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An alternative proof of global existence

for nonlinear wave equations in an exterior domain

By Soichiro Katayama and Hideo Kubo
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Abstract. The aim of this article is to present a simplified proof of a global
existence result for systems of nonlinear wave equations in an exterior domain. The
novelty of our proof is to avoid completely the scaling operator which would make
the argument complicated in the mixed problem, by using new weighted pointwise
estimates of a tangential derivative to the light cone.

1. Introduction.

Let Ω be an unbounded domain in R3 with compact and smooth boundary
∂Ω. We put O := R3 \ Ω, which is called an obstacle. O is supposed to be non-
empty. In this paper, we consider the mixed problem for a system of nonlinear
wave equations in Ω, with small initial data:

(
∂2

t − c2
i ∆x

)
ui = Fi(u, ∂u,∇x ∂u), (t, x) ∈ (0,∞)× Ω, (1.1)

u(t, x) = 0, (t, x) ∈ (0,∞)× ∂Ω, (1.2)

u(0, x) = φ(x), (∂tu)(0, x) = ψ(x), x ∈ Ω, (1.3)

for i = 1, . . . , N , where ci (1 ≤ i ≤ N) are given positive constants, and u =
(u1, . . . , uN ). Here we have set ∂0 := ∂t = ∂/∂t, ∂j = ∂/∂xj (j = 1, 2, 3), ∆x =∑3

j=1 ∂2
j , ∇x u = (∂1u, ∂2u, ∂3u) and ∂u = (∂tu,∇x u). For a while, we assume

φ, ψ ∈ C∞0 (Ω ;RN ), namely they are smooth functions on Ω vanishing outside
some ball. In the following, we always suppose that φ and ψ are small in some
suitable norm. We assume that each nonlinearity Fi is a smooth function vanishing
of second order at the origin (u, ∂u,∇x∂u) = (0, 0, 0). We suppose that (1.1) is
quasi-linear, namely each Fi has the form
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Fi(u, ∂u,∇x∂u) =
N∑

j=1

cka
ij (u, ∂u)∂k∂auj + F̃i(u, ∂u),

where cka
ij ’s are smooth functions vanishing of first order at the origin, and F̃i’s

are smooth functions vanishing of second order at the origin. In the following we
always assume that

cka
ij (u, ∂u) = cka

ji (u, ∂u) and ck`
ij (u, ∂u) = c`k

ij (u, ∂u) (1.4)

hold for 1 ≤ i, j ≤ N , 1 ≤ k, ` ≤ 3 and 0 ≤ a ≤ 3, so that the hyperbolicity of the
system is assured.

We also suppose that (φ, ψ, F ) satisfies the compatibility condition to infinite
order (see Definition 1.1 below).

Let us recall the known results. In what follows, when we just say the Cauchy
problem, we mean the Cauchy problem on [0,∞)×R3.

First we consider the single speed case (i.e., c1 = c2 = · · · = cN = 1). If each
nonlinearity Fi vanishes of third order at the origin, then it was shown in Shibata
– Tsutsumi [31] that the mixed problem (1.1)–(1.3) admits a unique global small
amplitude solution. If the quadratic terms are present in the nonlinearity, in or-
der to get a global existence result, we need a certain algebraic condition on the
quadratic terms (due to the blow-up result for the corresponding Cauchy prob-
lem obtained by John [10], which also shows the blow-up for the mixed problem
in view of the finite speed of propagation). One of such conditions is the null
condition introduced by Klainerman [16]. Under the null condition, Klainerman
[16] and Christodoulou [2] independently proved global solvability for the Cauchy
problem with small initial data by different methods. This result was extended
to the mixed problem by Godin [4] when the obstacle O is a ball (assuming the
rotational symmetricity of the solution), by Keel – Smith – Sogge [14] when it is
star-shaped, and by Metcalfe [23] when it is non-trapping (for the case of other
space dimensions, we refer to [31], [5]).

Next we consider the multiple speeds case where the propagation speeds ci

(1 ≤ i ≤ N) do not necessarily coincide with each other. Metcalfe – Sogge [26]
and Metcalfe – Nakamura – Sogge [24], [25] extended the global existence result
for the mixed problem with the single speed to the multiple speeds case (see [17],
[34], [32], [33], [6], [19], [11], and [13] for the Cauchy problem in three space
dimensions; see also [7] for the two space dimensional case). In addition, they
treated more general obstacles as we shall describe in Definition 1.2 below.

The aim of this article is to present an alternative approach to these works.
Our approach consists of the following two ingredients. One is the usage of
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weighted L∞–L∞ decay estimates for the mixed problem of the linear wave equa-
tion given in Theorem 4.2 below, whose counterparts for the Cauchy problem have
been widely studied (see Lemmas 3.2, 3.3 and 3.4 below). Equipped with these
estimates, we do not need the space–time L2 estimates which have been adopted in
the works [14], [23], [24], [25], [26]. Moreover, these weighted L∞–L∞ estimates
directly give us rather detailed decay estimates

|ui(t, x)| ≤ C(1 + t + |x|)−1 log
(

1 +
1 + cit + |x|

1 + |cit− |x| |
)

, (1.5)

|∂ui(t, x)| ≤ C(1 + |x|)−1(1 + |cit− |x||)−1 (1.6)

for (t, x) ∈ [0,∞) × Ω, which are refinement of time decay estimates obtained in
the previous works for the mixed problems.

The other is making use of stronger decay property of a tangential derivative
to the light cone given in Theorem 4.3 below. This idea is recently introduced
by the authors [12], where the Cauchy problem is studied, and it enables us to
deal with the null forms using neither the scaling operator t∂t +x ·∇x nor Lorentz
boost fields t∂j + xj∂t (j = 1, 2, 3). In this paper, we will adopt this approach to
the mixed problem, and treat the problem without using these vector fields. In
contrast, the scaling operator has been used in the previous works, and it makes the
argument rather complicated because it does not preserve the Dirichlet boundary
condition (1.2) and has the unbounded coefficient near the boundary. Recently
Metcalfe – Sogge [27] introduced a simplified approach which allows us to use
the scaling operator without special care, but their approach is applicable only to
star-shaped obstacles, and they assumed that the nonlinearity depends only on
derivatives of u.

We will also avoid the argument of a reduction to zero initial data, used in
[14], [23], [24], [25], [26].

In order to state our result precisely, we need some notation, as well as a
couple of notions about the initial data, the obstacle and the nonlinearity.

Consider the mixed problem for a single wave equation

(
∂2

t − c2∆x

)
v = f, (t, x) ∈ (0, T )× Ω, (1.7)

v(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω, (1.8)

v(0, x) = v0(x), (∂tv)(0, x) = v1(x), x ∈ Ω (1.9)

for a given data Ξ = (v0, v1, f), with some propagation speed c > 0. We sometimes
write ~v0 = (v0, v1) in what follows.
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Definition 1.1. Let ~v0 = (v0, v1) ∈ C∞(Ω; R2) and f ∈ C∞([0, T )×Ω; R)
with some T > 0. We say that (v0, v1, f) satisfies the compatibility condition
to infinite order for (1.7)–(1.9), if ∂j

t v(0, x), determined formally from (1.7) and
(1.9), vanishes on ∂Ω for any non-negative integer j. More precisely, we say so if
vj(x) = 0 for any x ∈ ∂Ω and any non-negative integer j, where vj for j ≥ 2 is
determined successively by

vj(x) ≡ c2∆xvj−2(x) +
(
∂j−2

t f
)
(0, x) for x ∈ Ω. (1.10)

Similarly, we say that (φ, ψ, F ) satisfies the compatibility condition to infinite
order for the mixed problem (1.1)–(1.3) if (∂j

t u)(0, x), formally determined by (1.1)
and (1.3), vanishes on ∂Ω for any non-negative integer j (notice that the values
(∂j

t u)(0, x) are determined by (φ, ψ, F ) successively as in (1.10); for example we
have ∂2

t ui(0) = c2
i ∆xφi + Fi(φ, (ψ,∇xφ),∇x(ψ,∇xφ)), and so on).

Throughout this paper, BR stands for

BR = {x ∈ R3; |x| < R} for R > 0.

We remark that we may assume, without loss of generality, that O ⊂ B1 by the
scaling. Hence we always make this assumption in the following. For R ≥ 1, we
set

ΩR = Ω ∩BR.

We denote by Xc(T ) the set of all

Ξ = (v0, v1, f) = (~v0, f) ∈ C∞0 (Ω; R2)× C∞D ([0,∞)× Ω; R)

satisfying the compatibility condition to infinite order for (1.7)–(1.9) with the
propagation speed c, where f ∈ C∞D ([0,∞)× Ω; R) means that f ∈ C∞([0,∞)×
Ω; R) and f(t, ·) ∈ C∞0 (Ω) for any fixed t ∈ [0,∞). In addition, for a > 1, Xc,a(T )
denotes the set of all Ξ = (v0, v1, f) ∈ Xc(T ) satisfying

v0(x) = v1(x) = f(t, x) ≡ 0 for |x| ≥ a and t ∈ [0, T ).

We introduce function spaces. For non-negative integers m and s, we define
Hm,s(Ω) = {ϕ;

∥∥ϕ :Hm,s(Ω)
∥∥ < ∞}, where
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∥∥ϕ :Hm,s(Ω)
∥∥2 =

∑

|α|≤m

∫

Ω

〈x〉2s |∂α
x ϕ(x)|2dx

for ϕ = ϕ(x). Here 〈x〉 =
√

1 + |x|2 for x ∈ R3 and ∂α
x = ∂α1

1 ∂α2
2 ∂α3

3 for a
multi-index α = (α1, α2, α3). Throughout this paper, we also use the notations
〈a〉 =

√
1 + |a|2 for a ∈ R, and ∂α = ∂α0

0 ∂α1
1 ∂α2

2 ∂α3
3 for a multi-index α =

(α0, α1, α2, α3). We set Hm(Ω) = Hm,0(Ω) and L2(Ω) = H0(Ω), which are the
standard Sobolev and Lebesgue spaces, and we denote their norms of a function ϕ

by ‖ϕ : Hm(Ω)‖ and ‖ϕ : L2(Ω)‖, respectively. Besides, Hm
0 (Ω) is the completion

of C∞0 (Ω) with respect to the Hm(Ω) norm. We also put H m(Ω) = Hm+1(Ω)×
Hm(Ω).

