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In this paper, we consider a continuous-time autoregressive fractionally integrated moving average
(CARFIMA) model, which is defined as the stationary solution of a stochastic differential equation driven
by a standard fractional Brownian motion. Like the discrete-time ARFIMA model, the CARFIMA model
is useful for studying time series with short memory, long memory and antipersistence. We investigate the
stationarity of the model and derive its covariance structure. In addition, we derive the spectral density
function of a stationary CARFIMA process.
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1. Introduction

It is well known that the long-range dependence properties of time series data have diverse
applications in many fields, including hydrology, economics and telecommunications (see
Bloomfield [8], Sowell [35], Beran [4], Robinson [32], Baillie [3] and Ray and Tsay [31]).
Autoregressive fractionally integrated moving average (ARFIMA) models are a popular class
of discrete-time long memory processes (see Granger and Joyeux [19] and Hosking [21]). For
continuous-time long memory modeling, see Viano et al. [40], Chambers [13], Comte [14],
Comte and Renault [15], Brockwell and Marquardt [12], Tsai and Chan [37] and Tsai and
Chan [38].

In contrast to long-range dependence, which corresponds to the singularity of the spectrum
at the origin, antipersistent time series are covariance-stationary processes with zero spectral
density at the origin (Dittmann and Granger [16], Bondon and Palma [9]). Interesting examples
of antipersistent processes include: Kolmogorov [24], which models the local structure of tur-
bulence in incompressible viscous fluids; Ausloos and Ivanova [2], which models the temporal
correlations of fluctuations in the Southern Oscillation index (SOI) signal; Simonsen [34], which
measures correlations in the Nordic electricity spot market. For financial applications of antiper-
sistent processes, see Peters [29] and Shiryaev [33], both of which model the implied and realized
volatility of the S & P 500 index. For further examples of antipersistence modeling, see Otway
[28], Beran and Mazzola [7] and Metzler [26].

Beran and Feng [5] observed that antipersistent processes can be generated by overdifferenc-
ing. In other words, a slightly non-stationary process lying between a stationary long-memory
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process and a random walk becomes antipersistent after the first differencing. For example, Be-
ran et al. [6] found that the first-differenced daily world copper price from January 2, 1997 to
September 2, 1998 comprised an antipersistent process and a non-zero mean function. This im-
plies that the original process was a trend function, plus a nonstationary error process whose first
difference was antipersistent. Karuppiah and Los [23] also noted that many intra-day foreign
exchange rate series are antipersistent.

Recently, Tsai and Chan [37] proposed the continuous-time autoregressive fractionally in-
tegrated moving average (CARFIMA) model, which is defined as the stationary solution of a
stochastic differential equation driven by standard fractional Brownian motion with the Hurst
parameter 1/2 < H < 1. The model is useful for studying time series data that exhibits long-
range dependence properties. In [37], Tsai and Chan derived the autocovariance function of the
stationary CARFIMA process and in [38], they derived its spectral density function; both func-
tions are derived under the condition 1/2 < H < 1.

In this paper, we focus on the stationarity, autocovariance function, spectral density func-
tion and other properties of the CARFIMA process with the Hurst parameter 0 < H < 1.
The CARFIMA process with 0 < H < 1/2 is an antipersistent process that is useful for study-
ing time series data exhibiting antipersistent properties. For H = 1/2, the CARFIMA process
becomes a continuous-time autoregressive moving average (CARMA) process. We present the
main results in Section 2, followed by their proofs in Section 3. Finally, in Section 4, we make
some concluding remarks.

2. Main results

Heuristically, a CARFIMA(p, H, q) process {Yt } is defined as the solution of a pth order sto-
chastic differential equation with suitable initial conditions. It is driven by a standard fractional
Brownian motion with the Hurst parameter H and its derivatives up to and including the order
0 ≤ q < p. Specifically, for t ≥ 0,

Y
(p)
t − αpY

(p−1)
t − · · · − α1Yt − α0 (1)

= σ
{
B

(1)
t,H + β1B

(2)
t,H + · · · + βqB

(q+1)
t,H

}
,

where {Bt,H = BH
t , t ≥ 0} is a standard fractional Brownian motion with the Hurst parameter

