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We construct optimal designs for estimating fetal malformation rate, prenatal death rate and an overall
toxicity index in a toxicology study under a broad range of model assumptions. We use Weibull distributions
to model these rates and assume that the number of implants depend on the dose level. We study properties
of the optimal designs when the intra-litter correlation coefficient depends on the dose levels in different
ways. Locally optimal designs are found, along with robustified versions of the designs that are less sensitive
to misspecification in the initial values of the model parameters. We also report efficiencies of commonly
used designs in toxicological experiments and efficiencies of the proposed optimal designs when the true
rates have non-Weibull distributions. Optimal design strategies for finding multiple-objective designs in
toxicology studies are outlined as well.

Keywords: dose-finding experiment; locally c-optimal design; multiple-objective design; robust optimal
design; Weibull model

1. Introduction

Developmental toxicity studies play an important role in identifying substances that may pose
a danger to developing fetuses, including prenatal death and malformation among live fetuses.
Krewski and Zhu (1995) and Zhu, Krewksi and Ross (1994) demonstrate that joint dose-response
models for describing prenatal death and fetal malformation in developmental toxicity experi-
ments have a good agreement with real data. These models can be used to estimate the effective
dose corresponding to a gene excess risk for both these toxicological end-points, as well as for
overall toxicity. It appears that toxicologists are generally less receptive to a more rigorous treat-
ment of design issues; see a recent foreword/commentary in 2006 in Nature by Giles where the
author expounded on the lack of sophistication in current designs for animal experiments. Very
recently there have been a handful of theoretical articles that utilize statistical principles to design
toxicology studies. This paper follows this trend and discusses how one may construct efficient
designs for estimating malformation rate, prenatal death and overall toxicity levels under a broad
range of model assumptions. A scientifically sound and efficient study is crucial because toxi-
cology studies are increasingly more expensive in terms of time and labor. An efficient design
potentially also means that significantly fewer animals will be required in the experiment. In
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what is to follow, our designs for such experiments are specified in terms of the number of doses
to be used, the dose spacing, and the proportion of animals to be assigned to each dose.

Krewski, Smythe and Fung (2002) studied locally optimal designs for the estimating the ef-
fective dose using joint Weibull dose-response models. The locally optimal designs depend on
the parameters of the Weibull model and the degree of intra-litter correlation. This paper ad-
dresses several important design issues in toxicology, such as estimating benchmark doses. Es-
timating benchmark doses has a long history in toxicological studies and research continues to
this day; some recent papers include (Woutersen et al. (2001), Moerbeek et al. (2004), Slob
et al. (2005)). As in Krewski, Smythe and Fung (2002), we seek optimal experimental designs
that minimize the variance of the estimated effective dose for prenatal death, or malformation or
overall toxicity, given the number of implants. (Here we recall an implant is an embryo that has
been incorporated into the maternal uterus.) These are two important and common end-points
measuring tetratogenicity (embryotoxicity) in animal studies (Zhu, Krewski and Ross (1994)).
Because nonlinear models are employed in such studies, these authors used the simplest design
strategy and found numerical locally optimal designs for estimating the model models. However,
it is known that locally optimal designs can depend sensitively on the nominal or initial values of
the model parameters. In our work, we present a more sophisticated approach to design develop-
mental toxicity experiments so that the implemented design is more robust to misspecification in
the initial values. Specifically, we first derive analytical properties of locally optimal designs for
estimating the benchmark dose of prenatal death. In particular, we prove several results on the
number and levels of doses and invariance properties of the locally optimal designs. We also cor-
rect an error in the work of Krewski, Smythe and Fung (2002), who used the wrong information
matrix for the construction of the optimal designs. Second, we study the robustness properties of
these locally optimal designs with respect to misspecification of the initial parameters. Third, we
construct locally optimal designs for estimating the effective dose of overall toxicity and investi-
gate their sensitivities to misspecification in the initial parameters. Fourth, we construct designs
that are robust with respect to misspecification of the initial parameters, and so mitigate a concern
raised by some toxicologists. We also investigate relative efficiencies of commonly used designs
in developmental toxicity experiments.

Section 2 gives statistical background for our models, which were recently proposed in the
literature for developmental toxicity studies. In Section 3 we present analytical results for locally
optimal designs for estimating the effective dose of prenatal death and investigate the sensitivity
of these designs with respect to misspecification of the unknown parameters. Section 4 consid-
ers similar problems for estimating the effective dose of overall toxicity, and in Section 5 the
methodology is extended to obtain robust and efficient designs by a maximin approach. Sec-
tion 6 evaluates efficiencies of commonly used designs in animal studies and briefly discusses
efficiencies of optimal designs when non-Weibull probability models are used. All justifications
for all our results are deferred to the Appendix.

2. Background for developmental toxicity studies

In developmental toxicity experiments with laboratory animals such as rats or mice, pregnant
females are usually exposed to one of several doses of the test agent (including a control group
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at dose zero) during a specified period in gestation. Upon examining the uterine contents of each
dam, the status of each conceptus is classified and recorded. A conceptus may either be dead or
alive, and a live fetus may exhibit one or more malformations. In industry, the number of litters
examined per dose is generally 24 for rats, which is one of the two standard species for segment
II reproductive studies, at an estimated cost of $63,000 for the rat portion of the study. Rabbits are
the other standard species in a segment II reproductive study and the number of rabbits required
per dose is usually 12 with the cost of the study of this species being roughly $72,000 (Klaassen
(2001), page 31–32).

Let mij denote the number of implants in the j th litter of the ith dose di , and let rij be the
number of prenatal deaths, sij be the number of live fetuses, and yij be the number of fetal
malformations. Summary observations from each dam yield a trinomial response (rij , yij , sij −
yij ) conditional on mij for which we have

mij = rij + (sij − yij ) + yij .

The fetal malformation rate yij /sij and the prenatal death rate rij /mij are of particular interest.
The joint probability of the observed outcome (yij , rij ,mij ) may be factored as

P(yij , rij ,mij ) = P(yij |sij ,mij )P(rij |mij )P(mij ),

where P(mij ) is the marginal distribution of the implants number mij . Throughout, we let π1

denote the probability of any malformation in a live fetus, π2 be the probability of the prenatal
death and let φi be the intra-litter correlation coefficient within ith dose group. Zhu, Krewski and
Ross (1994) used generalized estimating equations in conjunction with an extended Dirichlet-
multinomial covariance function, where the correlation coefficient is estimated separately. If
zij = (yij , rij )

T , the conditional covariance of the observation zij is

Cov(zij |mij ) = mij

(
1 + (mij − 1)φi

)(
μ(1 − μ) −μπ2
−μπ2 π2(1 − π2)

