . Let γ0 be

Wiener measure on B(Y). Since Law(WN
i ) = γ0, Sanov’s theorem implies that the sequence

(μN)N∈N satisfies the large deviation / Laplace principle with good rate function R(·‖γ0). On
the other hand, by Theorem 5.1, (μN)N∈N satisfies the Laplace principle with rate function

J (γ )
.= inf

u∈U :Law(Ȳ u)=γ
E
[

1

2

∫ T

0

∣∣u(t)
∣∣2 dt

]
, γ ∈ P(Y),

where Ȳ u is the process given by

Ȳ u(t)
.=
∫ t

0
u(s)ds + W(t), t ∈ [0, T ]. (5.5)

One checks that J :P(Y) → [0,∞] has compact sublevel sets, hence is a good rate function. It
follows that J coincides with the rate function obtained from Sanov’s theorem. Consequently,
for all γ ∈P(Y),

R(γ ‖γ0) = inf
u∈U :Law(Ȳ u)=γ

E
[

1

2

∫ T

0

∣∣u(t)
∣∣2 dt

]
. (5.6)

Remark 5.3. Equation (5.6) provides a “weak” variational representation of relative entropy
with respect to Wiener measure. In Appendix B, we give a direct proof of (5.6). The variational
representation is weak in the sense that the underlying stochastic basis may vary. In particular, the
control process u may be adapted to a filtration that is strictly bigger than the natural filtration
of the Wiener process. Notice that expectation in (5.6) is taken with respect to the probability
measure of the stochastic basis that comes with the control process u.
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Remark 5.4. Representation (5.6) may be compared to the following result obtained by
Üstünel [29]. Take as stochastic basis the canonical set-up; in our notation, ((Y,B(Y), γ0), (Bt )),
where (Bt ) is the canonical filtration. Let W be the coordinate process. Thus, W is a d1-
dimensional Wiener process under γ0 with respect to (Bt ). Let u be an R

d1 -valued (Bt )-
progressively measurable process such that Eγ0 [

∫ T

0 |u(t)|2 dt] < ∞. Consider Ȳ u = ∫ ·
0 u(s)ds +

W(·). Since Ȳ u(·,ω) = ∫ ·
0 u(s,ω)ds + ω(·) for all ω ∈ Y , Ȳ u induces a Borel measurable map-

ping Y → Y . Set γ
.= γ0 ◦ (Ȳ u)−1. By Theorem 8 in Üstünel [29],

R(γ ‖γ0) ≤ Eγ0

[
1

2

∫ T

0

∣∣u(t)
∣∣2 dt

]
. (5.7)

Assume in addition that u is such that

E
[

exp

(
−
∫ T

0
u(t) · dW(t) − 1

2

∫ T

0

∣∣u(t)
∣∣2 dt

)]
= 1,

and that, for some R
d1 -valued (Bt )-progressively measurable process v,

dγ

dγ0
= exp

(
−
∫ T

0
v(t) · dW(t) − 1

2

∫ T

0

∣∣v(t)
∣∣2 dt

)
, γ0-a.s.

Theorem 7 in Üstünel [29] then states that equality holds in (5.7) if and only if Ȳ u is γ0-almost
surely invertible as a mapping Y → Y with inverse Ȳ v = ∫ ·

0 v(s)ds + W(·). For similar results
on abstract Wiener spaces see Lassalle [23]; Corollary 8 and Remark 4 in Section 7 therein might
be compared to Lemma B.1 in Appendix B here.

Let us return to the general case. Given θ ∈ P(X ), denote by θ(t) the marginal distribution of
θ at time t and consider the stochastic differential equation

dX(t) = b
(
t,X, θ(t)

)
dt + σ

(
t,X, θ(t)

)
dW(t). (5.8)

Equation (5.8) results from freezing the measure variable in (5.2) at θ . We will assume existence
and pathwise uniqueness for (5.8).

(H5) Given any θ ∈ P(X ), weak existence and pathwise uniqueness hold for (5.8).

Based on representation (5.6) and the contraction property of relative entropy, the rate function
of Theorem 5.1 can be shown to be of relative entropy form.

Theorem 5.2. Grant (H1)–(H5). Then the rate function I of Theorem 5.1 can be expressed in
relative entropy form as

I (θ) = R
(
θ‖
(θ)

)
, θ ∈ P(X ),

where 
(θ) is the law of the unique solution of (5.8) under θ over the time interval [0, T ] with
initial condition X(0) = x0.
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Remark 5.5. The hypotheses of Theorem 5.2 are satisfied if b, σ are locally Lipschitz continuous
with σ uniformly bounded and b of sub-linear growth in the trajectory variable; see Appendix C.
These sufficient conditions are at the same time more restrictive and more general than the as-
sumptions made in Dawson and Gärtner [6], where the large deviation principle is derived for
weakly interacting Itô diffusions. There the coefficients are only required to be continuous, where
continuity in the measure variable is with respect to an inductive topology that is stronger than
the topology of weak convergence (but cf. Remark 1.1 above), and to satisfy a coercivity con-
dition that allows for sub-linear growth of the dispersion coefficient and for super-linear growth
of the drift vector in “stabilizing” directions. On the other hand, in Dawson and Gärtner [6] the
diffusion matrix has to be non-degenerate and independent of the measure variable, while here
we can have degeneracy of σσ T as well as measure dependence. Lastly, since here both b and
σ are functions of the entire trajectory history, one can capture systems with delay in the state
dynamics.

Remark 5.6. Assumption (H5) can be weakened by requiring weak existence and pathwise
uniqueness of solutions to (5.8) only for θ ∈ P(X ) such that I (θ) < ∞. Those measures θ

are, by definition of I , distributions of Itô processes. The function 
 introduced in Theorem 5.2
would then be defined only on the effective domain of I ; for θ ∈ P(X ) with I (θ) = ∞, one can
then choose 
(θ) in such a way that θ is not absolutely continuous with respect to 
(θ) (e.g.,
by choosing between two Dirac measures).

