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Jacobi inversion on strata of the Jacobian

of the Crs curve yr = f(x)

By Shigeki Matsutani and Emma Previato

(Received Sep. 14, 2007)

Abstract. By using the generalized sigma function of a Crs curve yr = f(x),
we give a solution to the Jacobi inversion problem over the stratification in the Ja-
cobian given by the Abel image of the symmetric products of the curve. We show
that determinants consisting of algebraic functions on the curve, whose zeros give
the Abelian pre-image of the strata, are written by ratios of certain derivatives of
the sigma function on the strata. We also discuss the order of vanishing of abelian
functions on the strata in terms of intersection theory.

1. Introduction.

The addition law on the elliptic curve is given by the determinant:

∣∣∣∣∣∣∣∣

1 ℘(u) ℘′(u)

1 ℘(v) ℘′(v)

1 ℘(w) ℘′(w)

∣∣∣∣∣∣∣∣
= 2 · σ(u + v + w)σ(u− v)σ(v − w)σ(w − u)

σ3(u)σ3(v)σ3(w)
· (1.1)

Many a Tripos problem given as an exercise in [WW] displays related matrices,
which implement the profound relationship between linear series on a Riemann
Surface and its theta function brought to light by Riemann. The primary type of
matrix and result that we here generalize to higher genus is the following, which
we call Frobenius-Stickelberger (FS, for short) and can be found in Miscellaneous
Examples 21 [WW, Chapter 20], as well as the original paper [FS]:
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∣∣∣∣∣∣∣∣∣∣

1 ℘(u0) ℘′(u0) · · · ℘(n−1)(u0)

1 ℘(u1) ℘′(u1) · · · ℘(n−1)(u1)
...

...
...

. . .
...

1 ℘(un) ℘′(un) · · · ℘(n−1)(un)

∣∣∣∣∣∣∣∣∣∣

= (−1)
1
2 n(n−1)1!2! . . . n!

σ(u0 + u1 + · · ·+ un)
∏

i<j σ(ui − uj)
σn+1(u0)σn+1(u1) · · ·σn+1(un)

· (1.2)

To generalize this result one needs two things: firstly, an analog of the algebraic
properties of the Weierstrass ℘-function; secondly, an analog of the analytic prop-
erties of the σ function. The first ingredient is produced by a particular choice
of the curve, or rather, two generators of its function field (corresponding to the
x = ℘, y = ℘′ of the elliptic curve). While it is possible to write any curve as
a plane curve up to birational equivalence, and it is possible to write any plane
curve as a determinant (cf. e.g. [G]), we want to work with a smooth affine model
of the curve to simplify the treatment (curves with the plane-model property, cf.
[MP]), and also make here the more serious assumption that the curve admits a
given symmetry. Still, the fledgling theory of the σ function for this type of curves
[BLE2] is complicated enough, and this type of curves useful enough in applied
mathematics as well as cryptography and coding theory [Ar], [Mi], that we be-
lieve our result gives a reasonable foundation for the theory. Having said that, we
proceed to describe the curve. In a beautiful and overlooked chapter of differential
algebra that was rediscovered in the 1970s in the context of integrable equations,
Burchnall and Chaundy [BC] classified pairs of commuting ordinary differential
operators of coprime orders, (n, s), say. These turn out to satisfy a polynomial
equation, of the type that has recently been called (n, s)-curve [BLE2], except
that we choose the notation (n = r, s):

f(x, y) = yr + xs + fr−1,s−1(x, y),

where r and s are positive integers such that the greatest common divisor (r, s) = 1,
and if fr−1,s−1(x, y) contains a monomial xayb, then ar + bs < rs.

If the polynomial f(x, y) defines a smooth affine curve (this is precisely the
definition of a Cab curve [Ar], [Mi], if we let a = r, b = s), we can obtain a smooth
complete curve X by adding just one point ∞; this curve has the property that
(2g − 2)∞ ∼ KX , a canonical divisor (as usual ∼ denotes linear equivalence),
or equivalently, the number (2g − 1) is a Weierstrass gap. The point ∞ is a
natural choice of base point for the Abel map, and this motivates the symmetry
assumption: yr = xs +λs−1x

s−1 + · · ·+λ1x+λ0. (r < s). The fact that the curve
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is now a cyclic Galois cover of the x-line, makes it possible to relate the algebraic
and analytic properties of the Abelian images of the k-fold symmetric products of
the curve:

W k := κ








k∑

i=1

∫ (xi,yi)

∞




νI
1...

νI
g




∣∣∣(xi, yi) ∈ X






 ⊂ J . (1.3)

where κ is the projection Cg → J = Cg/Λ, Λ is the period lattice of a canonical
basis {νI

1, . . . , ν
I
g} of H1(X, OX), and J is the Jacobian of X. We denote by w

the Abel map from the k-fold symmetric product Sk(X) of X to κ−1W k with base-
point∞, for any positive integer k. Note that there is a remaining Λ-ambiguity due
to the choice of path of integration: our results below will be independent of such
ambiguity, but they require a g-tuple of complex numbers to be stated, explicitly:
w : (P1, . . . , Pk) 7→ w(P1, . . . , Pk) =

∑k
i=1

∫ Pi

∞ νI ∈ Cg, where we abbreviate by νI

the g-vector of holomorphic differentials νI
i. When an analytic function, say, of

g complex variables is evaluated on u := w(P1, . . . , Pk), we view it as function of
the coordinates (u1, . . . , ug) of the (column) vector u, as the convention goes.

A first natural goal is to produce addition theorems that generalize the genus-
1 formulae recalled above on these subvarieties, and then one has to reckon with
the fact that the (appropriately defined and normalized) σ function will vanish
(essentially by Riemann’s theorem [F1, Theorem 1.1]) and take careful limits when
a denominator equals zero. The second natural goal is to give Jacobi-inversion
formulae1, namely the algebraic coordinates for the divisors

k∑

i=1

Pi ∈ w−1W k.

Remarkably, both goals were achieved in genus 2, with partial results for higher
genus, or for a general hyperelliptic curve (corresponding to the case r = 2, with
s then equal to 2g + 1 where g is the genus) by Baker [B2], [B3], whose work was
recently furthered and refined by Ônishi [O1], [O2] and Buchstaber, Leykin, and
Enolskii [BEL], [BLE1], [BLE2], [BLE3]. The relevant determinant, which we
will study as well, has the form:

1Note that in the literature what is called the problem of “inversion” (of abelian integrals) is
the much less näıve issue of determining the twist of the projective bundle Sk(X) → J , for k
large enough (cf. e.g. [K1], [K2]).
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ψn(P1, . . . , Pn) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 φ1(P1) φ2(P1) · · · φn−1(P1)

1 φ1(P2) φ2(P2) · · · φn−1(P2)

1 φ1(P3) φ2(P3) · · · φn−1(P3)
...

...
...

. . .
...

1 φ1(Pn) φ2(Pn) · · · φn−1(Pn)

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (1.4)

where the entries are monomials in the (x, y)-coordinates specified uniquely by
their order of vanishing at ∞. We call the matrix in (1.4) an FS matrix, after
Frobenius and Stickelberger. Not surprisingly, this matrix by now has appeared in
much work related to integrable systems with spectral curve X, being one of the
most suitable tools for achieving explicit linearization of the flows on the Jacobian
of X.

As for the inversion formulae, we summarize the results known for the hyper-
elliptic case, which we generalize. In that case, φi = xi for i < g, so that:

Fk(x) :=
ψk+1(P1, P2, . . . , Pk, P )

ψk(P1, P2, . . . , Pk)

= (x− x1)(x− x2) · · · (x− xk)

:= xk +
k−1∑

i=0

(−)ie
(k)
i xi. (1.5)

The known inversion formulae look as follows (where subscripts denote certain
derivatives of the σ function which will defined explicitly in Section 4 below):

Theorem 1.1 ([EG]). For a hyperelliptic curve X of genus g whose affine
part is given by y2 = f(x), the following relations hold,

(1) W g case: For a point (P1, . . . , Pg) of the non-singular locus of SgX on
u := w(P1, . . . , Pg) =

∑g
i=1

∫ Pi

∞ νI,

σi(u)σg(u)− σgi(u)σ(u)
σ2(u)

= (−)g−i+1e
(g)
g−i.

(2) W g−1 case: For a point (P1, . . . , Pg−1) of the non-singular locus of Sg−1X

on u := w(P1, . . . , Pg−1) =
∑g−1

i=1

∫ Pi

∞ νI,
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σi(u)
σg(u)

=

{
(−1)g−ie

(g−1)
g−i−1 for i < g,

1 for i = g.