Definition 1.2. We say that the obstacle O is admissible if there exist a
non-negative integer ` and a real constant γ0 ≥ 1 having the following property:
Suppose that Ξ = (~v0, f) ∈ Xc,a(T ) for some c > 0 and a > 1. Then for any
b > 1, any integer m ≥ 1 and any γ ∈ (0, γ0], there exists a positive constant
C = C(γ, a, b, c, m, Ω) such that for t ∈ [0, T ),

∑

|α|≤m

〈t〉γ
∥∥∂αv(t, ·) :L2(Ωb)

∥∥

≤ C

(∥∥~v0 :H m+`−1(Ω)
∥∥ + sup

0≤s≤t
〈s〉γ

∑

|α|≤m+`−1

∥∥∂αf(s, ·) :L2(Ω)
∥∥
)

, (1.11)

where v is the solution to (1.7)–(1.9) with the propagation speed c.

We often refer to (1.11) as decay of local energy (or local energy decay).
For Fi = Fi(u, ∂u,∇x∂u), we denote the quadratic part of Fi by F

(2)
i . More

precisely, writing ζ = (ζ1, . . . , ζ17N ) = (u, ∂u,∇x∂u), we define

F
(2)
i (ζ) =

∑

|α|=2

(∂α
ζ Fi)(0)

α!
ζα, (1.12)

where α is a multi–index with the standard notation.

Definition 1.3. We say that the nonlinearity F = (F1, F2, . . . , FN ) satisfies
the null condition associated with the propagation speeds (c1, c2, . . . , cN ) if each
F

(2)
i (1 ≤ i ≤ N), given by (1.12), depends only on ∂u and ∇x∂u (namely F

(2)
i =

F
(2)
i (∂u,∇x∂u)), and satisfies
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F
(2)
i

(
(Xaµj), (XkXaνj)

)
= 0 (1.13)

for any µ, ν ∈ Λi and X = (X0, X1, X2, X3) ∈ R4 satisfying X2
0 = c2

i (X
2
1 + X2

2 +
X2

3 ), where

Λi =
{
(λ1, λ2, . . . , λN ) ∈ RN ; λj = 0 if cj 6= ci

}
.

Here the left-hand side of (1.13) means that Xaµj (a = 0, 1, 2, 3; j = 1, . . . , N)
and XkXaνj (k = 1, 2, 3; a = 0, 1, 2, 3; j = 1, . . . , N) are substituted in place of
∂auj and ∂k∂auj , respectively.

We remark that under the null condition, each F
(2)
i (∂u,∇x∂u) is expressed

as a sum of two groups of terms. The one is a linear combination of Q0(uj , uk; ci),
Qab(uj , uk), where Q0 and Qab are the null forms defined by

Q0(ξ, η ; c) = (∂tξ)(∂tη)− c2(∇x ξ) · (∇x η), (1.14)

Qab(ξ, η) = (∂aξ)(∂bη)− (∂bξ)(∂aη) (0 ≤ a < b ≤ 3) (1.15)

for a positive constant c, and real valued-functions ξ = ξ(t, x) and η = η(t, x).
The other is a linear combination of such terms (∂auj)(∂buk) that at least one of
ci, cj and ck is different from the others. More precise expression is given by (5.1)
below.

Now we are in a position to state our main result.

Theorem 1.4. Let (1.4) be fulfilled, and φ, ψ ∈ C∞(Ω ; RN ). Suppose
that (φ, ψ, F ) satisfies the compatibility condition to infinite order for the problem
(1.1)–(1.3), O is admissible, and F satisfies the null condition associated with
(c1, c2, . . . , cN ). Then there exist a positive constant ε0 and an integer s such that
the mixed problem (1.1)–(1.3) admits a unique solution u ∈ C∞([0,∞)× Ω; RN ),
satisfying (1.5) and (1.6), for any (φ, ψ) with

∥∥φ :Hs+2,s(Ω)
∥∥ +

∥∥ψ :Hs+1,s(Ω)
∥∥ ≤ ε0.

Theorem 1.4 was already presented in [25] with a different assumption on the
obstacles; they assumed exponential decay of local energy, with possible loss of
derivatives as in (1.11), for solutions to the mixed problem of homogeneous wave
equations on [0,∞)× Ω (see (B.8) below). The same assumption is made also in
[24], [26]. The known examples satisfying their assumption, given in [24], [25],
[26], are non-trapping obstacles, and trapping obstacles which were treated in
Ikawa [8], [9]. All the obstacles satisfying their assumption are also admissible in
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our sense (see Appendix B below for the proof). Thus our assumption is possibly
weaker than theirs. More precisely, exponential decay of local energy is not actually
needed in [24], [25], [26], but one needs (1.11) for γ up to some γ0 > 1 to apply
their method. On the other hand, only (1.11) for γ ≤ 1 is required in our method.
However we have unfortunately no concrete example of admissible obstacle (in
our sense) other than those satisfying also their assumption. Hence, at the present
time, we may say that there is no essential difference between the practical claims
in Theorem 1.4 and [25].

Here we emphasize that our main aim in this paper is to obtain a simplified
proof of the global existence result in [25], and not to weaken the assumption on
the obstacles.

This paper is organized as follows. In the next section we collect notation.
In Section 3 we give some preliminaries needed later on. Section 4 is devoted to
establish pointwise decay estimates. Making use of the estimates from Section
4, we give a proof of Theorem 1.4 in Section 5. The appendices are devoted to
discussion on admissible obstacles, as well as the proof of Lemmas 3.1 and 3.5
below.

2. Notation.

Let c > 0. For Ξ = (v0, v1, f) ∈ H1
0 (Ω) × L2(Ω) × L∞((0, T ); L2(Ω)), we

denote by S[Ξ; c](t, x) the solution of the mixed problem (1.7)–(1.9). Besides we
set K[~v0; c] = S[(~v0, 0); c] and L[f ; c] = S[(0, 0, f); c], where ~v0 = (v0, v1), as
before.

Similarly, for (w0, w1, g) ∈ H1(R3)×L2(R3)×L∞((0, T ); L2(R3)), we denote
by S0[(w0, w1, g); c](t, x) the solution of the following Cauchy problem:

(
∂2

t − c2∆x

)
w = g, (t, x) ∈ (0, T )×R3, (2.1)

w(0, x) = w0(x), (∂tw)(0, x) = w1(x), x ∈ R3. (2.2)

Besides we put K0[~w0; c] = S0[(~w0, 0); c] and L0[g; c] = S0[(0, 0, g); c], where ~w0 =
(w0, w1).

Next we introduce vector fields: We denote

∂0 = ∂t, ∂j (j = 1, 2, 3), Ωij = xi∂j − xj∂i (1 ≤ i < j ≤ 3),

by Zj (j = 0, 1, . . . , 6), respectively. Notice that

[
Zj , ∂

2
t − c2∆x

]
= 0 (j = 0, 1, . . . , 6), (2.3)
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where we put [A,B] := AB − BA. Denoting Zα = Zα0
0 Zα1

1 · · ·Zα6
6 with a multi–

index α = (α0, α1, . . . , α6), we set

|ϕ(t, x)|m =
∑

|α|≤m

|Zαϕ(t, x)|, ‖ϕ(t)‖m =
∥∥ |ϕ(t, ·)|m :L2(Ω)

∥∥ (2.4)

for a real or RN–valued smooth function ϕ(t, x) and a non-negative integer m.
For ν, κ ∈ R, c ≥ 0 and cj > 0 (1 ≤ j ≤ N), we define

Φν(t, x) =





〈t + |x|〉ν if ν < 0,
{

log
(

2 +
〈t + |x|〉
〈t− |x|〉

)}−1

if ν = 0,

〈t− |x|〉ν if ν > 0,

(2.5)

Wν,κ(t, x) = 〈t + |x|〉ν
(

min
0≤j≤N

〈cjt− |x|〉
)κ

, (2.6)

W (c)
ν,κ(t, x) = 〈t + |x|〉ν

(
min

0≤j≤N ;cj 6=c
〈cjt− |x|〉

)κ

, (2.7)

where c0 = 0. We set

ν∗(ρ, κ) =

{
ρ if ρ > 0, κ > 1,

ρ + 1− κ if ρ > 0, 0 ≤ κ < 1.
(2.8)

We define

‖f(t) :Nk(W )‖ = sup
(s,x)∈[0,t]×Ω

〈x〉 W (s, x) |f(s, x)|k (2.9)

for t ∈ [0, T ), a non-negative integer k and any non-negative function W (s, x).
Similarly we put

‖g(t) :Mk(W )‖ = sup
(s,x)∈[0,t]×R3

〈x〉 W (s, x) |g(s, x)|k. (2.10)

Let ρ ≥ 0, and k be a non-negative integer. We define

Aρ,k[v0, v1] = sup
x∈Ω

〈x〉ρ (|v0(x)|k + |∇xv0(x)|k + |v1(x)|k
)

(2.11)
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for a smooth function (v0, v1) on Ω, while

Bρ,k[w0, w1] = sup
x∈R3

〈x〉ρ (|w0(x)|k + |∇xw0(x)|k + |w1(x)|k
)

(2.12)

for a smooth function (w0, w1) on R3.
For a ≥ 1, let ψa be a smooth radially symmetric function on R3 satisfying

ψa(x) = 0 (|x| ≤ a), ψa(x) = 1 (|x| ≥ a + 1). (2.13)

3. Preliminaries.

First we introduce the well-known elliptic estimate, whose proof will be given
in Appendix A for the completeness.