0 < H < 1, dY
(j−1)
t = Y

(j)
t dt, j = 1, . . . , p − 1. The superscript (j) denotes a j -fold differenti-

ation with respect to t . We assume that σ > 0, α1 �= 0 and βq �= 0.
Let 0 < H < 1 be a fixed number. It is well known (see, e.g., Duncan et al. [17]) that there

exists a Gaussian stochastic process {BH
t , t ≥ 0}, which satisfies the following three properties:

(a) its initial condition is BH
0 = 0;

(b) it is of zero mean, that is, E(BH
t ) = 0 for all t ≥ 0;

(c) its covariance kernel is defined as

E(BH
t BH

s ) = 1
2 {|t |2H + |s|2H − |t − s|2H }
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for all s, t ≥ 0. The Gaussian process {BH
t } is called a standard fractional Brownian motion

with the Hurst parameter H . A standard fractional Brownian motion with H = 1/2 is the same
as a standard Brownian motion. In addition, a fractional Brownian motion defined over non-
negative t can be extended and defined for all real numbers. Specifically, for H ∈ (0,1), we
have, for −∞ < t < ∞,

BH
t = DH

∫ ∞

−∞
{(t − u)

H−1/2
+ − (−u)

H−1/2
+ }dBu,

where DH = [2H�(3/2 − H)/{�(H + 1/2)�(2 − 2H)}]1/2, �(·) is the Gamma function and
{Bu} is a two-sided standard Brownian motion with covariance E(BsBt ) = min(|s|, |t |) if s and t

have the same sign and 0 if s and t have different signs (see Taqqu [36]).
Let Z be a set of integers. The stationary process {Ft }t∈Z , defined by Ft = BH

t+1 − BH
t , is

called fractional Gaussian noise. The autocovariance of the noise is

γF (k) = 1
2 {|k + 1|2H − 2|k|2H + |k − 1|2H }.

It can be easily demonstrated (see, e.g., Taqqu [36]) that for k �= 0, γF (k) = 0 if H = 1/2,
γF (k) < 0 if 0 < H < 1/2 and γF (k) > 0 if 1/2 < H < 1. For H �= 1/2,

γF (k) ∼ H(2H − 1)|k|2H−2 as k → ∞.

For 1/2 < H < 1,
∑∞

k=−∞ γF (k) = ∞, so the noise is said to be persistent, to have long mem-
ory or to be long-range dependent. For 0 < H < 1/2,

∑∞
k=−∞ γF (k) = 0; therefore, the process

is negatively autocorrelated at all positive lags and the noise is said to be antipersistent. For
H = 1/2, all correlations of the process at non-zero lags are zero, that is, Ft and Fs are uncorre-
lated for t �= s. The spectral density of the noise is given by (see Beran [4])

fF (ω) = {2(1 − cosω)}
∞∑

k=−∞
|ω + 2kπ|−2H−1.

Note that fF (ω) is O(|ω|1−2H ) for ω → 0.
Taqqu [36] considers continuous-time fractional Gaussian noise {Ct }t∈R , where R is a set of

real numbers, namely Ct = BH
t+1 − BH

t , and shows that the spectral density of continuous-time
fractional Gaussian noise is given by

fC(ω) = 1

2π
σ 2�(2H + 1) sin(πH)|eiω − 1|2|ω|−2H−1

= 2

π
σ 2�(2H + 1) sin(πH) sin2

(
ω

2

)
|ω|−2H−1, ω ∈ R.

Fractional Brownian motion is not differentiable (Mandelbrot and Van Ness [25]), so the sto-
chastic equation (1) has to be appropriately interpreted as an integral equation, as explained
below. Analogous to continuous-time ARMA processes (see, e.g., Brockwell [10]), equation (1)
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can be equivalently cast in terms of the observation and state equations

Yt = β ′Xt, t ≥ 0, (2)

dXt = (AXt + α0δp)dt + σδp dBH
t , (3)

where the prime superscript denotes taking the transpose,

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
α1 α2 α3 · · · αp

⎤
⎥⎥⎥⎥⎦, Xt =

⎡
⎢⎢⎢⎢⎢⎣

X
(0)
t

X
(1)
t
...

X
(p−2)
t

X
(p−1)
t

⎤
⎥⎥⎥⎥⎥⎦,

δp =

⎡
⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎦, β =

⎡
⎢⎢⎢⎢⎣

1
β1
...

