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Abstract. Takamura constructed a theory on splitting families of degenera-
tions of Riemann surfaces. We call them Takamura splitting families. In a Takamura
splitting family, there appear two kinds of singular fibers, called a main fiber and
subordinate fibers. In this paper, when the original singular fiber is stellar and the
core is a projective line, we determine the number of subordinate fibers and describe
the types of singular points, which are nodes.

1. Introduction.

A degeneration of Riemann surfaces of genus g is a proper surjective holo-
morphic map π : M → ∆ from a smooth complex surface M to the unit open
disk ∆ = {s ∈ C : |s| < 1}, and the fiber over the origin is singular and
any other fiber is a smooth complex curve of genus g (g ≥ 1). A smooth fiber
is called a general fiber. The classification problem of degenerations has been
studied in the algebraic geometry and many results are obtained. On the other
hand, Matsumoto-Montesinos [6] proved that topological equivalent classes of de-
generations of Riemann surfaces correspond to conjugate classes of topological
monodromies.

In this paper, we are rather interested in deformations of degenerations, that
is, splitting families. Let ∆† = {t ∈ C : |t| < ε} be a sufficient small disk, let M
be a smooth complex 3-manifold, and let Ψ : M → ∆×∆† be a proper flat surjec-
tive holomorphic map. We denote ∆ × {t} by ∆t, Ψ−1(∆t) by Mt and Ψ |Mt :
Mt → ∆t by πt (t ∈ ∆†). Then Mt is a complex 2-manifold and πt is a surjective
holomorphic map. We say that Ψ : M → ∆ ×∆† is a deformation family of the
degeneration π : M → ∆ if for t = 0, π0 : M0 → ∆0 coincides with the original
degeneration π : M → ∆. Moreover if for t 6= 0, πt : Mt → ∆t has more than two
singular fibers, then we call Ψ : M → ∆ × ∆† a splitting family of π : M → ∆.
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There are lots of open problems of splitting families on a classification of atomic
degenerations and on relations between monodromies and splitting families.

Motivated by the classification problem of atomic degenerations, Takamura
[13] gave a new method of construction of splitting families, which he named
barking deformations, and we call them Takamura splitting families. In this paper,
we confine ourselves to the case when the original singular fiber X is stellar and
the core is a projective line (see Definition 2.2 for the definition of stellar and the
core). He defined a simple crust Y of X. Y is a subdivisor of X which satisfies
some conditions (see Definition 2.5). He showed that if a singular fiber X has a
simple crust, then there exists a splitting family πt : Mt → ∆t. For t 6= 0, the
singular fiber X0 = π−1

t (0) is called the main fiber of πt and the others singular
fibers of πt are called subordinate fibers.

In order to state our theorem, we need to introduce the notion of “J-generic”
and “proportional”. We define an arrangement polynomial J(z) in Section 2. The
polynomial J(z) plays an important role to prove our main theorem. A splitting
family πt is J-generic if J(z) = 0 has no multiple root. The proportionality
of subbranches was introduced by Takamura [13]. He showed that if a simple
crust Y has proportional subbranches, then the number of singular points in the
neighborhood of the core gets fewer but there appear some singular points around
the edges of the proportional subbranches.

The main theorem of this paper is as follows:

Theorem 1.1. Let π : M → ∆ be a degeneration with a stellar singular
fiber X whose core is a projective line. Let πt : Mt → ∆t be a Takamura splitting
family associated with a simple crust Y . Suppose that πt : Mt → ∆t is J-generic
and any subbranch of Y is not proportional. Then

(1) The number of singular points of all subordinate fibers is n0(N − 2 + c).
(2) The number of subordinate fibers is at most (n0/d)(N − 2 + c).
(3) Any singular point of a subordinate fiber is a node.

Here N,m0, n0, c and d are the integers associated with π and πt. (See the notation
above the expression (1).)

See the proof of Proposition 3.1 for (1) and (2) of Theorem 1.1, and the
proof of Proposition 3.6 for (3) of Theorem 1.1. Using these results, the first
author developed the software Splitica [3] to draw computer graphics of splitting
phenomena.

