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Abstract. Let R be a Noetherian local ring with the maximal ideal m and
dim R = 1. In this paper, we shall prove that the module Ext1R(R/Q, R) does not
vanish for every parameter ideal Q in R, if the embedding dimension v(R) of R is
at most 4 and the ideal m2 kills the 0th local cohomology module H0

m(R). The
assertion is no longer true unless v(R) ≤ 4. Counterexamples are given. We shall
also discuss the relation between our counterexamples and a problem on modules of
finite G-dimension.

1. Introduction.

Throughout this paper let R be a Noetherian local ring with the maximal ideal
m and d = dim R. The purpose of this research is to study the following problem
concerning the vanishing of Ext modules. The motivation for the research comes
from a conjecture posed by [5] on the modules of finite G-dimension.

Question 1.1. Let M be an R-module of finite length. Then does it always
hold true that Extd

R(M,R) 6= (0)?

In [5] Takahashi studied a characterization of Gorenstein local rings in terms
of G-dimension and posed the following conjecture: if a given Noetherian local
ring R admits a non-zero R-module of finite length and of finite G-dimension,
then the ring R would be Cohen-Macaulay. We can readily see that the conjecture
holds true, if Question 1.1 has an affirmative answer. This is the reason why we
are interested in Question 1.1. Later we shall closely discuss the relation between
Question 1.1 and the conjecture.

In the present paper we shall restrict our attention on the following very
special case of Question 1.1.
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Question 1.2. Assume that d = 1 and let Q be a parameter ideal in R.
Then does it always hold true that Ext1R(R/Q, R) 6= (0)?

To the surprise of the authors, even in this case the answer is negative in
general, while the answer is affirmative in certain special cases even if the base
ring R is not Cohen-Macaulay, as we shall show in Section 5. Here let us summarize
our conclusion into the following two theorems.

Theorem 1.3. Let d > 0 be an integer. Then there exists a Noetherian local
ring R such that dim R = d and Extd

R(R/Q, R) = (0) for some parameter ideal Q

in R.

Theorem 1.4. Let R be a Noetherian local ring with the maximal ideal m

and dim R = 1. Assume that m2H0
m(R) = (0), where H0

m(R) denotes the 0th local
cohomology module of R. Then

Ext1R(R/Q, R) 6= (0)

for every parameter ideal Q in R, if v(R) ≤ 4. Here v(R) = `R(m/m2) stands for
the embedding dimension of R.

Theorem 1.4 is no longer true unless v(R) ≤ 4. In Section 5 we shall construct
examples, which show that for a given integer v ≥ 5, there exists a parameter ideal
Q in a certain one-dimensional Noetherian local ring (R, m) with the embedding
dimension v(R) = v and m2H0

m(R) = (0), such that Ext1R(R/Q,R) = (0). Hence
Question 1.2 does not hold true in general, and by adding indeterminates to the
rings which are one-dimensional counterexamples, we have the negative answer
Theorem 1.3 to Question 1.1 for arbitrary dimension d > 0.

Let us now briefly explain how this paper is organized. We shall prove Theo-
rem 1.4 in Section 3. For the purpose we need some preliminary results and some
notation as well, which we will summarize in Section 2. In Section 4 we will explore
some examples affirmative to Question 1.2, which do not satisfy conditions stated
in Theorem 1.4. In Section 5 we shall prove Theorem 1.3, constructing counterex-
amples to Question 1.2. In the final Section 6 we will discuss the relation between
our counterexamples constructed in Section 5 and the problem on the modules
of finite G-dimension. We shall guarantee that the conjecture posed by the third
author [5] remains open, showing that our counterexamples given in Section 5 are
not counterexamples for the conjecture of the third author.
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2. Preliminaries.

In this section, we shall summarize some preliminary results which we need
to prove Theorem 1.4.

Let us fix our notation. Unless otherwise specified, let R be a Noetherian
local ring with the maximal ideal m and dim R = 1. We set W = H0

m(R) the
0th local cohomology module and a = (0) : W the annihilator of the ideal W .
Note that W is the unmixed component of R, that is, W =

⋂
p∈Min R q(p), where

(0) =
⋂

p∈Ass R q(p) the primary decomposition of (0) in R. Also, unless otherwise
specified, we denote by Q = (a) the parameter ideal in R, and set I = (0) : Q. The
parameter ideal Q is said to be standard if QW = (0), that is, Q is contained in
a. We denote by µR(M) the minimal number of generators of a finitely generated
R-module M , i.e., µR(M) = dimR/m(M/mM). We denote by v(R) the embedding
dimension of R, i.e., the minimal number of generators of the maximal ideal m.

Let us begin with the following.

Lemma 2.1. For every parameter ideal Q in R, one has an isomorphism

Ext1R(R/Q, R) ∼= ((0) : I)/Q

of R-modules, where I = (0) : Q.

Proof. Let Q = (a). We first consider the following free resolution of R/Q

· · · // Rl
[x1···xl]// R

a // R // R/Q // 0,

where l = µR(I) and I = (x1, . . . , xl). Taking the R-dual of this resolution, we
have a complex

0 // R
a // R

t[x1···xl]// Rl // · · · .

By this complex, we have an isomorphism Ext1R(R/Q,R) ∼= ((0) : I)/Q. ¤

Consequently, Question 1.2 is the same as the following.

Does it always hold that (0) : I 6= Q ?

We notice here that once a is a non-zero divisor on R, then Ext1R(R/Q, R) 6=
(0), because (0) : I = R 6= Q. Hence Ext1R(R/Q, R) 6= (0) for every parameter
ideal Q = (a) in R, if R is a Cohen-Macaulay local ring.
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The following assertions are easy but we shall use them frequently in this
paper.

