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Comparisons are made for the amount of agreement of the composite likelihood information criteria and
their full likelihood counterparts when making decisions among the fits of different models, and some
properties of penalty term for composite likelihood information criteria are obtained. Asymptotic theory is
given for the case when a simpler model is nested within a bigger model, and the bigger model approaches
the simpler model under a sequence of local alternatives. Composite likelihood can more or less frequently
choose the bigger model, depending on the direction of local alternatives; in the former case, composite
likelihood has more “power” to choose the bigger model. The behaviors of the information criteria are
illustrated via theory and simulation examples of the Gaussian linear mixed-effects model.
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1. Introduction

Composite likelihood inference based on low-dimensional marginal or conditional distributions
is common when the full likelihood is computationally too difficult. It has been increasing used
in recent years for inference with complex models; see Varin [13], Varin et al. [14] for reviews.

For model selection with composite likelihood, one might wonder if the use of limited or
reduced information leads to different decisions. To understand this, an asymptotic theory based
on the theory of a sequence of contiguous local alternatives is developed to compare Akaike
information criterion (AIC) and Bayesian information criterion (BIC) in their full likelihood and
composite marginal likelihood versions. We show that model selection based on AIC and its
composite likelihood counterpart (as proposed in Varin and Vidoni [15]) are sometimes similar
(when models under consideration are far apart) and sometimes not similar (when one model is a
perturbation of another). The patterns can be explained via local alternatives where the perturbed
model is at a distance n~'/2 from a “null” or simplified model, with n being the sample size.

We also provide simulation results under models where the maximum likelihood is feasible;
one class of such models is the linear mixed-effects models based on the normal distribution.
Within different sub-cases of the Gaussian linear mixed-effects models, the simulation results
are consistent with the asymptotic theory.

The remainder of the paper is organized as follows. In Section 2, we introduce our notation
and state the definitions for the composite marginal likelihood and the information criteria. In
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Section 3, asymptotic properties of composite likelihood information criteria are presented. In
Section 4, comparisons of decisions between Varin and Vidoni’s composite likelihood informa-
tion criterion (abbreviated CLAIC as in Varin et al. [14]), Gao and Song’s information criterion
(abbreviated as CLBIC in Gao and Song [4]), and their full-likelihood counterparts are sum-
marized via simulation studies. Section 5 contains a data example with a mixed-effects model.
Section 6 concludes with some discussion and future research. The proofs of the main theorems
in Section 3 are given in Appendix A.1.

2. Composite likelihood and information criteria

For the comparison of composite likelihood and full likelihood information criteria, we con-
sider the case of independent multivariate measurements on n subjects, possibly with covariates.
Nested statistical models will be considered.

2.1. Model

Let y1,...,y, be the realizations of independent d-dimensional random vectors Y;, with re-
spective covariates summarized as matrices X, ..., X,. Suppose that the data generating mech-
anism of Y; is governed by the density function g(y;; X;). Candidate parametric models are
f (M) (yi; Xi, oM )), for M =1,2,...,; M is an index for different models that are considered,
and 8™ is the parameter vector for model M. Let py = dim(0™) be the dimension of 8
for a generic model M; the superscript will be omitted unless we are referring to two or more
models.

2.2. Composite likelihood

For model M, let L(C/Z)(O(M)) = L(CAZ)(O(M); Yi,.--,¥Yn; X1,...,X,) be a particular composite
marginal log-likelihood. We are using the same composite likelihood (same set of marginal den-
sity functions) for all competing models. Let S C {1, 2, ..., d} be a non-empty subset of indexes.
For notation, f, S(M) indicates a marginal density of f®) with margin S and g is the correspond-
ing margin of g. The particular composite likelihood could be based on all bivariate margins, or a

subset of bivariate margins, or more generally a set of margins {571, ..., Sp} with corresponding
weights wy, ..., wg. Suppressing the superscript for the model, let
n
Len®) =Len®:yi, -, Yni Xio o0 %) = Y Len(®;yi, %) @.1)

i=1

be the log composite likelihood. Here

Q
exp{leL@:yi.x)} =[] /5, (vis,: %:.6), 2.2)
g=1
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Sy is a subset consisting of indexes, and wy is a positive weight for S,. For example, if these
are the pairs for bivariate composite likelihood, then the cardinality of {S,} is O =d(d —1)/2.
Note that the case of full likelihood is covered with S = {1, ..., d} with the cardinality of {S,}
being 1.

2.3. Composite likelihood information criteria

Consider the composite likelihood versions of Akaike information criterion (AIC) and Bayesian
information criterion (BIC) described in Varin and Vidoni [15], Gao and Song [4], Varin et
al. [14]. They are defined as (with superscript for model M omitted):

CLAIC = —2Lcr(Bcr) + 2t J(@c)H ' @) ) (2.3)

and
CLBIC = —2Lcr.(Ocr) + (logn) tr{J@c)H ' @cr) ). (2.4)

Here, 9(1 = 9,,,CL is the composite likelihood estimator that maximizes (2.1). The matrices H(6)
and J(0) are the Hessian matrix and the covariance matrix of the score function, respectively,

1 82LCL(0;y17--~inst11 ooy Xp)
39907

HO) = lin

and

J(a) :Cov[n_l/zaLCL(av ylv e vYn»Xl» .. vxn)il

a0

When there are several models, the CLAIC (CLBIC) principle selects the model with smallest
value of CLAIC (CLBIC). CLAIC has penalty term 2tr(JH™!) and CLBIC has penalty term
(logn) tr(JH™1) that depends on the sample size n. With large n, CLBIC might choose smaller
models than CLAIC.

3. Main theorems

The main results are presented in this section, with proofs in the Appendix. Consider the nested
cases where model 1 is nested within model 2. Proposition 3.1 gives general results of the com-
posite likelihood ratio under nested cases. If the true model is covered by either model 1 or
model 2, Theorem 3.1 provides further comparison of the asymptotic properties of CLAIC and
CLBIC under a sequence of local alternative hypotheses. Results under model misspecification
are summarized in Theorem 3.2.

To describe the theorems, the following notation is used,

e Model 1: Y|x~ f(D(y; x,0), 0 € ©.
e Model 2: Y|x~ f@(y:x,p),y eT.
e True model: Y|x ~ g(y; x).
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This notation matches 8 = @ and 6@ = ¥, as used in Section 2, but we are temporarily re-
ducing the number of superscripts. Let 8* be the parameters for (1 (-; @) such that £ is the
closest to g in the divergence (see Xu and Reid [17]) based on the composite log-likelihood

function Lgﬁ Similarly p* is defined. Note that #* and y* might depend on the composite
log-likelihood that is used.

Proposition 3.1 (Asymptotic distribution of the composite likelihood ratio). Consider the
log composite likelihood ratio of two competing models,

LR=L2 ) - LY @). 3.1
Suppose that assumptions A1-A3 (given in Appendix A) hold. If for all (x,y),
FO(yix,0%) =2 (y: x, ¥%), (3:2)

then the limiting distribution of 2LR has the same law as Z' DZ, where Z is a vector of inde-
pendent standard normal random variables and D is a diagonal matrix with eigenvalues of the

B= (_(Jm))(H“))1 (J(12))(H(2))1> |

_(J(zl))(H<1>)—1 (J(22>)(H(2>)—1
Here, HD, JU2) et are defined in Appendix A.