Takamura [13] determine the types of singular points of subordinate fibers for
the general case (the core may have arbitrary genus). He determines the number
and the types of a singular points of subordinate fibers by using a plot function.
Our proof is a little different from his.



Subordinate fibers of Takamura splitting families 985

In Section 2, we will explain the terminologies in the above statement, and
we prepare notation and introduce Takamura’s theorems. We prove our theorem
from Section 3 to Section 5.

Acknowledgements. The authors express their deep gratitude to Shigeru
Takamura for valuable discussions and advice and encouragement. They would
also like to thank Yukio Matsumoto and Masaharu Ishikawa for their fruitful and
useful advice and encouragement, and Toshikazu Sunada, Yuichi Yamada, Mizuho
Ishizaka, Isao Hasegawa and Kokoro Tanaka for warm encouragement.

2. Preparation.

After we review results on degenerations and Takamura splitting families given
by Takamura [12] and [13], we give the local expression of splitting families around
the core and the notion of a Milnor fiber.

Lemma 2.1 (Takamura [12]). Suppose that integers m0,m1, . . . , mλ satisfy
the following conditions:

(1) m0 > m1 > · · · > mλ > 0,
(2) ri := (mi−1 + mi+1)/mi is an integer greater than one (i = 1, 2, . . . , λ− 1),
(3) rλ := mλ−1/mλ is an integer greater than one.

Then there exists a degeneration of Riemann surfaces with the singular fiber
X = m0∆0 + m1Θ1 + · · · + mλΘλ. Here ∆0 is an open disk and Θ1, Θ2, . . . , Θλ

are projective lines. The components Θi and Θi+1 (resp. ∆0 and Θ1) intersect
transversely at only one point and mi (resp. m0) is the multiplicity of Θi (resp.
∆0).

Definition 2.2. Let π : M → ∆ be a degeneration of Riemann surfaces.
The singular fiber X = π−1(0) is said to be stellar if X satisfies the following three
properties:

(1) The singular fiber X is expressed as X = m0Θ0+
∑N

j=1 Br(j), where N ≥ 2,

Br(j) =
∑λj

i=1 m
(j)
i Θ(j)

i and the integers m0,m
(j)
1 ,m

(j)
2 , . . . , m

(j)
λj

satisfy the
conditions in Lemma 2.1 for each j.

(2) The irreducible component Θ0 is a Riemann surface, and each Θ(j)
i (j =

1, 2, . . . , N , i = 1, 2 . . . , λj) is a projective line. The components Θ(j)
i and

Θ(j)
i+1 (also Θ(j)

1 and Θ0) intersect transversely at one point (j = 1, 2, . . . , N ,
i = 1, 2, . . . , λj − 1).

(3) Set r0 := 1/m0

∑N
j=1 m

(j)
1 . Then r0 is a positive integer.

See Figure 1.
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Figure 1. A stellar singular fiber.

The irreducible component Θ0 is called the core, and a chain of projective
lines Br(j) is called the jth branch. We call Br

(j)
= m

(j)
0 ∆(j)

0 +
∑λj

i=1 m
(j)
i Θ(j)

i

the jth fringed branch, where ∆0 is a small disk around the intersection point
of Θ0 and Br(j). m0∆

(j)
0 is called its fringe. From this forth, for simplicity, we

call a fringed branch a branch. The negative integer −r0 is equal to Θ0 · Θ0, the
self-intersection number of Θ0. We remark that a degeneration π : M → ∆
has a stellar singular fiber precisely when the monodromy map of π : M → ∆ is
periodic.

Theorem 2.3 (Takamura [12]). Set X := m0Θ0 +
∑N

j=1 Br(j), where

Br(j) :=
∑λj

i=1 m
(j)
i Θ(j)

i . If integers m0,m
(j)
1 , . . . ,m

(j)
λj

(j = 1, 2, . . . , N) satisfy

the conditions in Lemma 2.1 and r0 = 1/m0

∑N
j=1 m

(j)
1 is a positive integer, then

there exists a linear degeneration π : M → ∆ such that the singular fiber π−1(0)
is equal to X.