Lemma 3.1. Let ϕ ∈ Hm(Ω) ∩ H1
0 (Ω) for some integer m(≥ 2). Then we

have

∑

|α|=m

∥∥∂α
x ϕ :L2(Ω)

∥∥ ≤ C
(‖∆xϕ :Hm−2(Ω)‖+ ‖∇xϕ :L2(Ω)‖). (3.1)

Next we introduce a couple of known estimates for the Cauchy problem. The
first one is the decay estimate of solutions to the homogeneous wave equation, due
to Asakura [1, Proposition 1.1] (observe that the general case can be reduced to
the case k = 0, thanks to (2.3)). Recall that Φν(t, x) is the function defined by
(2.5).

Lemma 3.2. Let c > 0. For ~w0 = (w0, w1) ∈ C∞0 (R3; R2), ρ > 0 and a
non-negative integer k, there exists a positive constant C = C(ρ, k, c) such that

〈t + |x|〉Φρ−1(ct, x)|K0[ ~w0; c](t, x)|k ≤ CBρ+1,k[ ~w0] (3.2)

for (t, x) ∈ [0,∞)×R3.

The second one is the decay estimate for the inhomogeneous wave equation.

Lemma 3.3. Let c > 0, ρ > 0, κ ≥ 0 with κ 6= 1, and k be a non-negative
integer. Then there exists a positive constant C = C(ρ, κ, k, c) such that

〈t + |x|〉Φρ−1(ct, x)|L0[g; c](t, x)|k ≤ C
∥∥g(t) :Mk(Wν∗(ρ,κ),κ)

∥∥, (3.3)



1144 S. Katayama and H. Kubo

for (t, x) ∈ [0, T )×R3, where ν∗(ρ, κ) is given by (2.8).

Proof. The desired estimate for k = 0 was shown in Theorem 3.4 of Kubota
– Yokoyama [19] (see also Lemmas 3.2 and 8.1 in Katayama – Yokoyama [13], and
Lemma 3.2 in the authors [12]).

Let |α| ≤ k. Then it follows from (2.3) that

ZαL0[g; c] = L0[Zαg; c] + K0[(φα, ψα); c], (3.4)

where we put φα(x) = (ZαL0[g; c])(0, x), ψα(x) = (∂tZ
αL0[g; c])(0, x). The first

term on the right-hand side of (3.4) can be easily estimated by (3.3) for k = 0.
On the other hand, as for the second term, from the equation (2.1) we get

φα(x) =
∑

|β|≤|α|−2

Cβ(Zβg)(0, x), ψα(x) =
∑

|β|≤|α|−1

C ′β(Zβg)(0, x)

with suitable constants Cβ and C ′β (cf. (1.10)). Therefore, by virtue of Lemma
3.2, we obtain

〈t + |x|〉Φρ−1(ct, x)|K0[φα, ψα; c](t, x)| ≤ C sup
y∈R3

〈y〉ρ+1 |g(0, y)|k−1.

Since we have ν∗(ρ, κ) + κ ≥ ρ + 1, it follows that

sup
y∈R3

〈y〉ρ+1 |g(0, y)|k−1 ≤ sup
y∈R3

〈y〉ρ+2 |g(0, y)|k

≤ C
∥∥g(t) :Mk(Wν∗(ρ,κ),κ)

∥∥. (3.5)

This completes the proof. ¤

The third one is the decay estimate for derivatives of solutions to the inho-
mogeneous wave equation.

Lemma 3.4. Let c > 0, and k be a non-negative integer.
If ρ > 1 and κ > 1, or alternatively if 0 < ρ ≤ 1 and 0 < κ < ρ, then there

exists a positive constant C = C(c, ρ, κ, k) such that

〈x〉 〈ct− |x|〉ρ|∂L0[g; c](t, x)|k ≤ C
∥∥g(t) :Mk+1(Wν∗(ρ,κ),κ)

∥∥ (3.6)

for (t, x) ∈ [0, T )×R3.
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On the other hand, if ρ > 0 and κ > 1, then we have

〈x〉 〈ct− |x|〉ρ|∂L0[g; c](t, x)|k ≤ C
∥∥g(t) :Mk+1(W (c)

ρ,κ)
∥∥ (3.7)

for (t, x) ∈ [0, T )×R3.

Proof. Let 0 ≤ a ≤ 3. In view of Lemma 3.2 in [19], Lemma 8.2 and the
proof of Lemma 3.2 in [13], we find that

〈x〉 〈ct− |x|〉ρ |L0[∂ag; c](t, x)| ≤ C
∥∥g(t) :M1(Wν∗(ρ,κ),κ)

∥∥ (3.8)

for ρ > 1 and κ > 1, or for 0 < ρ ≤ 1 and 0 < κ < ρ, as well as

〈x〉 〈ct− |x|〉ρ |L0[∂ag; c](t, x)| ≤ C
∥∥g(t) :M1(W (c)

ρ,κ)
∥∥, (3.9)

for ρ > 0 and κ > 1 (see also [12]).
Since ∂aL0[g; c] = L0[∂ag; c] + δa0K0[(0, g(0, ·)); c] for 0 ≤ a ≤ 3 with the

Kronecker delta δab, (3.6) and (3.7) follow from (3.4), (3.8), (3.9), and Lemma 3.2,
with the help of (3.5) and its variant obtained by replacing Wν∗(ρ,κ),κ by W

(c)
ρ,κ.

This completes the proof. ¤

In order to associate decay estimates with the energy estimate, we use the
following variant of the Sobolev type inequality, whose counterpart for the Cauchy
problem is due to Klainerman [15]:

Lemma 3.5. Let ϕ ∈ C2
0 (Ω). Then we have

sup
x∈Ω

〈x〉 |ϕ(x)| ≤ C
∑

|α|≤2

∥∥Z̃αϕ :L2(Ω)
∥∥, (3.10)

where Z̃ = {∂1, ∂2, ∂3, Ω12, Ω23,Ω13}.

The proof of Lemma 3.5 will be given in Appendix C.

Finally, we recall the estimates of the null forms from [12].

Lemma 3.6. Let c be a positive constant and u = (u1, . . . , uN ). Suppose that
Q is one of the null forms defined by (1.14) and (1.15). Then, for a non-negative
integer k, there exists a positive constant C = C(c, k) such that
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|Q(uj , uk)|k ≤ C

{
|∂u|[k/2]

∑

|α|≤k

|D+,cZ
αu|+ |∂u|k

∑

|α|≤[k/2]

|D+,cZ
αu|

+
1
r

(|∂u|[k/2]|u|k+1 + |u|[k/2]+1|∂u|k
)}

,

where we put D+,c = ∂t + c ∂r with r = |x| and ∂r = (x/r) · ∇x.

4. Basic estimates.

The aim of this section is to establish pointwise decay estimates for the mixed
problem, which are deduced from corresponding estimates for the Cauchy problem
in combination with the local energy decay (1.11). To prove such estimates we use
the following lemma. Remember that we have assumed O ⊂ B1.

Lemma 4.1. Let O be admissible, and ` and γ0 be the constants in Definition
1.2. Let b > 1, c > 0, ρ > 0, and κ ≥ 0 with κ 6= 1, while m is a non-negative
integer.
(i) Suppose that χ is a smooth radially symmetric function on R3 satisfying
suppχ ⊂ Bb. If ρ ≤ γ0, and Ξ = (~v0, f) ∈ Xc,a(T ) for some a(> 1), then
there exists a positive constant C = C(ρ, a, b, c,m, Ω) such that

〈t〉ρ|χS[Ξ; c](t, x)|m
≤ CAρ+1,m+`+1[~v0] + C

∑

|β|≤m+`+1

sup
(s,x)∈[0,t]×Ωa

〈s〉ρ|∂βf(s, x)| (4.1)

for (t, x) ∈ [0, T )× Ω.

(ii) Let ~w and g are smooth functions on R3 and on [0, T )×R3, respectively.
If supp ~w0 ∪ supp g(t, ·) ⊂ Ba \B1 for any t ∈ [0, T ) with some a > 1, then

there exists a positive constant C = C(ρ, a, c, m) such that

〈t + |x|〉Φρ−1(ct, x)|S0[(~w0, g); c](t, x)|m
≤ CAρ+1,m[~w0] + C

∑

|β|≤m

sup
(s,x)∈[0,t]×Ωa

〈s〉ρ|∂βg(s, x)| (4.2)

and
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〈x〉 〈ct− |x|〉ρ|∂S0[(~w0, g); c](t, x)|m
≤ CAρ+2,m+1[~w0] + C

∑

|β|≤m+1

sup
(s,x)∈[0,t]×Ωa

〈s〉ρ|∂βg(s, x)| (4.3)

for (t, x) ∈ [0, T )× Ω.
On the other hand, if ~w0(x) = g(t, x) = 0 for any x ∈ B1 and any t ∈ [0, T ),

then there exists a positive constant C = C(ρ, a, b, c,m) such that

〈t〉ρ
∑

|β|≤m

|∂βS0[( ~w0, g); c](t, x)|

≤ CAρ+1,m[~w0] + C
∑

|β|≤m

∥∥∂βg(t) :N0(Wν∗(ρ,κ),κ)
∥∥ (4.4)

for (t, x) ∈ [0, T )× Ωb.

Proof. First we note that we have

|h(t, x)|m ≤ C
∑

|β|≤m

|∂βh(t, x)| (4.5)

for any smooth function h on [0, T )×Ω (or on [0, T )×R3) with supp h(t, ·) ⊂ BR

for some R(> 1).
Let Ξ ∈ Xc,a(T ), and ρ ≤ γ0. For (t, x) ∈ [0, T ) × Ω, by (4.5), the Sobolev

inequality and (1.11), we obtain

〈t〉ρ|χS[Ξ; c](t, x)|m
≤ C〈t〉ρ

∑

|β|≤m+2

∥∥∂βS[Ξ; c](t) :L2(Ωb)
∥∥

≤ C
∥∥~v0 :H m+`+1(Ω)

∥∥ + C sup
s∈[0,t]

〈s〉ρ
∑

|β|≤m+`+1

∥∥∂βf(s) :L2(Ω)
∥∥,

which yields (4.1), since supp f(t, ·) ⊂ Ωa implies
∥∥∂βf(s) :L2(Ω)

∥∥ ≤ C
∥∥∂βf(s) :

L∞(Ωa)
∥∥.

