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Abstract. We are interested in a global version of Lê-Ramanujam µ-constant
theorem from the Newton polyhedron point of view. More precisely, we prove a
stability theorem which says that the global monodromy fibration of a polynomial
function with Newton non-degenerate is uniquely determined by its Newton boundary
at infinity. Furthermore, the continuity of atypical values for a family of complex
polynomial functions also is considered.

1. Introduction.

Let f : Cn → C be a complex polynomial function. It is well known that
there exists a (minimal) finite set B(f) in C, called the bifurcation set of f , such
that the restriction:

f : Cn \ f−1(B(f)) → C \B(f)

is a C∞-locally trivial fibration (see, for example, [39], [40], [23], [33], [14]). This
fibration permits us to introduce the global monodromy fibration of f . Namely,
for r > max{|c| | c ∈ B(f)} and S1

r := {c ∈ C | |c| = r}, this is the restriction

f : f−1(S1
r ) → S1

r .

The problem of studying the global monodromy fibration of complex polyno-
mials was considered by many authors, see for example: [26], [16], [13], [17], [37],
[35], [1], [2], [10], [27], [11], [36], [5], [6], [7], etc. However, most of them treat
only polynomial functions, which have isolated singularities affine and at infinity
(see [32] or [34] for the last notion). It seems more difficult to obtain similar
results in the general case.
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In the present work we will be interested in a global version of Lê-Ramanujam
µ-constant theorem from the Newton polyhedron point of view. We will prove a
stability theorem which says that the global monodromy fibration of a polyno-
mial function with Newton non-degenerate is uniquely determined by its Newton
boundary at infinity.

In order to formulate the main result at hand we first need some definitions
about Newton polyhedra, see [20], [25], [9], [3]. Let f : Cn → C be a polynomial
function. We express f as follows: f(z) :=

∑
α∈Nn aαzα. The support supp(f)

is defined to be {α | aα 6= 0}. We denote Γ−(f) to be the convex hull of the set
{0} ∪ supp(f). The Newton boundary at infinity Γ∞(f) is by definition the union
of the closed faces of the polyhedron Γ−(f) which do not contain the origin. Here
and below, by face we shall understand face of any dimension. For each closed
face ∆ of Γ∞(f) we denote by f∆ the polynomial

∑
α∈∆ aαzα. The polynomial

f is called (Newton) non-degenerate if for each face ∆ ∈ Γ∞(f), the system of
equations

∂f∆

∂z1
=

∂f∆

∂z2
= · · · = ∂f∆

∂zn
= 0

has no solutions in (C − {0})n. The polynomial f is called convenient if the
intersection of supp(f) with each coordinate axis is non-empty.

The main result of this paper is the following:

Theorem 1.1. Let f and g be two complex polynomial functions in n vari-
ables such that the following conditions hold

(i) Γ∞(f) = Γ∞(g) 6= ∅; and
(ii) f and g are non-degenerate.

Then the global monodromy fibrations of f and g are isomorphic.

Remark 1.2. It is worth noting that the polynomials f and g can have
non-isolated singularities, affine and at infinity. Moreover, there is no restriction
on the dimension n.

Remark 1.3. Theorem 1.1 can be considered as a global version of the local
results considered by Oka M. [28], [29], [30] (see also [31]). For convenient and
non-degenerate polynomial functions, this result was obtained in [26]. See also
[15], [16], [17], [5], [6], [7] for related results.

Let us now sketch the basic idea of the proof of Theorem 1.1. We first connect
f to g by a family Ft, t ∈ [0, 1], of complex polynomial functions with F0 ≡ f and
F1 ≡ g such that Γ∞(Ft) is constant and such that Ft are non-degenerate for all
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t ∈ [0, 1]. We next show that (i) the finite set B(Ft) ⊂ C is contained in some
open disc of radius independent of t; and (ii) all the fibers of the whole family
Ft over a large circle are transversal to all sufficiently large spheres. Then, we
may show as in [17] (see also [5]) that the global monodromy fibrations of Ft are
isomorphic. As an application of this procedure, we also find (see Theorem 4.2)
that atypical values of Ft, given in [25], depends continuously on t.