βp−2
βp−1

⎤
⎥⎥⎥⎥⎦

and βj = 0 for j > q . See Tsai and Chan [39] for a proof of the equivalence between equation (1)
and the set of equations (2) and (3). The process {Yt , t ≥ 0} is said to be a CARFIMA(p, H, q)
process with the parameter (θ, σ ) = (α0, . . . , αp,β1, . . . , βq,H,σ ) if Yt = β ′Xt , where Xt is the
solution of (3) for the initial condition X0. Similarly to equation (5) of Tsai and Chan [37], the
solution {Xt, t ≥ 0} of (3) can be written as

Xt = eAtX0 + α0

∫ t

0
eA(t−u)δp du + σ

∫ t

0
eA(t−u)δp dBH

u , (4)

where

eAt = Ip +
∞∑

n=1

{(At)n(n!)−1}

and Ip is the p × p identity matrix. The stochastic integration in (4) is defined in terms of the
limit of Riemann sums because it only involves deterministic integrands.

For a random initial condition X0, the mean vector of {Xt }, denoted by μX,t , satisfies the
following equation:

μX,t = eAtμX,0 + α0

α1
(eAt − Ip)δ1, (5)

where δ1 = [1,0, . . . ,0]′. If μX,0 is chosen to be −(α0/α1)δ1, then μX,t becomes −(α0/α1)δ1,
which is independent of t . If all the eigenvalues of A have negative real parts, then it can be easily
shown that (2) and (4) imply that, when t → ∞, Yt converges in distribution to a normal random
variable with mean −α0/α1 and variance VY , where VY = γY (0) is defined in equation (11).
Thus, the stationary solution, if it exists, must be Gaussian.
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The stationary CARFIMA process defined over non-negative t can be extended so that it is
a stationary process over all real t . For simplicity, we assume that α0 = 0. Then, provided the
eigenvalues of A all have negative real parts, we can show that the process {Xt } defined by

Xt = σ

∫ t

−∞
eA(t−u)δp dBH

u (6)

is a strictly stationary solution of (3) for t ∈ (−∞,∞) with the corresponding CARFIMA
process

Yt = σ

∫ t

−∞
β ′eA(t−u)δp dBH

u . (7)

The proof of (6) is similar to that of (4) and is hence omitted.
For 1/2 < H < 1 and f,g ∈ L2(R;R) ∩ L1(R;R), Gripenberg and Norros [20] proved that

cov

(∫ ∞

−∞
f (u)dBH

u ,

∫ ∞

−∞
g(v)dBH

v

)
(8)

= H(2H − 1)

∫ ∞

−∞

∫ ∞

−∞
f (u)g(v)|u − v|2H−2 dudv.

For H < 1/2, Norros et al. [27] defines a class of stochastic integrals with the fractional Brown-
ian integrator and deterministic integrands that are functions of bounded variation. However,
they only consider integrals over the interval [0,∞). In our case, integrals over an interval of the
form (−∞, t] for finite t are needed. For the definition of such stochastic integrals, we outline
an approach similar to Norros et al. [27]. Let t be a fixed but arbitrary finite real number. Let �

denote the integral operator mapping a bounded-variation function f (s), s ≤ t , to a function
�f (s), s ≤ t , defined by the equation

�f (s) = Hf (t)|t − s|2H−1 sgn(t − s)

+H

∫ t

−∞
|u − s|2H−1 sgn(s − u)df (u),

where sgn(u) equals −1, 0 or 1, depending on whether u is negative, zero or positive. Next,
define an inner product between two functions f and g by the formula

〈f,g〉� =
∫ t

−∞
g(v)�f (v)dv.

Define L2
�(−∞, t] as the space of equivalence classes of measurable, bounded-variation func-

tions f such that 〈f,f 〉� < ∞. Consider the association of the simple function 1[a,b] to
BH

b −BH
a that preserves the inner product, which follows from equation (9) below, and hence the

association can be extended to an isometry between the Gaussian space spanned by BH
u ,u ≤ t ,

and the function space L2
�(−∞, t] so that the integral

∫ t

−∞ f (u)dBH
u can be defined as the
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image of f in the isometry. Consequently, provided that the integrals of the right-hand side of
equation (9) exist, then for 0 < H < 1/2 and all s, t ∈ R,

cov

(∫ s

−∞
f (u)dBH

u ,

∫ t

−∞
g(v)dBH

v

)

= Hf (s)

∫ t

−∞
|s − v|2H−1 sgn(s − v)g(v)dv

+ H

∫ t

−∞

∫ s

−∞
g(v)|u − v|2H−1 sgn(v − u)df (u)dv. (9)

To demonstrate the above formula, it suffices to consider the case t = s. The proof of equation (9)
for simple functions is given in Section 3 and its validity for general functions then follows from
the isometry alluded to above.