Let ξ and η be functions on Λ(⊂ R × R3). We write ξ(t, x) ∼ η(t, x) for
(t, x) ∈ Λ, if there exists a positive constant C such that

C−1ξ(t, x) ≤ η(t, x) ≤ Cξ(t, x) for any (t, x) ∈ Λ.
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Observing that we have Wρ,κ(t, x) ≤ W
(c)
ρ,κ(t, x) ≤ C〈t + |x|〉ρ〈|x|〉κ for (t, x) ∈

[0,∞)×R3, we obtain

〈t〉ρ ∼ 〈x〉Wρ,κ(t, x) ∼ 〈x〉W (c)
ρ,κ(t, x)

∼ 〈t + |x|〉Φρ−1(ct, x) ∼ 〈x〉 〈ct− |x|〉ρ (4.6)

for (t, x) ∈ [0,∞)×BR, where R > 0, ρ ≥ 0, c > 0, and κ ≥ 0.
By (3.2) and (3.3) with κ > 1, we find that the left-hand side on (4.2) is

estimated by CBρ+1,m[~w0] + C
∥∥g(t) :Mm(Wρ,κ)

∥∥, and we obtain (4.2) in view of
(4.6), since supp ~w0∪supp g(t, ·) ⊂ Ba \B1 ⊂ Ωa. Similarly, if we use (3.7) instead
of (3.3), then we get (4.3).

On the other hand, replacing Zα by ∂α in the proof of (3.3), and using (4.6),
we find

〈t〉ρ
∑

|β|≤m

|∂βS0[(~w0, g); c](t, x)| ≤ CBρ+1,m[~w0]+C
∑

|β|≤m

∥∥∂βg(t) :M0(Wν∗(ρ,κ),κ)
∥∥

for (t, x) ∈ [0, T )×Ωb, which leads to (4.4), because of the assumption on ~w0 and
g. This completes the proof. ¤

Theorem 4.2. Let O be admissible, ` and γ0 be the constants in Definition
1.2, and c > 0. Suppose that Ξ = (~v0, f) ∈ Xc(T ) and f = f1 + f2.
(i) Let ρ ∈ (0, γ0], κi ≥ 0 and κi 6= 1 (i = 1, 2). Then there exists a constant
C = C(ρ, κ1, κ2, c) > 0 such that

〈t + |x|〉Φρ−1(ct, x)|S[Ξ; c](t, x)|k

≤ CAρ+1,k+`+3[~v0] + C
∑

|β|≤`+3

2∑

i=1

∥∥∂βfi(t) :Nk(Wν∗(ρ,κi),κi
)
∥∥ (4.7)

for (t, x) ∈ [0, T )× Ω.
(ii) Let κ2 > 1. If γ0 > 1, ρ ∈ (1, γ0) and κ1 > 1, or alternatively if 0 < ρ ≤ 1 and
0 < κ1 < ρ, then we have

〈x〉 〈ct− |x|〉ρ|∂S[Ξ; c](t, x)|k
≤ CAρ+2,k+`+4[~v0] + C

∥∥f1(t) :Nk+`+4(Wν∗(ρ,κ1),κ1)
∥∥

+ C
∥∥f2(t) :Nk+`+4(W (c)

ρ,κ2
)
∥∥ (4.8)
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for (t, x) ∈ [0, T )× Ω.

Proof. First we remark that, under the same assumption on (ρ, κ1, κ2) for
(4.7) (resp. (4.8)),

∑
|β|≤m sup(s,x)∈[0,t]×Ω3

〈s〉ρ |∂βf(s, x)| with m = k + ` + 3
(resp. m = k + ` + 4) is bounded by the right-hand side of (4.7) (resp. (4.8)),
because we have (4.6) and ν∗(ρ, κi) ≥ ρ (i = 1, 2). Hence we only have to prove
(4.7) and (4.8) with these terms added on their right-hand sides.

Here we recall the following representation formula based on the cut–off
method developed by Shibata [29], and also by Shibata – Tsutsumi [31] where
Lp–Lq time decay estimates for the mixed problem were obtained (see also [18]):

S[Ξ; c](t, x) = ψ1(x)S0[ψ2Ξ; c](t, x) +
4∑

i=1

Si[Ξ](t, x) (4.9)

for (t, x) ∈ [0, T )× Ω, where ψa is defined by (2.13) and we have set

S1[Ξ](t, x) = (1− ψ2(x))L
[
[ψ1,−c2∆x]S0[ψ2Ξ; c]; c

]
(t, x), (4.10)

S2[Ξ](t, x) = −L0

[
[ψ2,−c2∆x]L

[
[ψ1,−c2∆x]S0[ψ2Ξ; c]; c

]
; c

]
(t, x), (4.11)

S3[Ξ](t, x) = (1− ψ3(x))S[(1− ψ2)Ξ; c](t, x), (4.12)

S4[Ξ](t, x) = −L0

[
[ψ3,−c2∆x]S[(1− ψ2)Ξ; c]; c

]
(t, x). (4.13)

Writing ζ0 = S0[ψ2Ξ; c], we get

〈x〉 〈ct− |x|〉ρ ∣∣∂a

(
ψ1ζ0(t, x)

)∣∣
k

≤ 〈x〉 〈ct− |x|〉ρ (|ψ1(x)(∂aζ0)(t, x)|k + |(∂aψ1)(x)ζ0(t, x)|k
)

≤ C 〈x〉 〈ct− |x|〉ρ |∂aζ0(t, x)|k + C|∂aψ1(x)| 〈t〉ρ
∑

|β|≤k

|∂βζ0(t, x)|,

where the last inequality is obtained by (4.5) and (4.6), because we have
supp ∂aψ1 ⊂ B2. Now, it follows from Lemmas 3.2, 3.3, and 3.4, together
with (4.4), that ψ1S0[ψ2Ξ; c] has the desired bound, since we can write Ξ =
(~v0, 0) +

∑2
i=1(0, 0, fi).

We assume 0 < ρ ≤ γ0 and κi ≥ 0 with κi 6= 1 in the following. It is easy to
check that

[ψa,−∆x]h(t, x) = h(t, x)∆xψa(x) + 2∇x h(t, x) · ∇x ψa(x)
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for (t, x) ∈ [0, T ) × Ω, a ≥ 1 and any smooth function h. Note that this identity
implies (0, 0, [ψa,−c2∆x]h) ∈ Xc,a+1(T ) for any smooth function h and a ≥ 1,
because supp∇xψa ∪ supp∆xψa ⊂ Ba+1 \Ba. Therefore, by (4.1) and (4.4), we
obtain

〈t〉ρ|∂αS1[Ξ](t, x)|k
≤ C

∑

|β|≤k+`+2+|α|
sup

(s,x)∈[0,t]×Ω2

〈s〉ρ|∂βS0[ψ2Ξ](s, x)|

≤ CAρ+1,k+`+2+|α|[~v0] + C
∑

|β|≤k+`+2+|α|

2∑

i=1

‖∂βfi(t) :N0(Wν∗(ρ,κi),κi
)‖

(4.14)

for (t, x) ∈ [0, T ) × Ω and |α| ≤ 1. Similarly, since we have (1 − ψ2)Ξ ∈ Xc,3(T )
for any Ξ ∈ Xc(T ), (4.1) leads to

〈t〉ρ|∂αS3[Ξ](t, x)|k
≤ CAρ+1,k+`+1+|α|[~v0] + C

∑

|β|≤k+`+1+|α|
sup

(s,x)∈[0,t]×Ω3

〈s〉ρ|∂βf(s, x)| (4.15)

for (t, x) ∈ [0, T ) × Ω and |α| ≤ 1. Since supp Si[Ξ](t, x) ⊂ B4 for i = 1, 3, (4.14)
and (4.15), together with (4.6), imply the desired estimates for S1[Ξ] and S3[Ξ]
(note that we have Wν∗(ρ,κ2),κ2 ≤ W

(c)
ρ,κ2 on [0,∞)×R3 for κ2 > 1).

Set gj [Ξ] = (∂2
t − c2∆x)Sj [Ξ] for j = 2, 4. Observing that g2 and g4 have the

almost same structures as S1 and S3, respectively, by (4.1) and (4.4) we obtain

∑

|β|≤m

sup
(s,x)∈[0,t]×Ω3

〈s〉ρ|∂βg2[Ξ](s, x)|

≤ CAρ+1,m+`+3[~v0] + C
∑

|β|≤m+`+3

2∑

i=1

‖∂βfi(t) :N0(Wν∗(ρ,κi),κi
)‖, (4.16)

∑

|β|≤m

sup
(s,x)∈[0,t]×Ω4

〈s〉ρ|∂βg4[Ξ](s, x)|

≤ CAρ+1,m+`+2[~v0] + C
∑

|β|≤m+`+2

sup
(s,x)∈[0,t]×Ω3

〈s〉ρ|∂βf(s, x)| (4.17)

for any m ≥ 0. Thus, since g2 and g4 are supported on B4 \B2, (4.2) and (4.3)
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with ~w0 = (0, 0) imply the desired estimates for S2[Ξ] and S4[Ξ]. This completes
the proof. ¤

In order to handle the null forms, we also need the following estimate of a
tangential derivative to the light cone ct = |x| which is denoted by D+,c = ∂t+c∂r.

Theorem 4.3. Let the assumptions in Theorem 4.2 be fulfilled, and let 1 ≤
ρ ≤ min{2, γ0}, κi ≥ 0 and κi 6= 1 (i = 1, 2). Then there exists a constant
C = C(ρ, κ1, κ2, c) > 0 such that

〈x〉 〈t + |x|〉 〈ct− |x|〉ρ−1

log(2 + t + |x|)
∑

|α|≤k

|D+,cZ
αS[Ξ; c](t, x)|

≤ CAρ+1,k+`+5[~v0] + C

2∑

i=1

∥∥fi(t) :Nk+`+5(Wν∗(ρ,κi),κi
)
∥∥ (4.18)

for (t, x) ∈ [0, T )× Ω.