(3) W k case, k = 1, . . . g− 2: For a point (P1, . . . , Pk) of the non-singular locus
of SkX on u := w(P1, . . . , Pk) =

∑k
i=1

∫ Pi

∞ νI,

σi(u)
σk+1(u)

=





(−1)k−i+1e
(k)
k−i for i < k + 1,

1 for i = k + 1,

0 for i > k + 1.

We generalize this theorem to the (r, s) case by giving a dictionary between
the FS matrix and the analytic expression of its entries.

This article is organized as follows. In Section 2 the FS-matrices are defined
and investigated. In Section 3, we give explicit algebraic expressions for the several
differentials which play an important role in Abelian function theory. Section 4
is devoted to the definition of the sigma function and its properties. Section 5
contains the main theorem.

We are grateful to Victor Z. Enolski for posing the problem and for the ref-
erences [E], [EG], [BEL], [BLE1], [BLE2], [BLE3], [EEL] which are essential
to this article. This work is influenced by discussions at a meeting in Tokyo
Metropolitan University 2005 and we also owe special thanks to the other team
members, Chris Eilbeck and Yoshihiro Ônishi. The first-named author learned
σ function theory and related theories from an unpublished note written by Y.
Ônishi and used his constructions in this article without explicit mention. The
first-named author thanks as well John Gibbons for alerting him to his work with
Baldwin on the Benney equation [BG1], [BG2], to which this paper has potential
applications. The second-named author is immensely grateful for the semester
at the Mittag-Leffler Institute (Spring 2007), within the program Moduli Spaces:
without the generous hospitality of the Organizers, the Director and the Staff, and
the mission of peace for concentrated research of the Institute, her contribution
would not have been possible.

2. Abelian structure for special Crs curves.

We consider a plane curve over C given by an affine equation

yr = f(x), f(x) := xs + λs−1x
s−1 + · · ·+ λ1x + λ0, (2.1)
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for integers r and s such that (r, s) = 1 and r < s and complex numbers
λ0, . . . , λs−1’s, such that the compactification

X := {(x, y) | yr = f(x)} ∪∞

is a Riemann surface of genus g = (r − 1)(s− 1)/2. This is a special case of what
is called a Cab curve for a = r, b = s, or (r, s) curve, as recalled in the Introduction.

Let R := C[x, y]/(yr − f(x)), OX be the sheaf of holomorphic functions over
X. We note that R = OX(∗∞) is the ring of meromorphic functions on X with
poles at most at the point ∞.

We define uniquely the (monic) monomial φn ∈ R for a non-negative integer
n so that its order of pole N(n) of the singularity at ∞ is the (increasing) sequence
complementary to the Weierstrass gaps, e.g., φ0 = 1, φ1 = x, . . . ; by letting t∞
be a local parameter at ∞, the leading term of φn is proportional to t

−N(n)
∞ . We

define the w-degree, w-deg : R → Z, which assigns to an element of R its order of
pole at ∞, so that for example:

w-deg(x) = r, w-deg(y) = s, w-deg(φn(P )) = N(n). (2.2)

We also consider the ring Rλ := Q[x, y, λ0, . . . , λs−1]/(yr − f(x)) by regarding λ’s
as indeterminates, and define a λ-degree, λ-deg : Rλ → Z as an extension of the
w-degree by assigning the degree (s− i)r to each λi. This makes the equation of
the curve e = yr − f(x) homogeneous with respect with the λ-degree, while if we
compare the two degrees of an element e of Rλ by projection from Rλ to R, we
see that:

w-degRe ≥ λ-degRλ
e.

Proposition 2.1. For an (r, s)-curve X, the following holds:

(1) g = (s− 1)(r − 1)/2,
(2) N(g+i) = 2g+i = (s−1)(r−1)+i for i ≥ 0. Especially N(g) = sr−s−r+1

and N(g + r − 1) = s(r − 1).
(3) N(g − 1) = 2g − 2 = (s− 1)(r − 1)− 2.
(4) N(i) ≤ 2g − 2 = sr − r − s− 1 for 0 ≤ i < g.

Proof. The proof in [BC], an elementary semi-lattice argument, is espe-
cially nice. See also Exercises E, Chapter I, in [ACGH]. ¤

We denote a point P ∈ X by its affine coordinates (x, y); we also loosely
denote by a k-tuple (P1, . . . , Pk), or by a divisor D =

∑k
i=1 Pi, an element of
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Sk(X), the k-th symmetric product of the curve. For a given local parameter t

at some P in X, by d>(t`) (resp. d<(t`)) we denote the terms of a function on X

in its t-expansion whose orders of zero at P are greater (resp. less) than `; d≥(t`)
(resp. d≤(t`)) includes terms of equal order.

A basis of H1(X, OX), {νI
1, . . . , ν

I
g}, is given in terms of the φi following

[B1, Chapter VI, Section 91],

νI
i =

φi−1(P )dx

ryr−1
, (i = 1, . . . , g). (2.3)

We extend the w-degree to one-forms, by fixing a local parameter t∞: for a one-
form ν = (tn∞ + d>(tn∞))dt∞, w-deg(ν) = −n, so that:

N(νI
i) = 2g −N(i− 1)− 2.

The notation for the Abel map and its restriction to the k-fold symmetric prod-
uct of the curve was defined in the Introduction. For later convenience, we also
introduce

Sn
m(X) := {D ∈ Sn(X) | dim|D| ≥ m},

where |D| is the complete linear system w−1(w(D)) [ACGH, IV.1, p. 156]. The
singular locus of Sn(X) is Sn

1 (X) [ACGH, Chapter IV, Lemma 1.5].

The Brill-Noether matrix [ACGH, Section IV.1] is given in terms of the bases
(2.3):

1
r




1 1 1 · · · 1

φ1(P1) φ1(P2) · · · φ1(Pg)
...

...
. . .

...
φg−1(P1) φg−1(P2) · · · φg−1(Pg)







dx1/yr−1
1 · · ·

dx2/yr−1
2 · · ·

. . .
· · · dxg/yr−1

g




.

(2.4)

For a number k between 0 and g, we call the upper-left k × k submatrix a
principal submatrix of the Brill-Noether matrix:
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


νI
1(P1) · · · νI

1(Pk)
...

. . .
...

νI
k(P1) · · · νI

k(Pk)




=
1
r




1 1 · · · 1

φ1(P1) φ1(P2) · · · φ1(Pk)
...

...
. . .

...
φk−1(P1) φk−1(P2) · · · φk−1(Pk)







dx1/yr−1
1 · · ·

dx2/yr−1
2 · · ·

. . .
· · · dxk/yr−1

k




.

(2.5)

For the given k the Abel map in our notation is,

w : Sk(X) → κ−1W k, w(P1, . . . , Pk) =
k∑

i=1

w(Pi), (2.6)

w(P ) :=
∫ P

∞ νI being the original Abel map on the curve. The (transpose of the)
rectangular matrix

1
r




1 1 · · · 1

φ1(P1) φ1(P2) · · · φ1(Pk)
...

...
. . .

...
φg−1(P1) φg−1(P2) · · · φg−1(Pk)







dx1/yr−1
1 . . .

dx2/yr−1
2 . . .

. . .
. . . dxk/yr−1

k




gives a local coordinate representation of the homomorphism of locally-free sheaves
that correspond to the (pull-back of the) tangent bundle under the divisor-sum
map,

w∗ : TSk(X) → j−1
k TPick(C). (2.7)

Using this explicit representation, it can be proved that for k < g the singular
locus of W k is W k

1 [ACGH, Chapter IV, Corollary 4.5].

We consider the “universal effective divisor ∆ on X” [ACGH, Section IV.2],
which is a divisor in X × Sn(X) consisting of (P0, D) such that P0 ∈ supp(D).
Explicitly, ∆ is the sum of divisors

∑n
i=1 ∆i, where ∆i := {(P0, P1, . . . , Pn) | P0 =

Pi}; by letting ti be a local parameter near Pi, an equation for ∆ is given by∏n
i=1(t0 − ti). To study the universal divisor, we will introduce µ-functions in
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Definition 2.3 as a generalization of the Fk given in (1.5) for hyperelliptic curves.
Note that when k = g, Fk agrees with U of Mumford’s (U, V, W ) parameterization
of a hyperelliptic Jacobian (which he attributes to Jacobi) [Mu]. We give a name
to the natural projection,

π : X × Sn(X) → Sn(X). (2.8)

For the definition of the µ’s and explicit representation of (2.11), we introduce
the Frobenius-Stickelberger (FS) matrix and its determinant, which appeared in
[O1], [O2]; similar matrices appeared in several articles, e.g., [B1], [B2], [B3],
[BLE3], [ER], [F2], [P]; note that for the n < g case, these are the polynomial
part of the principal submatrix of the Brill-Noether matrix and its determinant
(but they do depend on the choice of functions x, y and of a local parameter; one
can give a sheaf-theoretic interpretation, and view these objects as local sections).