)
,

where μ = π1(1 − π2), 1/(1 − mij ) < φi < 1.
For simplicity we assume that mij depends only on the dose level and not on the individ-

ual litter, that is, mij = mi = m(di). As pointed out in Krewski, Smythe and Fung (2002) this
assumption avoids complicating the model with another level of estimation and permits the de-
velopment of informative designs. Following Zhu, Krewski and Ross (1994) we use the Weibull
model

πi(d) = 1 − e−ai−bid
γi

to describe both probabilities π1 and π2, where d denotes the dose level. Here ai , bi > 0 and
γi > 0 are unknown parameters (i = 1,2). We denote the parameters for the probability πi by
θi . Following Catalano et al. (1993) and Zhu, Krewski and Ross (1994), the overall toxicity is
defined by

π3(d) = 1 − (
1 − π1(d)

)(
1 − π2(d)

)
(2.1)
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of either a death or malformation occurring. The effective dose EDα for a particular probability
πi is defined as the (unique) solution of the equation

π(EDα) − π(0)

1 − π(0)
= α,

where π(d) represents the probability of a response at dose d and α is a given excess risk.
The excess risk represents additional risk over background among animals that would not have
responded under control conditions. Typical values for α are 0.01 or 0.05, and when α is set at
a very low level, say 10−4, the excess risk is also sometimes called the benchmark dose or the vir-
tually safe dose (Ryan (1992), Al-Saidy et al. (2003)). Zhu, Krewski and Ross (1994) proposed
an estimate θ̂ for estimating θ , the three parameters in the Weibull distribution. This estimate is
based on quadratic estimating equations and has been shown to have reasonable efficiencies for
estimating θ . By the δ-method (Van der Vaart (1998)) the variance of the estimator ÊDα for the
effective dose can be approximated by

Var(ÊDα) ≈ D̃T Cov(θ̂ )D̃, (2.2)

and

D̃ = ∂

∂θ
EDα (2.3)

is the gradient of EDα with respect to θ . We will denote the vector of parameters in πi by θi and
its corresponding estimate by θ̂i , i = 1,2.

Throughout, a design is specified by the number of different dose levels, say k, the specific
dose levels d1, . . . , dk and the proportion of patients, say w1, . . . ,wk allocated at each of these
dose levels. In this paper, we consider approximate designs, that is, probability measures ξ =
{di,wi}ki=1 with finite support (Silvey (1980), Pukelsheim (1993)). For a given design ξ and total
sample size n, the number of observations at each dose level nj is obtained by rounding the
quantities nwj to integers, such that

∑k
j=1 nj = n (Pukelsheim and Rieder (1992)). Throughout,

we assume for the sake of simplicity that the dose range is given by the interval [0,1], but the
adaption of the methodology to other dose intervals is straightforward. In what is to follow, we
will only present our design strategy and results for estimating the effective dose of prenatal
death. The strategy for estimating the effective dose for a given malformation rate is completely
analogous and we omit details and corresponding results for space considerations.

3. Optimal designs for estimating the effective dose of prenatal
death

Under the Weibull model the effective dose for prenatal death equals

EDα =
(

− ln(1 − α)

b2

)1/γ2

.
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Recalling that θT
2 = (a2, b2, γ2), the gradient (2.3) in the representation (2.2) is given by

D̃ = ∂

∂θ2
EDα = −EDα

γ2

( 0
1/b2

ln
(− ln(1 − α)/b2

)
/γ2

)

= − (−ln(1 − α)/b2)
1/γ2

γ2

( 0
1/b2

ln
(−ln(1 − α)/b2

)
/γ2

)
.

If ξ = {d1, d2, . . . , dn;w1,w2, . . . ,wn} denotes an approximate design and

Di = ∂

∂θ2
π2(di) = (

1 − π2(di)
)( 1

d
γ2
i

b2d
γ2
i ln(di)

)
,

it follows that the covariance matrix of the estimate θ̂2 is approximately

Cov(θ̂2) ≈ M−1(ξ, θ2),

where

M(ξ, θ2) =
n∑

i=1

wi

DiD
T
i

Var( ri |mi )

=
n∑

i=1

wi

DiD
T
i

mi(1 + (mi − 1)φi)π2(di)(1 − π2(di))
(3.1)

is the information matrix of the design. Note that the summands in this matrix differ by the
factors m2

i from the corresponding terms in the information matrix derived by Krewski, Smythe
and Fung (2002). There is, in fact, an error in that paper. Consequently we obtain from (2.2) as
first-order approximation for the variance of the estimate of the effective dose

Var(ÊDα) ≈ 
(ξ, θ2) = D̃T M−1(ξ, θ2)D̃ (3.2)

and a locally optimal design for estimating the effective dose (of prenatal death) minimizes the
function 
 among all designs for which the EDα is estimable.

It is clear that the information matrix of the optimal design depends on the parameters of the
model, and, in particular on the quantities mi = m(di) and φi = φ(di). The simplest way to deal
with this added complication is to use locally optimal designs proposed by Chernoff (1953).
This strategy requires that a single prior guess for the unknown parameters is available. In devel-
opmental toxicity experiments such knowledge is often available from preliminary studies. The
following results establish properties of locally optimal designs for estimating the effective dose
of prenatal death. In essence, it says that if the excess risk is not too extreme (i.e., near 0 or 1),
the locally optimal design requires only two doses; otherwise the locally optimal design requires
three doses that include the extreme levels in the dose interval. The proofs rely on the geometric
characterization of c-optimal designs of Elfving (1952) and are deferred to the Appendix.
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Theorem 1. Let m and φ denote the functions defining mi = m(di) and φi = φ(di). If the func-
tion

d −→ (1 − π2(d))

m(d)(1 + (m(d) − 1)φ(d))π2(d)
(3.3)

is decreasing, there exist numbers α and ᾱ such that the following properties hold:

(a) If α ∈ (0, α] ∪ (ᾱ,1), the locally optimal design for estimating the effective dose of pre-
natal death is supported at three points, including the boundary points d∗

1 = 0 and d∗
3 = 1 of the

design space.
(b) If α ∈ (α, ᾱ), the locally optimal design for estimating the effective dose of prenatal death

is supported at two points.

We note that if the function φ is increasing, the assumption of Theorem 1 is satisfied. In
particular, Bowman, Chen and George (1995) proposed a logistic-type function of the form

φ(d) = 2

1 + eu1+u2d
− 1 (3.4)

for describing the relationship between intra-litter correlation and dose, which is widely used in
practice. If u2 < 0 this function satisfies the assumptions of Theorem 1. In what is to follow, we
will use this function to model the intra-class correlation using different values of u1 and u2. Of
course the case of zero or no correlation is assumed when we set u1 = u2 = 0.

The next result tells us that we can limit our search for the optimal design to the protocol
interval [0,1] and deduce the corresponding optimal design on the design interval [0, T ].