(3.3)

In order to understand how different criteria can differ, we do an analysis for a sequence of
contiguous alternatives, in which the true model is model 2 and its parameter depends on the
sample size n and is closer to the null model as n increases. Such theory helps to explain what
happens in finite samples; see Section 4. Suppose that model 2 is f®(-; 0, ¢) and model 1
(null model) is nested within model 2, that is, f(l)(-; ) = f(2>(.; 0,0). The local alternatives
assumption refers to that g(-) = f®(-; 0%,. %) with & = a,e converges to £* = 0 at rate a,, =
n~Y2 or a, = \/logn/n, and 05 — 0*. Let 0% be the parameter for £V (:;8) such that £
is closest to g in the divergence (see Xu and Reid [17]) based on the composite log-likelihood
function Lgﬁ Assume that 67, and 67, are asymptotically equivalent, that is,

hn—0"—0, n— oo. (34)

We next state the main theorem for comparing CLAIC, AIC, CLBIC for nested models, when
the null model is true, or when the larger model is true under a sequence of local alternatives.

Theorem 3.1. Consider the model selection problem Hy: Model 1 f(V(-;8) is the true model
versus H>: Model 2 f(z)(~; 0,¢) is the true model. Here, y is p>-dimensional and ¢ is m-
dimensional, where m = p> — p1. Let PlAIC be the probability that AIC selects model 1. Similar
notation is used for BIC, CLAIC, and CLBIC.

(1) Under Hy, PFYAC — €y € (0,1) and PFYBIC — 1.
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(2) Under Hy, PFLAIC < pAIC,
(3) Under Hy with & = ¢} = en'2 and e = O(1), and assuming (3.4), PlCLAIC — Ch e
(0,1) and PF-BIC — 1.
(4) Under Hy with& = ¢* = e /logn/n and € = O(1), and assuming (3.4), PCLAIC s 0 and
C ;n g 8 1
PFLBIC s C3€ (0, 1).

To be more specific, we have C1 = P(MU + -+ + LUy < 2(A + -+ 4+ Aw)), where
Ui, U,, ..., U, are independent X12 random variables and L1, L2, . .., hy, are the non-zero eigen-
values of B defined in (3.3). If the full-likelihood is used, A1 = --- = A, = 1.

In Theorem 3.1, (1) is a special case of (3) with & = 0. The asymptotic results (1) and (3)
are natural. Intuitively speaking, if less parameters than the true model are selected, the compos-
ite likelihood decreases by a positive quantity of O(n). Such a decrease dominates the CLAIC
(CLBIC) penalty term so the penalty term is ignorable. This guarantees that the true model is
better than the smaller models in terms of CLAIC (CLBIC). On the other hand, if more param-
eters are involved than necessary, the increase in composite likelihood is just O(1). For CLAIC,
the change in penalty term is also O(1), so the model is correctly selected only with some posi-
tive probability. For CLBIC, provided that the penalty term is monotonic (see Lemma A.2), it is
guaranteed that the change in penalty term is positive and is O(logn), dominating the increase in
composite likelihood. Then, the true model is better than any other bigger model.

If model 2 is the true model and the two models are sufficiently far apart from each other,
that is, { = O(1) # 0, then all the criteria asymptotically choose the correct model. On the
contrary, if the two models differ by only a small perturbation, for example, ¢ = O(1/4/n) or
¢ = 0O(4/logn/n), it can be seen from results (3) and (4) that the behavior of CLAIC and CLBIC
differ. CLBIC is less likely select the correct model than CLAIC.

Comparing CLAIC and its full-likelihood counterpart, CLAIC has greater probability of
selecting the larger model. The difference in such probabilities depends on the eigenvalues
A1, - .-, . Roughly speaking, if (Aq, ..., A,,), after standardization is closer to (1, ..., 1), the
“loss of information” due to the use of composite likelihood is less significant. It is natural
to consider C; in Theorem 3.1 as a measurement of closeness of the composite likelihood to
the full-likelihood. It is interesting to note that C; does not depend on the parameters for full-
likelihood. For composite likelihood, it is possible that C| depends on the parameters through
M, ..., Am. The dependence of C; on the parameters will be illustrated via simulation examples
in Section 4.

Part of the results in Theorem 3.1 can be generalized to the situation of model misspecification.

Theorem 3.2 (The same notation as in Proposition 3.1 and Theorem 3.1 is used). Suppose
that model 1 is nested within model 2 but neither model 1 nor model 2 is the true model. Let
(0;1, L) be the parameter under model 2 that is the closest to the true model in the divergence
(see Xu and Reid [17]) based on the composite likelihood.

If equation (3.2) holds, (1) PlCLAIC — C1€(0,1) and PlCLBIC — 1.

If equation (3.2) does not hold,

() If ¢ =0(1), then PFMMC — 0 and PFHBIC — 0.

() If ¢} = en~1/? and e = O(1), and assuming (3.4), PF-*C — C; € (0, 1) and PFPIC —
1.
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o (AIL; If ¢k =e/logn/n and e = O(1), and assuming (3.4), PlCLAIC — 0 and PlCLBIC —C3 e

In the model misspecification cases, it is more difficult to compare analytically the probabili-
ties of selecting model 1 for AIC and CLAIC. To compare AIC and CLAIC, simulation examples
are provided in Section 4.

4. Simulation studies

In this section, we show simulation results of the following comparisons in their decisions among
competing models,

1. CLAIC versus CLBIC,
2. CLAIC versus AIC,
3. CLBIC versus BIC.

To do this, we choose models where the maximum likelihood estimators are also computationally
feasible. The analysis is different from that in Gao and Song [4] in that our concern is not in
whether the correct model is asymptotically chosen with probability 1. If models being compared
are close to each other, then any of the models could be chosen with positive probability, and we
are interested in where CLAIC and AIC might differ.

One general model that allows a variety of univariate and dependence parameters is the mixed-
effects model (see Laird and Ware [7]); it is defined via:

Yizxiﬁ—l—z,-bi—l—e,-, i=1,2,...,n,
b; ~ N(0, V), e; ~N(0, 9ly),

where B is (s + 1)-dimensional vector of fixed effects, b; is r-dimensional vector of random
effects. x; and z; are d x (s + 1) and d x r observable matrices, X; has a first column of 1s, ¢ is a
variance parameter, W is a r x r covariance matrix. Both full likelihood and composite likelihood
of the mixed-effects model can be expressed explicitly with the matrix algebra notation (see, e.g.,
Fackler [3], Magnus and Neudecker [8]). This model leads to closed form expressions where H
and J can be computed (see Appendix B).

A special case is the clustered data model with exchangeable dependence structure. It is de-
fined by setting z; = (1, 1, ..., l)T, v = azp, and ¢ = 02(1 — p), and closed forms for H and J
can be found in Joe and Lee [5].

The three examples given below are representative cases to show patterns in the decisions from
various criteria and in the penalty term tr(JH™!); the patterns were seen over different parameter
settings and dimension d. In the following examples, the composite likelihood corresponding to
the pairwise likelihood or bivariate composite likelihood (BCL) is specified via

Sq = {(i,j) for all i <j}.