Lemma 2.2. Let Q be a parameter ideal in R and I = (0) : Q. Then we
have the following.

(1) Q ∩W = QW .
(2) I ⊆ W .
(3) a ⊆ (0) : I.
(4) Q : m ⊆ QW : I.

Furthermore, if the ideal Q is standard, then we have

(5) I = W .
(6) a = (0) : I.
(7) Q : m ⊆ (0) : I.

Proof. Let Q = (a). Since R/W is a 1-dimensional Cohen-Macaulay local
ring, the parameter a is not a zero-divisor on R/W . Hence we have Q ∩ W =
aW = QW . (2) follows from the fact QI = (0). (2) implies (3). (4) follows from
the fact I ⊆ m and assertions (1), (2). Assume QW = (0), that is, W ⊆ I. Then
(5) follows from (2). (5) implies (6). Assertion (7) follows from (4). ¤

Proposition 2.3. Let Q be a parameter ideal in R. Then we have

Ext1R(R/Q, R) 6= (0),

if either of the following conditions holds.

(1) The ideal Q is standard.
(2) The ideal Q2 is standard and I = (0) : Q is contained in Q.

Proof. (1) Suppose Ext1R(R/Q, R) = (0). Then we have the equality Q :
m = Q by Lemma 2.2 (7), which is impossible.

(2) Let Q = (a). We consider the following exact sequence.

0 // R/(Q + I) a // R/Q2 // R/Q // 0.

Since I ⊆ Q, the above short exact sequence yields an exact sequence

Ext1R(R/Q, R) // Ext1R(R/Q2, R) // Ext1R(R/Q, R).

Since the parameter ideal Q2 is standard, we have Ext1R(R/Q2, R) 6= (0) by (1).
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Hence we get that Ext1R(R/Q,R) 6= (0). ¤

It is well known that every parameter ideal Q in a Buchsbaum local ring R is
standard. So, by Proposition 2.3 (1), we have the following.

Corollary 2.4. Assume that the ring R is Buchsbaum. Then we have

Ext1R(R/Q, R) 6= (0)

for every parameter ideal Q in R.

Theorem 2.5. Suppose that a parameter ideal Q = (a) is standard. Then,
for any z ∈ W , the element a+z is a parameter of R, and Ext1R(R/(a+z), R) 6= (0).

Proof. Let z ∈ W . For every p ∈ Min R, since z ∈ p, we have a + z /∈ p.
Hence a + z is a parameter for R. We put b = a + z. Then we have equalities

(0) = (b)[(0) : b]

= a[(0) : b] + z[(0) : b]

= z[(0) : b] (since (0) : b ⊆ W and a is standard).

Therefore z ∈ (0) : ((0) : b). Suppose that Ext1R(R/(b), R) = (0). Then, since
Ext1R(R/(b), R) ∼= [(0) : ((0) : b)]/(b) by Lemma 2.1, we have z ∈ (0) : ((0) : b)
= (b). Hence we can write z = by = (a+ z)y for some y ∈ R. Then y ∈ m because
b /∈ W . Since z(1− y) = ay and 1− y is a unit in R, we have z ∈ Q∩W = QW =
(0). Hence b = a, which is a contradiction by Proposition 2.3 (1). Therefore
Ext1R(R/(b), R) 6= (0). ¤

Proposition 2.6. One has Ext1R(R/Q, R) 6= (0) for every parameter ideal
Q in R, if either of the following conditions holds.

(1) The ideal a is not contained in m2.
(2) W 2 = (0).

Proof. Suppose Ext1R(R/Q,R) = (0) for some parameter ideal Q in R.
(1) Take x ∈ a\m2. Since a ⊆ (0) : I = Q, we can write x = ay for some

y ∈ R. Then y is a unit in R. Hence a = Q. This implies that Q is standard. By
Proposition 2.3 (1), this is impossible.

(2) By assumption W 2 = (0), W ⊆ a ⊆ (0) : I = Q. Hence W ⊆ Q∩W = QW

and we have W = (0) by Nakayama’s lemma. Therefore R is Cohen-Macaulay,
which is a contradiction. ¤
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Before closing this section, let us give the following result.

Theorem 2.7. If v(R) ≤ 2, then Ext1R(R/Q,R) 6= (0) for every parameter
ideal Q in R.

Proof. We may assume that v(R) = 2. Furthermore, passing to the com-
pletion, we may assume that R is complete. Then there exists a two-dimensional
regular local ring S with the maximal ideal n such that R ∼= S/J , where J is an
ideal in S whose height is one. Since we may assume that R is not Cohen-Macaulay,
we can write J = fL for some non-zero element f ∈ n and some n-primary ideal L

in S. Since W ∼= (f)/J is the unmixed component of R, we have W ∼= S/L. There-
fore LR ⊆ (0) : W = a. Here, suppose that Ext1R(R/Q, R) = (0) for some param-
eter ideal Q in R. Let Q = gR, where g ∈ n. Then, since LR ⊆ a ⊆ (0) : I = Q,
we have L ⊆ (g) + J and hence L = [L ∩ (g)] + J . Since J ⊆ nL, L = L ∩ (g) by
Nakayama’s lemma. Hence we have L ⊆ (g). But this is impossible because L is
n-primary and dim S = 2. ¤

3. Proof of Theorem 1.4.

The purpose of this section is to give a proof of Theorem 1.4. Recall that R

is a Noetherian local ring with the maximal ideal m and dim R = 1. Let k = R/m

be the residue field of R. We set W = H0
m(R) and a = (0) : W . We denote by

v(R) the embedding dimension of R. With these notation and assumption, we
shall prove the following.