The results obtained by Lê D. T. and Ramanujam C. P. and by Oka M. have
played the inspiring role in undertaking this research. On the other hand, the
proof, based on the results of Némethi A. and Zaharia A., uses only the curve
selection lemma as a tool.

The paper is organized as follows. Some necessary results on the bifurcation
set of complex polynomials are recalled in Section 2. The proof of Theorem 1.1 is
given in Section 3. Finally, the continuity of some critical values for a family of
complex polynomials is considered in Section 4.

2. Preliminaries.

2.1. Notations.
Let f : Cn → C be a polynomial function. By gradf we denote the vector

gradf :=
(

∂f
∂z1

, ∂f
∂z2

, . . . , ∂f
∂zn

)
, so the chain rule may be expressed by the inner

product ∂f/∂v = 〈v, gradf〉.
For each r > 0, we will denote Dr := {c ∈ C | |c| < r} for the open disc and

let B2n
r := {z ∈ Cn | ‖z‖ < r} be the open ball in Cn centered in the origin and

with radius r. We will also write S2n−1
r := {z ∈ Cn | ‖z‖ = r} for the sphere.

For I ⊂ {1, 2, . . . , n}, let RI := {α := (α1, α2, . . . , αn) ∈ Rn | αi = 0 for
i 6∈ I}. CI is defined similarly.

2.2. Bifurcation values of a polynomial function.
Let f : Cn → C be a non-constant polynomial function. One can check that

the bifurcation set B(f) always contains the set of critical values Σ0(f) of f ; in
particular, if n = 1 then B(f) = Σ0(f). However, besides the critical values of
f , the set B(f) may contain some extra values, corresponding to the so-called
“critical values at infinity”. This may happen since f is not proper for n ≥ 2
and we cannot apply Ehresmann’s Fibration Theorem. Therefore, the problem of
describing the bifurcation set B(f) is not easy in general. Until now it is solved
only for a few cases. We send to [12], [38], [18] for more details.

We recall now the result of Némethi A. and Zaharia A. [25] on how to estimate
the bifurcation set. For this purpose, let supp(f) be the convex hull of the set
supp(f) \ {0}. A closed face ∆ of supp(f) is called bad if:

(i) the affine subspace of the minimal dimension spanned by ∆ contains the
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origin, and
(ii) there exists a hyperplane H ⊂ Rn with equation a1α1 +a2α2 + · · ·+anαn =

0, where α1, α2, . . . , αn are the coordinates in Rn, such that:
(iia) there exist i and j with ai · aj < 0, and
(iib) H ∩ supp(f) = ∆.

More geometrically, Condition (iia) says that the hyperplane H intersects the
interior of the positive octant of Rn. We denote by B the set of bad faces of
supp(f). For ∆ ∈ B, we define:

Σ
′
0(f∆) :=

{
f∆(z0) | z0 ∈ (C − {0})n and gradf∆(z0) = 0

}
.

Let Σ∞(f) := ∪∆∈BΣ
′
0(f∆). It is clear that Σ

′
0(f∆) ⊂ Σ0(f∆). This, together

with an algebraic version of Sard’s theorem (see [4]), yields that Σ∞(f) is a finite
set.

The following result give an estimation for the bifurcation set B(f) of f in
terms of its Newton boundary at infinity.

Proposition 2.1 ([20], [8], [25] (see also, [41], [19], [6])). Let f : Cn → C

be a non-degenerate polynomial function. Then the following statements hold

(i) If f is convenient, then B(f) = Σ0(f).
(ii) If f is not convenient, then B(f) ⊂ Σ0(f) ∪ Σ∞(f) ∪ {f(0)}.

For the sake of completeness, we also recall the following lemma, that will
help us to prove our second result (see Theorem 4.2).

Lemma 2.2 ([41, Lemma 5.2]). Let f : Cn → C be a non-degenerate poly-
nomial function. Suppose that the hypersurface f−1(c) ⊂ Cn has non-isolated
singularities. Then either c 6= f(0) and there exists a bad face ∆ of supp(f) such
that c ∈ Σ

′
0(f∆), or c = f(0).