From the above discussion, we can derive the stationarity condition and the autocovariance
function of the CARFIMA process with 0 < H < 1. We state the stationarity condition of the
CARFIMA process in Theorem 1.

Theorem 1. Let 0 < H < 1. Equation (4) with a deterministic initial condition admits an as-
ymptotically stationary solution if and only if all the eigenvalues of A have negative real parts.
Moreover, under the preceding eigenvalue condition of A and assuming the solution is stationary,
Y0 and {BH

t , t ≥ 0} are jointly Gaussian with the covariances given by

cov(Y0,B
H
t ) = Hσβ ′

∫ ∞

0
eAuδp{(u + t)2H−1 − u2H−1}du, (10)

and the stationary mean of {Yt } equalling μY = −α0/α1.

For a random initial condition Y0, which may be correlated with the fractional Brownian inno-
vation process, it can be verified that the sufficiency part of Theorem 1 continues to hold if Y0 has
finite variance. Furthermore, the theorem implies that, under stationarity, Y0 and the fractional
Brownian innovations BH

t , t ≥ 0, are generally correlated when H �= 1/2. This contrasts with the
case H = 1/2, where the stationary distribution of Y0 is independent of the standard Brownian
motion.

In Theorem 2, we use the covariance formulae of stochastic integrals given in expressions (8)
and (9) to calculate the autocovariance function of {Yt }. In part (a), the autocovariance function
of the CARFIMA process is expressed in terms of three integrals. In part (b), the eigenvalues of
the companion matrix A are distinct, so we have a closed form of the autocovariance function.
Then, (c) describes the asymptotic expression for the autocovariance function with H �= 1/2.

Theorem 2. Let 0 < H < 1.
(a) Under stationarity, for h ≥ 0, the autocovariance function of {Yt } equals

γY (h) := cov(Yt+h,Yt )

= Hβ ′AeAh

(∫ h

0
e−Auu2H−1 du

)
V ∗β (11)
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− Hβ ′Ae−Ah

(∫ ∞

h

eAuu2H−1 du

)
V ∗β − Hβ ′AeAh

(∫ ∞

0
eAuu2H−1 du

)
V ∗β,

where V ∗ = σ 2
∫ ∞

0 eAuδpδ′
peA′u du.

(b) Under stationarity, and when the eigenvalues λ1, . . . , λp of the companion matrix A are
distinct,

γY (h) = σ 2

2
�(2H + 1)

p∑
i=1

β(λi)β(−λi)

α(1)(λi)α(−λi)
u(H,λi, h), (12)

where h ≥ 0, α(z) = zp − αpzp−1 − · · · − α1, α(1)(·) denotes its first derivative, β(z) = 1 +
β1z + β2z

2 + · · · + βqzq ,

u(H,λ,h) = 2(−λ)1−2H cosh(λh) + λ1−2H eλhP (2H,λh)

(13)
− (−λ)1−2H e−λhP (2H,−λh)

and P(a, z) = ∫ z

0 e−uua−1 du/�(a), where the integration is along the radial line in the complex
plane from 0 to z.

(c) For H �= 1/2, as h → ∞, we have the asymptotic expression

γY (h) ∼ σ 2H(2H − 1)
β2(0)

α2(0)
h2H−2, (14)

where “∼” means that the ratio of the left- and right-hand sides converges to 1.

For H = 1/2, it is easy to verify that Theorem 2(a) and (b) can be simplified to

γY (h) = β ′eAhV ∗β

= σ 2
p∑

i=1

β(λi)β(−λi)

α(1)(λi)α(−λi)
eλih,

which is consistent with the autocovariance function of the short-memory CARMA model pro-
posed by Brockwell [11]. Let �(a, z) = ∫ ∞

z
e−uua−1 du be an incomplete Gamma function with

complex arguments. Then, the fact that �(a + 1, z) = a�(a, z)+ zae−z can be used to show that,
for 1/2 < H < 1, equation (13) is the same as expression (6.4) of Brockwell and Marquardt [12]
up to a factor that involves the Hurst parameter only. The asymptotic expression (14) implies that
for 0 < H < 1/2, γY (h) < 0 when h → ∞, which shows that the CARFIMA(p,H,q) model
with 0 < H < 1/2 is antipersistent. In contrast, the model with 1/2 < H < 1 is of long-
memory type.
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The autocovariance function established in Theorem 2 can be used to compute the spectral
density function of {Yt , t ∈ R} stated in Theorem 3 below.