Theorem 2. Assume that the quantity mi and the function φ are constant. The weights of the
locally optimal design for estimating the effective dose of prenatal death do not depend on the
parameter γ2. Moreover, if d∗

i (a2, b2, γ2, T ) are the support points of the locally optimal design
for estimating the effective dose of prenatal death on the interval [0, T ], we have

d∗
i (a2, b2, γ2,1) = (d∗

i (a2, b2,1,1))1/γ2 ,

d∗
i (a2, b2, γ2, T ) = T d∗

i (a2, b2T
γ2, γ2,1).

Our next result shows that if the locally optimal design for estimating the prenatal death re-
quires three dose levels, these dose levels do not depend on the value of the excess risk α. It
also provides a complete analytical description of the locally optimal design when it is known in
advance that the locally optimal design needs only two doses, and one of them is the zero dose.

Theorem 3. Assume that the conditions of Theorem 1 are satisfied.

(a) The support points of the locally optimal design for estimating the effective dose of pre-
natal death with three support points do not depend on the value of α.

(b) If the support of a two-point locally optimal design for estimating the effective dose of
prenatal death contains the point 0, then the second support point is equal to EDα and its weight
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at EDα is equal to w2 = g(0)/(g(0) + g(EDα)), where

g(d) =
√

(1 − π2(d))

m(d)(1 + (m(d) − 1)φ(d))π2(d)
.

In Table 1 we display numerical locally optimal designs for estimating the effective dose of
prenatal death for various combinations of the parameters when the quantity mi and the function
φ are assumed to be constants. As stated in Theorem 1 the locally optimal designs are either
two-point designs or three-point designs because the monotonicity assumption of the theorem is
satisfied. In Table 2 we show some results for a non-constant function φ of the form (3.4), which
demonstrate that the assumption of monotonicity on the function (3.3) is, in fact, needed. For
example, if φ(d) = 2/(1 + ed−1) − 1 the corresponding function in (3.3) is not decreasing. The
locally optimal design for estimating the effective dose of prenatal death is a 3-point design, but
its support dose not contain the minimal dose 0.

In Table 1 and other tables that follow, we also display on the extreme right column the effi-
ciency of an equally weighted design supported at five equally spaced points on the interval [0,
1]. We denote this design by ξu and note that this is an example of a uniform design where doses
are equally spread out and an equal number of observations are planned at each dose. Uniform
designs are intuitively appealing because of their simplicity. In practice, approximately uniform

Table 1. Locally optimal design for estimating the effective dose of prenatal death conditional on the
number of implants, assuming the functions φ and m are constants. The table also shows the efficiency of
the equidistant design ξu = {0,1/4,1/2,3/4,1;1/5,1/5,1/5,1/5,1/5} (last column)

α a2 b2 γ2 d1 d2 d3 w1 w2 w3 ED eff(ξu)

0.05 0.13 0.15 3.33 0 0.725 0.455 0.545 0.725 0.506
0.05 0.13 0.2 3.33 0 0.696 1 0.429 0.545 0.025 0.665 0.539
0.05 0.13 0.25 3.33 0 0.689 1 0.404 0.547 0.049 0.621 0.557
0.05 0.13 0.3 3.33 0 0.682 1 0.387 0.549 0.064 0.588 0.568
0.05 0.13 0.35 3.33 0 0.676 1 0.373 0.551 0.075 0.562 0.575
0.05 0.13 0.4 3.33 0 0.670 1 0.363 0.554 0.083 0.540 0.579
0.05 0.01 0.27 3.33 0 0.607 0.285 0.715 0.607 0.481
0.05 0.05 0.27 3.33 0 0.653 1 0.371 0.593 0.036 0.607 0.541
0.05 0.1 0.27 3.33 0 0.678 1 0.390 0.558 0.051 0.607 0.558
0.05 0.15 0.27 3.33 0 0.690 1 0.399 0.543 0.058 0.607 0.564
0.05 0.2 0.27 3.33 0 0.698 1 0.404 0.535 0.061 0.607 0.568
0.05 0.25 0.27 3.33 0 0.703 1 0.407 0.529 0.063 0.607 0.570
0.03 0.13 0.27 3.33 0 0.686 1 0.367 0.538 0.095 0.519 0.590
0.04 0.13 0.27 3.33 0 0.686 1 0.381 0.543 0.076 0.567 0.577
0.05 0.13 0.27 3.33 0 0.686 1 0.396 0.548 0.056 0.607 0.562
0.06 0.13 0.27 3.33 0 0.686 1 0.412 0.554 0.034 0.642 0.546
0.07 0.13 0.27 3.33 0 0.686 1 0.430 0.560 0.010 0.674 0.526
0.08 0.13 0.27 3.33 0 0.703 0.433 0.567 0.703 0.507
0.1 0.13 0.27 3.33 0 0.754 0.420 0.580 0.754 0.499
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Table 2. Locally optimal design for prenatal death conditional on the number of implants when the
function m is assumed to be constant and the function φ modeling the correlation is given by (3.4)
(a2 = 0.13, b2 = 0.27, γ2 = 3.33, α = 0.05). The table also shows the efficiency of the equidistant de-
sign ξu = {0,1/4,1/2,3/4,1;1/5,1/5,1/5,1/5,1/5} (last column)

u1 u2 d1 d2 d3 w1 w2 w3 ED eff(ξu)

0 −1 0 0.636 1 0.284 0.691 0.025 0.607 0.490
0 −2 0 0.630 1 0.242 0.737 0.021 0.607 0.472
0 −3 0 0.633 1 0.220 0.757 0.023 0.607 0.464

−1 1 0.082 0.746 1 0.447 0.482 0.071 0.607 0.588
−2 2 0.071 0.762 1 0.445 0.487 0.068 0.607 0.569
−3 3 0.052 0.767 1 0.432 0.503 0.065 0.607 0.551

designs are used. For example, a recent paper by Lee et al. (2006) used 0,0.5,1,2,3,3.5 (mg/kg)
dose levels of cadmium, and separately, 1,3,5,7.5 dose levels of all-trans-retinoic acid to study
their individual and combined effects on the induction of forelimb ectrodactyly in C57BL/6 mice.
In the cases considered in both tables, the results show that this particular uniform design did not
perform well, averaging about 50%. This means that roughly twice as many rats will be needed
in the uniform design to obtain estimates for the parameters as accurate as those provided by the
locally optimal design.