3. Proof of Theorem 1.1.

In this section, we give a proof of Theorem 1.1. So let f, g : Cn → C be
two polynomial functions with the same Newton boundary at infinity such that
they are non-degenerate. Since the non-degeneracy condition is an open condition
(see [20, Théorème 6.1], [28, Appendix]), we can take a piecewise analytic family
F (z, t) such that

(i) F (z, 0) = f(z), F (z, 1) = g(z); and
(ii) Ft(z) := F (z, t) as a function of z is a non-degenerate polynomial with

Γ∞(Ft) = Γ∞(f) for each t.
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Hence, we reduce Theorem 1.1 to the case when the family F (z, t) is analytic.
Therefore, with no loss of generality, we may well assume that the family F (z, t)
satisfies these conditions.

We shall need later on the following well known result.

Lemma 3.1. Let r and R0 be positive numbers such that the following con-
ditions hold

(i) the bifurcation set B(Ft) is contained in the open disc Dr; and
(ii) for all c ∈ S1

r and for all R ≥ R0, the fiber F−1
t (c) intersects the sphere

S2n−1
R transversally.

Then the global monodromy fibration of Ft:

Ft : F−1
t (S1

r ) → S1
r

is isomorphic to the following fibration

Ft : F−1
t (S1

r ) ∩B2n
R → S1

r

for all R ≥ R0.

Proof. The following proof is adapted from [17]. We can find a smooth
vector field tangent to the fibers of Ft and pointing out the spheres S2n−1

R . In fact,
since gradFt(z) and z are C-linearly independent vectors for all z ∈ F−1

t (S1
r )∩B2n

R ,
there exists a smooth vector field v(z) such that

(i) 〈v(z), gradFt(z)〉 = 0,
(ii) 〈v(z), z〉 > 0.

(We can construct such a vector field locally, then extend it over F−1
t (S1

r ) by a
smooth partition of unity.) Put

w(z) =
v(z)

2〈v(z), z〉 (‖z‖
4 + 1).

This field is completely integrable. So let pz0(τ) be its integral curve with pz0(0) =
z0. By Condition (i), if z0 ∈ F−1

t (c) ∩B2n
R , then pz0(τ) ∈ F−1

t (c). Moreover,

d‖pz0(τ)‖2
dτ

=
〈

dpz0(τ)
dτ

, pz0(τ)
〉

+
〈

pz0(τ),
dpz0(τ)

dτ

〉
= 2Re

〈
dpz0(τ)

dτ
, pz0(τ)

〉

= 2Re〈w(pz0(τ)), pz0(τ)〉 = ‖pz0(τ)‖4 + 1.
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Hence

arctan ‖pz0(τ)‖2 − arctan ‖z0‖2 = τ.

Or equivalently,

‖pz0(τ)‖2 = tan(τ + arctan ‖z0‖2).

Let τ0 := (π/2)− arctanR2. Then pz0(τ0) →∞ as ‖z0‖ → R. Thus, it induces a
diffeomorphism

F−1
t (S1

r ) ∩B2n
R → F−1

t (S1
r ), z0 7→ pz0(τ0),

which completes the proof of the lemma. ¤

In the next paragraphs we shall show that

(i) there exists a positive constant r such that

Σ0(Ft) ∪ Σ∞(Ft) ∪ {Ft(0)} ⊂ Dr for all t ∈ [0, 1];

(ii) there exists a positive number R0 such that for all R ≥ R0, for all t ∈ [0, 1],
and all c ∈ S1

r , the fiber F−1
t (c) intersects the sphere S2n−1

R transversally.

These facts, together with Lemma 3.1, imply that the global monodromy fibration
of the polynomial function Ft is isomorphic to the fibration Ft : F−1

t (S1
r )∩B2n

R →
S1

r . Hence, the original method of proof of Lê D. T. [21] is applicable; and we
can show that the fibrations Ft : F−1

t (S1
r ) ∩B2n

R → S1
r , t ∈ [0, 1], are isomorphic.

Consequently, the global monodromy fibrations of Ft are isomorphic.