Theorem 3.1. Let Q be a parameter ideal in R and I = (0) : Q. Suppose
that m2W = (0). Then

Ext1R(R/Q, R) 6= (0),

if one of the following holds.

(1) v(R) ≤ 4.
(2) µR(W ) ≤ 1.
(3) µR(I) ≤ 1.
(4) v(R/I) ≤ 2.

Proof. Suppose Ext1R(R/Q, R) = (0). Then, since Ext1R(R/Q, R) ∼= ((0) :
I)/Q by Lemma 2.1, we have (0) : I = Q. Let Q = (a). We first note that m2 ⊆ a

and Q2 is standard by the assumption m2W = (0). By Proposition 2.6 (1), we
have a ⊆ m2 and hence a = m2. Also, a /∈ m2 because Q is not standard by
Proposition 2.3 (1). Since m2 = a ⊂ (0) : I = Q, we have m2 = am. Note that
mIW ⊆ m2W = (0). Hence mW ⊆ ((0) : I) ∩ W = Q ∩ W = QW . Therefore



On vanishing of certain Ext modules 1051

mW = QW . Furthermore one can check that I is not contained in m2. Indeed, if
I ⊆ m2, then I ⊆ m2 = a ⊂ Q, which is impossible by Proposition 2.3 (2).

Now let l = `R((I + m2)/m2) > 0 and take x1, . . . , xl ∈ I such that
{xi mod m2 | 1 ≤ i ≤ l} is a k-basis of (I + m2)/m2. Then we have the following.

Claim 1.

(i) a, x1, . . . , xl is a part of a minimal system of generators for m.
(ii) The equality (0) : (x1, . . . , xl) = (0) : I holds.

Proof of Claim.

(i) Let α, βi ∈ R and suppose that αa +
∑l

i=1 βixi ∈ m2. Since m2 = am, we
can write αa+

∑l
i=1 βixi = aγ for some γ ∈ m. Hence (α−γ)a ∈ (x1, . . . , xl) ⊆ I =

(0) : a. If α is a unit in R, then α− γ is also a unit in R and hence a ∈ I = (0) : a

and a2 = 0, which is impossible because a is a parameter. Therefore α ∈ m and
hence each βi ∈ m.

(ii) I ⊆ (x1, . . . , xl) + m2, so that the equality I = [(x1, . . . , xl) + m2] ∩ I =
(x1, . . . , xl) + [m2 ∩ I] holds. Since m2 ∩ I ⊆ Q ∩W = aW = mW ⊆ (0) : m, we
then have the equality (0) : (x1, . . . , xl) = (0) : I. ¤

Let m = (a, x1, . . . , xl, xl+1, . . . , xn), where n + 1 = v(R). Since m2 = am,
we can write each xixj = aδij for some δij ∈ m. Then we may assume that
δij ∈ (a, xl+1, . . . , xn) because axi = 0 for all 1 ≤ i ≤ l. Let V be the k-subspace
of m/m2 spanned by {δij mod m2 | 1 ≤ i ≤ l, 1 ≤ j ≤ n} and let q = dimk V . Then

Claim 2. q ≤ n− l.

Proof of Claim. It is clear that q+l ≤ n+1. Suppose q+l = n+1. Then
(a, xl+1, . . . , xn) ⊆ (δij | 1 ≤ i ≤ l, 1 ≤ j ≤ n) + m2, so that (a, xl+1, . . . , xn) =
(δij | 1 ≤ i ≤ l, 1 ≤ j ≤ n) + [m2 ∩ (a, xl+1, . . . , xn)]. Since m2 = am, we have
(a, xl+1, . . . , xn) = (δij | 1 ≤ i ≤ l, 1 ≤ j ≤ n) + m(a, xl+1, . . . , xn). Hence
(a, xl+1, . . . , xn) = (δij | 1 ≤ i ≤ l, 1 ≤ j ≤ n) by Nakayama’s lemma and hence
the equality

m = (x1, . . . , xl) + (δij | 1 ≤ i ≤ l, 1 ≤ j ≤ n)

holds. Let p ∈ Min R. Then a /∈ p. Since axi = 0 for all 1 ≤ i ≤ l, we have
(x1, . . . , xl) ⊆ p. Hence aδij = xixj ∈ p for all 1 ≤ i ≤ l and 1 ≤ j ≤ n. Therefore
(δij | 1 ≤ i ≤ l, 1 ≤ j ≤ n) ⊆ p. Hence m ⊆ p, which is impossible. Thus we have
the inequality q + l ≤ n. ¤

For any n-elements a1, . . . , an ∈ R, we consider the following condition:



1052 S. Goto, F. Hayasaka and R. Takahashi

ci :=
n∑

j=1

ajδij ∈ m2 for all 1 ≤ i ≤ l. (3.1.1)

The elements a1, . . . , an ∈ R satisfying condition 3.1.1 have the following
property.

Claim 3. If the elements a1, . . . , an ∈ R satisfy condition 3.1.1, then ai ∈ m

for all 1 ≤ i ≤ n.

Proof of Claim. For any 1 ≤ i ≤ l,

aci =
n∑

j=1

aj(aδij) =
n∑

j=1

aj(xixj) = xi

n∑

j=1

ajxj .

Hence we have

a2ci = axi

n∑

j=1

ajxj = 0,

because axi = 0 for all 1 ≤ i ≤ n. Therefore each ci belongs to W . Since
a1, . . . , an satisfy condition 3.1.1, ci ∈ m2 ∩ W ⊆ Q ∩ W = aW . Hence aci =
xi

( ∑n
j=1 ajxj

)
= 0 for all 1 ≤ i ≤ l. Therefore we have

n∑

j=1

ajxj ∈ (0) : (x1, . . . , xl) = (0) : I = Q.