Proof of Theorem 5.2. Let θ ∈ P(X ). By hypothesis, weak existence and pathwise uniqueness
hold for (5.8). By a result originally due to Yamada and Watanabe [31] (also cf. Kallenberg [20]),
there is a Borel measurable mapping ψθ :Rd ×Y →X such that

ψθ(x0,W) = X, P-almost surely, (5.9)

whenever X is a solution of (5.8) under θ over time [0, T ] with initial condition X(0) = x0 on
some stochastic basis ((�,F ,P), (Ft )) carrying a d1-dimensional Wiener process W . For such
a solution, 
(θ) = Law(X) by definition. Set ψθ(·) .= ψθ(x0, ·), and let γ0 be Wiener measure
on B(Y). By (5.9), 
(θ) = ψθ(γ0) = γ0 ◦ ψ−1

θ . By Lemma A.1, the contraction property of
relative entropy, and representation (5.6) it follows that

R
(
θ‖
(θ)

) = R
(
θ‖ψθ(γ0)

)
= inf

γ∈P(Y):ψθ (γ )=θ
R(γ ‖γ0)

= inf
γ∈P(Y):ψθ (γ )=θ

inf
u∈U :Law(Ȳ u)=γ

E
[

1

2

∫ T

0

∣∣u(t)
∣∣2 dt

]

= inf
u∈U :Law(ψθ (Ȳ u))=θ

E
[

1

2

∫ T

0

∣∣u(t)
∣∣2 dt

]
,



1786 M. Fischer

where Ȳ u is defined by (5.5). Let u ∈ U , and set X̃u .= ψθ(Ȳ
u). Then, as a consequence of (5.9),

X̃u solves

dX(t) = b
(
t,X, θ(t)

)
dt + σ

(
t,X, θ(t)

)
u(t)dt + σ

(
t,X, θ(t)

)
dW(t)

with initial distribution δx0 . If u is such that Law(ψθ (Ȳ
u)) = θ , then X̃u is a solution of (5.4)

under u with initial distribution δx0 . By assumption (H3), weak uniqueness holds for (5.4), hence
Law(X̃u) = Law(X̄u) whenever X̄u is a solution of (5.4) under u with Law(X̄u(0)) = δx0 . It
follows that

R
(
θ‖
(θ)

) = inf
u∈U :Law(ψθ (Ȳ u))=θ

E
[

1

2

∫ T

0

∣∣u(t)
∣∣2 dt

]

= inf
u∈U :Law(X̄u)=θ

E
[

1

2

∫ T

0

∣∣u(t)
∣∣2 dt

]

= I (θ),

where I is the rate function of Theorem 5.1. �

Remark 5.7. Assuming in addition to (H1)–(H4) hypothesis (H′) of Remark 5.2, Theorem 5.2
can be proved by applying both Sanov’s theorem and Theorem 5.1 to the weakly interacting
system given by equations (5.1) with measure variable frozen at θ ∈ P(X ) and then evaluating
the resulting rate functions at θ .

Appendix A: Contraction property of relative entropy

Let X , Y be Polish spaces. Denote by �X , �Y the collection of all finite and measurable parti-
tions of X and Y , respectively. Recall that relative entropy can be approximated in terms of finite
sums; for η, ν ∈ P(X ),

R(η‖ν) = sup
π∈�X

∑
A∈π

η(A) log

(
η(A)

ν(A)

)
, (A.1)

see, for instance, Lemma 1.4.3(g) in Dupuis and Ellis [12], page 30. For ψ :Y → X measurable,
γ ∈P(Y), denote by ψ(γ )

.= γ ◦ ψ−1 the image measure of γ under ψ .
The following lemma extends the invariance property of relative entropy under bijective bi-

measurable mappings as given by Lemma E.2.1 in Dupuis and Ellis [12], page 366, to arbitrary
measurable transformations; also cf. Theorem 2.4.1 in Kullback [22], pages 19 and 20, where the
inequality that is implied by Lemma A.1 is established.

Lemma A.1. Let ψ :Y → X be a Borel measurable mapping. Let η ∈P(X ), γ0 ∈P(Y). Then

R
(
η‖ψ(γ0)

) = inf
γ∈P(Y):ψ(γ )=η

R(γ ‖γ0), (A.2)
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where inf∅= ∞ by convention.

Proof. Suppose γ ∈ P(Y) is such that ψ(γ ) = η. Then, by (A.1) and the definition of image
measure,

R
(
η‖ψ(γ0)

) = sup
π∈�X

∑
A∈π

η(A) log

(
η(A)

ψ(γ0)(A)

)

= sup
π∈�X

∑
A∈π

γ
(
ψ−1(A)

)
log

(
γ (ψ−1(A))

γ0(ψ−1(A))

)

= sup
π∈�X

∑
B∈ψ−1(π)

γ (B) log

(
γ (B)

γ0(B)

)

≤ sup
π̂∈�Y

∑
B∈π̂

γ (B) log

(
γ (B)

γ0(B)

)

= R(γ ‖γ0),

where ψ−1(π) denotes the partition of Y induced by the inverse images of ψ . More precisely,
ψ−1(π)

.= {ψ−1(A): A ∈ π}. Notice that ψ−1(π) is indeed a finite and measurable partition of
Y since π is a finite and measurable partition of X , inverse images under ψ are Borel measurable
and ψ−1(A) ∩ ψ−1(Ã) =∅ whenever A ∩ Ã =∅. Since inf∅ = ∞, it follows that

R
(
η‖ψ(γ0)

) ≤ inf
γ∈P(Y):ψ(γ )=η

R(γ ‖γ0).