In general, our numerical results show that there are four types of locally optimal designs for
estimating the effective dose of prenatal death, namely:

{0, d2,1;w1,w2,w3}, {0, d2;w1,w2}, {d1, d2,1;w1,w2,w3}, {d1, d2;w1,w2}.
Moreover, if the assumptions of Theorem 1 are satisfied, there exist only two types, that is,

{0, d2,1;w1,w2,w3}, {d1, d2;w1,w2}.
Before any design is implemented, it is useful to investigate the robustness of the locally

optimal designs for estimating the effective dose with respect to misspecification in the initial
parameters. For this purpose we consider the locally optimal ξ∗(θ0) = {0,0.686,1;0.396,0.548,

0.056} for the parameter θT
0 = (a2, b2, γ2) = (0.13,0.27,3.33) and calculate the efficiency

eff(ξ) = D̃T M−1(ξ, θ)D̃

D̃T M−1(ξ, θ0)D̃
(3.5)

for various values of θ . These results are listed in Table 3. We observe that locally optimal designs
are not too sensitive with respect to changes of the parameter a2, but a misspecification of the pa-
rameters b2 and γ2 has more serious effects. The table also shows the corresponding efficiencies
of the equidistant design ξu = {0,1/4,1/2,3/4,1;1/5,1/5,1/5,1/5,1/5}. In most cases these
are smaller than the efficiencies of the locally optimal design for estimating the effective dose.
In addition, the table contains efficiencies of a maximin design ξmm, whose construction will be
motivated in Section 5. This design performs substantially better than the uniform design ξu and
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Table 3. Efficiency for estimating the effective dose of prenatal death. ξ∗(θ0): locally optimal design for
θT

0 = (a2, b2, γ2) = (0.13,0.27,3.33) ξu equidistant design with five different dose levels (including the
largest and smallest dose), and design ξmm = {0,0.694,1;0.349,0.515,0.136} which is standardized max-
imin optimal for estimating the effective dose of prenatal death with respect to � = [0.05,0.2]×[0.2,0.4]×
[2.5,4.5]

a2 0.05 0.05 0.05 0.05 0.2 0.2 0.2 0.2
b2 0.2 0.2 0.4 0.4 0.2 0.2 0.4 0.4
γ2 2.5 4.5 2.5 4.5 2.5 4.5 2.5 4.5

eff(ξ∗(θ0)) 0.802 0.766 0.526 0.967 0.944 0.695 0.749 0.862
eff(ξu) 0.522 0.475 0.563 0.521 0.550 0.496 0.588 0.544
eff(ξmm) 0.808 0.740 0.663 0.923 0.920 0.665 0.872 0.822

achieves nearly the same efficiencies as the locally optimal design ξ∗(θ0) in those cases where
ξ∗(θ0) is very efficient.

4. Dose-finding for overall toxicity conditional number of
implants

If two Weibull models with parameters θT
1 = (a1, b1, γ1) and θT

2 = (a2, b2, γ2) are used for
modeling the overall toxicity in (2.1), the effective dose based on π3(d) is defined as a solution
of the equation

α = 1 − exp(b1EDγ1
α + b2EDγ2

α ),

or, equivalently,

− ln(1 − α) = b1EDγ1
α + b2EDγ2

α .

The approximation for the variance of the estimator based on generalized estimating equations
is given by (2.2), where θT = (θ1, θ2) and

D̄ = ∂

∂θ
EDα = −1

b1γ1ED
γ1−1
α + b2γ2ED

γ2−1
α

⎛⎜⎜⎜⎜⎜⎝
0

ED
γ1
α

b1ED
γ1
α ln(EDα)

0
ED

γ2
α

b2ED
γ2
α ln(EDα)

⎞⎟⎟⎟⎟⎟⎠ .

If ξ = {d1, d2, . . . , dn;w1,w2, . . . ,wn} denotes an approximate design we have

Cov(θ̂ ) ≈ M−1(ξ, θ),

where the information matrix is given by

M(ξ, θ) =
(

M1(ξ, θ) 0
0 M2(ξ, θ)

)
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and the two non-vanishing blocks are defined by

M1(ξ, θ) =
n∑

i=1

wi

D(1)iD
T
(1)i

Var( yi |mi )

=
n∑

i=1

wi

D(1)iD
T
(1)i

mi(1 + (mi − 1)φi)π1(di)(1 − π2(di))(1 − π1(di)(1 − π2(di)))
,

M2(ξ, θ) =
n∑

i=1

wi

D(2)iD
T
(2)i

Var( ri |mi )

=
n∑

i=1

wi

D(2)iD
T
(2)i

mi(1 + (mi − 1)φi)π2(di)(1 − π2(di))
,

with

D(j)i = ∂

∂θj

πj (di) = (
1 − πj (di)

)⎛⎝ 1
d

γj

i

bj d
γj

i ln(di)

⎞⎠ , j = 1,2.

Note that M(ξ, θ) is a block-diagonal matrix and, as a consequence, the optimality criterion
minimizing the variance of the estimate for EDα can be interpreted as a composite optimality
criterion in the sense of Läuter (1974), that is,

Var(ÊDα) ≈ �(ξ, θ) = D̄T M−1(ξ, θ)D̄

= D̃T
(1)M

−1
1 (ξ, θ)D̃(1) + D̃T

(2)M
−1
2 (ξ, θ)D̃(2). (4.1)

It is intuitively clear that locally optimal designs for estimating the EDα for overall toxicity
are three-point designs if the parameters in π1(d) and π2(d) are similar. In all cases of practical
interest these designs have to be calculated numerically. Some examples of optimal designs are
presented in Table 4 for constant functions mi and φi . Table 5 presents optimal designs for the
case where the correlation is of the form (3.4) and the mi ’s are constants. We observe that in most
cases, the locally optimal designs are supported at three points, but there are also situations (in
particular for large differences between the parameters γ1 and γ2), where four different dose lev-
els are required for the optimal estimation of the effective dose of the overall toxicity. The results
of our investigation of the robustness properties of the locally optimal designs for estimating
the effective dose with respect to misspecification of the initial parameters are summarized in
Table 6.

We next investigate whether the locally optimal design for estimating the effective dose of
prenatal death is efficient for estimating the effective dose of overall toxicity. We also compare
the optimal design with the equidistant design with five different dose levels. In Tables 7 and 8,
we display efficiencies of the two designs for various combinations of the parameter θ to study
their robustness for estimating the effective dose of overall toxicity when the initial parameters
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Table 4. Locally optimal designs for estimating the effective dose of overall toxicity conditional on the
number of implants. The functions m and φ are constant, α = 0.05 and ξu denotes the equidistant design
with five different dose levels 0,1/4,1/2,3/4,1

a1 b1 γ1 a2 b2 γ2 d1 d2 d3 d4 w1 w2 w3 w4 eff(ξu)

0.06 0.7 2 0.13 0.15 2 0 0.495 1 0.330 0.546 0.124 0.653
0.06 0.7 2 0.13 0.15 3.33 0 0.493 1 0.291 0.574 0.134 0.699
0.06 0.7 3.37 0.13 0.15 2 0 0.573 1 0.372 0.536 0.092 0.593
0.06 0.7 3.37 0.13 0.15 3.33 0 0.658 1 0.331 0.546 0.123 0.634
0.06 0.5 3.37 0.13 0.3 3.33 0 0.665 1 0.333 0.549 0.118 0.607
0.06 0.7 3.37 0.13 0.3 3.33 0 0.653 1 0.321 0.551 0.128 0.619
0.06 0.9 3.37 0.13 0.3 3.33 0 0.640 1 0.311 0.551 0.138 0.630
0.06 0.7 3.37 0.05 0.3 3.33 0 0.630 1 0.299 0.577 0.124 0.593
0.06 0.7 3.37 0.25 0.3 3.33 0 0.673 1 0.338 0.532 0.130 0.635
0.02 0.7 3.37 0.13 0.3 3.33 0 0.646 1 0.315 0.559 0.126 0.641
0.09 0.7 3.37 0.13 0.3 3.33 0 0.657 1 0.325 0.546 0.129 0.613