We write
∑n

j=1 ajxj = az for some z ∈ R. Then aj ∈ m for all 1 ≤ j ≤ n, because
the set {a, x1, . . . , xn} is a minimal system of generators for m. ¤

Claim 4. ql ≥ n. Hence we have l ≥ 2 and n− l ≥ 2.

Proof of Claim. We take ξ1, . . . , ξq ∈ (δij | 1 ≤ i ≤ l, 1 ≤ j ≤ n) such
that {ξk modm2 | 1 ≤ k ≤ q} is a k-basis of V and write

δij ≡
q∑

k=1

cik
j ξk mod m2,

where cik
j ∈ R. We now consider the following system of linear equations in

variables y1, . . . , yn over k = R/m:
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n∑

j=1

cik
j yj = 0 (1 ≤ i ≤ l, 1 ≤ k ≤ q), (3.1.2)

where ∗̄ denotes the reduction of ∗mod m. Suppose a1, . . . , an ∈ k is a solution of
3.1.2. Then

∑n
j=1 ajc

ik
j ∈ m for all 1 ≤ i ≤ l, 1 ≤ k ≤ q. Therefore we have

ci =
n∑

j=1

ajδij ≡
n∑

j=1

aj

( q∑

k=1

cik
j ξk

)
=

q∑

k=1

( n∑

j=1

ajc
ik
j

)
ξk ≡ 0mod m2.

Hence the elements a1, . . . , an satisfy condition 3.1.1. Thus aj = 0 for all 1 ≤ j ≤ n

by Claim 3. Therefore 3.1.2 has the only trivial solution, which shows that ql ≥ n.
This implies l ≥ 2 and n − l ≥ 2. Indeed, if l = 1, then n ≤ q ≤ n − 1 by Claim
2. This is impossible. Also, if n − l ≤ 1, then n ≤ ql ≤ (n − l)l ≤ l ≤ n. Hence
n = ql = (n − l)l = l. Therefore q = 1 and n = l. Again, by Claim 2, this is
impossible. ¤

Now suppose v(R) ≤ 4. Then v(R) − 1 = n = (n − l) + l ≥ 4, which is a
contradiction. Suppose µR(W ) ≤ 1. Since (I+m2)/m2 ⊆ (W +m2)/m2 = W/mW ,
it follows l ≤ 1, which is a contradiction. If µR(I) ≤ 1, then l ≤ 1. If v(R/I) =
`R(m/(I + m2)) ≤ 2, then l = `R((I + m2)/m2) ≥ v(R)− 2 = (n + 1)− 2 = n− 1.
Hence n− l ≤ 1, which is a contradiction.

Consequently, we have Ext1R(R/Q,R) 6= (0). This is a proof of Theorem 3.1.
¤

As a direct consequence, we have the following, which is Theorem 1.4.

Corollary 3.2. If m2W = (0) and v(R) ≤ 4, we then have

Ext1R(R/Q,R) 6= (0) for every parameter ideal Q in R.

Remark 3.3. The assumption in Corollary 3.2 is the best possible. Indeed,
in Section 5, we shall construct examples, showing that for a given integer v ≥ 5,
there exists a one-dimensional Noetherian local ring (R, m) with the embedding
dimension v(R) = v and m2W = (0), which contains a parameter ideal Q such
that Ext1R(R/Q, R) = (0).

4. Affirmative examples.

In this section, we shall give some affirmative examples. First, we give the
following example, which follows from Theorem 1.4.
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Example 4.1. Let k be a field and let S = k[[X, Y, Z]] be a formal power
series ring. Set U = (X, Y ), L = (X2, XY − Y Z, Y 2 −XZ, Z2) and J = U ∩ L.
We put R = S/J . Then dim R = 1 and we have Ext1R(R/Q,R) 6= (0) for every
parameter ideal Q in R.

Proof. One can check that J = (X2, XY −Y Z, Y 2−XZ, XZ2, Y Z2). Let
x, y denote respectively the reductions of X, Y mod J . Then, since the unmixed
component of R is p := (x, y), we have W = p. It is easy to see that v(R) = 3
and m2W = (0). Hence Ext1R(R/Q,R) 6= (0) for every parameter ideal Q in R by
Theorem 1.4. ¤

To construct another class of affirmative examples, we need the following.

Proposition 4.2. Let (S, n) be a regular local ring with dim S > 0. Let U ,
L be ideals in S satisfying the following three conditions.

(i) The ring S/U is a one-dimensional Cohen-Macaulay ring.
(ii) The ideal L is an n-primary ideal.
(iii) The ideal J := U ∩ L is contained in n2.

We put R = S/J . Then dim R = 1 and we have

Ext1R(R/Q, R) 6= (0) for every parameter ideal Q in R,

if either of the following conditions holds.

(1) The ideal L is not contained in n2.
(2) The ideal J = U ∩ L is contained in nL.

Proof. We may assume that the ideal U is not contained in L. Since
W ∼= U/J , we have LR ⊆ (0) : W = a. Suppose L is not contained in n2. Then a

is not contained in m2, since J = U ∩L ⊆ n2. By Proposition 2.6 (1), we have that
Ext1R(R/Q, R) 6= (0) for every parameter ideal Q in R. Suppose J ⊆ nL. Assume
the contrary and choose a parameter ideal Q = fR in R such that (0) : I = Q,
where f ∈ n. Since a ⊆ (0) : I = Q, we get L ⊆ (f)+J . Hence L = [(f)∩L]+nL.
By Nakayama’s lemma, we have L = (f) ∩ L. Therefore dimS = 1 and hence
U = (0). This is a contradiction. ¤

Using this, we have the following simple affirmative example, which does not
follow from Theorem 1.4.