Theorem 3. For 0 < H < 1, the spectral density function of {Yt , t ∈ R} is given by

fY (w) = σ 2

2π
�(2H + 1) sin(πH)|w|1−2H |β(iw)|2

|α(iw)|2 , ω ∈ (−∞,∞). (15)

For 0 < H < 1/2, equation (15) implies that
∫ ∞
−∞ γY (τ )dτ = 2πfY (0) = 0. The equation

also shows that the spectral density function of the CARFIMA(p,H,q) process is essentially a
product of the spectral density of the ARMA process and the spectral density of the fractional
Gaussian noise. Thus, the CARFIMA(p,H,q) model is generated by applying an ARMA filter
to the fractional Gaussian noise. Furthermore, the CARFIMA model is antipersistent if the frac-
tional Gaussian noise is antipersistent, whereas it is long-memory if the noise is long-memory.
Compared to fractional Gaussian noise, the CARFIMA model displays a much wider spectrum
of autocovariance patterns, including non-monotone autocovariance functions.

One major problem with continuous-time modeling is the identifiability of the continuous-time
model, given discrete-time data. Let {Yih}i=1,...,N be the observations sampled from a stationary
CARFIMA(p,H,q) process, where h is the step size. By the aliasing formula (Priestley [30]),
the spectral density of {Yih}i=1,...,N equals

fh(ω; θ, σ 2) = 1

h

∑
k∈Z

fY

(
ω + 2kπ

h

)
, ω ∈ [−π,π], (16)

where fY (·) is as defined in equation (15). Using the frequency domain method, Tsai and
Chan [38] showed that the CARFIMA(p,H,q) model with 1/2 < H < 1 is identifiable, given
regularly spaced discrete-time data. Specifically, they showed that, for (θ1, σ

2
1 ) �= (θ2, σ

2
2 ), the set

{ω|fh(ω; θ1, σ
2
1 ) �= fh(ω; θ2, σ

2
2 )} has positive Lebesgue measure if 1/2 < H < 1. Because the

spectral density function of {Yih}i=1,...,N is given by the same form as (16) for 0 < H < 1/2 and
1/2 < H < 1, it can be shown by similar arguments that the CARFIMA model with 0 < H < 1/2
is also identifiable (see Section 3). The identifiability problem with H = 1/2 is more difficult;
see [38] for further discussion. In summary, we have the following theorem on identifiability.

Theorem 4. Let Y = {Yti }Ni=1 be sampled from a stationary (Gaussian) CARFIMA(p, H, q)
process given by equation (1), where 0 < H < 1, H �= 1/2, α(·) and β(·) have no common zeros,
all roots of α(z) = 0 and the roots of β(z) = 0 have negative real parts. If the step size ti = ih

with h > 0, then for (θ1, σ
2
1 ) �= (θ2, σ

2
2 ), the set {ω|fh(ω; θ1, σ

2
1 ) �= fh(ω; θ2, σ

2
2 )} has positive

Lebesgue measure.

We note that the roots of the polynomial α(·) are the same as the eigenvalues of the matrix A
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and the condition on the roots of α(z) = 0 is necessary for the stationarity of the process, whereas
the condition on β(z) = 0 is akin to the invertibility condition for discrete-time processes.

3. Proofs

Proof of equation (9). Consider simple functions of the form f (u) = ∑m−1
i=0 ci1(si ,si+1](u),

where sm = s, and g(v) = ∑n−1
j=0 dj 1(tj ,tj+1](v), where tn = t . Then, the left-hand side of (9)

becomes

Cov

(∫ s

−∞
f (u)dBH

u ,

∫ t

−∞
g(v)dBH

v

)

= Cov

(
m−1∑
i=0

ci(B
H
si+1

− BH
si

),

n−1∑
j=0

dj (B
H
tj+1

− BH
tj

)

)
(17)

= 1
2

m−1∑
i=0

n−1∑
j=0

cidj {|si+1 − tj |2H + |si − tj+1|2H − |tj+1 − si+1|2H − |si − tj |2H }.