0.02 1.2 2.2 0.05 0.2 3.7 0 0.402 0.636 1 0.212 0.620 0.040 0.129 0.655
0.02 1.2 2.2 0.05 0.2 3.3 0 0.421 0.541 1 0.221 0.596 0.041 0.141 0.680
0.02 0.9 2.2 0.05 0.2 3.7 0 0.434 0.590 1 0.228 0.585 0.065 0.121 0.674
0.02 1.6 2.2 0.05 0.2 3.7 0 0.368 0.713 1 0.198 0.636 0.029 0.136 0.632

have been misspecified and the design is optimal for estimating the effective dose of prenatal
death.

We observe that the performance of the locally optimal design for estimating the effective
dose of overall toxicity depends sensitively on changes of the parameters b1 and b2. If b1 is
very different from the parameter b2 used in the construction of the locally optimal design for
estimating the effective dose of prenatal death, this design becomes inefficient for estimating
overall toxicity. In such cases even the uniform design performs better. Otherwise the locally
optimal design for estimating the effective dose of prenatal death is at least as good as the uniform
design (and in many cases substantially better). The table also shows efficiencies of the design
ξmm, which will be constructed in the following section as a robust and efficient alternative
to locally optimal designs. The design ξmm performs uniformly better than the locally optimal
design ξ∗(θ0) for estimating the effective dose of prenatal death. In many cases, it is substantially
more efficient than the uniform design ξu and in the cases where the equal allocation rule yields
the best efficiencies, the loss of efficiency obtained from ξmm is rather small.

5. Robust and efficient designs for prenatal death

As pointed out in the previous sections, locally optimal designs are not necessarily robust with
respect to a misspecification of the unknown parameters. To obtain designs that are efficient and
robust over a certain range of the parameters for the Weibull model, we study a maximin approach
proposed by Müller (1995) and Dette (1997), which assumes that there is prior information on
the range of plausible values of unknown parameters. To be precise, we concentrate on optimal
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Table 5. Locally optimal designs for estimating the effective dose of overall toxicity conditional on the
number of implants. The functions m is constant, while the correlation function φ is given by (3.4), a1 =
0.06, b1 = 0.7, γ1 = 3.37, a2 = 0.13, b2 = 0.3, γ2 = 3.33, α = 0.05 and ξu denotes the equidistant design
with five different dose levels 0,1/4,1/2,3/4,1

u1 u2 d1 d2 d3 w1 w2 w3 eff(ξu)

0 −1 0 0.600 1 0.227 0.652 0.121 0.554
0 −2 0 0.594 1 0.192 0.690 0.118 0.538
0 −3 0 0.596 1 0.174 0.708 0.118 0.530

designs for estimating the effective dose of prenatal death, where the correlation function is given
by the one parametric logistic family

φ(d) = 2

1 + e−ud
− 1. (5.1)

We assume that the experimenter has some knowledge about the location of the parameters, that
is,

a2 ∈ [a, a], b2 ∈ [b, b], γ2 ∈ [γ , γ ], u ∈ [u,u].
For given θT = (a2, b2, γ2) and u, define ξ∗(θ, u) as the locally optimal designs for estimating
the effective dose and, for a given design, define

effall(ξ, θ, u) = D̃T M−1(ξ∗(θ, u), θ, u)D̃

D̃T M−1(ξ, θ, u)D̃
. (5.2)

Table 6. Efficiency for estimating the effective dose of overall toxicity using three designs: ξ∗(θ0),
the locally optimal design for θT

0 = (a1, b1, γ1, a2, b2, γ2)T = (0.06,0.7,3.37,0.13,0.27,3.33), ξu the
equidistant design with five different dose levels (including the largest and smallest dose) and the design
ξmm = {0,0.694,1;0.349,0.515,0.136}, which is standardized maximin optimal for estimating prenatal
death with [0.05,0.2] × [0.2,0.4] × [2.5,4.5]

a1 0.03 0.03 0.03 0.03 0.09 0.09 0.09 0.09
b1 0.4 0.4 0.9 0.9 0.4 0.4 0.9 0.9
γ1 2.7 4.2 2.7 4.2 2.7 4.2 2.7 4.2
a2 0.05 0.05 0.05 0.05 0.2 0.2 0.2 0.2
b2 0.2 0.2 0.4 0.4 0.2 0.2 0.4 0.4
γ2 2.5 4.5 2.5 4.5 2.5 4.5 2.5 4.5

eff(ξ∗(θ0)) 0.875 0.873 0.681 0.982 0.981 0.705 0.880 0.882
eff(ξu) 0.588 0.566 0.594 0.584 0.606 0.574 0.619 0.614
eff(ξmm) 0.730 0.965 0.531 0.942 0.906 0.871 0.743 0.984
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Table 7. Efficiency for estimating the effective dose of overall toxicity. ξ∗(θ0) =
{0,0.686,1;0.396,0.548,0.056}: locally optimal design for estimating the effective dose of prena-
tal death (θT

0 = (a2, b2, γ2)T = (0.13,0.27,3.33), constant correlation), ξu equidistant design with
five different dose levels 0,1/4,1/2,3/4,1 and design ξmm = {0,0.694,1;0.349,0.515,0.136}, which
is standardized maximin optimal for estimating the effective dose of prenatal death with respect to
� = [0.05,0.2] × [0.2,0.4] × [2.5,4.5]

a1 0.02 0.02 0.02 0.02 0.1 0.1 0.1 0.1
b1 0.3 0.3 1.1 1.1 0.3 0.3 1.1 1.1
γ1 2.5 4.5 2.5 4.5 2.5 4.5 2.5 4.5

eff(ξ∗(θ0)) 0.762 0.977 0.269 0.883 0.815 0.977 0.328 0.899
eff(ξu) 0.669 0.583 0.770 0.611 0.618 0.594 0.644 0.598
eff(ξmm) 0.901 0.986 0.437 0.984 0.935 0.980 0.520 0.995

a1 0.03 0.03 0.03 0.03 0.09 0.09 0.09 0.09
b1 0.4 0.4 0.9 0.9 0.4 0.4 0.9 0.9
γ1 2.7 4.2 2.7 4.2 2.7 4.2 2.7 4.2

eff(ξ∗(θ0)) 0.754 0.959 0.443 0.885 0.796 0.965 0.491 0.899
eff(ξu) 0.652 0.589 0.708 0.609 0.622 0.592 0.646 0.599
eff(ξmm) 0.902 0.991 0.646 0.984 0.931 0.991 0.703 0.993