In Example 2, trivariate composite likelihood (TCL) is also used. The sets S, for defining TCL
are

Sq=1{G. j.k) foralli < j <k}.
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Table 1. Comparison of decisions for AIC versus CLAIC for different B vectors, and distribu-
tion of tr(JH™!). Cluster size d = 4; Bo = (0.3,1.3,0.00,0.00), B; = (0.3,1.3,0.05,0.02), B, =
(0.3,1.3,0.15,0.05), B3 = (0.3, 1.3,0.15, 0.10). Covariates are drawn from N (0, I)

Bo B B2 B3

CLAIC\AIC 1 2 3 1 2 3 1 2 3 1 2 3
ne=1 472 39 11 439 37 19 5 4 1 1 0 1
ne=>2 23 335 11 24 309 16 1 500 50 1 112 25
ne=3 16 5 88 6 13 137 0 33 406 0 13 847

Lower quartile Q1 to upper quartile Q3 of tr(JH_l)

Bo Bi B2 B3
#covariates Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3
1 13.7 14.1 13.7 14.1 13.6 14.0 13.6 14.0

16.4 16.7 16.4 16.7 16.4 16.7 16.3 16.7
3 19.1 19.3 19.1 19.3 19.1 19.3 19.1 19.3

In order that decisions based on AIC and CLAIC are not always for one model, parameters are
chosen appropriately so that the simpler model has some chance to be chosen. In Example 1, we
consider smaller beta versus larger beta values.

Example 1 (Cluster model with exchangeable covariance matrix, regression vector 8 at vary-
ing distance from 0). The true number of covariates is 3. Let B, = (0.3, 1.3, 0.00, 0.00),
B1=1(0.3,1.3,0.05,0.02), B, =(0.3,1.3,0.15,0.05), and B3 = (0.3, 1.3, 0.15, 0.10), with first
element of the B vectors being the intercept. Because the last two parameters (regression coeffi-
cients for second and third covariates are smaller), for model selection, simpler models without
the additional covariates might be chosen for any information criteria. The parameters o = 1
and p = 0.5 are fixed.

For each of the four B vectors, 1000 replicates with sample size n = 100 and cluster size
d =4 are generated. Three different settings are used to simulate the covariates and the random
effects. In settings (i) and (ii), the covariates x; = (X;1, X;2, x;3)! are independent random vec-
tors from N (0, X x) with Xy =1, the identity matrix and ¥y = 0.2I + 0.8117, respectively. The
random effect b; is obtained from normal distribution. In setting (iii), ¢-distribution with degree
of freedom 3 is used for b; instead so that the robustness of the information criteria under model
misspecification can therefore be investigated. That is, b; = p!/?;, where #; are independent -
distributed random variables. We then compare the decisions of AIC and CLAIC for regression
models with the first, the first two or all three covariates (n, = 1,2 or 3). For setting (i), sum-
maries in Table 1 show patterns in the decisions and in the amount of variation in the CLAIC
penalty term tr(JH!). As an example, for B, there were 137 cases where both AIC and CLAIC
chose the 3-covariate model. Table 1 shows that the decisions for CLAIC are the same as with
AIC in a high proportion of cases; both tend to choose a regression model with more covariates
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Table 2. Comparison of decisions for AIC versus CLAIC for different B vectors, and distribu-
tion of tr(JH™!). Cluster size d = 4; Bo = (0.3,1.3,0.00,0.00), B; = (0.3,1.3,0.05,0.02), B, =
(0.3,1.3,0.15,0.05), B3 = (0.3, 1.3,0.15, 0.10). Covariates are drawn from N (0, 0.2 + 0.811T)

Bo B1 ) B3
CLAIC\AIC 1 2 3 1 2 3 1 2 3 1 2 3
ne =1 608 43 16 567 41 18 77 24 5 33 9 5
ne =2 28 205 7 18 234 8 2 617 37 3 441 39
ne=3 15 2 76 11 3 100 3 28 207 1 29 440

Lower quartile Q1 to upper quartile Q3 of tr(JH )

Bo B B> Bs
#covariates Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3
1 13.7 14.1 13.7 14.1 13.6 14.0 13.6 14.0
2 16.4 16.7 16.4 16.7 16.4 16.7 16.4 16.7
3 19.1 19.3 19.1 19.3 19.1 19.3 19.1 19.3

if the true B vector has more coefficients farther from 0. The results of BIC and CLBIC are
similar, and are not shown. The variation in tr(JH™!) is not too much when the sample size is
large enough. As implied by Lemma A.2, tr(JH™!) tends to increase for models with additional
parameters. Similar results of settings (ii) and (iii) are given in Tables 2 and 3, respectively. In
this example, it can be seen that all information criteria have a higher chance to select the smaller
model in the presence of strong correlations (say, 0.8) in the covariates. In the case where the
distribution of &; is misspecified, the decisions from all information criteria are very similar to
the counterpart without misspecification.

Example 2 (Multivariate normal regression model, different covariance structures). This ex-
ample shows local alternatives or perturbations of different types, either in univariate or in de-
pendence parameters. We compare exchangeable (exch) versus unstructured (unstr) dependence
when true covariance matrix has different deviations from exchangeable. The choices of the true
covariance matrices are:

I 05 05 05

5, —[05 1 0505
05 05 1 05]"
05 05 05 1
1 0.5+¢&1/n 0.5 0.5
o, | 05+e/vn 1 0.5 0.5
2= 0.5 0.5 1 0.5+¢1/vn

0.5 0.5 0.5+¢1//n 1
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Table 3. Comparison of decisions for AIC versus CLAIC for different B vectors, and distribu-
tion of tr(JH™!). Cluster size d = 4; Bo = (0.3,1.3,0.00,0.00), B; = (0.3,1.3,0.05,0.02), B, =
(0.3,1.3,0.15,0.05), B3 = (0.3, 1.3, 0.15, 0.10). Covariates are drawn from multivariate ¢ distribution with

Ty =1

Bo Bi B> B3

CLAIC\AIC 1 3 3 1 2 3 1 2 3
ne=1 484 8 449 3 5 1 1 0 1
ne=2 28 13 21 1 539 43 1 129 33
ne=3 12 82 18 125 0 32 376 0 17 818

Lower quartile Q1 to upper quartile Q3 of r(JH™ 1)

Bo Bi B> B3
#covariates Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3
1 14.8 15.2 14.8 15.2 14.7 15.1 14.7 15.1

17.2 17.5 17.2 17.5 17.2 17.5 17.2 17.5
3 19.7 19.8 19.7 19.8 19.7 19.8 19.7 19.8

Sra =diag(1, 1,1+ &2 //n, 1+ e2//n) S diag(1, 1,1+ 62//n, 1 +£2//n)

for k =1, 2, where g1 = 0.07+/200 and &) = 0.05+/200. ¥, changes some correlation parame-
ters, X1, changes some variance (univariate) parameters, and ,, changes both correlation and
variance parameters. The regression vector g = (0.3, 1.3) is fixed and the covariates x; are inde-
pendent standard normal random variables. Summaries in Table 4 are from 1000 replicates with
different sample sizes n and cluster size d = 4.