Example 4.3. Let n > 0 and m > l > 0 be integers. Let k be a field and let
S = k[[X1, X2, . . . , Xn, Z]] be a formal power series ring. Set U = (X l

1, . . . , X
l
n),
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L = (Xm
1 , . . . , Xm

n , Z) and J = U ∩L. Then J ⊆ n2 and L is not contained in n2,
where n = (X1, X2, . . . , Xn, Z). Hence, for every parameter ideal Q in R := S/J ,
we have Ext1R(R/Q,R) 6= (0).

The following example satisfies neither of the assumptions of Theorem 1.4
and Proposition 4.2. But Ext1R(R/Q, R) 6= (0) holds for every parameter ideal Q

in R.

Example 4.4. Let k be a field and let S = k[[X, Y, Z]] be a formal power
series ring. Set U = (X, Y ), L = (X2, Y 2, Z2) and J = U ∩ L. We put R = S/J .
Then dim R = 1 and we have Ext1R(R/Q, R) 6= (0) for every parameter ideal Q in
R.

Proof. One can check that J = (X2, Y 2, XZ2, Y Z2). Let x, y, z denote
respectively the reduction of X, Y, Z mod J . Since the unmixed component of
R is p := (x, y), we have W = p. Then it is easy to see that m2W 6= (0) and
m3W = (0). Suppose that there exists a parameter ideal Q = (a) in R such that
Ext1R(R/Q, R) = (0). We may assume that a = zn + b where n > 0 and b ∈ p.
Furthermore, since z2 is standard, we may assume that a = z + b. Indeed, if
a = zn + b for some n ≥ 2, then Ext1R(R/(a), R) 6= (0) by Theorem 2.5, because
zn is standard and b ∈ W .

Since xyW = (0), xy ∈ (0) : W = a ⊆ (0) : I = Q. We write xy = ac for
some c ∈ R. Then c ∈ W because ac ∈ W = p and a /∈ p. Here we write

b = b1x + b2y + b3xy + b4yz + b5zx + b6xyz,

c = c1x + c2y + c3xy + c4yz + c5zx + c6xyz,

where bi, ci ∈ k for all 1 ≤ i ≤ 6. Then we have

xy = ac

= (z + b)c

= (b1c2 + b2c1)xy + c2yz + c1zx + (c3 + b1c4 + b2c5 + b4c1 + b5c2)xyz.

Since {xy, yz, zx, z2} is a minimal system of generators for m2, we then have
c1 = c2 = 0 and b1c2 + b2c1 = 1. This is a contradiction. ¤

5. Counterexamples.

In this section, we will consider constructing examples which give a negative
answer to Question 1.2.
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Let n, l be integers with 2 ≤ l ≤ n− 2. Let k be a field, S = k[X1, . . . , Xn, A]
a polynomial ring. The ring S is a Z-graded ring with S0 = k and deg Xi =
deg A = 1 for 1 ≤ i ≤ n. Set V =

∑n
j=l+1 kXj . Note that dimk S1 = n + 1 ≥ 5.

Lemma 5.1. There exists an l× n matrix ∆ = (∆i,j) over S which satisfies
the following.

(1) The submatrix (∆i,j)1≤i,j≤l is symmetric.
(2) V =

∑
1≤i≤l, 1≤j≤n k∆i,j.

(3) If c1, . . . , cn ∈ k satisfies ∆
( c1...

cn

)
= 0, then c1 = · · · = cn = 0.

Proof. If l ≤ n− l, then set

∆ =




Xl+1 Xl+2 · · · X2l 0 · · · 0

Xl+2 0 · · · 0 0 · · · 0
...

...
...

...
...

X2l−1 0 · · · 0 0 · · · 0

X2l 0 · · · 0 Xl+1 · · · Xn




.

It is easy to see that this matrix satisfies all the conditions in the lemma.
Let us consider the case where l > n − l. Put α = n − l. We can write

l = αq + r for some 0 ≤ r < α.

Claim. One has 0 < q ≤ l − 2.

Proof of Claim. If q = 0, then l = r < α, which is a contradiction. Hence
q > 0. Assume q > l−2. Then q ≥ l−1, and we have l−r = αq ≥ α(l−1) ≥ 2(l−1)
since α ≥ 2. Hence 2 ≤ l ≤ 2 − r ≤ 2. Therefore we obtain l = 2 and r = 0. It
follows that 2 = αq. Since α ≥ 2, we get α = 2 = l > α. This is a contradiction.

¤

We construct a matrix ∆ as follows:





∆i,j = ∆j,i = Xl+j−α(i−1) if 1 ≤ i ≤ q and α(i− 1) < j ≤ αi,

∆q+1,j = ∆j,q+1 = Xj+r if αq < j ≤ l,

∆l,j = Xj if l < j,

∆i,j = 0 otherwise.

Then we can check that this matrix ∆ satisfies the three conditions in the lemma.
¤
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Let ∆ be a matrix satisfying the conditions in Lemma 5.1. We define an ideal
J of S as follows:

J = (AX1, . . . , AXl) + (Xl+1, . . . , Xn)2 + (XiXj −A∆i,j)1≤i≤l, 1≤j≤n.

Since the submatrix (∆i,j)1≤i,j≤l is symmetric, we have

J = (AX1, . . . , AXl) + (Xl+1, . . . , Xn)2

+ (XiXj −A∆i,j)1≤i≤j≤l + (XiXj −A∆i,j)1≤i≤l, l+1≤j≤n.

Set N = S+ =
⊕

m>0 Sm ⊆ S. Lemma 5.1 says that ∆i,j is in V . Since V

is contained in S1, the ideal J is graded and contained in N2. Put R = S/J

and M = R+ = N/J . Let a, xi, δi,j be the residue classes of A,Xi, ∆i,j in R,
respectively.