The first term of the right-hand side of (9) is

Hf (s)

∫ t

−∞
|s − v|2H−1 sgn(s − v)g(v)dv

= Hcm−1

n−1∑
j=0

dj

∫ tj+1

tj

|sm − v|2H−1 sgn(sm − v)dv (18)

= 1
2cm−1

n−1∑
j=0

dj {|sm − tj |2H − |sm − tj+1|2H }.

If we let c−1 = 0, then the second term of the right-hand side of (9) is

H

∫ t

−∞

∫ s

−∞
g(v)|u − v|2H−1 sgn(v − u)df (u)dv

= H

∫ t

−∞
g(v)

m−1∑
i=0

|si − v|2H−1 sgn(v − si)(ci − ci−1)dv

= H

m−1∑
i=0

(ci − ci−1)

n−1∑
j=0

dj

∫ tj+1

tj

|si − v|2H−1 sgn(v − si)dv (19)
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= 1
2

m−1∑
i=0

(ci − ci−1)

n−1∑
j=0

dj {|si − tj+1|2H − |si − tj |2H }

= 1
2

m−1∑
i=0

n−1∑
j=0

cidj {|si − tj+1|2H − |si − tj |2H }

− 1
2

m−2∑
i=0

n−1∑
j=0

cidj {|si+1 − tj+1|2H − |si+1 − tj |2H }.

Therefore, by (18) and (19), the right-hand side of (9) becomes

1
2

m−1∑
i=0

n−1∑
j=0

cidj {|si − tj+1|2H − |si − tj |2H + |si+1 − tj |2H − |si+1 − tj+1|2H },

which is the same as equation (17). This proves the validity of equation (9) for simple func-
tions. �

Proof of Theorem 1. The proof for H = 1/2 is trivial. For the proof where 1/2 < H < 1, see
Tsai and Chan [37]. We now consider the case where 0 < H < 1/2. The proof of the first part
of the theorem is similar to that of Theorem 1(a) in [37] and is hence omitted. For the proof
of equation (10), first note that equations (4) and (6) are essentially equivalent if α0 = 0. Since,
by (6), we can write X0 = σ

∫ 0
−∞ e−Auδp dBH

u and Bt = ∫ t

0 dBH
u , by equation (9), we have

cov(Y0,B
H
t )

= cov

(
σ

∫ 0

−∞
β ′e−Auδp dBH

u ,

∫ t

0
dBH

u

)

= Hσβ ′δp

∫ t

0
| − v|2H−1 sgn(−v)dv (20)

− Hσ

∫ t

0

∫ 0

−∞
|u − v|2H−1 sgn(v − u)β ′Ae−Auδp dudv

= −σ

2
β ′δpt2H − σ

2

∫ ∞

0
{(t + u)2H − u2H }β ′AeAuδp du.

Now, based on the integration by parts technique, the equality in (10) follows from equation (20).
The stationary mean of {Yt } follows from equation (5) and the subsequent discussion. �

Proof of Theorem 2. The proofs of 2(a) and (b) with H = 1/2 are trivial. First, we prove part (a)
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with 0 < H < 1/2. By equations (7), (9) and routine calculus, we have

γY (h) = σ 2H

∫ t

−∞
β ′δpδ′

peA′(t−v)β(t + h − v)2H−1 dv

− Hσ 2
∫ t

−∞

∫ ∞

0
β

′
AeA(t+h+w−v)δpβ ′eA(t−v)δpw2H−1 dw dv (21)

+ Hσ 2
∫ t

−∞

∫ t+h−v

0
β

′
AeA(t+h−w−v)δpβ

′
eA(t−v)δpw2H−1 dw dv.

Now, equation (11) follows from equation (21) and equation (6.20) of Karatzas and Shreve [22],
namely, AV ∗ + V ∗A′ = −σ 2δpδ′

p . For 1/2 < H < 1, equation (11) follows from Theorem 1(c)
of Tsai and Chan [37] and the integration by parts technique.