3.1. Boundedness of affine singularities.
The following result says that the set Σ0(Ft) of critical values of Ft is contained

in some open disc of radius independent of t.

Lemma 3.2. There exists a positive number r such that

Σ0(Ft) ⊂ Dr for all t ∈ [0, 1].

Proof. Suppose that this is not the case. Then, by the Curve
Selection Lemma (see [24], [26]), there exist an analytic curve p(s) :=
(p1(s), p2(s), . . . , pn(s)) and a real analytic function t(s), s ∈ (0, ε), such that:
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(i) lims→0 ‖p(s)‖ = ∞;
(ii) lims→0 t(s) = t0 ∈ [0, 1];
(iii) lims→0 F (p(s), t(s)) = ∞; and
(iv) gradF (p(s), t(s)) ≡ 0.

Let I := {i | pi 6≡ 0}. By Condition (i), I 6= ∅. For i ∈ I, expand the
coordinate pi in terms of the parameter: say

pi(s) = z0
i sai + higher order terms in s,

where z0
i 6= 0 and mini∈I ai < 0. Moreover, it follows from Condition (iii) that

Γ∞(Ft) ∩RI 6= ∅. Let d be the minimal value of the linear function
∑

i∈I aiαi on
Γ−(Ft) ∩RI , and let ∆ be the (unique) maximal face of Γ−(Ft) ∩RI where the
linear function takes this value. By a direct calculation, then

F (p(s), t(s)) = F∆(z0, t0)sd + higher order terms in s,

here and below, we put z0 := (z0
1 , z0

2 , . . . , z0
n) with z0

i = 1 for i 6∈ I. By Condition
(iii), d < 0. Consequently, ∆ is a face of Γ∞(Ft).

On the other hand, we have

∂F

∂zi
(p(s), t(s)) =

∂F∆

∂zi
(z0, t0)sd−ai + higher order terms in s.

Hence, it follows from Condition (iv) that

∂F∆

∂zi
(z0, t0) = 0, i = 1, 2, . . . , n,

which is a contradiction to the non-degeneracy assumption of the polynomial func-
tion Ft0(z). ¤

3.2. Boundedness of singularities at infinity.
We next observe the

Lemma 3.3. There exists a positive number r such that

Σ∞(Ft) ⊂ Dr for all t ∈ [0, 1].

Proof. Assuming the contrary and using the Curve Selection Lemma [24],
[26] we can find a bad face ∆ of supp(Ft) and a real analytic curve (p(s), t(s)) ∈
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(C − {0})n × [0, 1], s ∈ (0, ε), such that

(i) lims→0 ‖p(s)‖ = ∞;
(ii) lims→0 t(s) = t0 ∈ [0, 1];
(iii) lims→0 F∆(p(s), t(s)) = ∞; and
(iv) gradF∆(p(s), t(s)) ≡ 0.

Since p(s) ∈ (C − {0})n, we may write

pi(s) = z0
i sai + higher order terms in s,

where z0
i 6= 0 and mini=1,2,...,n ai < 0. Let ∆′ be the maximal face of ∆ where the

linear function
∑n

i=1 aiαi defined on ∆ takes its minimal value, say d. Then we
may write

F∆(p(s), t(s)) = F∆′(z0, t0)sd + higher order terms in s.

By Condition (iii), d < 0. Consequently, ∆′ is a face of Γ∞(Ft).
On the other hand, we also have the following Taylor expansions

∂F∆

∂zi
(p(s), t(s)) =

∂F∆′

∂zi
(z0, t0)sd−ai + higher order terms in s, i = 1, 2, . . . , n.

This fact, combined with Condition (iv), yields that

∂F∆′

∂zi
(z0, t0) = 0, i = 1, 2, . . . , n,

which is a contradiction to the non-degeneracy assumption of the polynomial func-
tion Ft0(z). ¤

Lemma 3.4. There exists a positive number r such that

{Ft(0)} ⊂ Dr for all t ∈ [0, 1].