If R(η‖ψ(γ0)) = ∞, then the above inequality is necessarily an equality, namely ∞ = ∞.
Thus in order to show the opposite inequality, we may assume that R(η‖ψ(γ0)) < ∞. Now
R(η‖ψ(γ0)) < ∞ implies that η is absolutely continuous with respect to ψ(γ0), hence possesses
a density f

.= dη
dψ(γ0)

. Set

γ (C)
.=
∫

C

f
(
ψ(y)

)
γ0(dy), C ∈ B(Y).

Then γ is a probability measure having density f ◦ ψ with respect to γ0. Using the integral
transformation formula and definition of f , we have for all A ∈ B(X ),

ψ(γ )(A) =
∫
Y

1ψ−1(A)(y) · f (
ψ(y)

)
γ0(dy)

=
∫
Y

1A

(
ψ(y)

) · f (
ψ(y)

)
γ0(dy)

=
∫
X

1A(x) · f (x)ψ(γ0)(dx)

= η(A),
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which means that ψ(γ ) = η. Recalling that f ◦ ψ = dγ
dγ0

, f = dη
dψ(γ0)

,

R(γ ‖γ0) =
∫
Y

f
(
ψ(y)

)
log

(
f
(
ψ(y)

))
γ0(dy)

=
∫
X

f (x) log
(
f (x)

)
ψ(γ0)(dx)

= R
(
η‖ψ(γ0)

)
,

which proves inequality “≥” in (A.2). �

The proof of Lemma A.1 shows that the probability measure γ defined by γ (dy)
.=

dη
dψ(γ0)

(ψ(y))γ0(dy) attains the infimum in (A.2) whenever that infimum is finite.

Appendix B: Relative entropy with respect to Wiener measure

Let Y be the Polish space C([0, T ],Rd) equipped with the maximum norm topology. Let U be
defined as in Section 5 with d1 = d . Thus, U is the set of quadruples ((�,F ,P), (Ft ), u,W)

such that the pair ((�,F ,P), (Ft )) forms a stochastic basis satisfying the usual hypotheses, W

is a d-dimensional (Ft )-Wiener process, and u is an R
d -valued (Ft )-progressively measurable

process with E[∫ T

0 |u(t)|2 dt] < ∞. Given u ∈ U , define Ȳ u according to (5.5), that is,

Ȳ u(t)
.= W(t) +

∫ t

0
u(s)ds, t ∈ [0, T ].

The following result provides a variational representation of relative entropy with respect to
Wiener measure.

Lemma B.1. Let γ0 be Wiener measure on B(Y). Then for all γ ∈ P(Y),

R(γ ‖γ0) = inf
u∈U :Law(Ȳ u)=γ

E
[

1

2

∫ T

0

∣∣u(t)
∣∣2 dt

]
, (B.1)

where inf∅ = ∞ by convention.

The proof of inequality “≤” in (B.1) relies on the lower semicontinuity of relative entropy
and the Donsker–Varadhan variational formula; it may be confronted to the first part of the proof
of Theorem 3.1 in Boué and Dupuis [2]. The proof of inequality “≥” exploits the variational
formulation and uses arguments contained in Föllmer [17,18].

Proof of Lemma B.1. In order to prove inequality “≤” in (B.1), it suffices to show that, for all
u ∈ U ,

R
(
Law

(
Ȳ u

)‖γ0
) ≤ E

[
1

2

∫ T

0

∣∣u(t)
∣∣2 dt

]
. (B.2)
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Let u ∈ U , and set γ
.= Law(Ȳ u) = P ◦ (Ȳ u)−1. In accordance with Definition 3.2.3 in Karatzas

and Shreve [21], page 132, a process v defined on ((�,F ,P), (Ft )) is called simple if there are
N ∈ N, 0 = t0 < · · · < tN = T , and uniformly bounded R

d -valued random variables ξ0, . . . , ξN

such that ξi is Fti -measurable and

v(t,ω) = ξ0(ω)1{0}(t) +
N∑

i=0

ξi(ω)1(ti ,ti+1](t).

By Proposition 3.2.6 in Karatzas and Shreve [21], page 134, there exists a sequence (vn)n∈N
of simple processes such that E[∫ T

0 |u(t) − vn(t)|2 dt] → 0 as n → ∞. Let (vn)n∈N be such a
sequence. For n ∈ N, set γn

.= Law(Ȳ vn). Then γn → γ in P(Y) since

E
[

sup
t∈[0,T ]

∣∣Ȳ u(t) − Ȳ vn(t)
∣∣2] ≤ T · E

[∫ T

0

∣∣u(t) − vn(t)
∣∣2 dt

]
n→∞−→ 0.

Therefore, by the lower semicontinuity of R(·‖γ0),

R
(
Law

(
Ȳ u

)‖γ0
) = R(γ ‖γ0) ≤ lim inf

n→∞ R(γn‖γ0)

= lim inf
n→∞ R

(
Law

(
Ȳ vn

)‖γ0
)
.

On the other hand, E[ 1
2

∫ T

0 |vn(t)|2 dt] → E[ 1
2

∫ T

0 |u(t)|2 dt] as n → ∞. It is therefore enough to
show that (B.2) holds whenever u is a simple process. Thus, assume that u is simple. Let Z be
the FT -measurable (0,∞)-valued random variable given by

Z
.= exp

(
−
∫ T

0
u(s) · dW(s) − 1

2

∫ T

0

∣∣u(s)
∣∣2 ds

)
.

Notice that E[Z] = 1 since u is uniformly bounded. Define a probability measure P̃ on (�,FT )

by

dP̃
dP

.= Z.