A design ξmm is called standardized maximin optimal for estimating the effective dose if it max-
imizes the worst efficiency over some set of the parameters, that is,

ξmm = arg max
ξ

min
(θ,u)∈�

effall(ξ, θ, u). (5.3)

Table 8. Efficiency for estimating the effective dose of overall toxicity. ξ∗(θ0) =
{0,0.686,1;0.396,0.548,0.056}: locally optimal design for estimating the effective dose of prena-
tal death (θT

0 = (a2, b2, γ2)T = (0.13,0.27,3.33), constant correlation), ξu equidistant design with
five different dose levels 0,1/4,1/2,3/4,1 and design ξmm = {0,0.694,1;0.349,0.515,0.136} which
is standardized maximin optimal for estimating the effective dose of prenatal death with respect to
� = [0.05,0.2] × [0.2,0.4] × [2.5,4.5]

a1 0.03 0.03 0.03 0.03 0.09 0.09 0.09 0.09
b1 0.4 0.4 0.9 0.9 0.4 0.4 0.9 0.9
γ1 2.7 4.2 2.7 4.2 2.7 4.2 2.7 4.2
a2 0.05 0.05 0.05 0.05 0.2 0.2 0.2 0.2
b2 0.2 0.2 0.4 0.4 0.2 0.2 0.4 0.4
γ2 2.5 4.5 2.5 4.5 2.5 4.5 2.5 4.5

eff(ξ∗(θ0)) 0.570 0.968 0.355 0.821 0.767 0.892 0.532 0.914
eff(ξu) 0.588 0.566 0.594 0.584 0.606 0.574 0.619 0.614
eff(ξmm) 0.730 0.965 0.531 0.942 0.906 0.871 0.743 0.984
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Table 9. Standardized maximin optimal designs for estimating the effective dose of prenatal death con-
ditional on the number of implants. The functions m and φ are constant, α = 0.05 and ξu denotes the
equidistant design with five different dose levels 0,1/4,1/2,3/4,1

a2 a2 b2 b2 γ
2

γ 2 d1 d2 d3 w1 w2 w3 min eff min eff(ξu)

0.1 0.12 0.25 0.3 3.1 3.5 0 0.681 1 0.387 0.551 0.063 0.976 0.549
0.1 0.15 0.25 0.3 3.1 3.5 0 0.684 1 0.389 0.546 0.065 0.972 0.549
0.1 0.17 0.22 0.3 3 3.7 0 0.696 1 0.390 0.536 0.073 0.930 0.533
0.08 0.18 0.21 0.33 2.6 4 0 0.691 1 0.371 0.524 0.105 0.809 0.514
0.07 0.19 0.2 0.34 2.5 4.1 0 0.690 1 0.366 0.519 0.115 0.757 0.502

Here the set � is defined by � = [a, a]× [b, b]× [γ , γ ]× [u,u] and is user-selected. Optimal
designs with respect to this robust criterion have to be calculated numerically in all cases of
practical interest. In Table 9 we display standardized maximin optimal designs with respect to
various sets � assuming the quantities mi and the correlation function (5.1) are constants, that
is, u = u = 0. We observe that in all situations the standardized maximin optimal designs are
supported at three points and they include the largest and smallest doses. However, the results of
Braess and Dette (2007) indicate that there will also exist standardized maximin optimal designs
for estimating the effective dose with a larger number of support points. The table also contains
the minimal efficiency of the standardized maximin optimal design for estimating the effective
dose, that is,

min
(θ,u)∈�

effall(ξ, θ, u),

and the minimal efficiencies of an equidistant design with five different dose levels. Note that the
standardized maximin optimal designs yield reasonable efficiencies over the full set � and that
the minimal efficiency of the uniform design over this set is substantially smaller. In Table 10 we
consider the case where the correlation can be modeled by the function (5.1). We observe that
the standardized maximin optimal designs are supported at three or four points and, compared to
Table 9, the efficiencies are smaller. This is intuitively clear because we have incorporated more
robustness with respect to the assumption of a constant correlation in the construction of effi-
cient designs for estimating the effective dose. Again the equidistant design yields substantially
smaller minimal efficiencies compared to the standardized maximin optimal design.

6. Efficiency of standard designs and concluding remarks

It is interesting to evaluate the efficiencies of commonly used designs in developmental toxicity
studies. One such class is the set of uniform designs. These designs are equally spread out in the
dose interval of interest and an equal number of animals is allocated to each dose. As such, they
are intuitive and easy to implement. Krewski, Smythe and Fung (2002) provided an overview of
experimental designs for 11 developmental toxicity studies conducted under the U.S. National
Toxicology Program. In their Table 1, they listed the doses employed in these studies that in-
volved either rabbits, rats or mice. The designs usually have a roughly equal number of animals
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Table 10. Standardized maximin efficient optimal design for prenatal death conditional on the number
of implants. The function m is constant, while the correlation function is given by (5.1) and α = 0.05.
ξu denotes the equidistant design with five different dose levels 0,1/4,1/2,3/4,1 and various sets are
considered in the standardized maximin optimality criterion (5.3), �1(u,u) = [0.07,0.19]× [0.19,0.34]×
[2.5,4.1] × [u,u], �2(u,u) = [0.1,0.12] × [0.25,0.3] × [3.1,3.5] × [u,u]

u u d1 d2 d3 d4 w1 w2 w3 w4 min eff(ξ∗) min eff(ξu)

0 1 0 0.469 0.721 1 0.269 0.258 0.400 0.073 0.654 0.412
�1(u,u) 0 2 0 0.460 0.722 1 0.232 0.282 0.417 0.069 0.640 0.392

1 2 0 0.545 0.665 1 0.239 0.110 0.535 0.117 0.655 0.392

0 1 0 0.653 1 0.343 0.599 0.058 0.896 0.469
�2(u,u) 0 2 0 0.649 1 0.327 0.615 0.057 0.873 0.449

1 2 0 0.637 1 0.254 0.700 0.046 0.946 0.449

at each dose and some of their dose levels, after scaling to our protocol interval [0,1], are listed
in our Tables 11 and 12. Following Krewski, Smythe and Fung, we call these “standard” designs.