Proof. The claim easily follows from the continuity of the family F (z, t).
¤

Other properties of the sets Σ0(Ft), Σ∞(Ft) and {Ft(0)} will be given in The-
orem 4.2.
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3.3. Transversality in the neighbourhood of infinity.
In order to finish the proof of Theorem 1.1, we need the following result.

Lemma 3.5 (Compare [26, Lemma 19]). Let r be a positive number such
that the conclusions of Lemmas 3.2, 3.3 and 3.4 are fulfilled. Then there exists R0

sufficiently large such that for all R ≥ R0 and for all c ∈ S1
r we have that the fiber

F−1
t (c) meets transversally the sphere S2n−1

R for each t ∈ [0, 1].

Proof. If the assertion is not true, then by the Curve Selection Lemma
[24], [26] there exist an analytic curve p(s) := (p1(s), p2(s), . . . , pn(s)) and a real
analytic function t(s), s ∈ (0, ε), such that:

(i) lims→0 ‖p(s)‖ = ∞;
(ii) lims→0 t(s) = t0 ∈ [0, 1];
(iii) lims→0 F (p(s), t(s)) = c; and
(iv) gradF (p(s), t(s)) = λ(s)p(s), where λ(s) ∈ C.

By Lemma 3.2, λ(s) 6≡ 0. Thus we may suppose that

λ(s) = λ0sδ + higher order terms in s,

here λ0 6= 0 and δ ∈ Q.
Let I := {i | pi 6≡ 0}. By Condition (i), I 6= ∅. For i ∈ I, let us write

pi(s) = z0
i sai + higher order terms in s,

where z0
i 6= 0 and mini∈I ai < 0. Since c ∈ S1

r , it follows from Lemma 3.4 that the
restriction of Ft on CI is non-trivial i.e., Γ∞(Ft) ∩RI 6= ∅. Let d be the minimal
value of the linear function

∑
i∈I aiαi on Γ−(Ft) ∩RI , and let ∆ be the (unique)

maximal face of Γ−(Ft) ∩RI where the linear function takes this value. Then we
may write

∂F

∂zi
(p(s), t(s)) =

∂F∆

∂zi
(z0, t0)sd−ai + · · · = λ0 z0

i sδ+ai + · · · .

Let I ′ := {i ∈ I | d− ai = δ + ai}. Then i 6∈ I ′ if and only if

∂F∆

∂zi
(z0, t0) = 0

and in this case d− ai < δ + ai. There are two cases to be considered.
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Case 1. The set I ′ is empty. Then it is clear that

∂F∆

∂zi
(z0, t0) = 0, i = 1, 2, . . . , n.

Hence, from the non-degeneracy condition of the polynomial function Ft0 , it follows
that d = 0 and ∆ is a bad face of supp(f). Consequently, c = F∆(z0, t0) ∈
Σ∞(Ft0). However, this is a contradiction to Lemma 3.3 because we know that
c ∈ S1

r and the set Σ∞(Ft0) is contained in the open disc Dr.

Case 2. The set I ′ is non-empty. The function F restricted on the curve
(p(s), t(s)) has the form

F (p(s), t(s)) = F∆(z0, t0)sd + higher order terms in s.

If F∆(z0, t0) 6= 0 then d = 0 because of Condition (iii). Consequently,
dF∆(z0, t0) = 0. This fact, together with the Euler relation

dF∆(z, t) =
n∑

i=1

aizi
∂F∆

∂zi
(z, t),

yields that

0 = dF∆(z0, t0) =
∑

i∈I′
aiz

0
i

∂F∆

∂zi
(z0, t0) =

∑

i∈I′

d− δ

2
z0
i

∂F∆

∂zi
(z0, t0).

But d 6= δ because mini∈I ai < 0 and d− ai ≤ δ + ai for all i ∈ I. Thus we obtain
the absurd equality

0 =
∑

i∈I′
z0
i

∂F∆

∂zi
(z0, t0) =

∑

i∈I′
λ0|z0

i |2.

The lemma is proved. ¤

Now we have finished the preliminaries and can complete the proof of the
main result.