The patterns are similar to above for larger cluster size d = 5, 6,7 and perturbations of a
different exchangeable correlation matrix. That is, CLAIC tends to more often than AIC choose
the unstructured dependence when the perturbation is only in the variances (i.e., X1,), and AIC
tends to more often than CLAIC choose the unstructured dependence when the perturbation
is only in the correlations (i.e., ¥»). For perturbations in the correlations, going to trivariate
composite likelihood makes CLAIC closer to AIC in the decision between the two models.

For X1, CLAIC selects bigger model more often than AIC in all three settings (see Table 4).
However, the probabilities P]CLAIC and PlAIC are very close to each other. In this example,
CLAIC and AIC give very similar decisions. The outcome is consistent with Theorem 3.1(2).
Under Hp, AIC selects model 1 with probability approximately Pr(Zf + -+ Z,%, < 2m). For
the TCL with S, = {(i, j,k)}, n =500, ¥ = ¥, CLAIC selects model 1 with probability ap-
proximately Pr()qZ% +---+ Amz,z,, <2(A1+---+ Ap)). Here, A1, ..., Ay, are

3.34,2.87,2.73,2.52,2.07,2.03, 1.61, 1.50.
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Table 4. Comparison of decisions for AIC versus CLAIC under different perturbations of the exchangeable
dependence model

| P X X4

CLAIC\AIC exch. unstr. exch. unstr. exch. unstr. exch. unstr.

n =200,d =4, BCL

exch. 919 16 813 15 668 211 574 162
unstr. 40 25 95 77 21 100 45 219
n =500,d =4, BCL

exch. 911 12 825 10 699 175 593 168
unstr. 50 27 108 57 18 108 42 197
n =500,d =4, TCL

exch. 944 6 890 6 710 94 617 84
unstr. 17 33 43 61 7 189 18 281

Since these A values differ from each other, Lemma A.1(2) guarantees that
Pr(MZT+ -+ AnZp <200 + -+ dw)) <Pr(Z] +-- + Z;, <2m).
Indeed, for the eigenvalues A in the example, we have
Pr(AMZi+ - +AsZ > 2(0 +---+13)) =0.0468 and Pr(Zi+---+Z§ > 16) = 0.0424.

Here, the numerical method proposed in Rice [11] is used to obtain the first probability. The first
probability is slightly greater than the second probability.

Example 3 (Multivariate normal regression model, different covariance structures). This ex-
ample shows the exchangeable (exch) dependence model and its local alternatives with pertur-
bations of different sizes in dependence parameters. Information criteria AIC, BIC, CLAIC, and
CLBIC are compared. The choices of the true covariance matrices are:

1 0.5+34 0.5 0.5
05446 1 0.5 0.5
0.5 0.5 1 0.5+34
0.5 0.5 0.5+46 1

Y (8) =

Define £ = £(0), ¥, = £(n~'/?), £3 = £(n""/?logn), and £4 = £(0.2). The regression
vector B = (0.3, 1.3) is fixed and the covariates x; are independent standard normal random
variables.

Summaries in Table 5 are from 1000 replicates sample size n = 500 and cluster size d = 4.
The frequencies of selecting the exchangeable dependence model are reported. We see that
BIC/CLBIC tends to select the exchangeable dependence model more often than AIC/CLAIC.
Under the assumption of exchangeable dependence model, BIC/CLBIC have greater chance of
selecting the correct model. However, BIC/CLBIC are less sensitive to small perturbations than
AIC/CLAIC. The results are consistent with Theorem 3.1.
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Table 5. Comparison of decisions for AIC, BIC, CLAIC, and CLBIC under differ-
ent perturbations of the exchangeable dependence model. Sample size n = 500

Frequency of selecting exchangeable

Info. crit. P Yo 23 P
AIC 961 712 5 0
CLAIC 950 803 28 0
BIC 1000 1000 705 0
CLBIC 1000 1000 927 0

Example 4 (Comparison of information criteria under model misspecification). To see the
effect of model misspecification, we repeat Example 3 with the following changes: (i) b; =
Cu;, where W = CC is the Cholesky decomposition and u; are vectors of independent Laplace
random variables with mean zero and variance one. (ii) b; is generated from normal distribution
but

Y =(03,0.6,09,1.2)T +x;8 +zb; +&;, i=12,....n.

The results under (i) and (ii) are summarized in Tables 6 and 7, respectively. The decisions
under (i) are comparable to (1), (3), (4) in Theorem 3.2. The decisions under (ii) are similar to
that described in (2) in Theorem 3.2. Comparing with Example 3, under both (i) and (ii), the
alternative model is more likely to be selected.

5. Spruce tree growth data

In this section, we study the spruce tree growth data in Example 1.3 in Diggle ef al. [2]. The
decisions from AIC (BIC) and their composite likelihood counterparts are compared.

The dataset consists of the data from n =79 trees and is available in the R package MEMSS
(Pinheiro and Bates [10]). For each tree, the logarithm of the volume of the tree trunk was esti-
mated and recorded in d = 13 chosen days 1, 12, ..., t13 from the beginning of the experiment

Table 6. Comparison of decisions for AIC, BIC, CLAIC, and CLBIC under pertur-
bation in the distribution law. Sample size n = 500

Frequency of selecting exchangeable

Info. crit. 2 p303 23 )
AIC 768 479 3 0
CLAIC 712 537 12 0
BIC 1000 998 575 0
CLBIC 1000 1000 795 0
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Table 7. Comparison of decisions for AIC, BIC, CLAIC, and CLBIC under pertur-
bation in the mean. Sample size n = 500

Frequency of selecting exchangeable

Info. crit. 2 p03 23 Xy
AlIC 0 0 0 0
CLAIC 0 0 0 0
BIC 24 0 0 0
CLBIC 68 3 0 0

over a period of 674 days. The trees were grown in four different plots, labeled 1, 2, 3, 4, respec-
tively. The days are 152, 174, 201, 227, 258, 469, 496, 528, 556, 579, 613, 639, 674 days since
1988-01-01, corresponding to roughly beginning of June to mid-August in 1988 and mid-April
to the end of October in 1989. The first two plots represent an ozone-controlled atmosphere and
the last two plots represent a normal atmosphere. From the plots in Diggle et al. [2], the growth
rates in the two time periods are different.

A linear mixed-effects model accounts for different growth rates in the two periods is the
following. For a given tree, with y = log size has growth and ¢ = day since 1988-01-01,

Yij =(10—|—(11(1‘j—152)/100+5i, 152§tj§258,
vij = [a0 + a1 (258 — 152)/100] + ax(t; — 445)/100+ &, 469 <t; <674,

To introduce fixed and random effects, ag = By + B31(ozone) + bg, where bg is random with
normal distribution; in addition, a; = B1 + B4l (ozone) + b1, ap = B2 + B51 (ozone) + by, where
b1, by are also random and normally distributed. There was little growth in between the two
periods so the use of 445 = 469 — 24 treats the days 258 and 469 as one measurement unit apart.