Tables 11 and 12 display the efficiencies of “standard” designs for estimating the prenatal
death rates and the overall toxicity rate. We observe that the standard design can perform poorly
when model parameters are misspecified. For instance, the efficiencies of the standard design
listed in the first row can be less than 30% for estimating the prenatal death rate and the overall
toxicity rate. Some standard designs have efficiencies as low as 0.22 for estimating the prenatal
death rate. Interestingly, the uniform design with five doses has at least 50% for all cases shown in

Table 11. Efficiency of “standard” designs for estimating EDα for prenatal death with different values of
parameters, φ(d) ≡ constant

a2 0.13 0.05 0.13 0.13 0.05 0.13
b2 0.27 0.27 0.15 0.27 0.15 0.27

d1 d2 d3 d4 d5 γ2 3.3 3.3 3.3 2 2 1

0 0.25 0.5 1 0.28 0.31 0.23 0.53 0.46 0.75
0 0.33 0.67 0.83 1 0.61 0.55 0.57 0.53 0.48 0.52
0 0.25 0.5 0.75 1 0.56 0.54 0.51 0.57 0.51 0.62
0 0.3 0.5 0.7 1 0.54 0.54 0.46 0.62 0.54 0.65
0 0.17 0.33 0.67 1 0.49 0.47 0.44 0.50 0.45 0.63
0 0.05 0.15 0.5 1 0.28 0.31 0.24 0.49 0.43 0.51
0 0.125 0.25 0.5 1 0.26 0.29 0.22 0.46 0.40 0.64
0 0.1 0.2 0.5 1 0.27 0.30 0.23 0.46 0.40 0.58

0 0.3 1 0.04 0.05 0.03 0.29 0.27 0.73
0 0.4 1 0.14 0.18 0.11 0.52 0.45 0.71
0 0.5 1 0.34 0.39 0.27 0.69 0.60 0.58
0 0.6 1 0.58 0.61 0.47 0.73 0.64 0.40
0 0.7 1 0.74 0.69 0.64 0.59 0.53 0.23
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Table 12. Efficiency of “standard” designs for estimating EDα for overall toxicity with different values of
parameters in the Weibull model with φ(d) ≡ constant

a1 0.06 0.06 0.06 0.06 0.06 0.06 0.02
b1 0.7 0.7 0.7 0.7 0.7 0.2 0.7
γ1 3.37 3.37 3.37 3.37 1 3.37 3.37
a2 0.13 0.05 0.13 0.13 0.13 0.13 0.13
b2 0.3 0.3 0.1 0.3 0.3 0.3 0.3

d1 d2 d3 d4 d5 γ2 3.33 3.33 3.33 1 3.33 3.33 3.33

0 0.25 0.5 1 0.36 0.39 0.34 0.78 0.69 0.29 0.37
0 0.33 0.67 0.83 1 0.61 0.56 0.64 0.53 0.40 0.63 0.63
0 0.25 0.5 0.75 1 0.62 0.59 0.64 0.64 0.55 0.59 0.64
0 0.3 0.5 0.7 1 0.63 0.62 0.64 0.66 0.52 0.57 0.65
0 0.17 0.33 0.67 1 0.54 0.51 0.55 0.65 0.69 0.52 0.55
0 0.05 0.15 0.5 1 0.35 0.38 0.34 0.53 0.59 0.30 0.36
0 0.125 0.25 0.5 1 0.33 0.35 0.31 0.67 0.76 0.27 0.34
0 0.1 0.2 0.5 1 0.34 0.36 0.33 0.61 0.72 0.29 0.35

0 0.3 1 0.05 0.06 0.05 0.75 0.67 0.04 0.06
0 0.4 1 0.19 0.23 0.18 0.72 0.51 0.15 0.21
0 0.5 1 0.45 0.50 0.42 0.58 0.34 0.36 0.47
0 0.6 1 0.71 0.73 0.70 0.39 0.20 0.63 0.72
0 0.7 1 0.78 0.72 0.79 0.22 0.11 0.78 0.76

the tables. The second parts of the two tables show the efficiencies of a uniform design with three
support points (note that the local optimal design usually has two or three support points). One
observes that this design yields very low efficiencies and cannot be recommended. In general,
it is advisable that the researcher assess the efficiencies of a design under different optimality
criteria before its implementation.

In practice, there are usually several objectives in the study and these objectives may not be
of equal interest to the researcher. For instance, the researcher may be interested in designing a
study whose primary aim is to estimate the prenatal death rate, secondary aim is to estimate the
malformation rate and tertiary aim is to estimate the overall toxicity rate as accurately as possible.
To incorporate the multiple objectives in the study, one may follow the strategy laid out in Cook
and Wong (1994) to find an optimal design that provides user-specified efficiency for each ob-
jective. Clearly, the optimal design sought should provide higher efficiencies for more important
objectives and user-specified efficiencies reasonable enough so that the optimal design exists.
For space consideration, we do not provide multiple-objective optimal designs for simultane-
ously estimating the effective dose for prenatal death rate, malformation rate and overall toxicity
rate, but note that the key idea for finding such a design is to first formulate each objective as
a convex function of the design information matrix and then combine all the convex objectives
into a single convex functional using a convex combination. As described in Cook and Wong
(1994), each set of weights used in the convex combination can be judiciously chosen to sat-
isfy the efficiency requirement for each objective. In the case of a two-objective design problem,
the weights and the dual-objective optimal design can be determined graphically via efficiency
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plots. Wong (1999) provided several illustrative applications of such ideas to construct multiple-
objective optimal designs in several biomedical problems.

One may be rightly concerned that the optimal designs are dependent on the parametric mod-
els. This dependence is inescapable but as we have advocated all along, the user must check
robustness properties of optimal designs to all assumptions before the design is implemented.
We focused on the simpler situation when we were concerned about misspecification of initial
values, but if there is concern about other aspects in the model assumptions, a similar strategy
can be applied. For instance, one may question the validity of the Weibull models to describe the
malformation and prenatal death rates. If scientific opinion suggests alternative models may be
more appropriate, one can then construct optimal designs for different models and compare their
efficiencies under the competing models. The hope is that there is a design that remains efficient
under all models on which experts may agree.

Here is a short illustration of the situation just discussed: Assume, as before, that both the mal-
formation and prenatal death rates have the same form and can be described using two plausible
models:

π
(2)
2 (d) = 1 − a2

1 + b2dγ2

and

π
(3)
2 (d) = 1 − a2

1 + e−b2+γ2d
.

Suppose the sets of initial values are θ
(2)
2 = (0.88,0.25,2.8), θ

(3)
2 = (0.91,4.3,3.5), θ

(2)
1 =

(0.94,1.3,5.1) and θ
(3)
1 = (0.98,3.5,3.2). We recall that θ

(1)
1 = (0.06,0.7,3.37) and θ

(1)
2 =

(0.13,0.27,3.33). Here the superscripts denote the three different models used to describe the
probability rates.

Table 13 lists the locally optimal designs for α = 0.05 and their efficiencies under different
assumptions on the probability models. The robustness properties of each optimal design un-
der each set of probability models can be compared. For this setup, the efficiency results are
quite reassuring because the smallest efficiency in the table is at least 0.76. Of course, different
assumptions on the sets of initial values may not yield the same conclusions.