Proof of Theorem 1.1. We fix a large number r ∈ (0,+∞) such that:

(i) for the open disc Dr the conclusions of Lemmas 3.2, 3.3 and 3.4 are fulfilled
i.e., we have
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Σ0(Ft) ∪ Σ∞(Ft) ∪ {Ft(0)} ⊂ Dr for all t ∈ [0, 1].

(ii) for R sufficiently large the conclusion of Lemma 3.5 is satisfied.

Then, by Proposition 2.1, we get

B(Ft) ⊂ Dr for all t ∈ [0, 1].

Hence, it follows from Lemma 3.1 that the global monodromy fibration of the
polynomial function Ft:

Ft : F−1
t (S1

r ) → S1
r .

is isomorphic to the following fibration

Ft : F−1
t (S1

r ) ∩B2n
R → S1

r .

Now, with arguments similar to the ones used in the proof of the classical Lê D.
T. and Ramanujam C. P. theorem (see [17, Lemma 2.1] or [5, Lemma 12]), we
have that the fibrations Ft : F−1

t (S1
r ) ∩B2n

R → S1
r , t ∈ [0, 1], are isomorphic. As a

conclusion, the global monodromy fibrations of the polynomials Ft are isomorphic.
This completes the proof of Theorem 1.1. ¤

Remark 3.6. As in the remark after the proof of Theorem 3 in [5], we
can improve the proof of Lemma 3.1 (and then of Theorem 1.1) in order to get
a trivialization of the whole family of global monodromy fibrations of Ft, that is
to say the family of fibrations F−1

t (S1
r ) → S1

r , t ∈ [0, 1], is topologically a product
family. We shall leave to the reader to verify these facts.

We will illustrate Theorem 1.1 with two examples.

Example 3.7. We study a family of polynomials Ft(x, y) := 2x4−3tx2y2 +
x2y3. An easy computation show that Γ∞(Ft) is constant and the polynomial
function Ft is non-degenerate for all t ∈ [0, 1]. By Theorem 1.1, the global mon-
odromy fibrations of F0 and F1 are isomorphic. We notice that Ft has non-isolated
critical points, Σ0(F0) = {0} and for t 6= 0, Σ0(Ft) = {0,−2t6}. Moreover, it is
not hard to see that B(Ft) = Σ0(Ft).

Example 3.8. Let us consider Ft(x, y, z) := x+ tx2yz+x3y2z2. By a direct
calculation, Γ∞(Ft) is constant and the polynomial function Ft is non-degenerate
for all t ∈ [0, 1]. By again Theorem 1.1, the global monodromy fibrations of F0
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and F1 are isomorphic. In this example, the polynomial function Ft : C3 → C

has no critical points. Moreover, it is easy to check that Σ∞(Ft) = ∅ and the
fiber F−1

t (0) is not topologically equivalent to any other fiber. Consequently,
B(Ft) = {0}. Let us notice that the polynomial function Ft has “non-isolated
singularities at infinity” (see [32] or [34] for this notion).

4. Continuity of the critical values.

Let Ft, t ∈ [0, 1], be a family of complex polynomial functions in n variables.
For the remainder of the paper, motivated by the works of Bodin A. [5], [6],
[7] we shall prove that the multi-valued functions t 7→ Σ∞(Ft) ∪ {Ft(0)} and 7→
Σ0(Ft)∪Σ∞(Ft)∪{Ft(0)} are closed continuous functions under some assumptions.

We say that a multi-valued function t 7→ F(t) is continuous if at each point
t0 and at each value c0 ∈ F(t0) there is a neighborhood U of t0 such that for all
t ∈ U , there exists c(t) ∈ F(t) near c0. F is closed, if, for all points t0, for all
sequences c(t) ∈ F(t), t 6= t0, such that c(t) → c0 ∈ C as t → t0, then c0 ∈ F(t0).