Proof. When |x| ≤ 1, (4.18) follows from (4.7) immediately. While, if |x| >
1, then we can proceed as in the proof of Theorem 1.2 in [12], because O ⊂ B1.
Here we only give an outline of the proof. Setting Uα(t, r, ω) = rZαS[Ξ; c](t, rω)
for r > 1, ω ∈ S2 and |α| ≤ k, we have

D−,cD+,cUα(t, r, ω) = rZαf(t, rω) +
c2

r

∑

1≤i<j≤3

Ω2
ijZ

αS[Ξ; c](t, rω), (4.19)

where D−,c = ∂t − c∂r. Let t0 > 0, r0 > 1 and ω0 ∈ S2. Then we have

|rZαf(t, rω)| ≤ C

2∑

i=1

W−1
ν∗(ρ,κi),κi

(t, x)
∥∥fi(t0) :Nk(Wν∗(ρ,κi),κi

)
∥∥

for t ≤ t0. Applying (4.7) to estimate the second term on the right-hand side of
(4.19), we find that |D−,cD+,cU(t, r, ω)| is bounded from above by the right-hand
side of (4.18) (with t = t0) multiplied by

2∑

i=1

W−1
ν∗(ρ,κi),κi

(t, x) + 〈x〉−1 〈t + |x|〉−1 Φ−1
ρ−1(ct, x)
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for t ≤ t0. Integrating the obtained inequality along the ray

{(t, (r0 + c(t0 − t))ω0); 0 ≤ t ≤ t0}

(note that this ray lies in Ω), we obtain

〈t0 + r0〉ρ
log(2 + t0 + r0)

|D+,cUα(t0, r0, ω0)|

≤ CAm+ρ+1,`+5[~v0] + C

2∑

i=1

∥∥fi(t0) :Nm+`+5(Wν∗(ρ,κi),κi
)
∥∥. (4.20)

Since rD+,cZ
αS[Ξ; c](t, rω) = D+,cUα(t, r, ω)− cZαS[Ξ; c](t, rω), (4.20) and (4.7)

imply (4.18) for |x| ≥ 1. This completes the proof. ¤

5. Proof of Theorem 1.4.

In this section we prove Theorem 1.4. We assume O ⊂ B1 as before. Let all
the assumptions of Theorem 1.4 be fulfilled.

Though there is no essential difficulty in treating the quasi-linear case1, we
concentrate on the semilinear case to keep our exposition simple. Hence we assume
F = F (u, ∂u) in what follows. We also suppose that (φ, ψ) ∈ C∞0 (Ω; RN ×RN )
in the following. Observing that the argument below is independent of the size of
the support of (φ, ψ), one can immediately obtain the result for the general data
by the standard approximation argument.

From the null condition associated with (c1, c2, . . . , cN ), we see that the
quadratic part F

(2)
i of Fi can be written as

F
(2)
i (∂u) = F null

i (∂u) + RI,i(∂u) + RII,i(∂u), (5.1)

where

F null
i (∂u) =

∑

1≤j,k≤N
cj=ck=ci

(
Ajk

i Q0(uj , uk; ci) +
∑

0≤a<b≤3

Bjk,ab
i Qab(uj , uk)

)
,

1In fact, to treat the quasi-linear case, we have only to replace the energy inequality for the
wave equation in Subsections 5.1, 5.2 and 5.4 below with that for systems of perturbed wave
equations which is also standard (remember that the symmetry condition (1.4) is assumed). Such
replacement is not needed for pointwise decay estimates, because loss of derivatives is allowed
there.
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RI,i(∂u) =
∑

1≤j,k≤N

cj 6=ck

∑

0≤a,b≤3

Cjk,ab
i (∂auj)(∂buk),

RII,i(∂u) =
∑

1≤j,k≤N

cj=ck 6=ci

∑

0≤a,b≤3

Djk,ab
i (∂auj)(∂buk)

with suitable constants Ajk
i , Bjk,ab

i , Cjk,ab
i and Djk,ab

i . We put

Hi(u, ∂u) = Fi(u, ∂u)− F
(2)
i (∂u)

for i = 1, 2, . . . , N , so that Hi(u, ∂u) = O(|u|3 + |∂u|3) near (u, ∂u) = (0, 0).
Let u = (u1, u2, . . . , uN ) be a smooth solution to (1.1)–(1.3) on [0, T ) × Ω.

We set

ek,i[ui](t, x) = 〈t + |x|〉Φ0(cit, x)|ui(t, x)|k+1 + 〈x〉 〈cit− |x|〉 |∂ui(t, x)|k

+
〈x〉 〈t + |x|〉

log(2 + t + |x|)
∑

|α|≤k−1

∣∣D+,ciZ
αui(t, x)

∣∣

for 1 ≤ i ≤ N . We also set ek[u](t, x) =
∑N

i=1 ek,i[ui](t, x).
We fix k ≥ 6` + 28, and suppose that

∥∥φ :H2k+1,2k−1(Ω)
∥∥ +

∥∥ψ :H2k,2k−1(Ω)
∥∥ ≤ ε. (5.2)

Note that, by the Sobolev inequality, we have

∑

|α|≤2k−1

∣∣ 〈x〉2k−1
∂α

x φ(x)
∣∣ +

∑

|α|≤2k−2

∣∣ 〈x〉2k−1
∂α

x ψ(x)
∣∣ ≤ Cε

for any x ∈ Ω. Especially we have ek[u](0) ≤ Cε.
Since the local existence for the mixed problem (1.1)–(1.3) has been shown

by [31], what we need for the proof of Theorem 1.4 is a suitable a priori estimate.
Assume that

sup
0≤t<T

∥∥ek[u](t) :L∞(Ω)
∥∥ ≤ Mε (5.3)

holds for some large M(> 1) and small ε(> 0), satisfying Mε ≤ 1. We will prove
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that (5.3) implies

sup
0≤t<T

∥∥ek[u](t) :L∞(Ω)
∥∥ ≤ Cε + CM2ε2, (5.4)

where C is a constant independent of M , ε and T . From (5.4) we find that (5.3)
with M replaced by M/2 is true for M ≥ 4C and ε ≤ 1/(4CM). Then, for small
ε, the standard continuity argument implies that ek[u](t) stays bounded as long
as the solution u exists (observe that

∥∥ek[u](t) :L∞(Ω)
∥∥ is continuous with respect

to t, because u is smooth and supp u(t, ·) ⊂ Bt+R for t ∈ [0, T ) with some R > 0).
Theorem 1.4 follows immediately from this a priori bound.

To this end, the following energy estimate is crucial:

‖∂u(t)‖2k−`−7 ≤ CMε(1 + t)C∗Mε+ρ∗ for t ∈ [0, T ), (5.5)

where C, C∗ and ρ∗ are positive constants independent of M , ε and T . Moreover ρ∗
can be chosen arbitrarily small. Once we find (5.5), we can proceed as in the case
of the corresponding Cauchy problem (though we need careful evaluation of the
possible nonlinearity u3, because of loss of derivatives in (4.7), which is not present
in (3.3)). While, unlike the case of the Cauchy problem, it is not so simple to get
(5.5), because boundary terms coming from the integration–by–parts argument
may cause some loss of derivatives. For this reason, we estimate the space–time
gradient and generalized derivatives separately and improve the estimate of the
latter by using some decay estimate.

In the following, we set r = |x|. We define

w−(t, r) = min
0≤j≤N

〈cjt− r〉 , w
(c)
− (t, r) = min

0≤j≤N ;cj 6=c
〈cjt− r〉

for c ≥ 0, with c0 = 0. Note that, for 0 ≤ j, k ≤ N , cj 6= ck implies

〈cjt− r〉−1 〈ckt− r〉−1 ≤ C 〈t + r〉−1 min{〈cjt− r〉 , 〈ckt− r〉}−1.

Notice also that, for any µ > 0 and c > 0, we have

Φ0(ct, x)−1 ≤ C 〈t + r〉µ 〈ct− r〉−µ
,

where C is a positive constant depending only on µ and c.
In the arguments below, we always suppose that M is large enough, while ε

is small enough to satisfy Mε ¿ 1.
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Here we also remark that if (φ, ψ, F ) satisfies the compatibility condition
for (1.1)–(1.3), then (φi, ψi, fi) ∈ Xci(T ) for 1 ≤ i ≤ N , where fi(t, x) =
Fi(u(t, x), ∂u(t, x),∇x∂u(t, x)).