Estimates of regression coefficients for the fixed effects and SDs of the random effects are
shown in Table 8; the standard errors of these parameter estimates are obtained with the delete-
one jackknife as mentioned in Varin ef al. [14] for composite likelihood methods. Based on the
estimates in this table, for submodels we consider setting fs, 83, Ba in turn to zero for the effects
of ozone in the second period, initial point, and first period. Hence, we have submodels with
5, 4 and 3 regression parameters. In Table 9, the decisions of the difference full likelihood and
composite likelihood information criteria are shown.

For these four models, all of the information criteria chose the same best model with a signif-
icant B4, the effect of ozone for the growth rate in the first period. Based on these criteria and
standard errors, the effect 85 of the ozone for the growth in the second period is much more
negligible, and the effect 83 of ozone for the period before day 152 is also non-significant. Note
that the model with 85 = 0 and five non-zero f’s, the AIC/BIC values are relatively closer to
those for the best model than the corresponding CLAIC/CLBIC values; this is also seen in the
corresponding z-statistics: for $3, the ratio of estimate and SE is —0.118/0.162 = —0.73 for full
likelihood, —0.097/0.171 = —0.57 for TCL, and —0.094/0.175 = —0.54 for BCL.

Although the four models in Table 9 are ranked the same on all information criteria, this is not
the case when we also consider other models with additional binary variables to handle four plots
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Table 8. Spruce data: Comparison of parameter estimates from maximizing full likelihood, TCL, BCL;
the correlation of the random effects are small and not included. Standard errors (SEs) are obtained via the
delete-one jackkknife

Full (SE) TCL (SE) BCL (SE)
o 4.272 (0.154) 4.310 (0.152) 4311 (0.152)
B1 1.415 (0.064) 1.371 (0.062) 1.373 (0.062)
B> 0.371 (0.021) 0.383 (0.021) 0.382 (0.021)
B3 —0.101 (0.173) —0.097 (0.171) —0.097 (0.171)
Ba —0.223 (0.076) —0.228 (0.074) —0.227 (0.075)
Bs —0.012 (0.027) —0.012 (0.027) —0.012 (0.027)
residSD 0.138 (0.005) 0.126(0.005) 0.118 (0.006)
SD(b) 0.616 (0.051) 0.625 (0.050) 0.630 (0.050)
SD(b)) 0.270 (0.031) 0.323 (0.030) 0.353 (0.034)
SD(b,) 0.098 (0.018) 0.110 (0.017) 0.118 (0.017)

(two plots for each of ozone and control). That is, to relate to what we found in the simulation
examples in Section 4, if we consider many models and some of them are quite close in fit
because of some regression coefficients being near zero, then the rankings can be different for
full and composite likelihood information criteria.

6. Discussion

In this paper, we have results that show how decisions from CLAIC compare with those from
AIC for nested models. This was mostly based on the theory of local alternatives applied to
composite likelihood; this is the theory that is most relevant to understand how model selection
performs for models that are not far apart.

Table 9. Spruce data: Comparison of decisions for AIC, BIC, CLAIC, and CLBIC. The decision is the
number of 8’s in the model with smallest information criterion value. The values of CLAIC and CLBIC
have been divided by (5’) =286 for TCL and by (') = 78 for BCL in order that they are smaller

Full likelihood TCL BCL
#B’s AIC BIC CLAIC CLBIC CLAIC CLBIC
6 —2319.5 —2288.7 -291.9 —276.7 —124.0 —112.1
5(Bs=0) —2321.3 —2292.9 —292.6 —278.3 —124.4 —113.1
4(Bs=B3=0) —2322.7 —2296.6 —293.8 —281.4 —125.4 —115.6
3(Bs=P3=PB1=0) —2314.7 —2291.0 —288.4 —271.5 —120.9 —112.7

Decision 4 4 4 4 4 4
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The theory of this paper can be applied to other models to understand better how CLAIC
compares with AIC for different types of perturbations that may involve univariate or dependence
parameters. This can be done if the J and H can be computed, possibly based on simulation
methods. Further analysis will help in the understanding of conditions for which CLAIC has
more “power” to detect a more complex model. The results have some analogies with those in
Joe and Maydeu-Olivares [6], where it is shown that there are directions of local alternatives for
which goodness-of-fit statistics based on low-dimensional margins can have more power.

Although analysis in this paper is with composite marginal likelihood, we expect many of the
results apply to composite conditional likelihood.

Another topic of research is further study of the extension of the procedure of Vuong [16] for
composite likelihood to understand its potential usefulness for comparing prediction similarity
for non-nested models.

Appendix A: Proofs

A.1. Assumptions

The following assumptions are used, similar to Vuong [16].
Al: ®, I' are compact subsets of a Euclidean space.
A2: Let # = 0 for model 1 and ¢+ = y for model 2. For M = 1, 2, under the true model, we

have almost surely for all (x,y), log f S(;W) (ygq; X, ) is twice continuously differentiable over the
parameter space. In addition, there exist integrable (under the true model) functions K, ;M) (X,Y),

(M) (M)
qu x,y), K

ik (x,y), where ¥, ¥ are components in the parameter #, such that

2
sup|log £ (ys,: %, |* < KM (x, ),

9 2
sup Wlog fg(‘;l/l)(YS,,; X, #)| < K;jw(x,y),
J
(M) — (M)
sup 319J' 0% Ingsq (yqu Xi, )| < quk (x,¥),

where the suprema are over the parameter space ® or I'.
A3: Under the true model, for f (M the local maximum point

n 0
0% — argmgxnlggon—l ZE{Zlog fs(;)(Y[,Sq;xi, o)}

i=1 \g=I

is unique and @* is an interior point of ®. Similarly y* is defined for f® and is an interior point
of I'.
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Assumption A2 guarantees the existence of positive definite matrices H"), H®, J given be-
low. For the matrices defined below, all expectations below are taken under the true model.

n
HD @) =~ lim n™' ) E, {ZM o7 108 £ Vi, %i.0) .
i=1

g=1

n Y] 0
0 0
an — 1 My, - x My, .
J (0)—nh_{gon 21 { 50 E log f, (Yz,sq,xz,0)~80T E log f, (Yz,sq,xl,o)},
i= g=1
i

1@, y) = lim n~' Y E { log fs,) (Yi.s,:%i.0) - TZlong()(Y, sq,x,,w}
i=1

ay

%IQJ

g=1
Similarly H? (y), J®? (p), J2D(p, 8) can be defined. Let
)
JCO(y*.0%) T (y¥)

Applying the law of large numbers and the Central Limit theorem, we have as n — oo,

_ 82 82
- 1[8030TL(CIL)(0*) a,,ayTL(ch)(r*)]—’”"“ [HD H®], A1)

1 0 1 9
[ﬁa?L(&(e*) WW—TL(CZE(V*)] —4 N(@©.J). (A2)

A.2. Proof of Proposition 3.1

The proof can be established following the same arguments as in Vuong [16], so that most details
are omitted. Below, the asymptotic covariance matrix is obtained in a heuristic way.