Proposition 5.2. One has the following.

(1) dim R = 1 and Min R = {p}, where p = (x1, . . . , xn).
(2) M2 = aM , M3 = (a3) and M2W = (0).
(3) W = p and Wi = (0) for all i ≥ 3.

Proof. (1) We make a claim.

Claim. One has
√

J = (X1, . . . , Xn).

Proof of Claim. Note that (X1, . . . , Xn) is a radical ideal of S. Hence
it is enough to show that V (J) = V (X1, . . . , Xn). Let P ∈ V (J). Since
(Xl+1, . . . , Xn)2 is contained in J , the elements Xl+1, . . . , Xn belong to P . Hence
V is contained in P , and we have all ∆i,j are in P by Lemma 5.1(2). As
XiXj − A∆i,j is in J , all XiXj are in P . In particular, X2

i is in P for 1 ≤ i ≤ l.
Thus Xi ∈ P for 1 ≤ i ≤ l.

Conversely, let P ∈ V (X1, . . . , Xn). Then V is contained in P , and Lemma
5.1(2) says that all ∆i,j are in P . Hence all XiXj −A∆i,j are in P , and therefore
J is contained in P . ¤

It follows from the above claim that dim R = dimS/J = dim S/
√

J =
dim k[A] = 1 and that min V (J) = min V (

√
J) = min V (X1, . . . , Xn) =

{(X1, . . . , Xn)}, hence Min R = {p}.
(3) We begin with making the following claim.

Claim 1. One has a2xi = 0 for 1 ≤ i ≤ n.
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Proof of Claim. The claim is obvious for 1 ≤ i ≤ l, so let l + 1 ≤ i ≤ n.
Then Xi is in V =

∑
1≤α≤l, 1≤β≤n k∆α,β , and we have Xi =

∑
α,β cα,β∆α,β for

some cα,β ∈ k. Hence xi =
∑

α,β cα,βδα,β , and we get axi =
∑

α,β cα,β(aδα,β) =∑
α,β cα,β(xαxβ). Therefore we obtain a2xi =

∑
α,β cα,β(axα)xβ = 0 since axα =

0. ¤

Note that R/(a) is artinian. Hence a is a homogeneous parameter of R. The
above claim shows that a2p = (0). Since (a) is M -primary, we have Msp = (0)
for some s > 0. It follows that p is contained in W . On the other hand, as the
ideal W has finite length, it is nilpotent. Therefore W is contained in p, and thus
W = p.

Here we make the following two claims:

Claim 2. One has axixj = 0 for 1 ≤ i, j ≤ n.

Proof of Claim. It holds that axm = 0 if 1 ≤ m ≤ l. Hence we may
assume l + 1 ≤ i, j ≤ n. Since (xl+1, . . . , xn)2 = (0), we have xixj = 0. ¤

Claim 3. One has xixjxh = 0 for 1 ≤ i, j, h ≤ n.

Proof of Claim. The claim holds if l + 1 ≤ i, j, h ≤ n since
(xl+1, . . . , xn)2 = (0). Let 1 ≤ i ≤ l. Then xixj = aδi,j , and xixjxh = aδi,jxh.
Note that δi,j is in kxl+1 + · · · + kxn. If l + 1 ≤ h ≤ n, then δi,jxh = 0 as
(xl+1, . . . , xn)2 = (0), and we get xixjxh = 0. If 1 ≤ h ≤ l, then axh = 0, and
xixjxh = 0. ¤

It follows from Claims 1, 2 and 3 that Wi = (0) for all i ≥ 3.

(2) Since M = (x1, . . . , xn, a) = p+(a), we have M2 = aM + p2. For integers
α, β with 1 ≤ α ≤ β ≤ n, we have

xαxβ =

{
aδα,β (α ≤ l),

0 (l + 1 ≤ α),

which is in aM . Thus M2 = aM , and M3 = aM2 = a2M = a2p + (a3) = (a3) by
Claim 1. Added to it, we have M2W = M2p = aMp = a(p + (a))p = ap2 = (0)
by Claim 2. ¤

Lemma 5.3. The elements axl+1, . . . , axn, a2 form a k-basis of R2.

Proof. First of all, we claim the following.

Claim. One has J + (AXl+1, . . . , AXn, A2) = N2.
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Proof of Claim. Put L = J + (AXl+1, . . . , AXn, A2). It is obvious that
L is contained in N2. Fix integers α, β with 1 ≤ α ≤ β ≤ n. If l + 1 ≤ α, then
XαXβ is in J , hence in L. If α ≤ l, then XαXβ − A∆α,β is in J . Since ∆α,β is
in V , the element A∆α,β is in the ideal A(Xl+1, . . . , Xn), which is contained in L.
Hence XαXβ ∈ L. Thus the element XαXβ is in L for 1 ≤ α ≤ β ≤ n. Added to
it, we have NA = (AX1, . . . , AXl) + (AXl+1, . . . , AXn, A2) ⊆ L. Consequently,
the ideal N2 = (X1, . . . , Xn)2 + NA is contained in L. ¤

The above claim implies that M2 = (axl+1, . . . , axn, a2). Hence we have R2 =
(M2)2 = k ·axl+1+· · ·+k ·axn+k ·a2. Therefore dimk R2 ≤ α+1, where α = n−l.
Assume dimk R2 < α+1. Then dimk S2 = dimk R2 +dimk J2 < (α+1)+dimk J2.
We have

J = (AX1, . . . , AXl)︸ ︷︷ ︸
l

+(Xl+1, . . . , Xn)2︸ ︷︷ ︸
α(α+1)

2

+ (XiXj −A∆i,j)1≤i≤j≤l︸ ︷︷ ︸
l(l+1)

2

+(XiXj −A∆i,j)1≤i≤l, l+1≤j≤n︸ ︷︷ ︸
lα

.