Let n be a positive integer and P1, . . . , Pn be in X\∞. We define the `-reduced
Frobenius-Stickelberger (FS) matrix and its determinant by:

Ψ(ˇ̀)
n (P1, P2, . . . , Pn) :=




1 φ1(P1) φ2(P1) · · · φ̌`(P1) · · · φn(P1)

1 φ1(P2) φ2(P2) · · · φ̌`(P2) · · · φn(P2)
...

...
...

. . .
...

. . .
...

1 φ1(Pn) φ2(Pn) · · · φ̌`(Pn) · · · φn(Pn)




.

and ψ
(ˇ̀)
n (P1, P2, . . . , Pn) := det Ψ(ˇ̀)

n (P1, P2, . . . , Pn) (a check on top of a letter
signifies deletion). It is also convenient to introduce the simpler notation:

ψn(P1, . . . , Pn) := det(Ψ(ň)
n (P1, . . . , Pn)),

Ψn(P1, . . . , Pn) := Ψ(ň)
n (P1, . . . , Pn),

for the un-bordered matrix. We call this matrix Frobenius-Stickelberger (FS) ma-
trix and its determinant Frobenius-Stickelberger (FS) determinant. These become
singular for some tuples in (X\∞)n.

For the case of hyperelliptic curves, i.e., (2, s)-curves, and n ≤ g,
Ψ(ň)

n (P1, . . . , Pn) is in fact a Vandermonde matrix.

We now pursue a very näıve realization of the addition structure of PicX
in terms of (2.8) and FS-matrices. For n points (Pi)i=1,...,n ∈ X\∞, we find
an element of R associated with any point P = (x, y) in (X\∞), αn(P ) :=
αn(P ;P1, . . . , Pn) =

∑n
i=0 aiφi(P ), ai ∈ C and an = 1, which has a zero at
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each point Pi (with multiplicity, if the Pi are repeated) and has smallest possible
order of pole at ∞ with this property. Note that the divisor of αn (viewed as a
function of P ) contains the universal effective divisor ∆ over (X\∞)× Sn(X).

This procedure is similar to the one used by Jacobi for the hyperelliptic inte-
gral of genus two [Ja], [B1, Chapter VIII] (See also Remark 5.2), in order to give
formulae for the Abelian sum in analogy to the elliptic function theory.

When the FS-matrix associated to the points Pi is invertible, the following
linear system determines the coefficients of αn:




1 φ1(P1) φ2(P1) · · · φn(P1)

1 φ1(P2) φ2(P2) · · · φn(P2)
...

...
...

. . .
...

1 φ1(Pn) φ2(Pn) · · · φn(Pn)




an = 0, an :=




a0

a1

...
an−1

an




. (2.9)

We solve the equation by recalling the following elementary facts of linear
algebra.

Proposition 2.2.

(1) For matrices

A :=




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann




, D :=




a11 a12 · · · a1n u1

a21 a22 · · · a2n u2

...
...

. . .
...

...
an1 an2 · · · ann un

v1 v2 . . . vn w




,

we have

detD = [det A]w −
n∑

p,q=1

Apqupvq,

where Apq is the cofactor of A for apq, i.e., the signed determinant of the
corresponding minor.

(2) Assume detA does not vanish. If h :=
∑

i civi + w, c := t(c1, . . . , cn) and
u := t(u1, . . . , un) satisfy Ac = u, then
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h =
1

detA
detD.

Definition 2.3. For P, P1, . . . , Pn ∈ (X\∞)× Sn(X\∞), we define µn(P )
by

µn(P ) := µn(P ; P1, . . . , Pn) := lim
P ′i→Pi

1
ψn(P ′1, . . . , P ′n)

ψn+1(P ′1, . . . , P
′
n, P ),

where the P ′i are generic, the limit is taken (irrespective of the order) for each i;
and µn,k(P1, . . . , Pn) by

µn(P ) = φn(P ) +
n−1∑

k=0

(−1)n−kµn,k(P1, . . . , Pn)φk(P ),

with the convention µn,n(P1, . . . , Pn) ≡ 1.
We extend the domains to X × Sn(X) to get possibly P -valued functions.

Remark 2.4.

(1) The reason why we define µ by using a limit is the following. If P2 is
equal to P1 for (P1, . . . , Pk) in Sk(X\∞), with the other points generic,
µk(P ;P1, P2, . . . , Pk) becomes

µk(P ;P1, P2, . . . , Pk) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 φ1(P1) · · · φk(P1)

0 φ1,tP1
(P1) · · · φk,tP1

(P1)
...

...
. . .

...
1 φ1(Pk) · · · φk(Pk)

1 φ1(P ) · · · φk(P )

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

1 φ1(P1) · · · φk−1(P1)

0 φ1,tP1
(P1) · · · φk−1,tP1

(P1)
...

...
. . .

...
1 φ1(Pk) · · · φk−1(Pk)

∣∣∣∣∣∣∣∣∣∣

,

where tP1 is a local parameter at P1 and φi,tP1
(P1) is the derivative of φi(P1)

with respect to tP1 . All other cases in which ψk(P1, . . . , Pk) vanishes can be
treated similarly.

(2) We view µn as a function over Xn+1.
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(3) From the definition, for generic points, we get the explicit expression

µk,`(P1, . . . , Pk) =
ψ

(ˇ̀)
k (P1, . . . , Pk)

ψ
(ǩ)
k (P1, . . . , Pk)

. (2.10)

This is a natural extension of the elementary symmetric function e
(k)
i given

in (1.5), with which µk,` agrees in the hyperelliptic-curve case [B2] (the `

index is absent in (1.5) because for k < g, φk is a function of x only). This
µg,`(P1, . . . , Pg) has often appeared in papers on integrable systems, e.g.,
[ER, p. 208], aside from the hyperelliptic case cited above [Mu].

(4) By the following Proposition, Sn
1 (X) is equal to

{
(P1, . . . , Pn) ∈ Sn(X) | ∃{i1, . . . , ik} ⊂ {1, . . . , n}

such that µk(Pi1 ; Pi2 , . . . , Pik
) = 0

}
.

In the following Proposition and Lemma we show that µn(P ) is associated
with the addition structure of X from a classical viewpoint.

Proposition 2.5. For (Pi)i=1,...,n ∈ Sn(X\∞) \ Sn
1 (X\∞),

αn(P ; P1, . . . , Pn) is equal to µn(P ;P1, . . . , Pn). When (Pi)i=1,...,n is a more
general element of Sn(X\∞), αn(P ;P1, . . . , Pn) is a multiple of µn(P ;P1, . . . , Pn)
by an element of R.

Proof. From the linear system (2.9) and under the assumption of invert-
ibility, Proposition 2.2 yields the result. For more general (Pi)i=1,...,n ∈ Sn(X\∞),
it is obvious that the zeros of µn(P ; P1, . . . , Pn) include P1, . . . , Pn. Unless
(Pi)i=1,...,n belongs to Sn

1 (X\∞), they include another set of N(n) − n points
in X\∞. As a consequence, there exist Qi’s in X\∞ such that

Div(µn(P )) =
n∑

i=1

Pi +
N(n)−n∑

i=1

Qi −N(n)∞ ∼ 0.

The w-degree of µn(P ) guarantees that it is the (monic) element of R with smallest
order of pole at ∞ and with zero divisor that has P1 + · · ·+ Pn as a subdivisor.

When the tuple belongs to Sn
1 (X\∞), the minimality is not guaranteed in that

some Q’s are equal to ∞. Thus µn(P ;P1, . . . , Pn) is divisible by αn(P ;P1, . . . , Pn)
in R, viewed as a function of P . ¤

In the sequel, when we use αn for explicit formulae, we make the convention
that in the nongeneric case it denotes the corresponding µn (they may differ by
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multiplication by a polynomial but we need to secure a specific degree correspond-
ing to the Weierstrass gaps at ∞, not necessarily the minimum).

Lemma 2.6. Let n be a positive integer. For (Pi)i=1,...,n ∈ Sn(X\∞), the
function αn over X induces the map (which we call by the same name):

αn : Sn(X\∞) → SN(n)−n(X),

i.e., to (Pi)i=1,...,n ∈ Sn(X\∞) there corresponds an element (Qi)i=1,...,N(n)−n ∈
SN(n)−n(X), such that

n∑

i=1

Pi − n∞ ∼ −
N(n)−n∑

i=1

Qi + (N(n)− n)∞.

We want the preimage of αn to include the base point ∞. For an effective
divisor D in Sn(X) of degree n, let D′ be the maximal subdivisor of D which does
not contain ∞, D = D′+(n−m)∞ where deg D′ = m(≤ n) and D′ ∈ Sm(X\∞).
Then we extend the map to αn by defining αn(D) = αm(D′)+[N(n)−n−(N(m)−
m)]∞.