It is well known (see, for example, [6]) that the multi-valued function t 7→
Σ0(Ft) is not closed. Moreover, it is not necessarily continuous even if Γ∞(Ft) is
constant and Ft is non-degenerate for all t ∈ [0, 1]. For instance:

Example 4.1. Let the family Ft(x, y) := x3 − x2y + tx. Then it is easy to
see that Γ∞(Ft) is constant and Ft is non-degenerate for all t ∈ [0, 1]. We have
Σ0(F0) = {0} and for t 6= 0, Σ0(Ft) = ∅. We notice that even if t 7→ Σ0(Ft) is not
continuous and closed, the maps t 7→ Σ∞(Ft)∪{Ft(0)} and t 7→ Σ0(Ft)∪Σ∞(Ft)∪
{Ft(0)} are continuous and closed. This is expressed in the following result.

Theorem 4.2 (Compare [6, Theorem 1]). Let Ft, t ∈ [0, 1], be an analytic
family of complex polynomials such that ∅ 6= Γ∞(Ft) is constant and such that Ft

is non-degenerate for all t ∈ [0, 1]. Then the multi-valued functions

t 7→ Σ∞(Ft) ∪ {Ft(0)}

and

t 7→ Σ0(Ft) ∪ Σ∞(Ft) ∪ {Ft(0)}

are continuous and closed.

Proof of the continuity. We first suppose that c0 ∈ Σ0(Ft0) for some
t0 ∈ [0, 1]. If the hypersurface {Ft0(z) = c0} has only isolated singularities, then
it follows easily from [8, Proposition 2.1] that for all t near t0 there exists a
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critical value c(t) ∈ Σ0(Ft) near c0, and we get the continuity. Otherwise, if
the hypersurface {Ft0(z) = c0} has non-isolated singularities, then from Lemma
2.2, we obtain c0 ∈ Σ∞(Ft0) ∪ {Ft0(0)}. Therefore, it suffices to show that the
multi-valued function t 7→ Σ∞(Ft) ∪ {Ft(0)} is continuous.

Clearly, the function t 7→ {Ft(0)} is continuous. Moreover, for simplicity of
notations, we assume Ft(0) = 0, that is to say the constant term of Ft is zero.

We suppose that c0 ∈ Σ∞(Ft0) and that c0 6= Ft0(0). By Proposition 2.1,
there exists a face ∆ of Γ−(Ft0) that contains the origin such that c0 ∈ Σ

′
0((Ft0)∆)).

We shall use induction on dim(∆) to get the continuity.
The case dim(∆) = 1 : we have to adapt the beginning of the proof of [6,

Lemma 11]. As Γ∞(Ft) is constant, ∆ is a face of Γ−(Ft) for all t. There ex-
ists a family of polynomials Pt ∈ C[u] and a monomial zα := zα1

1 zα2
2 . . . zαn

n

(αi > 0, gcd(α1, α2, . . . , αn) = 1) such that (Ft)∆(z) = Pt(zα). The family Pt is
continuous (in t) and is of constant degree (because Γ−(Ft) is constant). The set
Σ
′
0((Ft0)∆) and more generally the set Σ

′
0((Ft)∆) can be computed by

Σ
′
0((Ft)∆) = {Pt(u) | u ∈ C − {0} and P ′t (u) = 0}.

Since c0 ∈ Σ
′
0((Ft0)∆), there exists a value u0 ∈ C − {0} with P ′t0(u

0) = 0,
and for t near t0 there is a value u(t) ∈ C − {0} near u0 with P ′t (u(t)) = 0
(because P ′t(u) is a continuous function in t and is of constant degree in u). Then
c(t) := Pt(u(t)) ∈ Σ∞(Ft) near c0 and we get the continuity.

We now assume that dim(∆) > 1. If the hypersurface {(Ft0)∆(z) = c0} has
only isolated singularities, then, based again on Proposition 2.1 of [8], we easily
get the continuity. Otherwise, it follows from Lemma 2.2 and c0 6= Ft0(0) that
there exists a bad face ∆′  ∆ of supp(Ft0) with dim(∆′) < dim(∆) such that
c0 ∈ Σ

′
0((Ft0)∆′). By induction, we get the continuity.