Based on (A.1) and (A.2), and the assumptions A1-A3 (see Appendix A), Taylor expansions
to second order are valid and lead to:

2LR =n(p —y*) HO(p — p*) —n(6 — %) HD (8 — 0%) + 0, (1),

and the matrix of the (asymptotic) quadratic form in independent standard normal random vari-
ables is V1/2 diag(—H®, H®)V1/2 where

_ _ v(ab  ya2)
v = dig() !, (12))aig(8) 1)) = (Yo yem )

is the asymptotic covariance matrix of n'/ 2(9 — 0%,y — y*). The eigenvalues of this matrix are
the same as those of

_HOYAD  _gHy(2)
_( HOVE)  HOyEe )
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kK=t 0.
0 1,

= <_(J(”))(H“))_1 (J<12>)(H(z>)—1>

—(IY@EO)" () EH®)!

and the eigenvalues of this matrix and A are the same.

Let

Then

A.3. Proof of Theorem 3.1

Consider the nested case where f(V(:;x,0) = f@(-;x,0,0). Suppose that y = (0, ¢) is po-
dimensional and ¢ is m-dimensional, where m = p> — p1. (Note: the maximum composite like-
lihood estimator for model 1 is (;, and it is not the sub-vector of p, the maximum composite
likelihood estimator for model 2.) For convenience, the following notation is used throughout
the proof,

H" =Hgy and H<2>=<H99 H“),
Hio Hee
Joo J J
I = 340, J(22)=< " 05)’ Jm):( 09)’ I =(Joo Jor).
Jeo Jet Jeo

Proof of (1). For CLBIC, it is a special case of Theorem 1 and 2 in Gao and Song [4]. A de-
tailed treatment on the order consistency can be found in Gao and Song [4]. Below, we complete
the proof by showing that PICLAIC, the probability that CLAIC selects model 1 under H; has the
form P(MUr + -+ XnUp <2001 + -+ An)).

Let y* = (6%, ¢*) be the true value. Under the null hypothesis, £* = 0. From Taylor expan-

sions of Lgﬁ(y*) and Lgﬁ(o*) around p and 0, we have the composite log-likelihood ratio:

0<LR=1n(p —p*) HO (5 — p*) = 1n(0 —6*) " HD (6 — 0%) + 0, (1).

N|—

From Proposition 3.1, it has asymptotically the same distribution as Z” DZ where Z is a
(p1 + p2)-vector of independent N (0, 1) random variables and D is a diagonal matrix with
diagonal elements equal to the eigenvalues of B (defined in (3.3)). In addition, the penalty terms
—JIYyHD)"! and (JE?)HP)~! are the two main diagonal blocks in the partitioned ma-
trix B, respectively. Therefore,

00 7))~ (00) @) e
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We claim that the number of non-zero eigenvalues A; of B is m. To verify this, the characteristic
equation [B — AL, 1 »,| = 0 can be written as

Joo + AHpp Joo Jo¢
Joo Joo — AHgg  Jor — AHp, | =0.
Jeo Jeo —AHor  Jop — AH;

Subtract the second column from the first column, and then subtract the first row from the second
row,

AHgg Joo Jor Hyp Joo Joc
0=| 0 —AHpp —AHp; | =(=1)P1A%P1| 0 Hyy Hy,
Ao Jeo —AHgg  Jop —AHg, Heo Jeo —AHpg  Jop —AHg g

If AIC is considered, the J matrices are the same as the H matrices. Subtract the second row
from the first, and then subtract the second column multiplied by He_el Hy, from the third to get:

Hyy 0 0
0= 221 0 Hyo 0 .
Heo (1-2)Hp (1—2)(Hy —HepHy) Hor)

The eigenvalues are A = 0 (multiplicity =2p;) and A = 1 (multiplicity = m).

Proof of (2). The required result is a direct consequence of (1) and Lemma A.1.

Proof of (3). For CLAIC, we show that PlCLAIC is asymptotically equivalent to a non-central
chi-square probability. Note that CLAIC selects model 1 if the CLAIC comparison is:

P{LE G, - LEGw) <20 O] —e@OEOT ] @

Here 2[L(C2E(}7n) — L(Clﬁ(él,,)] is a non-negative quadratic form, and a representation for it is
obtained below. ~ A _

Write Ler(0n, &,) = L& (P,) and Ler0(8%), %) = Ly (B1), where ¢* =0. Let 6,,(¢)
be the maximum composite likelihood estimate when ¢ is fixed, so that LCL(én (¢), ¢) is the
profile composite log-likelihood.

Assume that all of the regularity conditions for maximum likelihood apply to all of the
marginal densities in the composite likelihood. The derivation below is similar to a result in
Cox and Hinkley ([1], Section 9.3) for the full log-likelihood. For the difference of composite
log-likelihoods in (A.3), we take an expansion to second order:

Z[LCL(éZn» &) —Lei(04(2%),¢%)]

= n(s, —0%) Hyy (05, — 0*
(62, —07) (62, —07) Ad)

+ 20 (B2 —07) Mo (8, — %) +n(&, - 57"

—n(0,(2*) — 0%) Hap(8,(2*) — 6%) + 0, (D).

Hy (2, —¢%)
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For the profile likelihood, by differentiating d Lcr, 0,(¢),2)/96 =0, one gets:

32LCL 3én 82LCL

W(an(C)’ C) 3§T + W(On@), C) 20,
so that as n — oo,
30, _

Expand 0,(¢)around £ =C* at & = En to get

30,(2)
acT

én(;*) zén(én) +

;- (87 = &) +op(D) =02 + Hyy Hy (£, — £%) +0,(1).
Hence,

00 (8) — 0° =0, (8%) — 020 + 02, — 0" =My Hy (£, — £¥) + (B20 — 0%) + 0, (D).
Substitute into (A.4) to get

2[LCL(62m &) — Len(0.(27), ¢)]

(AS)
A T _ A
=n(&, = ¢")" [Heg = HeoHyy Hog](§, = £7) + 0, (D).
Under a sequence of contiguous alternatives, nl/z(E[Z'n] —¢,) — 0and nl/z(g'n —¢*)—> e as
n — oco. So marginally n'/?(Z, — ¢*) is asymptotically N(8;, V), where §; =€ and V; is the
(2, 2) block of the partitioned covariance matrix,

HP H\ ! Joo Joo\ (HP? WO -1

HSY HS¢ Jeo Jec HS? HSC :
Then, (A.5) is asymptotically a quadratic form based on a random vector with N (8;, V) distri-
bution.

For CLBIC, the arguments are similar to that of CLAIC. Here, we highlight the differences
between CLBIC and CLAIC. The result is established based on the following comparison

logn{r(J?H®]™) —r(IOHO]T),  CLBIC,

» . (A.6)
{e(@@HEP]T) —a(IOHD] T, CLAIC.

2HLD G,y — LD @) < {

The left-hand side has order O, (1). For CLAIC, the right-hand side is just O, (1), so there is
positive probability that CLAIC selects model 2. On the contrary, for CLBIC, the right-hand
side is O (logn). Together with the asymptotic positiveness of the penalty term difference (see
Lemma A.2), the increase in the likelihood is offset by the increase in the penalty. Therefore,
asymptotically CLBIC cannot select model 2.
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Proof of (4). It is similar to the proof of (3) and is omitted here.

A.4. Proof of Theorem 3.2

This is similar to the proof of Theorem 3.1.

A.5. Technical lemmas

Lemma A.1. (1) Let 72, Z%, e Z,i be independent Xlz random variables. Suppose that m' <
m. Then,

P(Z2 4+ 2% <2m') < P(Z} 4+ Z2 <2m).