By Girsanov’s theorem (Theorem 3.5.1 in Karatzas and Shreve [21], page 191), Ȳ u is an (Ft )-
Wiener process with respect to P̃. By the Donsker–Varadhan variational formula for relative
entropy (Lemma 1.4.3(a) in Dupuis and Ellis [12], page 29),

R(γ ‖γ0) = sup
g∈Cb(Y)

{∫
Y

g(y)γ (dy) − log
∫
Y

eg(y)γ0(dy)

}
. (B.3)

Recall that γ = P ◦ (Ȳ u)−1 and γ0 = P ◦ W−1, but also γ0 = P̃ ◦ (Ȳ u)−1 since Ȳ u is a Wiener
process under P̃ . Let Ẽ denote expectation with respect to P̃. By the convexity of − log and
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Jensen’s inequality, for all g ∈ Cb(Y),

∫
Y

g(y)γ (dy) − log
∫
Y

eg(y)γ0(dy)

= E
[
g
(
Ȳ u

)]− log E
[
exp

(
g(W)

)]
= E

[
g
(
Ȳ u

)]− log Ẽ
[
exp

(
g
(
Ȳ u

))]
= E

[
g
(
Ȳ u

)]− log E
[
exp

(
g
(
Ȳ u

)) · Z]
= E

[
g
(
Ȳ u

)]
− log E

[
exp

(
g
(
Ȳ u

)−
∫ T

0
u(t) · dW(t) − 1

2

∫ T

0

∣∣u(t)
∣∣2 dt

)]

≤ E
[
g
(
Ȳ u

)]− E
[
g
(
Ȳ u

)−
∫ T

0
u(t) · dW(t) − 1

2

∫ T

0

∣∣u(t)
∣∣2 dt

]

= E
[

1

2

∫ T

0

∣∣u(t)
∣∣2 dt

]

since E[∫ T

0 u(t) · dW(t)] = 0 as u is square integrable. In view of (B.3), inequality (B.2) follows.
In order to prove inequality “≥” in (B.1), it suffices to consider probability measures with finite

relative entropy with respect to Wiener measure. Let γ ∈ P(Y) be such that R(γ ‖γ0) < ∞. In
particular, γ is absolutely continuous with respect to γ0. We have to show that there exists u ∈ U
such that Law(Ȳ u) = γ and R(γ ‖γ0) ≥ E[ 1

2

∫ T

0 |u(t)|2 dt]. Let Y be the coordinate process on
the canonical space (Y,B(Y)), and let (Bt )t∈[0,T ] be the canonical filtration (the natural filtration
of Y ). Denote by (B̂t ) the γ0-augmentation of (Bt ). Both γ0 and γ extend naturally to B̂T ⊃
B(Y). Clearly, Y is a (B̂t )-Wiener process under γ0. Since R(γ ‖γ0) < ∞, there is a [0,∞)-
valued B̂T -measurable random variable ξ such that

dγ

dγ0
= ξ,

Eγ0 [ξ ] = 1,

Eγ

[∣∣log(ξ)
∣∣] = Eγ0

[∣∣log(ξ)
∣∣ξ] < ∞.

Set Z(t)
.= Eγ0[ξ |B̂t ], t ∈ [0, T ]. By a version of Itô’s martingale representation theorem (Theo-

rem III.4.33 in Jacod and Shiryaev [19], page 189), there exists an R
d -valued (B̂t )-progressively

measurable process v such that γ0(
∫ T

0 |v(t)|2 dt < ∞) = 1 and

Z(t) = 1 +
∫ t

0
v(s) · dY(s) for all t ∈ [0, T ], γ0-a.s. (B.4)
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In particular, Z is a continuous process. By the continuity and martingale property of Z, and
since Z(T ) = ξ ,

γ
(

inf
t∈[0,T ]Z(t) > 0

)
= 1.

Define an R
d -valued (B̂t )-progressively measurable process u by

u(t)
.= 1

Z(t)
· v(t) · 1{infs∈[0,t] Z(s)>0}, t ∈ [0, T ]. (B.5)

Thus u(t) = v(t)/Z(t) γ -almost surely. Applying Itô’s formula to calculate log(Z(t)) (more
precisely, Itô’s formula is applied to ϕε(Z(t)) with ϕε ∈ C2(R) such that ϕε(x) = log(x) for all
x ≥ ε > 0), one checks that

Z(t) = exp

(∫ t

0
u(s) · dY(s) − 1

2

∫ t

0

∣∣u(s)
∣∣2 dt

)
for all t ∈ [0, T ], γ -a.s. (B.6)

Set Ỹ (t)
.= Y(t) − ∫ t

0 u(s)ds, t ∈ [0, T ]. Then Ỹ is a (B̂t )-Wiener process with respect to γ .

Clearly, Ỹ is continuous and (B̂t )-adapted. Since γ is absolutely continuous with respect to γ0,
the quadratic covariation processes of Y are the same with respect to γ0 as with respect to γ .
Since

∫ ·
0 u(t)dt is a process of finite total variation with γ -probability one, it follows that Ỹ has

the same quadratic covariations under γ as Y under γ0. In view of Lévy’s characterization of
the Wiener process (Theorem 3.3.16 in Karatzas and Shreve [21], page 157), it suffices to check
that Ỹ is a local martingale with respect to (B̂t ) and γ . But this follows from the version of
Girsanov’s theorem provided by Theorem III.3.11 in Jacod and Shiryaev [19], pages 168 and
169, and the fact that, thanks to (B.4), the quadratic covariations of the continuous processes Yi ,
i ∈ {1, . . . , d}, and Z are given by

[Yi,Z](t) = 〈Yi,Z〉(t) =
∫ t

0
vi(s)ds for all t ∈ [0, T ], γ0-a.s.,

and v(t) = u(t) · Z(t) γ -almost surely. For n ∈N, define a (B̂t )-stopping time τn by

τn
.= inf

{
t ≥ 0:

∫ t

0

∣∣u(s)
∣∣2 ds > n

}
∧ T .

Set

ξn
.= exp

(∫ τn

0
u(s) · dY(s) − 1

2

∫ τn

0

∣∣u(s)
∣∣2 ds

)
.