We see from the linear equivalence of Lemma 2.6:

Proposition 2.7. For a positive integer, the Abel map composed with αn

induces

ιn : W n → W N(n)−n, κ ◦ w 7→ −κ ◦ w.

Let image(ιn) be denoted by [−1]W n.

Remark 2.8. We recover the well-known results:

(1) The Serre involution, on Picg−1L 7→ OX(KX)L −1, is given by ιg−1,

ιg−1 : W g−1 → [−1]W g−1.

(2) When n ≥ g, ιg ◦ ιn gives the Abel sum

W n ιn−→ W g ιg−→ W g, (w(P1, . . . , Pn) ≡ w(Q1, . . . , Qg) modΛ).

In particular, the addition law on the Jacobian is given by ιg ◦ ι2g

W 2g ι2g−→ W g ιg−→ W g, (w(P1, . . . , Pg, P
′
1, . . . , P

′
g) ≡ w(Q1, . . . , Qg) modΛ).
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Remark 2.9. The inclusion in : Sn(X) → SN(n)(X), (P1, . . . , Pn) 7→
(P1, . . . , Pn, αn(P1, . . . , Pn)) maps the stratification of symmetric products of
(r, s)-curves,

S0(X) ⊂ S1(X) ⊂ · · · ⊂ Sg−2(X) ⊂ Sg−1(X) ⊂ Sg(X),

to the stratification,

S0(X) ⊂ SN(1)(X) ⊂ · · · ⊂ SN(g−2)(X) ⊂ S2g−2(X) ⊂ S2g(X).

The fact that 2g − 1 is a gap is equivalent to (2g − 2)∞ ∼ KX [ACGH, Chapter
1 Exercises, E-2 (ii)].

For later use, we prove the following relations.

Proposition 2.10. For every (P1, . . . , Pk−1;Pk) ∈ Sk−1(X\∞) ×X (k =
1, . . . , g), the following relations hold :

lim
Pk→∞

φk−1(Pk)
φk(Pk)

µk,`(P1, P2, . . . , Pk)

=





−µk−1,`(P1, P2, . . . , Pk−1), for 0 ≤ ` ≤ k − 2,

−1, for ` = k − 1,

0, for ` = k.

Proof. Noting (2.10), for the ` = k − 1 case,

φk−1(Pk)
φk(Pk)

µk,k−1 =
−ψ

( ˇk−1)
k−1 (P1, . . . , Pk−1)φk(Pk) + d≥

(
t
−N(k−2)
∞

)

ψ
( ˇk−1)
k−1 (P1, . . . , Pk−1)φk−1(Pk) + d≥

(
t
−N(k−2)
∞

)
φk−1(Pk)
φk(Pk)

→ −1, (Pk →∞).

For the ` ≤ k − 2 case

φk−1(Pk)
φk(Pk)

µk,` =
−ψ

(ˇ̀)
k−1(P1, . . . , Pk−1)φk(Pk) + d≥

(
t
−N(k−2)
∞

)

ψ
( ˇk−1)
k−1 (P1, . . . , Pk−1)φk−1(Pk) + d≥

(
t
−N(k−2)
∞

)
φk−1(Pk)
φk(Pk)

→ −µk−1,`, (Pk →∞). ¤
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Algebraic expression of the Jacobian of a coordinate change.

While in this paper we do not make much use of vector fields on symmet-
ric products of the curve, which are smooth manifolds, following the definition of
the principal submatrix we give here an algebraic (local) expression for the corre-
sponding differential operators: these are useful when taking limiting formulae, cf.
[MP]. The technique was used by Weierstrass, Klein, Baker and others [B1], [B2],
[B3], [W] to give algebraic coordinates on Sk(X). Let k be a positive integer ≤ g.
By inverting the Jacobian determinant for coordinate change where the truncated
map (defined only locally around the points, lest the paths of integration differ by
homotopy):

k-proj ◦ w : Sk(X) → Cg → Ck, (P1, . . . , Pk) 7→
( k∑

i=1

∫ Pi

∞
νI

j

)

j=1,...,k

, (2.11)

is smooth, as in the Inverse Function Theorem of differential calculus, we give an
algebraic expression for vector fields that correspond to the ‘partial’ differentials
defined in (2.5). Thus, under the assumption that (2.11) be invertible over some
open set U ⊂ SkX, and denoting, loosely, by ∂/∂u1, . . . , ∂/∂uk the coordinate
vector field for projected coordinates Cg → Ck, (u1, . . . , ug) 7→ (u1, . . . , uk),




∂u1

∂u2

...
∂uk




= r




1 φ1(P1) φ1(P2) · · · φ1(Pk)

1 φ2(P1) φ2(P2) · · · φ2(Pk)
...

...
...

. . .
...

1 φk−1(P1) φk−1(P2) · · · φk−1(Pk)




−1 


yr−1
1 ∂x1

yr−1
2 ∂x2

...
yr−1

k ∂xk




.

Applying Proposition 2.2 to this linear equation, we obtain:

Proposition 2.11.

k∑

i=1

εi
∂

∂ui
=

r

ψk(P1, P2, . . . , Pk)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 φ1(P1) φ2(P1) · · · φk−1(P1) yr−1
1 ∂x1

1 φ1(P2) φ2(P2) · · · φk−1(P2) yr−1
2 ∂x2

...
...

...
. . .

...
...

1 φ1(Pk) φ2(Pk) · · · φk−1(Pk) yr−1
k ∂xk

ε1 ε2 ε3 · · · εk 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where (ε1, . . . , εk) is any k-tuple of numbers. By choosing εi = δij, we get ∂/∂uj,
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∂

∂uj
=

k∑

i=1

rψ
(ǰ)
k−1(P1, P2, . . . , Pk)

ψk(P1, P2, . . . , Pk)
yr−1

i

∂

∂xi
.

3. Differential forms.

We give an algebraic representation of a differential form, which up to a
tensor of holomorphic one-forms equals the fundamental normalized differential of
the second kind in [F1, Corollary 2.6]. We follow techniques of [EEL], [BLE2],
which can be viewed as a natural generalization of methods in [B1, Chapter VII].

Definition 3.1. A two-form Ω(P1, P2) on X × X is called a fundamental
differential of the second kind if it is symmetric,

Ω(P1, P2) = Ω(P2, P1), (3.1)

it has its only pole (of second order) along the diagonal of X × X, and in the
vicinity of each point (P1, P2) is expanded in power series as

Ω(P1, P2) =
(

1
(tP1 − t′P2

)2
+ d≥(1)

)
dtP1 ⊗ dtP2 (as P1 → P2), (3.2)

where tP is a local coordinate at the point P ∈ X.

The w-degree (and the λ-degree) of R can be extended to R⊗R, w-degR⊗R :
R⊗R → Z,w-degR⊗R(f ⊗ g) = w-degf + w-degg (similarly for λ-degRλ⊗Rλ

). We
refer to the first and the second components of R⊗R by R1 and R2 and sometimes
write explicitly, e.g., w-degR1

for the w-degree with respect to R1.
Let Σ

(
P1, P2

)
be the following form,

Σ
(
P1, P2

)
:=

∑r
k=1 yr−k

1 yk−1
2

(x1 − x2)ryr−1
1

dx1. (3.3)

Proposition 3.2. There exist differentials νII
j = νII

j(x, y) (j = 1, 2, . . . , g)
of the second kind such that they have their only pole at ∞ and satisfy the relation,

dP2Σ(P1, P2)− dP1Σ(P2, P1)

=
g∑

i=1

(
νI

i(P2)⊗ νII
i(P1)− νI

i(P1)⊗ νII
i(P2)

)
, (3.4)

where
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dQΣ(P,Q) := dxP ⊗ dxQ
∂

∂xQ

∑r
k=1 yr−k

P yk−1
Q

(xP − xQ)ryr−1
P

. (3.5)

The set of differentials {νII
1, νII

2, . . . , νII
g} is determined modulo the C-linear

span 〈νI
j〉j=1,...,g.

Proof. We let

νII
j(x, y) =

hj(x, y)
ryr−1

dx, j = 1, 2, . . . , g. (3.6)

Since the requirement on the poles implies that hj(x, y) belongs to R, we have to
solve for

ha(x, y) =
Na∑

i=0

ca,iφg+i

modulo the span 〈φi〉i=0,...,g−1, coming from 〈φidx/ryr−1〉i=0,...,g−1 = H1(X, OX).
In order to show that νII

a has the above form, we shall prove that the left-
hand side of (3.4) does not have singularities except at ∞. Then, we will calculate
the w-degree of νII

a using the fact that the left-hand side of (3.4) has certain
homogeneity properties.