Proof of the closeness. Based on the Curve Selection Lemma (see
[24], [26]), it suffices to verify the claim on analytic curves. Note that, the multi-
valued function t 7→ {Ft(0)} is closed because the family F (z, t) is continuous.
Hence, the claim follows immediately from Lemmas 4.3 and 4.4 below. Conse-
quently, the theorem is proved. ¤

Lemma 4.3. Let (p(s), t(s)), s ∈ (0, ε), be a real analytic curve such that :

(i) lims→0 t(s) = t0 ∈ [0, 1];
(ii) lims→0 F (p(s), t(s)) = c0; and
(iii) gradF (p(s), t(s)) ≡ 0.

Then c0 ∈ Σ0(Ft0) ∪ Σ∞(Ft0) ∪ {Ft0(0)}.
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Proof. Indeed, if lims→0 p(s) = z0 ∈ Cn, then c0 = F (z0, t0) ∈ Σ0(Ft0),
and there is nothing to prove. So we suppose that lims→0 ‖p(s)‖ = ∞. Let
I := {i | pi 6≡ 0}. We have that I 6= ∅. If Γ∞(Ft) ∩RI = ∅, then it is easy to see
that c0 = Ft0(0), and there is nothing to prove. Thus, with no loss of generality,
we may well assume that Γ∞(Ft) ∩RI 6= ∅. For i ∈ I, expand the coordinate pi

in terms of the parameter: say

pi(s) = z0
i sai + higher order terms in s,

where z0
i 6= 0 and mini∈I ai < 0. Let d be the minimal value of the linear function∑

i∈I aiαi on Γ−(Ft)∩RI , and let ∆ be the (unique) maximal face of Γ−(Ft)∩RI

where the linear function takes this value. Then we may write

∂F

∂zi
(p(s), t(s)) =

∂F∆

∂zi
(z0, t0)sd−ai + higher order terms in s.

This fact, together with Condition (iii), yields that

∂F∆

∂zi
(z0, t0) = 0, i = 1, 2, . . . , n.

By the non-degeneracy assumption for the polynomial function Ft0(z), we find
that d = 0 and ∆ is a bad face of supp(Ft). Moreover, it is not difficult to see that
c0 = F∆(z0, t0). Consequently, c0 ∈ Σ∞(Ft0). This proves the lemma. ¤

Lemma 4.4. Let ∆ be a bad face of supp(Ft) and let (p(s), t(s)) ∈ (C −
{0})n × [0, 1], s ∈ (0, ε), be a real analytic curve such that

(i) lims→0 t(s) = t0 ∈ [0, 1];
(ii) lims→0 F∆(p(s), t(s)) = c0; and
(iii) gradF∆(p(s), t(s)) ≡ 0.

Then c0 ∈ Σ∞(Ft0) ∪ {Ft0(0)}.

Proof. In fact, we may write

pi(s) = z0
i sai + higher order terms in s,

where z0
i 6= 0 and ai ∈ Q, i = 1, 2, . . . , n. If a1 = a2 = · · · = an = 0, then it is clear

that c0 ∈ Σ
′
0(Ft0) ⊂ Σ∞(Ft0), and there is nothing to prove. In the converse case,

let ∆′ be the maximal face of ∆ where the linear function
∑n

i=1 aiαi defined on ∆
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takes its minimal value, say d. Let I be the smallest subset of the set {1, 2, . . . , n}
such that ∆′ ⊂ RI . If Γ∞((Ft)∆) ∩RI = ∅, then c0 = (Ft0)∆(0) = Ft0(0), and
there is nothing to prove. Thus, with no loss of generality, we may well assume
that Γ∞((Ft)∆) ∩RI 6= ∅. We have the Taylor expansions

∂F∆

∂zi
(p(s), t(s)) =

∂F∆′

∂zi
(z0, t0)sd−ai + higher order terms in s, i = 1, 2, . . . , n.

This fact, combined with Condition (iii), yields that

∂F∆′

∂zi
(z0, t0) = 0, i = 1, 2, . . . , n.

By the non-degeneracy assumption for the polynomial function Ft0(z), hence d = 0
and ∆′ ⊂ ∆ is a bad face of supp(Ft). Moreover, it is easy to see that c0 =
F∆′(z0, t0). Consequently, c0 ∈ Σ∞(Ft0). This ends the proof. ¤
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Society, 75 (1969), 249–312.

[40] J. L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math., 36
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