Then ξn is well defined with ξn > 0 γ0-almost surely (hence also γ -almost surely). By Novikov’s
criterion (Corollary 3.5.13 in Karatzas and Shreve [21], page 199) and the version of Girsanov’s
theorem cited in the first part of the proof,

dγn

dγ0

.= ξn
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defines a probability measure γn which is equivalent to γ0. As a consequence, γ is absolutely
continuous with respect to γn with density given by ξ/ξn. It follows that

R(γ ‖γ0) = Eγ

[
log(ξ)

]
= Eγ

[
log

(
ξ

ξn

)]
+ Eγ

[
log(ξn)

]

= R(γ ‖γn) + Eγ

[∫ τn

0
u(s) · dY(s) − 1

2

∫ τn

0

∣∣u(s)
∣∣2ds

]

= R(γ ‖γn) + Eγ

[∫ τn

0
u(s) · dỸ (s)

]
+ Eγ

[
1

2

∫ τn

0

∣∣u(s)
∣∣2 ds

]

= R(γ ‖γn) + Eγ

[
1

2

∫ τn

0

∣∣u(s)
∣∣2 ds

]

since Ỹ is a γ -Wiener process and
∫ T

0 1[0,τn](s) · |u(s)|2 ds ≤ n by construction of τn. Since rela-

tive entropy is non-negative and Eγ [ 1
2

∫ τn

0 |u(s)|2 ds] → Eγ [ 1
2

∫ T

0 |u(s)|2 ds] in [0,∞] as n → ∞
by monotone convergence, we obtain

R(γ ‖γ0) ≥ Eγ

[
1

2

∫ T

0

∣∣u(s)
∣∣2 ds

]
. (B.7)

Since R(γ ‖γ0) < ∞ by assumption, also Eγ [ 1
2

∫ T

0 |u(s)|2 ds] < ∞, which together with (B.6)
actually implies equality in (B.7).

Now we are in a position to choose ((�,F ,P), (Ft ), u,W) ∈ U such that

P ◦
(

W +
∫ ·

0
u(s)ds

)−1

= γ and R(γ ‖γ0) ≥ E
[

1

2

∫ T

0

∣∣u(s)
∣∣2 ds

]
.

Take �
.= Y , let F be the γ -completion of BT , and take P equal to γ , extended to the additional

null sets. Let (Ft ) be the γ -augmentation of (Bt ). Notice that B̂t ⊆ Ft , t ∈ [0, T ], and that (Ft )

satisfies the usual hypotheses. Define the control process u according to (B.5), and set W
.= Ỹ .

Then W is an (Ft )-Wiener process under P and

P ◦
(

W +
∫ ·

0
u(s)ds

)−1

= γ ◦
(

Ỹ +
∫ ·

0
u(s)ds

)−1

= γ ◦ Y−1 = γ

since Y is the identity on Y = �. Finally, by (B.7),

R(γ ‖γ0) ≥ E
[

1

2

∫ T

0

∣∣u(s)
∣∣2 ds

]
,

where expectation is taken with respect to P = γ . �
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Remark B.1. Lemma B.1 allows to derive a version of Theorem 3.1 in Boué and Dupuis [2],
the representation theorem for Laplace functionals with respect to a Wiener process. The start-
ing point here as there is the following abstract representation formula for Laplace functionals
(Proposition 1.4.2 in Dupuis and Ellis [12], page 27). Let S be a Polish space, ν ∈ P(S). Then
for all f :S → R bounded and measurable,

− log
∫
S

e−f (x)ν(dx) = inf
μ∈P(S)

{
R(μ‖ν) +

∫
S

f (x)μ(dx)

}
. (B.8)

With S = Y , ν = γ0 Wiener measure as above, (B.8) and Lemma B.1 imply that

− log
∫
Y

e−f (y)γ0(dy)

= inf
γ∈P(Y)

{
inf

u∈U :Law(Ȳ u)=γ
E
[

1

2

∫ T

0

∣∣u(t)
∣∣2 dt

]
+

∫
Y

f (y)γ (dy)

}

= inf
γ∈P(Y)

inf
u∈U :Law(Ȳ u)=γ

E
[

1

2

∫ T

0

∣∣u(t)
∣∣2 dt + f

(
Ȳ u

)]

= inf
u∈U

E
[

1

2

∫ T

0

∣∣u(t)
∣∣2 dt + f

(
Ȳ u

)]
.

Let Ŵ be a standard d-dimensional Wiener process over time [0, T ] defined on some probability
space (�̂, F̂ , P̂). Since

∫
Y e−f (y)γ0(dy) = EP̂[e−f (W)], it follows that for all f :S →R bounded

and measurable,

− log EP̂

[
e−f (W)

] = inf
u∈U

E
[

1

2

∫ T

0

∣∣u(t)
∣∣2 dt + f

(
Ȳ u

)]
. (B.9)

The difference with the formula as stated in Boué and Dupuis [2] lies in the fact that the control
processes there all live on the canonical space and are adapted to the canonical filtration, while
here the stochastic bases for the control processes may vary; also cf. the related representation
formula in Budhiraja and Dupuis [3], where the control processes are allowed to be adapted to
filtrations larger than that induced by the driving Wiener process.

Appendix C: Sufficient conditions for hypotheses (H1)–(H5)

As in Section 5, let b, σ be predictable functionals on [0, T ] × X × P(Rd) with values in R
d

and R
d×d1 , respectively. Let dbL be the bounded Lipschitz metric on P(Rd), that is,

dbL(ν, ν̃)
.= sup

{∫
Rd

f (x)ν(dx) −
∫
Rd

f (x)ν̃(dx): ‖f ‖bL ≤ 1

}
,
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where ‖ · ‖bL is defined for functions f :Rd → R by

‖f ‖bL
.= sup

x∈Rd

∣∣f (x)
∣∣+ sup

x,y∈Rd :x 
=y

|f (x) − f (y)|
|x − y| .

If X, Y are two R
d -valued random variables defined on the same probability space, then

dbL

(
Law(X),Law(Y )

) ≤ E
[|X − Y |].

Consider the following local Lipschitz and growth conditions on b, σ .