Since at a branch point (bi, 0) satisfying f(bi) = 0, (i = 1, . . . , s), a local
parameter t is defined by tr = x − bi and dx/(ryr−1) behaves like dt(1 + d≥(t)),
there is no singularity. For the P1 = P2 case, again there is no singularity as is
easily seen from (3.3) and (3.4), taking derivatives. We also give an algebraic proof
for later reference. After multiplying the left-hand side in (3.4) by r2yr−1

1 yr−1
2 (x1−

x2)2/dx1 ⊗ dx2, we set:

B1(P1, P2) :=
(

ryr−1
1 yr−1

2 + r

r∑

k=2

yr−k
1 yk−2

2 f(x2)

+ (x1 − x2)
r∑

k=2

yr−k
1 (k − 1)yk−2

2 f ′(x2)
)

,

B(P1, P2) :=B1(P1, P2)−B1(P2, P1)

=
r∑

k=2

yr−k
1 yk−2

2

(
r(f(x2)− f(x1))

+ (x1 − x2)((k − 1)f ′(x2) + (r − k + 1)f ′(x1))
)
.

(3.7)
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We have to show that B(P1, P2) belongs to the ideal ((x1 − x2)2) in R⊗R. Since
it is obvious that (f(x2) − f(x1))/(x1 − x2) belongs to R ⊗ R, the problem is to
prove that

B(P1, P2)
(x1 − x2)

=
r∑

k=2

yr−k
1 yk−2

2

(
r
(f(x2)− f(x1))

x1 − x2

+ ((k − 1)f ′(x2) + (r − k + 1)f ′(x1))
)

(3.8)

belongs to (x1 − x2)R⊗R. We have to show that

Af (x1, x2) :=
(

r
(f(x2)− f(x1))

x1 − x2
+ ((k − 1)f ′(x2) + (r − k + 1)f ′(x1))

)
∈ R.

is divisible by (x1 − x2). We expand in ε or Af (x1, x1 + ε) is equal to

(r − k + 1)f ′(x1) + r
−df(x1)

dx1
− r

d2f(x1)
dx2

1

ε + (k − 1)
(

f ′(x1) +
d2f(x1)

dx2
1

ε

)
+ d>(ε)

= (k − 1− r)
d2f(x1)

dx2
1

ε + d>(ε).

This means that Af (x1, x2) is divisible by (x1 − x2) and we are done.
We consider the behavior around ∞ to show that νII

i is of the second kind.
From the definition, it is obvious that each term in B(P1, P2) is homogeneous with
respect to the λ-degree of Rλ ⊗Rλ,

λ-degRλ⊗Rλ
B(P1, P2) = 2s(r − 1).

We also show that for the w-degree,

w-degR⊗RB(P1, P2) = 2s(r − 1). (3.9)

Notice that the w-degree and λ-degree of the terms which contain no λ coincide.
When f(x) = xs + λxs−1,
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Axs+λxs−1(x1, x2)

=
(
− r

( s−1∑

i=0

xi
1x

s−1−i
2 + λ

s−2∑

i=0

xi
1x

s−i−2
2

)
+ (k − 1)

(
sxs−1

2 + λ(s− 1)xs−2
2

)

+ (r − k + 1)
(
sxs−1

1 + λ(s− 1)xs−2
1

))
. (3.10)

The terms containing xi
1y

j
1 and xk

2y`
2 in

∑
yr−k
1 yk−2

2 Axs+λxs−1(x1, x2)/(x1 − x2)
take care of every φi′(P1) and φj′(P2) coming from numerators of νI’s and νII’s in
(3.4). Every possible combination of them has w-degrees and w-degR⊗R coming
from terms of degree smaller than 2sr − 2r − 2s = 4g − 2 because of (2.2) and
w-deg(yk−2x`) = r` + s(k − 2) for 2 ≤ k ≤ r and 0 ≤ ` ≤ s− 2.

For a general f(x), {yk−2x` | 2 ≤ k ≤ r, 0 ≤ ` ≤ s−2} includes every element
φn(P ) for 0 ≤ n ≤ g − 1 and the φn(P )’s for n ∈ {g ≤ n ≤ 3g − 2}. Thus
B(P1, P2)/(x1 − x2)2 contains one φn(P1) for (0 ≤ n ≤ g − 1), and so satisfies
(3.9). We return to the terms whose w-degree is smaller than 2g − 1 = rs− r − s

with respect to R1 (resp. R2) and assign them to the numerator of νI
i(P1) (resp.

νI
i(P2)), for which we are solving (3.4). Noting that by definition B(P1, P2) is

antisymmetric, we decompose B(P1, P2) as

B(P1, P2) = (x1 − x2)2
g∑

i=1

(
φi−1(P2)hi(P1)− φi−1(P1)hi(P2)

)
.

Due to homogeneity in λ-degRλ⊗Rλ
, hi(P2) has λ-degree

λ-degRλ
hi(P ) = 2(sr − s− r)−N(i− 1).

But the expression (3.10) (see also the proof in Lemma 3.4) shows that
w-degRhi(P ) = λ-degRλ

hi(P ). Since w-degRdx/ryr−1 = r + s− sr +1, by Propo-
sition 2.1 hi(P )dx/ryr−1 has w-degree sr− s− r + 1−N(i− 1) > 1 for 1 ≤ i ≤ g

and thus it is a differential of the second kind. ¤

Corollary 3.3.

(1) The one-form

ΠP2
P1

(P ) := Σ(P, P1)dx− Σ(P, P2)dx

is a differential of the third kind, whose only (first-order) poles are P = P1
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and P = P2, and residues +1 and −1 respectively.
(2) The fundamental differential of the second kind Ω(P1, P2) is given by

Ω(P1, P2) = dP2Σ(P1, P2) +
g∑

i=1

νI
i(P1)⊗ νII

i(P2)

=
F (P1, P2)dx1 ⊗ dx2

(x1 − x2)2r2yr−1
1 yr−1

2

, (3.11)

where F is an element of R⊗R.

Proof. (1) is obvious from the definition. In (2) it is clear that the left-
hand side of (3.11) is symmetric and F (P1, P2) belongs to R ⊗ R. The proof of
the previous proposition shows,

w-degR⊗R

F (P1, P2)
(x1 − x2)2

= 2rs− 2r − 2s.

However the terms in dΣ/dx2 whose w-degrees (w-degRa
(a = 1, 2)) are greater

than rs− s− r − 1 are canceled by the additional terms (see Lemma 3.4) and we
have

w-degR1

F (P1, P2)
(x1 − x2)2

= rs− s− r − 1.

Since w-degRdx/ryr−1 = s− sr + r +1, Ω(P1, P2) has no singularity at infinity. It
is clear that it satisfies the other defining properties of the fundamental differential
of the second kind. ¤

Lemma 3.4. We have

lim
P1→∞

F (P1, P2)
φg−1(P1)(x1 − x2)2

= φg(P2). (3.12)

Proof. From Proposition 2.1 (2) and (3),

w-degRφg−1(P ) = 2g − 2 = rs− r − s− 1,

w-degRφg(P ) = 2g = rs− r − s + 1.

We also note that λ-degRλ⊗Rλ
F (P1, P2)/(x1 − x2)2 is equal to w-degR⊗RF (P1,
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P2)/(x1 − x2)2, which is the same as w-degR⊗R(φg−1(P2)φg(P1)) = 2sr− 2r− 2s.
We are only concerned with monomials whose w-degree agrees with their λ-degree
in the left-hand side of (3.12). Because of uniqueness, we find that φg−1(P )φg(P ) =
xs−2yr−2, and φg−1(P1)φg(P2) is identified with xix

1 xs−ix−2
2 y

iy

1 y
r−iy−2
2 for suitable

ix and iy coming from the leading term in Af (x1, x2), expanded as in (3.10), as
seen by the definition of F in (3.11). We check that the coefficient of this monomial
is 1 in (3.8). Here we note that ix and iy satisfy the relation,

siy +rix = sr−s−r−1, i.e., s(r−iy−2)+r(s−ix−2) = sr−s−r+1. (3.13)

Using the identity,

m∑

i=0

aix
i
1x

n−i
2 = (x1 − x2)

m−1∑

i=0

( i∑

j=0

aj

)
xi

1x
n−i−1
2 +

( m∑

j=0

aj

)
xm

2 ,

we calculate the term in B(P1, P2)/(x1 − x2)2 of (3.8) which corresponds to a
given monomial. (N.B. In Proposition 3.2, we proved that B(P1, P2)/(x1 − x2)2

belongs to R ⊗ R by using an ε expansion. This identity provides another proof,
which more precisely determines hi(x, y).) For a certain k and i in the sum, we
find a monomial (yr−k

1 yk−2
2 xi

1x
s−i−2
2 ) in B(P1, P2)/(x1 − x2)2 of (3.8), which has

the properties,

w-degR1

(
yr−k
1 yk−2

2 xi
1x

s−i−2
2

)
= s(r − k) + ri,

w-degR2

(
yr−k
1 yk−2

2 xi
1x

s−i−2
2

)
= s(k − 2) + r(s− i− 2)

and the coefficient (k− 1)s− (i + 1)r. By using (3.13), i.e., k = r− iy and i = ix,
we see that the coefficient is 1. It is not difficult to prove that the other terms
vanish in the limit by watching their w-degR1

. ¤

Hereafter we expand hi(P ) = ryr−1νII
i(P )/dx, 1 ≤ i ≤ g, in the monomial

basis of R, to avoid carrying holomorphic one-forms.
For later convenience we introduce the notation:

ΩP1,P2
Q1,Q2

:=
∫ P1

P2

∫ Q1

Q2

Ω(P,Q)

=
∫ P1

P2

(Σ(P,Q1)− Σ(P, Q2)) +
g∑

i=1

∫ P1

P2

νI
i(P )

∫ Q1

Q2

νII
i(P ). (3.14)
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4. The sigma function.