In summary, our proposed design strategy is quite general and possess several advantages over
existing methods. Unlike uniform designs, our approach is based firmly on statistical principles
and the proposed maximin optimal design provides good protection against misspecification in
the initial values of the model parameters. The optimal design allows prior information to be in-
cluded in its construction and, if required, can also incorporate multiple objectives with possibly
unequal interests. Consequently, the proposed optimal design is able to meet the practical needs
of the researcher more adequately than current designs.
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Table 13. Various locally optimal designs (leftpart) and their efficiencies under different probability models
for estimating of prenatal death (first three rows), malformation rate (middle three rows) and overall toxicity
(last three rows)

Model x1 x2 x3 w1 w2 w3 ξ(1) ξ (2) ξ (3)

weibull 0 0.686 1 0.396 0.548 0.056 1.000 0.910 0.869
model 2 0 0.624 1 0.417 0.546 0.037 0.911 1.000 0.968
model 3 0 0.630 1 0.354 0.561 0.086 0.853 0.940 1.000

weibull 0 0.616 1 0.297 0.602 0.101 1.000 0.954 0.832
model 2 0 0.662 1 0.284 0.592 0.123 0.918 1.000 0.503
model 3 0 0.535 1 0.290 0.610 0.100 0.882 0.768 1.000

weibull 0 0.654 1 0.323 0.550 0.127 1.000 0.885 0.726
model 2 0 0.581 1 0.357 0.521 0.121 0.825 1.000 0.910
model 3 0 0.544 1 0.297 0.564 0.138 0.761 0.942 1.000

Appendix: Proofs

Proof of Theorem 1. From (3.1), the information matrix for a design ξ can be represented as

M(ξ, θ) =
k∑

i=1

wif (di)f
T (di),

where the vector f is defined by

f (d) = D(d)√
m(1 + (m − 1)φ(d))π2(d)(1 − π2(d))

=
√

(1 − π2(d))

m(d)(1 + (m(d) − 1)φ(d))π2(d)

( 1
dγ2

b2d
γ2 ln(d)

)
.

We now apply Elfving’s theorem (see Elfving (1952)), which gives a geometric characterization
of the optimal design. More precisely, from this result it follows that a design ξ = {di,wi}ki=1 is
locally optimal if and only if there exist numbers ε1, . . . , εk ∈ {−1,1} such that for some ν ∈ R

the point

νP = ν

(
0,1/b2,

1

γ2
ln

(
− ln(1 − α)

b2

))T

=
k∑

j=1

εjwjf (dj ) (A.1)

is a boundary point of the Elfving set

R = conv
({

εf (d) | d ∈ [0,1], ε ∈ {−1,1}}). (A.2)
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Figure A.1. The Elfving set defined in (A.2) for the parameters a = 0.133, b = 0.272, γ = 3.33. The points
f (d1), −f (d2) and f (d3) are denoted by A, C and B , respectively, while the point νP is defined in (A.1).

A typical picture of this set is presented in Figure A.1 for the case of constant functions φ

and m. We note that the curve

X = {f (d), d ∈ [0,1]}
is contained in subspace {x = (x1, x2, x3)

T ∈ R3|x1 > 0} and the set

{(1, dγ2, b2d
γ2 ln(d))|d ∈ [0,1]}

defines a U-shaped curve. From the monotonicity assumption for the function (3.3), it follows
that the curve X is also U-shaped (see also Figure A.1). We denote the end-points of this curve
by A and B and recall that the first coordinate of the vector P is equal to 0 and that ν is the
scaling constant such that νP touches the boundary of the Elfving set R. Note that in the case
α → 0 we have that

P ≈ c

(0
0
1

)
for some constant c and, consequently, the vector νP touches the boundary at the plane E
spanned by the points A, B and C, where A and B correspond to the doses 0 and 1, respec-
tively, and −C corresponds to a third dose, say d∗ ∈ (0,1). Consequently, the locally optimal
design is a three-point design with support points 0, 1 and d∗, if α is sufficiently small. In the
case where α → 1, the situation is exactly the same and the locally optimal design is also sup-
ported at three points, including the boundary points. From the geometry of the Elfving set R we
see that there is also direction P , where the intersection with the Elfving set can be represented
by two points of the curves X and −X . In particular, this situation occurs if α ≈ 1 − e−b . In this
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case we have

P ≈ c

(0
1
0

)
for some constant c and the locally optimal design is supported by a two-point design. Moreover,
if α moves from 0 to 1, it follows from the geometry of the Elfving set that the situation is
changing continuously, which proves the assertion of the theorem. �

Proof of Theorem 2. Multiplying the last coordinate of the vector equation (A.1) by γ2 yields

νP = ν

⎛⎜⎝ 0
1/b2

ln

(
− ln(1 − α)

b2

)
⎞⎟⎠

=
∑

i

εiwi

√
(1 − π2(di))

m(1 + (m − 1)φ)π2(di)

( 1
d

γ2
i

b2d
γ2
i ln(d

γ2
i )

)
(A.3)

for the boundary point νP ∈ R. If {d∗
i (1);w∗

i } denotes an optimal design for the parameter
θ = (a2, b2,1), it follows that equation (A.3) holds for this design with γ2 = 1. Now it is easy
to see that (A.3) is also true for the design {(d∗

i (1))1/γ2;w∗
i } for the parameter θ = (a2, b2, γ2),

where γ2 > 0 is arbitrary. This proves the first part of the theorem. The second part follows by
similar arguments, which are omitted by the sake of brevity. �

Proof of Theorem 3. Part (a) of the Theorem follows directly from the geometry of the Elfving
set. If the locally optimal design is supported at three points, the corresponding point νP touches
the Elfving set in the plane spanned by the points A, B and C, which does not depend on the
value of α. For a proof of part (b) we note that, according to Elfvings theorem, a locally optimal
design of the form {0, d2,w1,w2} must satisfy the equation

ν

⎛⎜⎝ 0
1/b2

ln

(
− ln(1 − α)

b2

)
⎞⎟⎠ = εw1g(0)

(1
0
0

)
− εw2g(d2)

( 1
d

γ2
2

b2d
γ2
2 ln(d

γ2
2 )

)
,

where the function g is defined by

g(d) =
√

(1 − π2(d))

m(d)(1 + (m(d) − 1)φ(d))π2(d)
.

It is easy to see that this equation yields

ν

(
1/b2

ln

(
− ln(1 − α)

b2

))
= −εw2

√
(1 − π2(d2))

m(d2)(1 + (m(d2) − 1)φ(d2))π2(d2)

(
d

γ2
2

b2d
γ2
2 ln(d

γ2
2 )

)
,
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which simplifies to the equation

ν

(
1

ln(ED
γ2
α )

)
= −εw2

√
(1 − π2(d2))

m(d2)(1 + (m(d2) − 1)φ(d2))π2(d2)
b2d

γ2
2

(
1

ln(d
γ2
2 )

)
.

It follows that d2 = EDα. Since w1 = 1 − w2 from the equality for the first coordinate, we have
that w2 = g(0)/(g(0) + g(EDα)). �
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