He constructed a degeneration π : M → ∆ with the singular fiber X by
resoluting cyclic quotient singularities. The construction is as follows: Let C be
a complex curve of genus g, and let h : C → C be a periodic automorphism
of order m0 with the valency data

(
m

(1)
1 /m0,m

(2)
1 /m0, . . . , m

(N)
1 /m0). First, he

constructed a minimal resolution map r : M → (C×∆)/G, where M is a resolution
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space of the quotient space (C × ∆)/G and G is a cyclic group generated by
g : C×∆ → C×∆, g(x, s) = (h−1(x), e2πi/m0s). Secondly, he defines the function
φ : (C × ∆)/G → ∆ induced by the G-invariant function φ : C × ∆ → ∆,
φ(x, s) = sm0 . Set π := φ ◦ r : M → ∆, and π is a degeneration with the
singular fiber X. On the other hand, Matsumoto-Montesinos [6] constructed a
degeneration by open-book construction.

Definition 2.4. Let π : M → ∆ be a degeneration with the singular fiber
π−1(0) = X. The degeneration π : M → ∆ is normally minimal if

(1) any singularity of the reduced part of X is a node, and
(2) an irreducible component of X is a exceptional curve, then it intersects other

irreducible components at more than two points.

From now on, we assume that π : M → ∆ is normally minimal.
Set X := m0Θ0 +

∑N
j=1 Br(j), where Br(j) :=

∑λj

i=1 m
(j)
i Θ(j)

i , and set Y :=

n0Θ0 +
∑N

j=1 br(j), where br(j) :=
∑ej

i=1 n
(j)
i Θ(j)

i . We say that Y is a subdivisor

of X if Y satisfies (1) λj ≥ ej ≥ 0 and (2) m
(j)
i ≥ n

(j)
i > 0 for each i and j.

Suppose that Y is a subdivisor of X. Let Br
(j)

= m0∆
(j)
0 +

∑λj

i=0 m
(j)
i Θ(j)

i be the

jth branch of a stellar singular fiber X. We call br
(j)

= n0∆
(j)
0 +

∑ej

i=0 n
(j)
i Θ(j)

i a

subbranch of the jth branch Br
(j)

if br
(j)

satisfies one of the following conditions:
(1) ej = 0, 1 or (2) ej ≥ 2 and n

(j)
i−1 = r

(j)
i n

(j)
i − n

(j)
i+1 (i = 1, 2, . . . , ej − 1),

where n
(j)
0 = n0. We note that if br

(j)
is the subbranch of Br

(j)
and m

(j)
i ≥ ln

(j)
i

(i = 1, 2, . . . , ej) for a positive integer l, then lbr
(j)

= ln0∆
(j)
0 +

∑ej

i=0 ln
(j)
i Θ(j)

i is

also a subbranch of Br
(j)

. There are three types of subbranches introduced by
Takamura [13]:

• Type Al : For a positive integer l, a subbranch br
(j)

of a branch Br
(j)

is
of type Al if the following two conditions are satisfied: (1) m

(j)
i ≥ ln

(j)
i

(i = 0, 1, . . . , ej) and (2) n
(j)
ej−1/n

(j)
ej ≥ r

(j)
ej , where m

(j)
0 = m0.

• Type Bl : For a positive integer l, a subbranch br
(j)

of a branch Br
(j)

is of
type Bl if the following three conditions are satisfied: (1) m

(j)
i ≥ ln

(j)
i , (2)

l = m
(j)
ej and (3) n

(j)
ej = 1.

• Type Cl : For a positive integer l, a subbranch br
(j)

of a branch Br
(j)

is
of type Cl if the following four conditions are satisfied: (1) m

(j)
i ≥ ln

(j)
i ,

(2) n
(j)
ej−1 is divided by n

(j)
ej , (3) rej > n

(j)
ej−1/n

(j)
ej and (4) l is divided by

u := (m(j)
ej−1 − ln

(j)
ej−1)− (r(j)

ej − 1)(m(j)
ej − ln

(j)
ej ).