As customary, we choose a basis αi, βj (1 5 i, j 5 g) of H1(X, Z) such that
their intersection numbers are αi ·αj = βi ·βj = 0 and αi ·βj = δij , and we denote
the period matrices by

[ω′ ω′′] =
1
2

[ ∫

αi

νI
j

∫

βi

νI
j

]

i,j=1,2,...,g

,

[η′ η′′] =
1
2

[ ∫

αi

νII
j

∫

βi

νII
j

]

i,j=1,2,...,g

.

(4.1)

The following Lemma corresponds to Corollary 2.6 (ii) in [F1].

Lemma 4.1.

ΩP1,P2
Q1,Q2

=
∫ P1

P2

τQ1,Q2 +
g∑

i,j=1

γij

∫ P1

P2

νI
i

∫ Q1

Q2

νI
j ,

where τ has residues +1,−1 at Q1, Q2, is regular everywhere else, and is normal-
ized i.e.,

∫
αi

τP,Q = 0 and γ = ω′−1η′.

Proof. This is obtained by choosing an appropriate path Γ from Q1 to Q2,
homotopic to αk, and taking the differential of Ω. ¤

The following Proposition provides a symplectic structure in the Jacobian,
known as generalized Legendre relation [B1], [BLE1].

Proposition 4.2. The matrix,

M :=
[

2ω′ 2ω′′

2η′ 2η′′

]
, (4.2)

satisfies

M

[ −1
1

]
tM = 2π

√−1
[ −1

1

]
. (4.3)

Proof. By comparing Lemma 4.1 and (3.11) in Corollary 3.3, we choose
appropriately (2g)2 paths and take the integrals along the paths. ¤
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By the Riemann relations [F1], it is known that Im (ω′−1
ω′′) is positive defi-

nite. Referring to Theorem 1.1 in [F1], let

δ :=
[

δ′

δ′′

]
∈

(
1
2
Z

)2g

(4.4)

be the theta characteristic which gives the Riemann constant with respect to the
base point ∞ and the period matrix [2ω′ 2ω′′].

We define an entire function of (a column-vector) u = t(u1, u2, . . . , ug) ∈ Cg,

σ(u) = σ(u; M) = σ(u1, u2, . . . , ug; M)

= c exp
(
− 1

2
tuη′ω′−1

u

)
ϑ[δ]

(
1
2
ω′−1

u; ω′−1
ω′′

)

= c exp
(
− 1

2
tuη′ω′−1

u

)

×
∑

n∈Zg

exp
[
π
√−1

{
t(n + δ′)ω′−1

ω′′(n + δ′) + t(n + δ′)(ω′−1
u + δ′′)

}]
,

(4.5)

where c is a constant. In this article, the constant c is not important because we
deal only with ratios of σ functions, so we say nothing more about it.

For a given u ∈ Cg, we introduce u′ and u′′ in Rg so that

u = 2ω′u′ + 2ω′′u′′.

Proposition 4.3. For u, v ∈ Cg, and ` (= 2ω′`′ + 2ω′′`′′) ∈ Λ, we define

L(u, v) := 2 tu(η′v′ + η′′v′′),

χ(`) := exp
[
π
√−1

(
2(t`′δ′′ − t`′′δ′) + t`′`′′

)]
(∈ {1, −1}).

The following holds

σ(u + `) = σ(u) exp
(

L

(
u +

1
2
`, `

))
χ(`). (4.6)

Proof. The proof is standard; note that σ is essentially the same as the
normalized theta function in Chapter VI of [L]. ¤



1032 S. Matsutani and E. Previato

The vanishing locus of σ is:

Θg−1 =
(
W g−1 ∪ [−1]W g−1

)
= W g−1. (4.7)

The last equality is due to Proposition (4.3), which shows that σ is an even or odd
function under the action of [−1]; the reason for introducing W g−1 ∪ [−1]W g−1

is that the analogous loci when g − 1 is replaced by k play an important role and
W k is not [−1]-invariant in general.

We review a relation which we call the Riemann fundamental relation [R],
[B1, Section 195]:

Proposition 4.4. For (P, Q, Pi, P
′
i ) ∈ X2 × (Sg(X) \ Sg

1 (X)) × (Sg(X) \
Sg

1 (X)),

u :=
g∑

i=1

w(Pi), v :=
g∑

i=1

w(P ′i ),

exp
( g∑

i,j=1

ΩP,Q
Pi,P ′j

)
=

σ(w(P )− u)σ(w(Q)− v)
σ(w(Q)− u)σ(w(P )− v)

=
σ(w(P )− w(P1, . . . , Pg))σ(w(Q)− w(P ′1, . . . , P

′
g))

σ((w(Q)− w(P1, . . . , Pg))σ(w(P )− w(P ′1, . . . , P ′g))
.

Proof. The right-hand side can be expressed as

exp(bilinear term in w’s)
θ(ω′−1(w(P )− u) + ξ)θ(ω′−1(w(Q)− v) + ξ)
θ(ω′−1(w(Q)− u) + ξ)θ(ω′−1(w(P )− v)) + ξ)

,

where ξ is the Riemann vector. By Riemann’s theorem for theta functions [F1,
p. 23], the above becomes

exp(bilinear term in w’s) exp
( g∑

j=1

∫ P

Q

τPj ,P ′j

)
.

The exponential part of the bilinear term turns out to be

(u− v)tγ(w(P )− w(Q)) =
∑

i,j,k

γij

∫ Pk

P ′k

νI
i

∫ P

Q

νI
j ,
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which equals (Lemma (4.1))

g∑

i=1

ΩP,Q
Pi,P ′i

−
g∑

i=1

∫ P

Q

τPi,P ′i .

The above integrals depend upon the paths we choose, but (4.6) shows that such
dependence cancels. Thus the right-hand side coincides with the left-hand side. ¤

Proposition 4.5. For (P, P1, . . . , Pg) ∈ X × Sg(X) \ Sg
1 (X) and u :=

w(P1, . . . , Pg), the equality

g∑

i,j=1

℘i,j

(
w(P )− u

)
φi−1(P )φj−1(Pa) =

F (P, Pa)
(x− xa)2

,

holds for every a = 1, 2, . . . , g, where we set

℘ij(u) := −σi(u)σj(u)− σ(u)σij(u)
σ(u)2

≡ − ∂2

∂ui∂uj
log σ(u).

We remark that the first equation in this proposition,

−
g∑

i,j=1

∂2

∂ui∂uj
log σ(w(P )− u)νI

i(P )νI
j(Pa) = Ω(P, Pa), (4.8)

corresponds to (29) of Corollary 2.6 in [F1]. In our case, Ω(P, Pa) has an explicit
expression in terms of the affine coordinates on the curve.

Proof. Using the relation

g∑

i,j=1

φi−1(P1)φj−1(P2)
∂2

∂wi(P1)∂wj(P2)
= r2yr−1

1 yr−1
2

∂2

∂x1∂x2
,

taking logarithm of both sides and differentiating along P1 = P and P2 = Pa, we
obtain the claim. ¤

Proposition 4.6. For (P, P1, . . . , Pg) ∈ X × Sg(X) \ Sg
1 (X),

(1) µg(P ; P1, . . . , Pg) = φg(P )−∑g
j=1 ℘gj(w(P1, . . . , Pg))φj−1(P ).