(L) For every M ∈ N there exists LM > 0 such that for all t ∈ [0, T ], all ϕ, ϕ̃ ∈ X , all ν, ν̃ ∈
P(Rd), ∣∣b(t, ϕ, ν) − b(t, ϕ̃, ν̃)

∣∣+ ∣∣σ(t, ϕ, ν) − σ(t, ϕ̃, ν̃)
∣∣

≤ LM

(
sup

s∈[0,t]
∣∣ϕ(s) − ϕ̃(s)

∣∣+ dbL(ν, ν̃)
)
,

whenever sups∈[0,t] |ϕ(s)| ∨ |ϕ̃(s)| ≤ M .
(G) There exist a constant K > 0 such that for all t ∈ [0, T ], all ϕ ∈X , all ν ∈P(Rd),

∣∣b(t, ϕ, ν)
∣∣ ≤ K

(
1 + sup

s∈[0,t]
∣∣ϕ(s)

∣∣),
∣∣σ(t, ϕ, ν)

∣∣ ≤ K.

The boundedness condition on σ is used only in the verification of hypothesis (H4).

Proposition C.1. Grant condition (L). Let ((�,F,P), (Ft ), u,W) ∈ U . Suppose that X, X̃ are
solutions of (5.4) over the time interval [0, T ] under control u with initial condition X(0) = X̃(0)

P-almost surely. Then X, X̃ are indistinguishable, that is,

P
(
X(t) = X̃(t) for all t ∈ [0, T ]) = 1.

Proof. For M ∈N, define an (Ft )-stopping time τM by

τM(ω)
.= inf

{
t ∈ [0, T ]: ∣∣X(t,ω)

∣∣∨ ∣∣X̃(t,ω)
∣∣∨ ∫ t

0

∣∣u(s,ω)
∣∣2 ds ≥ M

}

with inf∅ = ∞. Observe that P(τM ≤ T ) → 0 as M → ∞ since X, X̃ are continuous processes
and E[∫ T

0 |u(s)|2 ds] < ∞. Set θ(t)
.= Law(X(t)), θ̃ (t)

.= Law(X̃(t)), t ∈ [0, T ]. Using Hölder’s
inequality, Doob’s maximal inequality, the Itô isometry, and condition (L), we obtain for M ∈N,
all t ∈ [0, T ],

E
[

sup
s∈[0,t]

∣∣X(s ∧ τM) − X̃(s ∧ τM)
∣∣2]

≤ 4T E
[∫ t∧τM

0

∣∣b(r,X, θ(r)
)− b

(
r, X̃, θ̃ (r)

)∣∣2 dr

]
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+ 4E
[∫ t∧τM

0

∣∣σ (r,X, θ(r)
)− σ

(
r, X̃, θ̃ (r)

)∣∣2 dr ·
∫ t∧τM

0

∣∣u(r)
∣∣2 dr

]

+ 16E
[∫ t∧τM

0

∣∣σ (r,X, θ(r)
)− σ

(
r, X̃, θ̃ (r)

)∣∣2 dr

]

≤ 4T E
[∫ t∧τM

0

∣∣b(r,X, θ(r)
)− b

(
r, X̃, θ̃ (r)

)∣∣2 dr

]

+ (4M + 16)E
[∫ t∧τM

0

∣∣σ (r,X, θ(r)
)− σ

(
r, X̃, θ̃ (r)

)∣∣2 dr

]

≤ 8L2
M(T + M + 4)E

[∫ t∧τM

0

(
sup

s∈[0,r]
∣∣X(s) − X̃(s)

∣∣2 + dbL

(
θ(r), θ̃ (r)

)2
)

dr

]

≤ 16L2
M(T + M + 4)

∫ t

0
E
[

sup
s∈[0,r]

∣∣X(s ∧ τM) − X̃(s ∧ τM)
∣∣2]dr.

An application of Gronwall’s lemma yields that

E
[

sup
s∈[0,T ]

∣∣X(s ∧ τM) − X̃(s ∧ τM)
∣∣2] = 0,

hence P(X(t) = X̃(t) for all t ≤ τM) = 1 for all M ∈ N. This implies the assertion since τM ↗ ∞
as M → ∞ P-almost surely. �

Proposition C.1 says that under condition (L) pathwise uniqueness holds for (5.4) with respect
to U . As in the classical case of uncontrolled Itô diffusions, pathwise uniqueness implies unique-
ness in law. The proof of Proposition C.2 below is in fact analogous to that of Proposition 1 in
Yamada and Watanabe [31]; also cf. Proposition 5.3.20 in Karatzas and Shreve [21], page 309.

Proposition C.2. Assume that pathwise uniqueness holds for (5.4) given any deterministic
initial condition. Let ((�,F ,P), (Ft ), u,W) ∈ U , ((�̃, F̃, P̃), (F̃t ), ũ, W̃ ) ∈ U be such that
P ◦ (u,W)−1 = P̃ ◦ (ũ, W̃ )−1 as probability measures on B(R1 × Y). Suppose that X, X̃ are
solutions of (5.4) over the time interval [0, T ] under control u and ũ, respectively, with initial
condition x0 P/P̃-almost surely. Then P◦(X,u,W)−1 = P̃◦(X̃, ũ, W̃ )−1 as probability measures
on B(Z).

Proof (sketch). Set Ẑ .=X ×X ×R1 ×Y and G .= B(Ẑ). Let Ẑ = (Z, Z̃, ρ, Ŵ ) be the canon-
ical process on Ẑ , and let (Gt )t∈[0,T ] be the canonical filtration (i.e., the natural filtration of Z).
Let R be the probability measure on B(R1 ×Y) given by

R .= P ◦ (u,W)−1 = P̃ ◦ (ũ, W̃ )−1.
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Let Q: R1 ×Y ×B(X ) be a regular conditional distribution of Law(X,u,W) given (u,W); thus
for all A ∈ B(R1 ×Y), all B ∈ B(X ),

P
(
X ∈ B, (u,W) ∈ A

) =
∫

A

Q(r,w;B)R
(
d(r,w)

)
.