There exists a subbranch satisfying the conditions of both type Al and type
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Bl. It is said to be of type ABl. A subbranch is said to be proportional if
it satisfies m0n

(j)
1 = n0m

(j)
1 . In particular, a proportional subbranch satisfies

m0/n0 = m
(j)
1 /n

(j)
1 = · · · = m

(j)
ej /n

(j)
ej . We note that (i) a subbranch of type Cl

is not proportional and (ii) if a subbranch of type Bl is proportional, then it is of
type ABl.

We need a “special” subdivisor of X. It is a criterion of a existence of a
splitting family.

Definition 2.5 (Simple crust for stellar singular fiber). For a stellar sin-
gular fiber X = m0Θ0 +

∑N
j=1 Br(j), let Y be a subdivisor of X, where Y =

n0Θ0 +
∑N

j=1 br(j) and br(j) =
∑ej

i=1 n
(j)
i Θ(j)

i . A subdivisor Y of X is a simple
crust with the barking multiplicity l if the following two conditions are satisfied:

(1) There exists a positive integer l such that for each j = 1, 2, . . . , N , n0∆
(j)
0 +

br(j) is a subbranch of m0∆
(j)
0 + Br(j) of the type Al, Bl or Cl. Here ∆(j)

0

is an open disk around pj = Θ0 ∩Θ(j)
1 .

(2) N⊗n0 ∼= OΘ0(−
∑N

j=1 n
(j)
1 p

(j)
1 + D), where D =

∑c
i=1 aiqi and OΘ0 stands

for the sheaf of germs of holomorphic functions on Θ0.

If Θ0 = P 1, then we may replace the condition (2) by r′0 ≥ r0, where r′0 = 1/n0

·∑N
j=1 n

(j)
1 and r0 = 1/m0

∑N
j=1 m

(j)
1 . We state Takamura’s theorem as follows:

Theorem 2.6 (Takamura [13]). Let π : M → ∆ be a linear degeneration
with the singular fiber π−1(0) = X. If X has a simple crust Y , then π : M → ∆
admits a splitting family Ψ : M → ∆×∆†.

He constructs a splitting family of a degeneration by barking a simple crust Y

from a singular fiber X. So it is called a barking deformation. We review only the
case that a degeneration π : M → ∆ has a stellar singular fiber. But Takamura
[13] gave criteria of all linear degenerations. For t ∈ ∆†, we set ∆t := ∆ × {t},
Mt := Ψ−1(∆t) and πt := Ψ |Mt : Mt → ∆t. A barking deformation πt : Mt → ∆t

has a singular fiber π−1
t (0) (t 6= 0), which we call it the main fiber. For t 6= 0,

πt : Mt → ∆t has some singular fibers other than π−1
t (0). We call them subordinate

fibers. We call s ∈ ∆ is a singular value if π−1
t (s) is a singular fiber.

In this paper, we confine ourselves to the case when X is stellar. In the
sequel, we assume that X is a stellar singular fiber and the core Θ0 is P 1. We
give notation:

• m0 : the multiplicity of the core of the singular fiber X,
• N : the number of the branches of X,
• r0 := 1/m0

∑N
j=1 m

(j)
1 ; −r0 is the self-intersection number of the core,

• n0 : the multiplicity of the core of the simple crust Y ,
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• Let (z, ζ) and (w, η) be coordinates of a tubular neighborhood of the core
Θ0. Here the base coordinates z and w on Θ0 satisfy the relation z = 1/w,
and the fiber coordinates ζ and η satisfy the relation ζ = wr0η.

• c :=
∑N

j=1 n
(j)
1 − r0n0,

• d := gcd(m0, n0),
• f(z) : a polynomial of degree c, the roots are denoted by q1, q2, . . . , qc. We

call q1, q2, . . . , qc auxiliary points.
• p1, p2, . . . , pN : the attachment points of branches to the core, that is, pj =

Θ0 ∩ Θ(j)
1 (j = 1, 2, . . . , N). We assume that they are mutually distinct

complex numbers in generic positions. Moreover we assume pN = ∞.