(2) ℘g,k+1(w(P1, . . . , Pg)) = (−1)g−k−1µg,k(P1, . . . , Pg), (k = 0, . . . , g − 1).
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Proof. In Proposition 4.5, we let P → ∞ after dividing both sides by
φg−1(P ) and we obtain

g∑

j=1

℘g,j(u)φj−1(Pi) = φg(Pi).

for every i. Let Qi be such that u =
∑g

i=1 w(Pi) = −∑g
i=1 w(Qi). Note that

℘ij(u) is an even function. Thus both µg(P ; P1, . . . , Pg) and

φg(P )−
g∑

j=1

℘g,j(u)φj−1(P ), (4.9)

are elements of R vanishing only at Pi and Qi, viewed as functions of P . As in
Lemma 2.6 and Proposition 2.7, we have the identity due to the uniqueness of
µg(P ; P1, . . . , Pg). ¤

5. Jacobi inversion formulae over Θk.

We introduce

Θk := W k ∪ [−1]W k. (5.1)

For (r = 2, s = 2g + 1) (hyperelliptic) curves and ∞ a branch point, Θk equals
W k for every positive integer k but in general it does not.

Theorem 5.1. The following relations hold

(1) Θg case: for (P1, . . . , Pg) ∈ Sg(X) \ Sg
1 (X) and u = ±w(P1, . . . , Pg) ∈

κ−1(Θg),

σi(u)σg(u)− σgi(u)σ(u)
σ2(u)

= (−1)g−i+1µg,i−1(P1, . . . , Pg), for 0 < i ≤ g.

(2) Θg−1 case: for (P1, . . . , Pg−1) ∈ Sg−1(X) \ Sg−1
1 (X) and u = ±w

(P1, . . . , Pg−1) ∈ κ−1(Θg−1),

σi(u)
σg(u)

=

{
(−1)g−iµg−1,i−1(P1, . . . , Pg−1) for 0 < i ≤ g,

1 for i = g.
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(3) Θk case: for (P1, . . . , Pk) ∈ Sk(X) \ Sk
1 (X) and u = ±w(P1, . . . , Pk) ∈

κ−1(Θk),

σi(u)
σk+1(u)

=





(−1)k−i+1µk,i−1(P1, . . . , Pk) for 0 < i ≤ k,

1 for i = k + 1,

0 for k + 1 < i ≤ g.

We provide some context before proving the theorem. The theorem is a
natural generalization of a formula of Grant [Gr] and Jorgenson [Jo]; the first
generalizations of it, for Crs curves of a particular type or genus, were given in
[E], [EG], [BG1], [BG2].

Remark 5.2. Jacobi [Ja] investigated the Jacobian of a curve of genus two
using νI

1 and νI
2 and Abel’s theorem, to generalize the addition formulae on an

elliptic curve. He showed that the addition structure is given by solving a degree-2
polynomial A + Bt + Ct2 = 0 to obtain (x, y) coordinates of the sum, a divisor
of degree two. Noting φi(P ) = xi (i < g + 1) for the hyperelliptic case, (4.9) is
exactly the statement of Jacobi. He also posed the ‘Jacobi inversion problem’ of
expressing A/C, B/C in terms of w(P )+w(Q). Theorem 5.1 is a natural extension
of Jacobi’s formulae (and Fay’s as show in Remark 5.10 below).

Remark 5.3. If we retain only the leading term of each element of the FS-
matrix in terms of a local parameter at ∞, which is what is left if the curve is
yr = xs, µi,k is a ratio of Schur polynomials. On the other hand, the leading term
of the σ-function is explicitly given by a Schur polynomial as shown in [BLE1],
[BLE2].

Remark 5.4.

(1) The case k = 1 of (3) means that for (x, y) = P ∈ X and u := w(P ) ∈
κ−1Θ1, we have

−σ1(u)
σ2(u)

= x. (5.2)

For a genus-two curve this is Grant’s [Gr] and Jorgenson’s [Jo] formula. For every
(r, s)-curve and a positive integer iy such that φiy (P ) = yr−2 and iy < g, then
νI

ir (P ) = dx/ry. By differentiating along the curve, we obtain

1
r

d

duiy

σ1(u)
σ2(u)

= y.
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Thus both are the simplest Jacobi inversion formulae, and these functions generate
R. For example, to express the FS-matrix in terms of σ’s over Θ1’s, for P1, P2 ∈ X,
e.g.,

1
σ2(w(P1))σ2(w(P2))

∣∣∣∣
σ1(w(P2)) σ2(w(P2))

σ1(w(P1)) σ2(w(P1))

∣∣∣∣ = −
∣∣∣∣
1 x1

1 x2

∣∣∣∣.

(2) As in [BG1], [BG2], our results might have applications to the solution
of the Benney equation, which requires Jacobi inversion. To mention another
application to integrable PDEs, for u := w((x, y)), since du1 = dx/ryr−1, duin =
xndx/ryr−1 for a suitable in,

d

du1

σ1(u)
σ2(u)

=
(
− σ1(u)

σ2(u)

)n
d

duin

σ1(u)
σ2(u)

.

This is an equation of the Burgers-Hopf hierarchy [KK]: a solution is thus asso-
ciated to any (r, s) curve.

(3) Theorem 5.1 (2) can be rewritten:

σi(u) = (−1)g−iµg−1,i−1(P1, . . . , Pg−1)σg(u),

or

ψ
ˇ(i−1)

g−1 (P1, . . . , Pg−1)
∂

∂ui
σ(u) = (−1)g−iψ

ˇ(g−1)
g−1 (P1, . . . , Pg−1)

∂

∂ug
σ(u),

which should be compared with Proposition 2.11 for k = g.
(4) We should note that Grant’s formula (5.2) for genus two also appeared in

[GT, (7.1)] where it was used to give explicit Hamiltonians for the Hitchin system
[vGP].

For the proof of Theorem 5.1, let a decomposition of u ∈ κ−1W k, whose
preimage is given by (P1, . . . , Pk−1, Pk) ∈ Sk(X), be denoted by u = u[k−1] + v,
where u[k−1] := w(P1, . . . , Pk−1) and v := w(Pk).

Proof of Theorem 5.1 (1), (2). Since µk,` is invariant under the action
of [−1] (cf. Proposition 2.7), we can replace Θk by W k. Proposition 4.6 gives
(1). To obtain (2) we will use Lemma 5.5 below and 2.10. Let u := w(P1, . . . , Pg)
for (P1, . . . , Pg) ∈ Sg(X). By multiplying both sides of (1) by σ(u)2/σg(u)2 and
taking the limit Pg →∞, we have
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lim
Pg→∞

(
σ(u)
σg(u)

)2(
σg(u)σi(u)− σ(u)σgi(u)

σ(u)2

)
= lim

Pg→∞

(
σi(u)
σg(u)

− σ(u)σgi(u)
σg(u)2

)

= lim
Pg→∞

(
σi(u)
σg(u)

)
. (5.3)

The right-hand side is a function on W g−1 as shown in Lemma 5.5 (1). Lemma
5.5 (2) allows us to write the left-hand side:

(−1)g−i lim
Pg→∞

(
φg−1(Pg)
φg(Pg)

)
µg,i−1(P1, . . . , Pg)

and Proposition 2.1 (2) and (3) allow us to see that this limit gives (2), using
Proposition 2.10. ¤

Lemma 5.5. Let u[g−1] ∈ κ−1(W g−1) be a non-singular point.

(1)
σi(u[g−1] + `) = σi(u[g−1]) exp

(
L

(
u[g−1] +

1
2
`, `

))
χ(`). (5.4)

(2) For v := w(P ), u := u[g−1] + v ∈ κ−1(W g), σ(u)2/σg(u)2 is expanded
around v = 0 by

σ(u)2

σg(u)2
= (vg)2 + d≥((vg)3).

Proof.

(1): After differentiating both sides of the relation (4.6) in Proposition 4.3
with respect to ui, we restrict the domain to κ−1W g−1 noting that σ vanishes
simply on κ−1W g−1. The equation follows.

(2): The quasi-periodic properties (1) show that the quotient in (2) is well-
defined over κ−1(W g). We know that σ vanishes on κ−1W g−1; σ(u) is expanded
as

σ(u) = σ(u[g−1]) +
∂σ(u[g−1])

∂u1
v1 +

∂σ(u[g−1])
∂u2

v2 + · · ·+ ∂σ(u[g−1])
∂ug

vg + · · · ,

∂

∂ug
σ(u) =

∂

∂ug
σ(u[g−1]) +

∂2σ(u[g−1])
∂u1∂ug

v1 +
∂2σ(u[g−1])

∂u2∂ug
v2 + · · ·

+
∂2σ(u[g−1])

∂ug∂ug
vg + · · · .
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By using a local parameter t∞ on the curve around ∞, vi can be expanded as
function of vg, vi = −(−vg)2g−N(i−1)−1/(2g−N(i−1)−1)+d>((vg)2g−N(i−1)−1);
vg = −t∞ + d>0(t∞) up to a constant factor. Hence (2) holds:

σ(u)
σg(u)

= vg + d≥((vg)2). ¤

The following Lemma will provide an induction step to prove the theorem.