Below, we prove part 2(b) with 0 < H < 1/2. The proof with 1/2 < H < 1 is similar and
is hence omitted. When all the eigenvalues of A have negative real parts and are all distinct,
Brockwell and Marquardt [12], equation (2.15), show that, for h ≥ 0,

β ′eAhδp =
p∑

i=1

β(λi)

α(1)(λi)
eλih. (22)

Differentiating the above equation with respect to h on both sides, we have

β ′AeAhδp =
p∑

i=1

β(λi)λi

α(1)(λi)
eλih. (23)

By expressions (21), (22), (23) and routine calculus, we obtain

γY (h) (24)

= −σ 2

2
�(2H + 1)

[
p∑

i=1

β(λi)

α(1)(λi)
{eλih(−λi)

1−2H + eλihλ1−2H
i P (2H,λih)}

×
p∑

j=1

β(λj )

α(1)(λj )(λi + λj )

+
p∑

j=1

β(λj )

α(1)(λj )
(25)

×{e−λj h(−λj )
1−2H − e−λj h(−λj )

1−2H P (2H,−λjh)}

×
p∑

i=1

β(λi)

α(1)(λi)(λi + λj )

]
.
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By the partial fraction (Feller [18], page 276)

β(s)

α(s)
=

p∑
j=1

β(λj )

α(1)(λj )(s − λj )
, (26)

we have

−β(−λi)

α(−λi)
=

p∑
j=1

β(λj )

α(1)(λj )(λi + λj )
. (27)

Equation (12) now follows from equations (25) and (27). This proves (b).
To prove (c) with 0 < H < 1/2, we note that P(a, z) = 1 − �(a, z)/�(a). Furthermore, by

equation (6.5.32) in [1], �(a, z) ∼ za−1e−z{1 + (a − 1)/z} when z → ∞. Thus, as h → ∞, we
have

u(H,λ,h) ∼ −4H(2H − 1)

�(2H + 1)λ
h2H−2. (28)

Hence, by equations (12) and (28), as h → ∞, we have

γY (h) ∼ −2σ 2H(2H − 1)h2H−2
p∑

i=1

β(λi)β(−λi)

α(1)(λi)α(−λi)λi

. (29)

Now, 1/(λiλj ) = 1/{λi(λi + λj )} + 1/{λj (λi + λj )} and expression (27) implies that

p∑
i=1

β(λi)β(−λi)

α(1)(λi)α(−λi)λi

= −
p∑

i=1

p∑
j=1

β(λi)β(λj )

α(1)(λi)α(1)(λj )λi(λi + λj )

= −1

2

p∑
i=1

p∑
j=1

β(λi)β(λj )

α(1)(λi)α(1)(λj )λi(λi + λj )

(30)

− 1

2

p∑
i=1

p∑
j=1

β(λi)β(λj )

α(1)(λi)α(1)(λj )λj (λi + λj )

= −1

2

p∑
i=1

p∑
j=1

β(λi)β(λj )

α(1)(λi)α(1)(λj )λiλj

= −1

2

β2(0)

α2(0)
,

where the last equality follows from the identity (26). The proof of (c) with 0 < H < 1/2 now
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follows from expressions (29) and (31). Note that the proof of (c) with 1/2 < H < 1 is similar to
that of 0 < H < 1/2 and is therefore omitted. �

Proof of Theorem 3. For the proof with 1/2 < H < 1, readers can refer to Tsai and Chan [38].
For case where H = 1/2 is trivial, the proof with 0 < H < 1/2 is similar to that of Theorem 1 in
[38] and is hence omitted. �

Proof of Theorem 4. For the proof with 1/2 < H < 1, see Tsai and Chan [38]. The following
proof with 0 < H < 1/2 is similar to that in [38].

If we write fc(ω) = fY (ω) = g(H)L(ω)|ω|1−2H , where g(H) = �(2H + 1) sin(πH)/(2π),
L(ω) = σ 2|β(iω)|2/|α(iω)|2, then f

(1)
c (ω) = g(H)|ω|−2H {|ω|L(1)(ω) + (1 − 2H)L(ω)} and

log
(
f (1)(ω)

) = log
(
f (1)

c (ω)
) + log

{
1 +

∑
k �=0 f

(1)
c (ω + 2kπ)

f
(1)
c (ω)

}

= logg(H) − 2H log |ω| + log
{|ω|L(1)(ω) + (1 − 2H)L(ω)

}
(31)

+ log
(
1 + R(ω)