Hence dimk J2 ≤ l + α(α + 1)/2 + l(l + 1)/2 + lα = (n2 + n + 2l)/2, and therefore
dimk S2 < (α + 1) + (n2 + n + 2l)/2 = (n + 1)(n + 2)/2 = dimk S2. This is a con-
tradiction, and it must hold that dimk R2 = α+1. It follows that axl+1, . . . , axn, a2

form a k-basis of R2. ¤

Now we are in the position to state and prove the main result of this section.

Theorem 5.4. The element a is a homogeneous parameter of R satisfying
(0) : ((0) : a) = (a), namely, Ext1R(R/(a), R) = (0).

Proof. Set I = (0) : a. Let us prove the theorem step by step.

Step 1. The ideal I is contained in W .
Indeed, since (a) is an M -primary ideal, there is an integer r > 0 such that

Mr is contained in (a). Since aI = (0), we have MrI = (0).

Step 2. We have I = I1 + I2.
Indeed, according to Proposition 5.2(3), it holds that W = W0 + W1 + W2.

Note that W0 = W ∩R0 = W ∩k = (0). Hence W = W1+W2. Since I is contained
in W , we have I = I1 + I2.

Step 3. We have I2 = W2.
In fact, since I is contained in W , I2 is contained in W2. Proposition 5.2(3)
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shows that MW2 = (0), hence aW2 = (0). Thus W2 is contained in I = (0) : a.
Hence W2 is contained in I2.

Step 4. We have I2 ⊆ (x1, . . . , xl).
In fact, since I2 = W2, it suffices to check that W2 is contained in (x1, . . . , xl).

Let φ ∈ W2. Note that W2 = p2 = p ∩ R2 = (x1, . . . , xn) ∩ R2. Hence we can
write φ =

∑n
i=1 xiξi for some ξi ∈ R1. Let us show that xiξi is in (x1, . . . , xl)

for 1 ≤ i ≤ n. This is trivial if 1 ≤ i ≤ l, so let l + 1 ≤ i ≤ n. Then xixj = 0
for l + 1 ≤ j ≤ n, and hence the element xixj is in (x1, . . . , xl) for 1 ≤ j ≤ n.
As we saw in the proof of Claim 1 in the proof of Proposition 5.2, we can write
axi =

∑
α,β cα,β(xαxβ) for some cα,β ∈ k. Hence axi ∈ (x1, . . . , xl). Since ξi

belongs to R1 = kx1 + · · ·+ kxn + ka, we obtain xiξi ∈ (x1, . . . , xl).

Step 5. We have I = (x1, . . . , xl).
Indeed, as axi = 0 for 1 ≤ i ≤ l, the ideal (x1, . . . , xl) is contained in I = (0) :

a. Suppose that (x1, . . . , xl) is strictly contained in I, and choose a homogeneous
element φ ∈ I − (x1, . . . , xl). Since I = I1 + I2, the element φ is in either I1 or
I2. However I2 is contained in (x1, . . . , xl), φ must be in I1, hence in W1 = p1 =
kx1 + · · ·+ kxn. Therefore φ = ψ +

∑n
i=l+1 cixi for some ψ ∈ kx1 + · · ·+ kxl and

ci ∈ k. We have 0 = aφ =
∑n

i=l+1 ci(axi) since axj = 0 for 1 ≤ j ≤ l. Lemma
5.3 shows that ci = 0 for l + 1 ≤ i ≤ n, and φ = ψ ∈ (x1, . . . , xl). This is a
contradiction.

Now, we shall prove that (0) : ((0) : a) = (a). It is trivial that (0) : ((0) : a)
contains (a). Suppose that (0) : ((0) : a) = (0) : I strictly contains the ideal
(a), and choose a homogeneous element φ ∈ ((0) : I)− (a). Then, since the ideal
M2 = aM is contained in (a) and φ is not in (a), φ is not in M2. Hence deg φ ≤ 1.
Assume that deg φ = 0. Then φ is in k and is nonzero. Since φI = (0), we have
(0) = I = (x1, . . . , xl), which is a contradiction. Thus deg φ = 1, equivalently,
the element φ is in R1. We can write φ =

∑n
j=1 cjxj + ca for some cj , c ∈ k. It

holds that (0) = φI = φ(x1, . . . , xl), and 0 = φxi =
∑n

j=1 cj(xixj) + c(axi) =∑n
j=1 cj(aδi,j) = a

∑n
j=1 cjδi,j for 1 ≤ i ≤ l. Hence

∑n
j=1 cjδi,j ∈ ((0) : a) = I =

(x1, . . . , xl). Noting that δi,j is in V = kxl+1 + · · ·+kxn, we see that
∑

j cjδi,j = 0
for 1 ≤ i ≤ l, and thus

∆




c1
...

cn


 = 0.

By Lemma 5.1(3) we have ci = 0 for 1 ≤ i ≤ n, and φ = ca ∈ (a), which is a
contradiction. This contradiction completes the proof of the theorem. ¤
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6. Modules of finite G-dimension.

In this section, we will consider a problem on modules of finite G-dimension.
We start by recalling the definition of G-dimension.

Definition 6.1. Let R be a Noetherian ring.

(1) Let (−)∗ denote the R-dual functor HomR(−, R). A finitely generated R-
module M is said to be totally reflexive if M is isomorphic to M∗∗ and
Exti

R(M ⊕M∗, R) = (0) for all i > 0.
(2) The Gorenstein dimension (G-dimension for short) of a nonzero R-module

M , which is denoted by GdimR M , is defined as the infimum of integers r

such that there exists an exact sequence

0 → Xr → Xr−1 → · · · → X0 → M → 0

of R-modules, where each Xi is totally reflexive. The G-dimension of the
zero module is defined as −∞.