(2) Further let A1, Ay, ..., Am be non-negative constants. Then,
P(mZi+  +amZl <200+ + ) < P(Z}+ -+ 22 <2m).
The equality sign holds if and only if Ay = Ay =+ = Ay,

Proof. (1) Let U,, be the sample average of Z2, ..., Z,zn. Below, we compare the probabilities
P(U,, >?2) and P(U,,H_l > 2). It can be checked that

PWU,>2) = /Oog (t)dt = _m /Oo(mt)m/z—le—mt/zdt
" , o 220 (m)2) ), :

Consider the ratio between the integrands g, (¢) and g, +1(¢),

g1 _ (m+ DRI/ S

R(t) = -
“ gn(t)  2m™2T((m + 1)/2)

Note that +/7e /2 is monotonic decreasing for ¢t > 2, it suffices to show that R(2) < 1. To achieve
that, the Binet’s formula (see Sasvari [12]) can be employed,

I'm/2) 1/2(m — 2)(m=D7/2
C((m+1)/2) (m — 1)m/2

0(x) /00 1 1+1 ‘x’ldt
X)= ——+ =] " —dr.
o \e—1 2 t

The following bound is also used (see Lemma 2 of Sasvéri [12]); for x > 0,

exp[0((m —2)/2) —6((m —1)/2)],

where

O(x) —0(x+1/2) <0(x) —0(x + 1) = (x + %) 1og<1 + %) —1.
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Then

1\ "/2 1 —(m-2)/2 2 (m—2)/2
R(2)<e3/2f 14— 1+ — 1+ —
—1 m m—2 m—2

172 D2 | \—m=2/2
<22 m+ D7 .
m—1 m—72

The right-hand side is monotonic decreasing series of m converging to +/2e~/2 2 0.8578 < 1.
It is smaller than 1 when m > 12. We complete the proof by reporting the numerical values
of P(Uy >2) = P(Z? +---+ Z% > 2m) for m = 1, ..., 12. One can see that the monotonic
decreasing pattern also holds for m < 12.

m 1 2 3 4 5 6
P(U,>2) 0157 0.135 0.112 0.092 0.075 0.062
m 7 8 9 10 11 12

P(U,>2) 0051 0042 0.035 0.029 0.024 0.020

(2) Let 2 be the event {)»1Z12 +"'+)»mZ,2,, <c(A+---+Ap)}and
G =P(MZi+- +anZ <cOy+-+hin) = P(Q),

where the constant ¢ is 2. Without loss of generality, fix the value of A + --- + X, =m, and let
G*May oo ) =G(m — Ay — -+ — Amy A2, ..., ), which we abbreviate below as G*(). We
will consider (i) the stationary points of G* and (ii) boundary points of G*.

First, we give the first-order conditions for the stationary points. Rewrite

cm pem—uy Cm—vy——vy [ M s 1
G*(\) = K/ / / H)‘I: / vl: / e Uk/2M dvy - - dup,
0 0 0
k=1

Here, K is a proportionality constant. Let

cm CMm—"upy CM—"U;y—+—12 m o "
EZ(X)ZK/ / / v; l—[)‘k_ / vk_ / e—vk/2kk dvy--- duy,,
0 0 0

k=1

E cm cm—uy, CM—Uy—:—V2 1/2 —vk/ZAk
i) =K ViV, ]_[x dv; - - - duy,.
0 0 0

Differentiating G*(A) with respect to A; for i # 1, we have

1 1 1 1
——G*(A E; (A ——G*(A —E A) = [ =2,...,m,
GTy ()+Zl A) = 7 ()+211() v, i m
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where v is the Lagrange multiplier. To simplify the first-order conditions, it is convenient to

introduce the following notation. Define

cm CMm—Uupy CM—Uy—-+—V3 _3/2
h1<x)=Kf f / o em = v = =)'
0 0 0
—(em—vy—-—v2) /20

X €
m
% {l_[ )\,1(_1/21)1:1/26_%/2)% } dv2 L. dvm,
k=2
cm pem—upy, CM—vpy ——13 s 3
h11(X)=K/ / / A em — vy — - —vp)Y
0 0 0
x e (€m—vy—-—v2) /2%
m
x {l_[ A;l/zvlzl/ze—vk/2kk } dv2 . dvm,
k=2
cm pem—uy, CM—vpy——13 3.3 12 1)
hlz(l)zK/ / / A TTA, (cm—vm—~-~—v2)/v2
0 0 0
x e—(cm—vm—n-—vQ)/ZMe—v2/2kz

m
« {1_[ )\k—l/zvk—l/ze—vk/Zkk } dU2 . dUm.
k=3

Similarly, define h;, h;;, and h;; for other i, j. Below are some useful results obtained from

integration by parts over variable vy,
E\() =1 G*X) = 22ih V),

Ex(M) = 2G*(A) — 203ha (M),
Eni(x) =30 E1(V) — 223k (L),
Enn(x) = M E2(A) — 203 A2k (V).

Then, the first order conditions becomes h1 =hy =---=h;; = —v
Next, we show that stationary points of G*(A) without satisfying A; = --- = A,, do not have
semi-negative definite Hessian matrix. Differentiating G*(L) with respect to A; twice,
32G*(r 1 6E; Ej 1 6E; E
PO L (1685 Er)y L (390, )
OA; 4x; A A 4ry Al A
. 2 E; E  Ey
41 M Ai M AiAl
h; hy 1 1 1
+ o— i —hii) + s—(hy — hy) — —(hy — hy).
' 2Aq i
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Below, we see that the right-hand side must be positive if A; # X; and therefore cannot be a
local maximum. By definitions, the first two terms are positive. For the third term, consider the
quantities defined below,

2E;(A) n Eii(})
)\i AZ

1

Rii=G*(\) —

It can be rewritten as the integration of the product of (1 — v;/A;)?> and some positive terms.
Therefore, R;; must be positive. In addition, R;; = 2X; (h; —h;;). Then, we show that h; —h;; > 0.
The fourth term can be handled in the same manner. For the last term, the symmetry Ej; = E;;
implies A;h; + A1h1; = A1h1 + A;hip; then using the first order condition for a stationary point
and the symmetry of h;;, (A1 — A;)(h1 — hy1;) = 0. If A1 # A;, then hy — hy; = 0. The stationary
point must not be a local maximum.

Now, we have shown that A = 1,, is the only stationary point of G*(A) that could be
a local maximum. It should be noted that such stationary point is not necessarily a local
maximum. To avoid the difficulties in checking the negative-definiteness of the Hessian ma-
trix, an indirect approach is adopted. Here, we compare the unique stationary point with the
boundary points. The boundary is defined by {A; = 0 for somei = 1,2,...,m}. Result (2)
on the boundary points can be established by applying result (1) and result (2) for station-
ary points inductively. (Note: for any ¢, A = 1,, is always a stationary point. However, re-
sult (1) is not necessarily valid for all ¢, so, the local maximality does not always hold for
any c.) O

Lemma A.2 (Monotonicity of the penalty term tr(H™'J)). If model 1 is nested within model 2,
tr((HD)~1JD) < tr(HP) 1), if HD, JD are evaluated at 0% and H® | J? are evaluated
at (0%, ¢*).