Lemma 5.6. For k < g − 1, a non-singular point u[k−1] ∈ κ−1(W k−1), and
u := u[k−1] + w(Pk) whose preimage is given by (P1, . . . , Pk) ∈ Sk−1(X) × X, if
the relation,

σi(u)
σk+1(u)

=





(−1)k−i+1µk,i−1 for 0 < i ≤ k,

1 for i = k + 1,

0 for k + 1 < i ≤ g,

holds, we have the relations,

σk+1(u)
σk(u)

= (w(Pk)g)N(k)−N(k−1) + d≥((w(Pk)g)N(k)−N(k−1)+1)

and

σk+1(u)
σk(u)

=
φk−1(Pk)
φk(Pk)

+ d≥((w(Pk)g)N(k)−N(k−1)+1).

Proof. From the assumptions, we have

σk+1(u)
σk(u)

= − 1
µk,k−1

= − ψ
(ǩ)
k (P1, . . . , Pk)

ψ
( ˇk−1)
k (P1, . . . , Pk)

.

Let us consider the behavior around Pk = ∞. By a similar argument to the one
used in Proposition 2.10, the right-hand side behaves like

1
µk,k−1

=
−φk−1(Pk)ψ( ˇk−1)

k−1 (1, . . . , Pk−1) + d≥((w(Pk)g)−N(k)+1)

φk(Pk)ψ( ˇk−1)
k−1 (1, . . . , Pk−1) + d≥((w(Pk)g)−N(k)+1)

+ d≥
(
(w(Pk)g)−N(k)+N(k−1)−1

)
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= −φk−1(Pk)
φk(Pk)

+ d≥
(
(w(Pk)g)N(k)−N(k−1)+1

)
. ¤

From the assumptions of the Lemma, we therefore also derive:

σi(u)
σj(u)

= (−1)i−j µk,i−1

µk,j−1
,

and may take limits of both sides.

Proof of Theorem 5.1 (3). We prove (3) using descending induction
with respect to k; the base step is (2), which was proved above. Again, we work
over W k by an argument similar to the one used in the proof of (1), (2). Assume
the relation over W k. Under the same assumption of Lemma 5.6, we multiply
both sides of the relation by σk+1(u)/σk(u) and obtain by Lemma 5.6:

lim
Pk→∞

σk+1(u)
σk(u)

σi(u)
σk+1(u)

= − lim
Pk→∞

φk−1(P )
φk(P )

µk,i−1.

Proposition 2.10 now yields (3). ¤

From the algebraic expressions for quotients of σ’s we deduce the following
facts about the order of vanishing:

Corollary 5.7.

(1) Let k be 1, . . . , g− 1 and W k
1 = w(Sk

1 (X)). For u ∈ κ−1(W k \W k
1 ∪ ι(W k \

W k
1 )) and i ≤ k,

ordκ−1(Θk−1)σk+1(u) = ordκ−1(Θk−1)σi(u) + N(k)−N(k − 1),

where i = 1, . . . , k.
(2) σi(u)/σk+1(u) (i = 1, . . . , k) belongs to H0(Θk,O((N(k)−N(k−1))Θk−1)).

Proof. Both parts follow immediately from the theorem. For example,
when k = g − 1 in (1), we use

σi(w(P1, . . . , Pg−1) + w(P ))

= (−1)g−iµg−1,i(P, P1, . . . , Pg−1)σg(w(P1, . . . , Pg−1) + w(P ))

and take the limit as P →∞. ¤
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Remark 5.8. We comment on the interpretation of Theorem 5.1 in the
context of Riemann’s singularity theorem [ACGH, Chapter VI Section 1] and
more precise vanishing theorems given in [F2], revisited in the context of Sato’s τ

function on an infinite Grassmann manifold [BV], [SW]. Note however that the
latter papers only deal with derivatives with respect to the “Sato coordinate” ug

(the derivative along the curve, embedded in its Jacobian, at the point ∞). These
hold for any curve.

(1) Riemann’ singularity theorem says the following: Let D belong to
Sk(X) \ Sk

1 (X), (k < g), u :=
∫ D

k∞ νI, and

nk := h0(D + (g − k + 1)∞) = #{` | 0 ≤ `,N(`) < k}.

a) For every multiple index (α1, . . . , αm) with αi ∈ {1, . . . , g} and m < nk,

∂s

∂uα1 . . . ∂uαs

σ(u) = 0.

b) There exists a multiple index (β1, . . . , βnk
) such that

∂nk

∂uβ1 . . . ∂uβnk

σ(u) 6= 0. (5.5)

Fay’s results [F2, Theorem 1.2] allow us to make the order of vanishing
more precise; we adapt Fay’s notation to the situation in which (2g − 2)∞
is a canonical divisor.

Let ν+
i (0 ≤ ν+

1 < ν+
2 < · · · < ν+

nk
≤ g − 1) such that

h0(D + (g − k − `− 1)∞) = nk − i + 1 for ` = ν+
i ,

h0(D + (g − k − ` + 1)∞) ≤ nk − i for ` > ν+
i ;

let ν−i be defined the same way, but replacing D by −D, and

Nk := nk +
nk∑

i=1

(ν+
i + ν−i )

For u := u[k] + v ∈ κ−1W k+1 and v = w(P ) of P ∈ X,
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∂Nk−1

∂vg
Nk−1

σ(u)
∣∣∣
v=0

= 0, and
∂Nk

∂vg
Nk

σ(u)
∣∣∣
v=0

6= 0. (5.6)

(2) For our special curves, if besides (5.5), we impose another condition on the
multiple index (β1, . . . , βnk

):

lim
u→Θk−1

∂nk

∂uβ1 . . . ∂uβnk

σ(u) = 0, (5.7)

then Corollary 5.7 (1) gives Nk =
∑nk

i=1 ord(uβi
), where ord(uβi

) signifies
the degree of uβi in a local parameter at ∞, and {βi} in (5.5) contains k +1
with notation as in (1) for D ∈ Θk. Note that on the points of W k for which
nk 6= 1, the relations in Theorem 5.1 should be regarded as zero over zero
and interpreted using L’Hospital’s theorem, to be expressed algebraically as
well. Enolskii ([E], and private communication to the first-named author)
proposed for the first time an expression for the quotient σgg...gi/σgg...gk

when it is finite.

Also immediate from Theorem 5.1 are the following formulae (recall Proposi-
tion 4.6 for (1) and Proposition 2.2 and (2.10) for (3)):

Corollary 5.9.

(1) For (P1, P2, . . . , Pg) ∈ Sg(X) \ Sg
1 (X), u := w(P1, P2, . . . , Pg) and (x, y) =

P ∈ X,

µg(P ;P1, . . . , Pg)
dx

ryr−1
= −

g∑

i=1

℘ig(u)νI
i(P ) + νI

g+1(P ).

(2) For (P1, P2, . . . , Pk) ∈ Sk(X) \ Sk
1 (X) (k < g), u := w(P1, P2, . . . , Pk) and

(x, y) = P ∈ X,

µk(P ;P1, . . . , Pk)
dx

ryr−1
=

k+1∑

i=1

σi(u)νI
i(P )

σk+1(u)
.

(3) For (P1, P2, . . . , Pk) ∈ Sk(X) \ Sk
1 (X) (k < g) and u := w(P1, P2, . . . , Pk),
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 φ1(P1) φ2(P1) . . . φk(P1)

1 φ1(P2) φ2(P2) . . . φk(P2)

1 φ1(P3) φ2(P3) . . . φk(P3)
...

...
...

. . .
...

1 φ1(Pk) φ2(Pk) . . . φk(Pk)

a1 a2 a3 . . . ak+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 φ1(P1) φ2(P1) . . . φk(P1)

1 φ1(P2) φ2(P2) . . . φk(P2)

1 φ1(P3) φ2(P3) . . . φk(P3)
...

...
...

. . .
...

1 φ1(Pk) φ2(Pk) . . . φk(Pk)

b1 b2 b3 . . . bk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∑k+1

i=1 σi(u)ai∑k+1
i=1 σi(u)bi

.

Remark 5.10. We connect Corollary 5.9 to results of Fay and Jorgenson.
Part (1) appears as Corollary 2.12 of [F1] because (4.8) is the form in (28), (29)
of [F1] and by using formulae (37), (37)′ in [F1]. The form

∑g
i=1 σi(u)νI

i(P ) is
the Hf in Corollary 1.4 of [F1] and the X in [B1, Chapter XIV Section 273], used
for the definition of the prime form. Thus (2) in the k = g − 1 case is a factor in
the right-hand side of the second equality proved in Corollary 2.17 of [F1], which
provides an addition formula.

The case k = g− 1 of (3) is the specific algebraic expression (for (r, s) curves)
of the formula obtained by Jorgenson in Theorem 1 of [Jo].
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and applications, in Solitons, geometry and topology: on the crossroad, Amer. Math.

Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, pp. 1–33.
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