It is known that G-dimension has the following properties. For the details,
see [1] and [3].

Proposition 6.2. Let R be a Noetherian ring and M a finitely generated
R-module. Then the following statements hold.

(1) There is an inequality GdimR M ≤ pdR M .
(2) If GdimR M < ∞, then GdimR M = depth R− depthR M .
(3) If GdimR M < ∞, then GdimR M = sup{i | Exti

R(M,R) 6= (0)}.

The third author gave the following conjecture in [5].

Conjecture 6.3. Let R be a Noetherian local ring. Suppose that there
exists an R-module M of finite length and finite G-dimension. Then R is Cohen-
Macaulay.

It is well-known that the statement with “G-dimension” replaced by “projec-
tive dimension” holds; it follows from the Peskine-Szpiro intersection theorem (cf.
[4, Proposition 6.2.4]).

Let R be a d-dimensional Noetherian local ring, and M an R-module of finite
length and finite G-dimension. Then one has GdimR M = depth R−depthR M =
depth R by Proposition 6.2(2), and hence Exti

R(M, R) = (0) for i > depth R by
Proposition 6.2(3). Therefore, if the R-module M satisfies
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Extd
R(M,R) 6= (0),

then one must have d ≤ depth R, that is to say, R is Cohen-Macaulay. So, if
Question 1.1 has an affirmative answer, then the above conjecture is true. However,
as we have already seen in the previous section, Question 1.1 does not have an
affirmative answer.

Now, we are interested in whether the example which we constructed in the
previous section is a counterexample to the above conjecture or not. The main
result of this section is the following proposition, which says that it is not a coun-
terexample.

Proposition 6.4. Let R be the ring and a the homogeneous parameter of
R which are constructed in Section 5. Then R is a standard graded algebra over
a field with dim R = 1 and depth R = 0 (hence R is not Cohen-Macaulay) and
Ext1R(R/(a), R) = (0), but the R-module R/(a) is not of finite G-dimension.

For a graded ring R and a graded R-module M , we denote by HM (t) the
Hilbert series of M . To prove the above proposition, we prepare the following
result, which is the main theorem in [2].

Theorem 6.5 (Avramov-Buchweitz-Sally). Let k be a field and R a pos-
itively graded k-algebra. Let M, N be finitely generated graded R-modules with
Exti

R(M, N) = (0) for i À 0. Then

∑

i

(−1)iHExti
R(M,N)(t) =

HM (t−1) ·HN (t)
HR(t−1)

.

The lemma below follows from this theorem.

Lemma 6.6. Let R be a positively graded algebra over a field k. Let M be a
graded totally reflexive R-module of finite length. Then

`R(M) = `R(M∗),

where (−)∗ = HomR(−, R).

Proof. Since Exti
R(M,R) = (0) for i > 0, Theorem 6.5 yields an equality

HM∗(t) =
HM (t−1) ·HR(t)

HR(t−1)
.
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Note by definition that the dual module M∗ is also totally reflexive. Replacing M

with M∗ in the above equality, we get

HM (t) =
HM∗(t−1) ·HR(t)

HR(t−1)
.

Thus we obtain the following two equalities:

{
HM∗(t) ·HR(t−1) = HM (t−1) ·HR(t),

HM (t) ·HR(t−1) = HM∗(t−1) ·HR(t).

Therefore we obtain

HM (t) ·HM (t−1) = HM∗(t) ·HM∗(t−1). (6.6.1)

Since M has finite length, we can write HM (t) = a0 + a1t + · · · + ast
s for some

integers a0, . . . , as, and so HM (1) = a0 + a1 + · · · + as = `R(M). Similarly
we have HM∗(1) = `R(M∗). Substituting t = 1 in the equality (6.6.1) yields
`R(M)2 = `R(M∗)2. It follows that `R(M) = `R(M∗), as desired. ¤

Now we can achieve the purpose of this section.

Proof of Proposition 6.4. Suppose that the R-module R/(a) has finite
G-dimension. Then GdimR R/(a) = depth R−depthR R/(a) = 0 since depth R =
0. Hence R/(a) is a totally reflexive R-module.

It is easy to see that R/(a) is isomorphic to k[X1, . . . , Xn]/(X1, . . . , Xn)2,
which has dimension n + 1 as a k-vector space. Hence `R(R/(a)) = n + 1.

On the other hand, the module (R/(a))∗ is isomorphic to the ideal (0) : a =
I = (x1, . . . , xl), and it holds that I = I1 + I2. We have I1 = k · x1 + · · ·+ k · xl,
hence dimk I1 = l. The k-vector space I2 is contained in

∑
1≤i≤l, 1≤j≤n k · xixj +∑

1≤i≤l k ·axi. We have xixj = aδi,j ∈ k ·axl+1 + · · ·+k ·axn and axi = 0, so I2 is
contained in k ·axl+1 + · · ·+k ·axn. Conversely, since a2xm = 0 for l+1 ≤ m ≤ n,
we get axm ∈ I. It follows that I2 = k ·axl+1 + · · ·+k ·axn. Lemma 5.3 guarantees
that axl+1, . . . , axn are linearly independent over k. Therefore dimk I2 = n − l.
Consequently, we obtain equalities

`R((R/(a))∗) = `R(I) = dimk I1 + dimk I2 = l + (n− l) = n.

In particular, we get `R(R/(a)) 6= `R((R/(a))∗). Theorem 6.5 gives a contradic-
tion. Thus, the R-module R/(a) does not have finite G-dimension, and the proof
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is completed. ¤
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