)
,

where R(ω) = R2(ω)/R1(ω), R1(ω) = f
(1)
c (ω) and R2(ω) = ∑

k �=0 f
(1)
c (ω + 2kπ). It follows

from limω→0{log(f (1)(ω))/ log |ω|} = −2H that the Hurst parameter H is identifiable. Follow-
ing Tsai and Chan [38], it suffices to show that, given f (ω),ω ∈ [−π,π], we can determine L

and all of its higher derivatives at ω = 0. Below, we show that L(0) and L(1)(0) are identifi-
able. The identifiability of L(k)(0) for k ≥ 2 can be proven similarly by the arguments in [38].
The identifiability of L(0) simply follows from the fact that

lim
ω→0

{
log

(
f (1)(ω)

) − logg(H) + 2H log |ω| − log(1 − 2H)
}

= lim
ω→0

[
logL(ω) + log

{
1 + |ω|L(1)(ω)

(1 − 2H)L(ω)

}
+ log

(
1 + R(ω)

)]
= logL(0).

Next, we prove the identifiability of R2(0), which is needed to prove the identifiability of L(1)(0).
By equation (31), we have

∂

∂ω

{
log

(
f (1)(ω)

) + 2H log |ω|}

= |ω|L(2)(ω) + (2 − 2H)L(1)(ω)

|ω|L(1)(ω) + (1 − 2H)L(ω)
+ R(1)(ω)

1 + R(ω)
, (32)

where

R(1)(ω)

1 + R(ω)
= R

(1)
2 (ω)

(1 + R(ω))R1(ω)
−

{
R2

1(ω)

R2(ω)R
(1)
1 (ω)

+ R1(ω)

R
(1)
1 (ω)

}−1

. (33)
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By equations (32) and (33), we have

lim
ω→0

[
|ω|1−2H ∂

∂ω

{
log

(
f (1)(ω)

) + 2H log |ω|}]

= lim
ω→0

{ |ω|1−2H R(1)(ω)

1 + R(ω)

}

= lim
ω→0

{
−|ω|1−2H R2(ω)R

(1)
1 (ω)

R2
1(ω)

}

= lim
ω→0

[
−R2(ω){|ω|2L(2)(ω) + 2(1 − 2H)|ω|L(1)(ω) − 2H(1 − 2H)L(ω)}

g(H){|ω|L(1)(ω) + (1 − 2H)L(ω)}2

]

= 2HR2(0)

g(H)(1 − 2H)L(0)
,

hence R2(0) is identifiable. Now, equation (33) implies that

lim
ω→0

{
R(1)(ω)

1 + R(ω)
− 2HR2(0)|ω|2H−1

g(H)(1 − 2H)L(0)

}

= lim
ω→0

{
−R2(ω)R

(1)
1 (ω)

R2
1(ω)

− 2HR2(0)|ω|2H−1

g(H)(1 − 2H)L(0)

}

= lim
ω→0

[
−R2(ω)|ω|2H−1{|ω|2L(2)(ω) + 2(1 − 2H)|ω|L(1)(ω) − 2H(1 − 2H)L(ω)}

g(H){|ω|L(1)(ω) + (1 − 2H)L(ω)}2

(34)

− 2HR2(0)|ω|2H−1

g(H)(1 − 2H)L(0)

]

= 2H

g(H)
lim
ω→0

[
|ω|2H−1

{
(1 − 2H)L(ω)R2(ω)

{|ω|L(1)(ω) + (1 − 2H)L(ω)}2
− R2(0)

(1 − 2H)L(0)

}]
= 0

because R2(ω) = R2(0) + ωO(1) and L(ω) = L(0) + ωO(1) for ω tending to 0. Therefore, by
(32), (33) and (34),

lim
ω→0

[
∂

∂ω

{
log

(
f (1)(ω)

) + 2H log |ω|} − 2HR2(0)|ω|2H−1

g(H)(1 − 2H)L(0)

]

= lim
ω→0

|ω|L(2)(ω) + (2 − 2H)L(1)(ω)

|ω|L(1)(ω) + (1 − 2H)L(ω)

= (2 − 2H)L(1)(0)

(1 − 2H)L(0)
,
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which proves the identifiability of L(1)(0). �

4. Conclusion

We have proposed a unified continuous-time framework that is useful for studying time se-
ries with short memory, long memory and antipersistence. The identifiability of the CARFIMA
process with discrete-time data established in Theorem 4 is a fundamental feature that makes the
model practical for data analysis. Therefore, in future research, it would be both interesting and
useful to study the statistical inference of antipersistent CARFIMA models for data analysis.
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