Proof. Suppose that the parameters are (¢*,0*) for model 2 and * for model 1. Below, if
not specified, the arguments of the H, J matrices are (¢*, 0*). For model 1, the penalty term is
tr(Hyy Jop).

Next, we consider the partitioning:

<H¢c Hw)_l (Jc; Jw)
Hy; Hog Joc  Joo
We have (see Morrison [9], Section 2.11)
_ —1 —1
H;; Hgo : _ (HCC —HyoHyy H9{)
H H DR ! _ —1 -1
¢ 1166 H,, Ho, (He; — HeoHpy Ho)

-1 -1 -1

_(HC{ —HoHyy Hﬁé) H:oHy, )
—1 1 -1 -1 -1

Hy, + Hyy Hor (Her — HeoHyy Hor ) HipHy,
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The change in the penalty term is therefore
tr(He — HooHy Hog) ™ (Jee — HogHy) Jog)
+ trHyy Hor (Hy — HegHy Hog) ™' (HooHyy Joo — Jco)
= tr(Hee — HegHyy Hoc) ™ (Yoo — HeoHyg Joc — JeoHyy Hor + HeoHyg Jog Hyg Hoc ).
Note that the term
Jec —HeoHygJoc — JeoHyy Hoo +HeoHyy JooHyy Ho
must be positive definite because J has the form E[VVT]. It is the same as
B[ Ve — HeoHy, Vo |[Ve — HeoHy, Vo]
where Vg and V, are the gradients of the composite log-likelihood with respect to 6 and ¢,
respectively. The term (H;; — H;(;ngl Hgg)_l is also positive definite because it is a principal

block of the matrix
(Ha Heo > -
Hy; Hop ’

For any two positive definite matrices A and B, the trace tr(A B) must be positive. To see this,
consider eigenvalue decomposition A = PA PT. The trace tr(AB) = tr(APT BP) is the dot
product of the diagonals of A and P” BP. Since P” B P is positive definite, all diagonal elements
must be positive. We have the desired results that the penalty term is monotonic increasing. [J

Appendix B: Full and composition likelihoods of the linear
mixed-effects model

For the multivariate normal mixed-effects model Laird and Ware [7], both the full likelihood
and composite likelihood can be computed readily, after making use of results on vec and vech
operations (see Fackler [3], Magnus and Neudecker [8]).

Model:

Yizx,-ﬂ—i-zibi—i—ei, i=1,2,...,n,
b; ~ N(0, V), ei ~N(0, L),

where B is (s 4+ 1)-dimensional vector of fixed effects, b; is r-dimensional vector of random
effects. x; and z; are d x s and d x r observable matrices, X; has a first column of 1s, ¢ is a
variance parameter, W is a r X r covariance matrix.

Conventions: Define the duplication matrix D, such that for any r x » symmetric matrix A,
we have vec A = D, vech A. Define permutation matrices T,, such that for any r x r matrix A,
we have T,, vec A = vec AT . Define the duplication matrix D, and elimination matrix E, such
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that for any r x r symmetric matrix A, we have E, vec A = vech A and vec A = D, vechA. The
duplication matrix is unique but not the elimination matrix; for the latter, it is convenient to
operate on the lower triangle. Let I, be the r x r identity matrix. Some properties of the above-
mentioned matrices are as follows. (1) (I, +T,,)D, =2D,,D,E, {0, +T,,)) =L +T,,. 2) If C
is lower-triangular, we have vec C = ErT vechC.

Details for the full likelihood and the pairwise composite likelihood are given in two subsec-
tions below. The ideas are similar for other composite likelihoods.

B.1. Full likelihood

Define
Qi=z;Vz] +¢1 and S;=(y; —xiB)(yi —xiB).
The likelihood function is

LB, W, ¢)=) Li(B, W, ¢:yi,%),

i=1

where
G, ) =0i(B, W, ¢ yi, xi) = — 5 {tr(27'S;) + log |21} — Llog(2m).

The following alternative parameterization is beneficial to numerical computation. Consider ¥ =
CCT and ¢ = «2, were C is lower triangular matrix. We have

dvech W

Tvearc = B +T)COLES,

Under the (C, k) parametrization, the score function and Fisher’s information matrix are given
as follows.

Score function:
de; _
g = -xiB)" 2 'xi,
dzi _ Tr.,To—1 S -1 C T
Tvearc = Ve [z] 7' (Si — Q)R 'z ClE],
de;

= K tr{Q73(S — @)}

Fisher information matrix:

d /d¢;
E—(—2)= —xiTQ.*lx,-,
dg \ dp '

d d¢;
E — =0,
dvechC\ dg




1762 C.T. Ng and H. Joe

d (dg\
Ea(v)—"’
E d de; =-E (CT®L){[z] @ 'z]® [z} @ '2]} A + T, )(CRL)E]
dvechC \ dvechC g WAL i 82 zi [yl + 1 DL
d [/ de )
b (i) = -2k (CT o) el 2751,

RN AN
EdK(dK>_ 2K tr(Qi )

B.2. Composite likelihood

We show details of the pairwise composite log-likelihood for the multivariate Gaussian linear
mixed-effects model. Define the composite likelihood as

LcL(B, ¥, ¢) = i Z log fix(Vij, yik; B, ¥, &, %),
i=1 1<j<k<d
where
log fix(Vij, yik: B, ¥V, &, %) =£; jx (B, ¥, §)
= —3{u[(efiejn) " (efiSiejn)] + loglefiQiesi} — §d(d — 1log2m).
Let ficL = Yy < —<q 4. jk(B. ¥, $). For convenience, for a = 1,2, 3, define
Aui =) eji(efQiej) el
7k
B = {[eje(elein) el ] ® [eju (el Qien) el ]}
I

where e is the d x 2 matrix that has 1 in the (j, 1) and (k, 2) positions and 0 elsewhere (premul-
tiplying by elTk and postmultiplying by e extracts the appropriate 2 x 2 subcovariance matrix).
Score function: With the above alternative parameterization of C and «, we have

de;
dl;L =i —xiB) Auxi,
dlicL =vec! (S; — Q2)Bi(zi ®2;)(CRL)E!
dveChC i i i 7] 1 r ro
déicL

= KtI‘{Az,'(Si — Ql)}



Model comparison with composite likelihood 1763

Second moment J of score function:

(55 (5)
E dtic\" ([ dlict =0
dp dvechc )
B dicL\" (dice —0
dp dx o
g _dtic " (_dtic
dvechC dvechC

=E (C" ®L)(z/ ®2)Bi(2 ® Q)Bi(z; ®z) (L, + T,,)(COL)E],

dic \' [ dt;
E(dveﬁfC) < dlISL>=2KEr(CT®Ir)(Z ®z; )B (2; ® Q) vec(Ay),

de; de;

dk dk

Expectation of Hessian matrix H:

d /d¢;icL

E dEICL
dvechC

dEzCL
=0,
d/c ( )
dicL ) _ E (C"®L)(z] ®2)B@z ®@2z)A, +T,)(CRL)E],
dvechC dvechC ! 4
d4;cL T
(dvelchC) = —2«E,(CT ® L) vec(z] Ayiz;),
de
( ZCL> —2k tr(Agy).
d/<
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