Analogously, let Q̃: R1 ×Y ×B(X ) be a regular conditional distribution of Law(X̃, ũ, W̃ ) given
(ũ, W̃ ). Define P̂ ∈ P(Ẑ) by setting, for B, B̃ ∈ B(X ), A ∈ B(R1 ×Y),

P̂(B × B̃ × A)
.=
∫

A

Q(r,w;B) · Q̃(r,w; B̃)R
(
d(r,w)

)
.

Let Ĝ be the P̂-completion of G, and denote by (Ĝt ) the right continuous filtration induced by
the P̂-augmentation of (Gt ). Then ((Ẑ, Ĝ, P̂), (Ĝt ), ρ, Ŵ ) ∈ U , where (ρ, Ŵ ) are the last two
components of the canonical process Ẑ. One checks that

P̂ ◦ (Z,ρ, Ŵ )−1 = P ◦ (X,u,W)−1, P̂ ◦ (Z̃, ρ, Ŵ )−1 = P̃ ◦ (X̃, ũ, W̃ )−1

and that Z, Z̃ are solutions of (5.4) over the time interval [0, T ] under control ((Ẑ, Ĝ, P̂), (Ĝt ),

ρ, Ŵ ) ∈ U with initial condition x0 P̂-almost surely, where ρ is being identified with the control
process v(t)

.= ∫
R

d1 yρt (dy). By hypothesis, pathwise uniqueness holds for (5.4) with determin-
istic initial condition; it follows that

P̂
(
Z(t) = Z̃(t) for all t ∈ [0, T ]) = 1,

which implies P ◦ (X,u,W)−1 = P̃ ◦ (X̃, ũ, W̃ )−1. �

The following lemma is used in the verification of hypothesis (H4).

Lemma C.1. Let (�,F ,P), (Ft )) be a stochastic basis satisfying the usual hypotheses, and let
M be a continuous local martingale with respect to (Ft ) with quadratic variation 〈M〉. Suppose
there exists a finite constant C > 0 such that for P-almost all ω ∈ �, all t, s ∈ [0, T ],∣∣〈M〉(t,ω) − 〈M〉(s,ω)

∣∣ ≤ C · |t − s|.

Then for every δ0 ∈ (0, T ],

E
[

sup
δ∈(0,δ0]

δ−1/4 · sup
t,s∈[0,T ]:|t−s|≤δ

∣∣M(t) − M(s)
∣∣] ≤ 192 · √C · (e · T )1/4.

Proof. Since the assertion is about the behavior of M only up to time T , we may assume that
limt→∞〈M〉(t) = ∞ P-almost surely. For s ≥ 0 set τs

.= inf{t ≥ 0: 〈M〉(t) > s}. Then τs is
an (Ft )-stopping time for every s ≥ 0. By the Dambis–Dubins–Schwarz theorem (e.g., Theo-
rem 3.4.6 in Karatzas and Shreve [21], page 174), setting W(t,ω)

.= M(τt (ω),ω), t ≥ 0, ω ∈ �,
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defines a standard Wiener process with respect to the filtration (Fτt ) and for P-almost all ω ∈ �,
all t ≥ 0,

M(t,ω) = W
(〈M〉(t,ω),ω

)
.

Using the Garsia–Rodemich–Rumsey inequality one can show (cf. Appendix in Fischer and
Nappo [16]) that for every p ≥ 1, every T̃ > 0, there exists a p-integrable random variable
ξ
p,T̃

such that E[|ξ
p,T̃

|p] ≤ 192p · pp/2 and for P-almost all ω ∈ �, all t, s ∈ [0, T ] such that

|t − s| ≤ T̃ /e,

∣∣W(t,ω) − W(s,ω)
∣∣ ≤ ξ

p,T̃
(ω) ·

√
|t − s| log

(
T̃

|t − s|
)

.

Clearly, x 
→ x log(T̃ /x) is increasing on (0, T̃ /e], limx→0+ x log(T̃ /x) = 0, and (x log(T̃ /

x))1/2 ≤ (T̃ · x)1/4 for all x ∈ (0, T̃ /e]. Since 〈M〉 is non-decreasing with 〈M〉(0) = 0 and,
by hypothesis, |〈M〉(t) − 〈M〉(s)| ≤ C · |t − s|, it follows that for P-almost all ω ∈ �, every
δ ∈ (0, T ],

sup
t,s∈[0,T ]:|t−s|≤δ

∣∣M(t,ω) − M(s,ω)
∣∣

= sup
t,s∈[0,T ]:|t−s|≤δ

∣∣W (〈M〉(t,ω),ω
)− W

(〈M〉(s,ω),ω
)∣∣

≤ sup
t,s∈[0,T ]:|t−s|≤δ

ξp,e·C·T (ω)

×
√∣∣〈M〉(t,ω) − 〈M〉(s,ω)

∣∣ log

(
e · C · T

|〈M〉(t,ω) − 〈M〉(s,ω)|
)

≤ sup
t,s∈[0,T ]:|t−s|≤δ

ξp,e·C·T (ω) · √C ·
√

δ log

(
e · T

δ

)

≤ √
C · ξp,e·C·T (ω) · (e · T · δ)1/4.

The assertion follows by choosing p equal to one, inserting the term containing the supremum
over δ ∈ (0, δ0], and taking expectations. �

Proposition C.3. Conditions (L) and (G) entail hypotheses (H1)–(H5).