5.1. Estimates of the energy.
In this subsection, we will prove

∑

|α|≤2k

∥∥∂α∂u(t) :L2(Ω)
∥∥ ≤ CMε(1 + t)C0Mε, (5.6)

where C0 is a universal constant which is independent of M , ε and T .
For 0 ≤ m ≤ 2k, we define zm(t) =

∑2k−m
p=0

∥∥∂p
t ∂u(t) : Hm(Ω)

∥∥. To prove
(5.6), it suffices to prove

zm(t) ≤ CMε(1 + t)C0Mε for 0 ≤ m ≤ 2k. (5.7)

First we evaluate z0(t). For 0 ≤ p ≤ 2k, from (5.3) we get

∣∣∂p
t F (2)(∂u)(t, x)

∣∣ ≤ CMε 〈t〉−1
2k∑

q=0

∣∣∂q
t ∂u(t, x)

∣∣,

and

∣∣∂p
t H(u, ∂u)(t, x)

∣∣ ≤ C|u(t, x)|3 + C

k∑
q=0

∑

|α|≤1

∣∣∂q
t ∂αu(t, x)

∣∣2
2k∑

q=0

∣∣∂q
t ∂u(t, x)

∣∣

≤ CM3ε3 〈t + r〉−3+3µ
w−(t, r)−3µ

+ CM2ε2 〈t + r〉−2+2µ
w−(t, r)−2µ

2k∑
q=0

∣∣∂q
t ∂u(t, x)

∣∣

with small µ > 0. Since we have

∥∥ 〈t + | · |〉−3+3µ 〈cjt− | · |〉−3µ :L2(R3)
∥∥ ≤ Cµ 〈t〉−3/2

for µ > 0 and 0 ≤ j ≤ N , we get

∥∥∂p
t F (u, ∂u)(t) :L2(Ω)

∥∥ ≤ C0Mε(1 + t)−1z0(t) + CM3ε3(1 + t)−3/2
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for 0 ≤ p ≤ 2k. Noting that the boundary condition (1.2) implies ∂p
t u(t, x) = 0

for (t, x) ∈ [0, T )× ∂Ω and 0 ≤ p ≤ 2k + 1, we see from the energy inequality for
the wave equation that

dz0

dt
(t) ≤ C0Mε(1 + t)−1z0(t) + CM3ε3(1 + t)−3/2,

which yields

z0(t) ≤ (z0(0) + CM3ε3)(1 + t)C0Mε ≤ CMε(1 + t)C0Mε. (5.8)

Next suppose m ≥ 1. Then, from the definition of zm, we have

zm(t) ≤ C

2k−m∑
p=0

(∥∥∂p
t ∂u(t) :L2(Ω)

∥∥ +
∑

1≤|α|≤m

∥∥∂p
t ∂α

x ∂tu(t) :L2(Ω)
∥∥

+
∑

1≤|α|≤m

∥∥∂p
t ∂α

x∇xu(t) :L2(Ω)
∥∥
)

≤ C

(
z0(t) + zm−1(t) +

2k−m∑
p=0

∑

2≤|α|≤m+1

∥∥∂p
t ∂α

x u(t) :L2(Ω)
∥∥
)

,

where we have used

∑

1≤|α|≤m

∥∥∂p
t ∂α

x ∂tu(t) :L2(Ω)
∥∥ ≤ C

∑

|α′|≤m−1

∥∥∂p+1
t ∂α′

x ∇xu(t) :L2(Ω)
∥∥.

For 2 ≤ |α| ≤ m + 1, (3.1) yields

∥∥∂p
t ∂α

x u(t) :L2(Ω)
∥∥ ≤ C

(‖∆x∂p
t u(t) :Hm−1(Ω)‖+ ‖∇x ∂p

t u(t) :L2(Ω)‖).

For 0 ≤ p ≤ 2k −m, we see that the second term on the right-hand side in the
above is bounded by z0(t). While, using (1.1), the first term is estimated by

C
(‖∂p+2

t u(t) :Hm−1(Ω)‖+ ‖∂p
t F (u, ∂u)(t) :Hm−1(Ω)‖),

whose first term is bounded by zm−1(t) for 0 ≤ p ≤ 2k −m. On the other hand,
we have
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∥∥∂p
t F (u, ∂u)(t) :Hm−1(Ω)

∥∥ ≤ CMε(1 + t)−1zm−1(t) + CM3ε3(1 + t)−3/2

for 0 ≤ p ≤ 2k −m, as before. In conclusion, we get2

zm(t) ≤ C
(
zm−1(t) + z0(t) + M3ε3(1 + t)−3/2

)
(5.9)

for m ≥ 1. Using (5.8), we obtain (5.6) by the inductive argument in m(≥ 1).

5.2. Estimates of the generalized energy, part 1.
In this subsection we evaluate the generalized derivatives ∂Zαu in L2(Ω) for

|α| ≤ 2k − 1. It follows from (2.3) that

1
2

d

dt

∫

Ω

(|∂tZ
αui|2 + |∇x Zαui|2

)
dx

=
∫

Ω

ZαFi(u, ∂u) ∂tZ
αui dx + c2

i

∫

∂Ω

(ν · ∇x Zαui) (∂tZ
αui) dS, (5.10)

where ν = ν(x) is the unit outer normal vector at x ∈ ∂Ω, and dS is the surface
measure on ∂Ω.

Let α and β be multi–indices with |α| + |β| ≤ 2k − 1. Since |∂β′Zα′u| ≤
Cα′,β′

(|∂u||α′|+|β′| + |u||α′|
)

for any multi–indices α′ and β′, from (5.3) we get

∣∣∂βZαF (u, ∂u)(t, x)
∣∣ ≤ CMε 〈t + r〉−1

w−(t, r)−1|∂u(t, x)||α|+|β|
+ CM2ε2 〈t + r〉−2+2µ

w−(t, r)−2µ|u(t, x)||α| (5.11)

for arbitrarily fixed µ > 0.
Fix small µ0 > 0. Observing that |Zη| ≤ C 〈r〉 |∂η| for any function η, we get

|u||α| ≤ C
(|u|+ 〈r〉 |∂u||α|−1

)
for |α| ≥ 1. Therefore, from (5.11) with |β| = 0 we

obtain

∥∥ZαF (u, ∂u)(t) :L2(Ω)
∥∥

≤ CMε(1 + t)−1‖∂u(t)‖|α| + CM2ε2(1 + t)−1+2µ0‖∂u(t)‖|α|−1

+ CM3ε3(1 + t)−3/2 (5.12)

2We note that, when we consider the quasi-linear case, (5.9) is replaced by

zm(t) ≤ CMεzm(t) + C
`
zm−1(t) + z0(t) + M3ε3(1 + t)−3/2

´
,

but we can easily recover (5.9) from this inequality, because ε is small.
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for |α| ≤ 2k − 1.
While, ∂Ω ⊂ B1 implies |∂Zαu(t, x)| ≤ C

∑
|β|≤|α| |∂β∂u(t, x)| for (t, x) ∈

[0, T ) × ∂Ω. Hence, by the trace theorem, we see that the second term on the
right-hand side of (5.10) is evaluated by

C
∑

|β|≤|α|+1

∥∥∂β∂u(t) :L2(Ω2)
∥∥2

,

which is bounded from above by CM2ε2(1 + t)2C0Mε in view of (5.6).
Now, from (5.10), (5.12) and Young’s inequality, there exist positive constants

C1 and C such that

d

dt
‖∂u(t)‖2m ≤ C1Mε(1 + t)−1‖∂u(t)‖2m

+ CM3ε3(1 + t)−1+4µ0‖∂u(t)‖2m−1 + CM2ε2(1 + t)2C0Mε

for m ≤ 2k − 1, from which we inductively obtain

‖∂u(t)‖2m ≤ CM2ε2(1 + t)2C0Mε+4µ0(m−1)+1 (5.13)

for m ≤ 2k − 1, provided that ε is small enough to satisfy C1Mε ≤ 1. Setting
γ = 4(k − 1)µ0, we obtain

‖∂u(t)‖2k−1 ≤ CMε(1 + t)C0Mε+γ+(1/2). (5.14)

5.3. Pointwise estimates, part 1.
By (3.10) and (5.14) we have

〈x〉 |∂u(t, x)|2k−3 ≤ C‖∂u(t)‖2k−1 ≤ CMε(1 + t)C0Mε+γ+(1/2). (5.15)

Let α and β be multi–indices with |α|+ |β| ≤ 2k − 3. We put

Um,λ(t) = sup
(s,x)∈[0,t]×Ω

N∑

i=1

〈s + |x|〉1−λ Φ0(cis, x)|ui(s, x)|m (5.16)

for λ ≥ 0. Then (5.11) yields
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∣∣∂βZαF (u, ∂u)(t, x)
∣∣ ≤ CMε 〈t + r〉−1

w−(t, r)−1|∂u(t, x)||α|+|β|
+ CM2ε2 〈t + r〉λ−3+3µ

w−(t, r)−3µU|α|,λ(t). (5.17)

Let χ be a non-negative C∞(R)–function satisfying χ(τ) = 1 for τ ≤ 0, and
χ(τ) = 0 for τ ≥ 1. We define

χc,t0,x0(t, x) = χ
(
(ct + 〈x〉)− (ct0 + 〈x0〉)

)
(5.18)

for c > 0 and (t0, x0) ∈ [0, T )×Ω. Observe that if t ∈ [0, t0] and ct+|x| ≤ ct0+|x0|,
then χc,t0,x0(t, x) = 1. We also have Zαχc,t0,x0(t, x) ≤ Cm,c for (t, x) ∈ [0,∞)×R3

and |α| = m, where Cm,c is a constant depending only on m and c. Then, taking
the domain of dependence for (t0, x0) into account, we get

L[g; c](t0, x0) = L[χc,t0,x0g; c](t0, x0). (5.19)

We also have

〈t + |x|〉 ≤ C 〈t0 + |x0|〉 (5.20)

for any (t, x) ∈ supp χc,t0,x0 with t ≥ 0, and any (t0, x0) ∈ [0, T ) × Ω, where C is
a constant depending only on c.

Now we set λ =
(
C0Mε + γ + (1/2)

)
+ γ. Using (5.15) and (5.17) for |α| ≤

2k − `− 6, |β| ≤ ` + 3 and µ = (1− γ)/3, we find

∑

|β|≤`+3

∥∥∂β(χci,t0,x0Fi(u, ∂u))(t0) :N2k−`−6(W1+γ,1−γ)
∥∥

≤ CM2ε2(1 + U2k−`−6,λ(t0)) 〈t0 + |x0|〉λ .

In view of (5.19), by using (4.7) with (ρ, κ1) = (1, 1 − γ) and (f1, f2) =
(χci,t0,x0Fi, 0), we obtain

U2k−`−6,λ(t) ≤ Cε + CM2ε2(1 + U2k−`−6,λ(t)),

which leads to

N∑

i=1

〈t + |x|〉(1/2)−C0Mε−2γ Φ0(cit, x)|ui(t, x)|2k−`−6 ≤ CMε (5.21)
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for (t, x) ∈ [0, T )× Ω, since we may assume CM2ε2 ≤ 1/2.

5.4. Estimates of the generalized energy, part 2.
Since Φ0(cit, x) is bounded for (t, x) ∈ [0,∞)× ∂Ω, from (5.21) we get

∥∥∂Zαu(t) :L2(∂Ω)
∥∥ ≤ C

∥∥|u(t)|2k−`−6 :L∞(∂Ω)
∥∥

≤ CMε 〈t〉−(1/2)+C0Mε+2γ
, (5.22)

for |α| ≤ 2k − `− 7. Now (5.10), (5.12) and (5.22) yield

d

dt
‖∂u(t)‖2m ≤ C2Mε(1 + t)−1‖∂u(t)‖2m + CM3ε3(1 + t)−1+4µ0‖∂u(t)‖2m−1

+ CM2ε2(1 + t)−1+2C0Mε+4γ

for m ≤ 2k − `− 7 with some positive constant C2, which inductively leads to

‖∂u(t)‖2m ≤ CM2ε2(1 + t)(2C0+C2)Mε+4γ+4(m−1)µ0

for m ≤ 2k − ` − 7. Finally we obtain (5.5) if we take C∗ = C0 + C2/2 and
ρ∗ = 3γ (= 12(k − 1)µ0) for example.

5.5. Pointwise estimates, part 2.
(3.10) and (5.5) imply

〈x〉 |∂u(t, x)|2k−`−9 ≤ CMε(1 + t)δ (5.23)

for 0 < ε < ρ∗/(C∗M), where we have set δ = 2ρ∗. Note that we can take ρ∗
arbitrarily small, hence we may assume that δ is small enough in the following.

Using (5.23) and (5.17) with |α| ≤ 2k − 2` − 12, |β| ≤ ` + 3, λ = 2δ, and
µ = (1− δ)/3, we find

∑

|β|≤`+3

∥∥∂β(χci,t0,x0Fi(u, ∂u))(t0) :N2k−2`−12(W1+δ,1−δ)
∥∥

≤ CM2ε2(1 + U2k−2`−12,2δ(t0)) 〈t0 + |x0|〉2δ
.

Similarly to (5.21), this estimate ends up with

〈t + |x|〉1−2δ Φ0(cit, x)|ui(t, x)|2k−2`−12 ≤ CMε (5.24)
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for 1 ≤ i ≤ N and (t, x) ∈ [0, T )× Ω.
From (5.17) (with µ = (1− δ)/3), (5.23) and (5.24), we get

∥∥χci,t0,x0Fi(u, ∂u)(t0) :N2k−2`−12(W1+δ,1−δ)
∥∥ ≤ CM2ε2 〈t0 + |x0|〉2δ

.

From (4.8) and (4.18) with ρ = 1, κ1 = 1 − δ and (f1, f2) = (χci,t0,x0Fi, 0), we
thus obtain

〈r〉 〈t + r〉−2δ 〈cit− r〉 |∂ui(t, x)|2k−3`−16 ≤ CMε, (5.25)

〈r〉 〈t + r〉1−3δ
∑

|α|≤2k−3`−17

∣∣D+,ci
Zαui(t, x)

∣∣ ≤ CMε (5.26)

for 1 ≤ i ≤ N and (t, x) ∈ [0, T ) × Ω, where we have used the fact that log(2 + t

+r) ≤ C 〈t + r〉δ.
5.6. Pointwise estimates, part 3.
From now on, we take advantage of detailed structure of our nonlinearity, and

we shall show

〈r〉 〈cit− r〉1−2δ |∂ui(t, x)|2k−4`−21 ≤ CMε. (5.27)

Note that r is equivalent to 〈t + r〉, when r ≥ 1 and |cit − r| < cit/2. By
Lemma 3.6, with the help of (5.3), (5.24), (5.25), and (5.26), we obtain

∣∣F null
i (∂u)(t, x)

∣∣
2k−3`−17

≤ CM2ε2 〈t + r〉−3+3δ 〈cit− r〉−1 (5.28)

for (t, x) satisfying r ≥ 1 and |cit− r| < cit/2.
On the other hand, 〈cit− r〉 is equivalent to 〈t + r〉, when r < 1 or |cit− r| ≥

(cit/2). Hence, observing that F null
i is quadratic with respect to ∂u, from (5.3)

and (5.25) we get

∣∣F null
i (∂u)(t, x)

∣∣
2k−3`−17

≤ CM2ε2 〈t + r〉−2+2δ 〈r〉−2 (5.29)

for (t, x) satisfying r < 1 or |cit− r| ≥ (cit/2).
Now we find

∥∥F null
i (∂u)(t) :N2k−3`−17(W2−3δ,1)

∥∥ ≤ CM2ε2. (5.30)
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While, (5.3) and (5.25) yield

|RI,i(∂u)(t, x)|2k−3`−17 ≤ CM2ε2 〈r〉−2 〈t + r〉2δ
∑

cj 6=ck

〈cjt− r〉−1 〈ckt− r〉−1

≤ CM2ε2 〈r〉−1 〈t + r〉−2+2δ
w−(t, r)−1 (5.31)

for (t, x) ∈ [0, T )× Ω, and hence we obtain

∥∥RI,i(∂u)(t) :N2k−3`−17(W2−2δ,1)
∥∥ ≤ CM2ε2. (5.32)

Similarly, we have

|RII,i(∂u)(t, x)|2k−3`−17 ≤ CM2ε2 〈r〉−1 〈t + r〉−1+2δ
w

(ci)
− (t, r)−2, (5.33)

which yields

∥∥RII,i(∂u)(t) :N2k−3`−17(W
(ci)
1−2δ,2)

∥∥ ≤ CM2ε2. (5.34)

From (5.3), (5.24) and (5.25) we have

|Hi(u, ∂u)(t, x)|2k−3`−17 ≤ CM3ε3 〈t + r〉−3+3µ+2δ
w−(t, r)−3µ (5.35)

for arbitrarily fixed µ > 0, which implies

∥∥Hi(u, ∂u)(t) :N2k−3`−17(W1+δ,1−3δ)
∥∥ ≤ CM2ε2, (5.36)

if we choose µ = (1− 3δ)/3.
Finally, applying (4.8) with ρ = 1− 2δ, κ1 = 1− 3δ(< ρ) (so that ν∗(ρ, κ1) =

1 + δ), κ2 = 2, f1 = F null
i (∂u) + RI,i(∂u) + Hi(u, ∂u) and f2 = RII,i(∂u), we find

(5.27), since we may assume 1 + δ < 2− 3δ.

5.7. Pointwise estimates, the final part.
By (5.3) and (5.27), we obtain

|RII,i(∂u)(t, x)|2k−4`−21 ≤ CM2ε2 〈r〉−1 〈t + r〉−1
w

(ci)
− (t, r)−2+2δ, (5.37)

which leads to
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∥∥RII,i(∂u)(t) :N2k−4`−21(W
(ci)
1,2−2δ)

∥∥ ≤ CM2ε2. (5.38)

By (5.3) and (5.27), we also obtain

∑

|β|≤`+3

|∂βHi(u, ∂u)(t, x)|2k−5`−24

≤ CM3ε3 〈r〉−1 〈t + r〉−2+2µ
w−(t, r)−1+2δ−2µ

+ CM2ε2 〈t + r〉−3+3µ
w−(t, r)−3µU2k−5`−24,0(t) (5.39)

for fixed µ > 0, where Um,λ is given by (5.16). Choosing µ = (1− δ)/3, we have

∑

|β|≤`+3

∥∥∂βHi(u, ∂u)(t) :N2k−5`−24(W1+δ,1−δ)
∥∥

≤ CM2ε2(Mε + U2k−5`−24,0(t)). (5.40)

In view of (5.30), (5.32), (5.38), and (5.40), the application of (4.7) for ρ = 1,
κ1 = 1− δ(< 1) (so that ν∗(ρ, κ1) = 1 + δ), and κ2 = 2− 2δ(> 1), with the same
choice of f1 and f2 as before, leads to

〈t + r〉Φ0(cit, x)|ui(t, x)|2k−5`−24 ≤ Cε + CM2ε2(1 + U2k−5`−24,0(t)) (5.41)

(observe that we have W1,κ2 ≤ W
(ci)
1,κ2

for κ2 > 1). Now (5.41) yields

〈t + r〉Φ0(cit, x)|ui(t, x)|2k−5`−24 ≤ Cε + CM2ε2, (5.42)

provided that ε is sufficiently small. From (5.40) and (5.42), we obtain

∥∥Hi(u, ∂u)(t) :N2k−5`−24(W1+δ,1−δ)
∥∥ ≤ CM3ε3.

Now (4.8) and (4.18) with (ρ, κ1, κ2) = (1, 1− δ, 2− 2δ) and (f1, f2) as before
imply

〈r〉 〈cit− r〉 |∂ui(t, x)|2k−6`−28 ≤ Cε + CM2ε2, (5.43)

〈r〉 〈t + r〉
log(2 + t + r)

∑

|α|≤2k−6`−29

∣∣D+,ciZ
αui(t, x)

∣∣ ≤ Cε + CM2ε2. (5.44)
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Finally, since 2k−6`−28 ≥ k, from (5.42), (5.43) and (5.44), we obtain (5.4).
This completes the proof. ¤

Appendix A: Proof of Lemma 3.1

Suppose m ≥ 2 and ϕ ∈ Hm(Ω) ∩H1
0 (Ω). Let χ be a C∞0 (R3) function such

that χ ≡ 1 in a neighborhood of O. Let supp χ ⊂ BR for some R > 1. We set
ϕ1 = χϕ and ϕ2 = (1− χ)ϕ, so that ϕ = ϕ1 + ϕ2.

First we estimate ϕ1. The following elliptic estimate is well-known (see Chap-
ter 9 in [3] for instance):

‖w :Hk+2(ΩR)‖ ≤ C(‖∆xw :Hk(ΩR)‖+ ‖w :L2(ΩR)‖) (A.1)

holds for w ∈ Hk+2(ΩR) ∩H1
0 (ΩR) with a non-negative integer k. It is also well-

known that we have

‖w :L2(ΩR)‖ ≤ CR2‖∇xw :L2(Ω)‖ (A.2)

for w ∈ H1
0 (Ω) and R > 1 (see [20] for the proof).