Proof. Hypothesis (H1) is an immediate consequence of conditions (L) and (G). To verify hy-
pothesis (H2), let N ∈ N and define functions bN : [0, T ] × XN → R

N×d , σN : [0, T ] × XN →
R

N×d×N×d1 according to

bN(t,ϕ)
.= (

b
(
t, ϕ1,μ

N
ϕ(t)

)
, . . . , b

(
t, ϕN ,μN

ϕ(t)

))T
,

σN(t,ϕ)
.= diag

(
σ
(
t, ϕ1,μ

N
ϕ(t)

)
, . . . , σ

(
t, ϕN ,μN

ϕ(t)

))
,
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where μN
ϕ(t)

.= 1
N

∑N
i=1 δϕi(t). Then bN , σN are the coefficients for the system of N stochas-

tic differential equations given by (5.1). Thanks to conditions (L) and (G), bN , σN are locally
Lipschitz continuous and of sub-linear growth. The Itô existence and uniqueness theorem (e.g.,
Theorem V.12.1 in Rogers and Williams [27], page 132) thus yields pathwise uniqueness and ex-
istence of strong solutions for the system of equations (5.1). By Proposition C.1 in conjunction
with condition (L), pathwise uniqueness holds for (5.4). By Proposition C.2, it follows that weak
uniqueness holds for (5.4); hence hypothesis (H3) is satisfied.

In order to verify hypothesis (H4), let uN ∈ UN , N ∈ N, be such that

sup
N∈N

1

N

N∑
i=1

E
[∫ T

0

∣∣uN
i (t)

∣∣2 dt

]
< ∞.

For N ∈N, let μ̄N be the empirical measure of the solution to the system of equations (5.3) under
uN . We have to show that {PN ◦ (μ̄N )−1: N ∈ N} is tight in P(P(X )). Choose δ0 ∈ (0,1 ∧ T ],
and define a function G :P(X ) → [0,∞] by

G(θ)
.=
∫
X

(∣∣ϕ(0)
∣∣+ sup

δ∈(0,δ0]
δ−1/4 · sup

t,s∈[0,T ]:|t−s|≤δ

∣∣ϕ(t) − ϕ(s)
∣∣)θ(dϕ).

Then G is a tightness function, that is, G is measurable and the sublevel sets {θ :G(θ) ≤ c},
c ∈ [0,∞), are compact in P(X ). This latter property is a consequence of the Ascoli–Arzelà
characterization of relatively compact sets in P(X ) (e.g., Theorem 2.4.9 in Karatzas and
Shreve [21], page 62), the Markov inequality and Fatou’s lemma. We are going to show that
supN∈N EN [G(μ̄N)] < ∞, which implies that {PN ◦ (μ̄N )−1 :N ∈ N} is tight. By construction,
for N ∈N,

G
(
μ̄N

) = 1

N

N∑
i=1

(∣∣X̄N
i (0)

∣∣+ sup
δ∈(0,δ0]

δ−1/4 · sup
t,s∈[0,T ]:|t−s|≤δ

∣∣X̄N
i (t) − X̄N

i (s)
∣∣)

= |x0| + 1

N

N∑
i=1

sup
δ∈(0,δ0]

δ−1/4 · sup
t,s∈[0,T ]:|t−s|≤δ

∣∣∣∣
∫ t

s

b
(
r, X̄N

i , μ̄N (r)
)

dr

+
∫ t

s

σ
(
r, X̄N

i , μ̄N (r)
)
uN

i (r)dr

+
∫ t

s

σ
(
r, X̄N

i , μ̄N (r)
)

dWN
i (r)

∣∣∣∣.
Thanks to condition (G), for every i ∈ {1, . . . ,N},

sup
δ∈(0,δ0]

δ−1/4 · sup
t,s∈[0,T ]:|t−s|≤δ

∣∣∣∣
∫ t

s

b
(
r, X̄N

i , μ̄N (r)
)

dr

∣∣∣∣ ≤ K
(
1 + ∥∥XN

i

∥∥∞
)



Form of the rate function for weakly interacting systems 1799

and, by Hölder’s inequality,

sup
δ∈(0,δ0]

δ−1/4 · sup
t,s∈[0,T ]:|t−s|≤δ

∣∣∣∣
∫ t

s

σ
(
r, X̄N

i , μ̄N (r)
)
uN

i (r)dr

∣∣∣∣
≤ √

T K ·
√∫ T

0

∣∣uN
i (t)

∣∣2 dt ≤ √
T K

(
1

2
+ 1

2

∫ T

0

∣∣uN
i (t)

∣∣2 dt

)
.

The process
∫ ·

0 σ(r, X̄N
i , μ̄N (r))dWN

i (r) is a vector of continuous local martingales which,
thanks to condition (G), satisfy the hypothesis of Lemma C.1 with C = K2. It follows that there
exists a finite constant KT > 0 depending only on K and T such that

EN

[
G
(
μ̄N

)]
≤ |x0| + KT

(
1 + 1

N

N∑
i=1

EN

[∥∥XN
i

∥∥∞
]+ 1

N

N∑
i=1

EN

[∫ T

0

∣∣uN
i (t)

∣∣2 dt

])
.

Since supN∈N 1
N

∑N
i=1 E[∫ T

0 |uN
i (t)|2 dt] < ∞ by hypothesis, it remains to check that, for some

finite constant K̂T > 0 depending only on K and T ,

1

N

N∑
i=1

EN

[∥∥XN
i

∥∥∞
] ≤ K̂T

(
1 + 1

N

N∑
i=1

EN

[∫ T

0

∣∣uN
i (t)

∣∣2 dt

])
.

But this follows by standard arguments involving localization along the stopping times τN
M

.=
inf{t ∈ [0, T ]: maxi∈{1,...,N} sups≤t |XN

i (s)| ≥ M}, M ∈N, Hölder’s inequality, Doob’s maximal
inequality, Itô’s isometry, condition (G), and Gronwall’s lemma.

Hypothesis (H5) is again a consequence of the Itô existence and uniqueness theorem since
under conditions (L) and (G), given any θ ∈ P(X ), the mappings (t, ϕ) 
→ b(t, ϕ, θ(t)), (t, ϕ) 
→
σ(t, ϕ, θ(t)) are predictable, locally Lipschitz continuous, and of sub-linear growth. �
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