Since ϕ ∈ H1
0 (Ω) and supp χ ⊂ BR, we have ϕ1 ∈ H1

0 (ΩR). Therefore, the
application of (A.1) in combination with (A.2) gives

‖ϕ1 :Hm(Ω)‖ ≤ C
(‖∆xϕ :Hm−2(Ω)‖+ ‖∇xϕ :L2(Ω)‖). (A.3)

Now our task is to show

∑

|α|=m

‖∂α
x ϕ2 :L2(Ω)‖ ≤ C

(‖∆xϕ :Hm−2(Ω)‖+ ‖∇xϕ :L2(Ω)‖), (A.4)

because it implies (3.1) in view of (A.3).
Since ‖∂αw : L2(R3)‖ ≤ C‖∆xw : L2(R3)‖ for |α| = 2 and w ∈ H2(R3), the

left-hand side of (A.4) with m = 2 is estimated by

C‖∆xϕ2 :L2(Ω)‖ ≤ C
(‖∆xϕ :L2(Ω)‖+ ‖∇xϕ :L2(Ω)‖+ ‖ϕ :L2(ΩR)‖).

Hence, using (A.2), we obtain (A.4) for m = 2.
For k ≥ 3, similar argument to the above gives
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∑

|α|=k

∥∥∂α
x ϕ2 :L2(Ω)

∥∥ ≤ C
(∥∥∆xφ :Hk−2(Ω)

∥∥ +
∥∥∇xϕ :Hk−2(Ω)

∥∥)
, (A.5)

and the second term on the right-hand side of (A.5) is bounded by C(
∥∥∆xϕ :

Hk−3(Ω)
∥∥+

∥∥∇xϕ :L2(Ω)
∥∥)

, if we know (3.1) for m = k−1. Hence we inductively
obtain (A.4) (and consequently (3.1)) for m ≥ 2. ¤

Appendix B: Admissible Obstacles

First we assume that O is non-trapping, and we shall show that it is admissible
in our sense. For a, b > 1, it is known that there exist positive constants C and σ

depending on a, b and Ω such that

∑

|α|≤1

∥∥∂αK[φ0, φ1; c](t, ·) :L2(Ωb)
∥∥ ≤ Ce−σt

∥∥~φ0 :H 0(Ω)
∥∥ (B.1)

for any ~φ0 = (φ0, φ1) ∈ H1
0 (Ω) × L2(Ω) satisfying φ0(x) = φ1(x) ≡ 0 for |x| ≥ a

(see for instance Melrose [22], Shibata – Tsutsumi [30]).
Now let (~v0, f) = (v0, v1, f) ∈ Xc,a(T ) with some a > 1. Then, by Duhamel’s

principle, it follows that

∂j
t S[(~v0, f); c](t, x)

= K[(vj , vj+1); c](t, x) +
∫ t

0

K[(0, (∂j
t f)(s)); c](t− s, x)ds (B.2)

for any non-negative integer j and any (t, x) ∈ [0, T ) × Ω, where vj are given by
(1.10). Apparently we have (∂j

t f)(s, ·) ∈ L2(Ω) for 0 ≤ s ≤ t. Thanks to the
compatibility condition, we also find vj ∈ H1

0 (Ω) for any j ≥ 0. Therefore, by
(B.1), for |α| ≤ 1 we have

∥∥∂αK[~vj ; c](t) :L2(Ωb)
∥∥ ≤ Ce−σt

∥∥~vj :H 0(Ω)
∥∥

≤ Ce−σt

(∥∥~v0 :H j(Ω)
∥∥ +

∑

|α|≤j−1

∥∥(∂αf)(0, ·) :L2(Ω)
∥∥
)

(B.3)

and
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∫ t

0

∥∥∂αK[(0, (∂j
t f)(s)); c](t− s) : L2(Ωb)

∥∥ds

≤ C

∫ t

0

e−σ(t−s)
∥∥(∂j

t f)(s) :L2(Ω)
∥∥ds

≤ C(1 + t)−γ sup
0≤s≤t

(1 + s)γ
∥∥(∂j

t f)(s) :L2(Ω)
∥∥ (B.4)

for any γ > 0, where we have put ~vj = (vj , vj+1). Therefore for |α| ≤ 1 and any
non-negative integer j, we have

∥∥∂α∂j
t S[(~v0, f); c](t) :L2(Ωb)

∥∥

≤ C(1 + t)−γ

(∥∥~v0 :H j(Ω)
∥∥ +

∑

|α|≤j

sup
0≤s≤t

(1 + s)γ
∥∥∂αf(s) :L2(Ω)

∥∥
)

. (B.5)

In order to evaluate ∂αv for |α| ≤ m, we have only to combine (B.5) with a
variant of (3.1):

‖ϕ :Hm(Ωb)‖ ≤ C(
∥∥∆xϕ :Hm−2(Ωb′)

∥∥ +
∥∥ϕ :H1(Ωb′)

∥∥, (B.6)

where 1 < b < b′ and ϕ ∈ Hm(Ω) ∩ H1
0 (Ω) with m ≥ 2. In this way, we obtain

(1.11) for any γ > 0 with ` = 0. Hence we see that the non-trapping obstacle O is
admissible.

Now let the obstacle O satisfy one of the assumptions from Ikawa [8], [9].
The assumption in [8] is:

(I–1) O is a union of disjoint compact sets O1 and O2 whose Gaussian curvatures
are strictly positive at every point of their boundaries.

We do not describe the precise assumption in [9], to which we refer as (I–2). For
example, it is fulfilled when

(I–2’) O is a union of any numbers of disjoint balls Oi of the same radius, the
distance between arbitrarily chosen two balls Oj and Ok is sufficiently large,
and the convex hull of Oj and Ok has no intersection with any other balls.

Note that these obstacles are trapping.
Under (I–1) or (I–2), it was proved that

∑

|α|≤1

∥∥∂αK[φ0, φ1; c](t, ·) :L2(Ωb)
∥∥ ≤ Ce−σt

∥∥~φ0 :H `(Ω)
∥∥ (B.7)
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holds for any (φ0, φ1, 0) ∈ Xc,a(T ), where ~φ0 = (φ0, φ1). Here ` = 5 for (I–1), and
` = 2 for (I–2) (see [8], [9]). But these numbers are not important, because we
may assume that ` is as small as we wish.

In fact, suppose that we have (B.7) for some ` = `0 > 1. For a while, we
identify a function on Ωa with its natural extension on Ω obtained by setting
its value being 0 on Ω \ Ωa. Since ~φ0 ∈

(
C∞0 (Ωa)

)2 implies (~φ0, 0) ∈ Xc,a(T ),
we have (B.7) for such ~φ0. Then the standard approximation argument shows
that (B.7) is valid for ~φ0 ∈ H`0+1

0 (Ωa) ×H`0
0 (Ωa). Let 0 < m < 1/2. By taking

interpolation between (B.7) with ` = `0 and the standard energy inequality (which,
in combination with (A.2), gives (B.7) with ` = 0 and σ = 0 for ~φ0 ∈ H1

0 (Ωa) ×
L2(Ωa)), we find that (B.7) with ` = m and σ replaced by σm ≡ (mσ)/`0 is
valid for ~φ0 ∈ H1+m

0 (Ωa) × Hm
0 (Ωa). Since we have Hm

0 (Ωa) = Hm(Ωa) and
H1+m

0 (Ωa) = H1+m(Ωa) ∩ H1
0 (Ωa) for 0 < m < 1/2 (see Lions–Magenes [21,

Chapter 1, Theorems 11.1 and 11.5] for example), finally it follows that there
exists a positive constant σ such that

∑

|α|≤1

∥∥∂αK[φ0, φ1; c](t, ·) :L2(Ωb)
∥∥ ≤ Ce−σt

∥∥~φ0 :H 1(Ω)
∥∥ (B.8)

for any ~φ0 ∈
(
H2(Ω) ∩ H1

0 (Ω)
) × H1(Ω) with ~φ0 ≡ 0 for |x| ≥ a (note that we

have ~φ0|Ωa ∈ (H1+m(Ωa) ∩ H1
0 (Ωa)) × Hm(Ωa) for such ~φ0). This is the exact

assumption for the obstacles in [26] (and its successors [24], [25]).
For (~v0, f) = (v0, v1, f) ∈ Xc,a(T ), we have vj ∈ H2(Ω) ∩ H1

0 (Ω) for any
j ≥ 0, and (∂j

t f)(s, ·) ∈ H1(Ω) for any s ∈ [0, T ) and any j ≥ 0. The support
condition is also satisfied. Now, following similar lines to (B.2)–(B.6), we see that
(B.8) implies (1.11) for any γ > 0 with ` = 1. Hence obstacles satisfying (B.8) are
admissible. Especially, trapping obstacles satisfying (I–1) or (I–2) are admissible.

Appendix C: Proof of Lemma 3.5.

It is well-known that for w ∈ C2
0 (R3) we have

sup
x∈R3

|x||w(x)| ≤ C
∑

|α|≤2

∥∥Z̃αw :L2(R3)
∥∥

(for the proof, see e.g. [15]). Rewriting ϕ as ϕ = ψ1ϕ + (1 − ψ1)ϕ with ψ1 in
(2.13), we see that the left-hand side on (3.10) is evaluated by
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C sup
x∈R3

|x||ψ1(x)ϕ(x)|+ C sup
x∈Ω

|(1− ψ1(x))ϕ(x)|

≤ C
∑

|α|≤2

∥∥Z̃α(ψ1ϕ) :L2(R3)
∥∥ + C

∑

|α|≤2

∥∥∂α
x ((1− ψ1)ϕ) :L2(Ω2)

∥∥

≤ C
∑

|α|≤2

∥∥Z̃αϕ :L2(Ω)
∥∥, (C.1)

where we have used the standard Sobolev inequality to estimate the second term
on the left-hand side. ¤
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