We give the local expression of deformation πt around the core as follows:

πt(z, ζ) = ζm0−ln0

N−1∏

j=1

(z − pj)m
(j)
1 −ln

(j)
1

{
ζn0

N−1∏

j=1

(z − pj)n
(j)
1 + tf(z)

}l

, (1)

πt(w, η) = ηm0−ln0wmN−lnN

N−1∏

j=1

(1− pjw)m
(j)
1 −ln

(j)
1

×
{

ηn0wnN

N−1∏

j=1

(1− pjw)n
(j)
1 + tf(w)

}l

.

Takamura propagates this along branches to construct a splitting family. We give
an important polynomial J(z) on the core:

J(z) :=
N−1∑

i=1

(
m0n

(i)
1 − n0m

(i)
1

)
Gi(z)f(z)−m0

N−1∏

j=1

(z − pj)f ′(z),

where f ′(z) = df(z)/dz and

Gi(z) := (z − p1)(z − p2) · · · (z − pi−1)(z − pi+1) · · · (z − pN−1).

We call J(z) an arrangement polynomial. The equation J(z) = 0 determines
z-coordinates of singular points of subordinate fibers.

Definition 2.7. A Takamura splitting family Ψ : M → ∆ ×∆† is said to
be J-generic if J(z) = 0 has no multiple roots.

This condition depends on the points p1, p2, . . . , pN−1, q1, q2, . . . , qc. We also
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say that p1, p2, . . . , pN−1, q1, q2, . . . , qc are in J-generic positions under the same
condition. We note that we can take p1, p2, . . . , pN−1, q1, q2, . . . , qc are in J-generic
positions (see Section 4).

Now we review the Milnor fiber, which is needed for showing our theorem.
Let f : Cn+1 → C be a holomorphic function. For sufficiently small positive
numbers ε and δ, we set Bε := {(z1, z2, . . . , zn+1) ∈ Cn+1 : |z1|2 + |z2|2 + · · · +
|zn+1|2 < ε} and Dδ := {s ∈ C : |s| < δ}. For non-zero value s ∈ Dδ, we set
Xs := {(z1, z2, . . . , zn+1) ∈ Cn+1 : f(z1, z2, . . . , zn+1) = s} and Fs := Xs ∩ Bε.
We call Fs a Milnor fiber. Let µ be the first Betti number of Fs. We call µ the
Milnor number of Fs. We introduce two well-known facts of a Milnor fiber and
the Milnor number.

Theorem 2.8 (Milnor [9]). If (0, 0, . . . , 0) is an isolated singular point, then
the Milnor fiber Fs is (n − 1)-connected. In particular, when n = 1, the Milnor
fiber Fs is connected.

Theorem 2.9 (Milnor [9]). Let f : Cn+1 → C be a holomorphic function.
For a non-zero value s ∈ Dδ, let Fs be a Milnor fiber and let µ be the Milnor
number of Fs. Then

(1) (0, 0, . . . , 0) is a singular point if and only if the Milnor number µ of Fs is
greater than zero.

(2) (0, 0, . . . , 0) is a node (A1-singularity) if and only if the Milnor number µ of
Fs is equal to one.

From this theorem, if (0, 0, . . . , 0) is a singular point, then the Milnor fiber
is not a disk. (Note: The first Betti number of a disk is zero.) Moreover, if the
Milnor fiber Fs is an annulus, then the Milnor number is one, and (0, 0, . . . , 0) is
a node.

3. Proof of main Theorem.

Now we prove our main theorem. First, we show

Proposition 3.1. Let π : M → ∆ be a degeneration with a stellar singular
fiber X = m0Θ0 +

∑N
j=1 Br(j) (Br(j) =

∑λj

i=1 m
(j)
i Θ(j)

i ) such that the core Θ0 is
a projective line. Let Ψ : M → ∆×∆† be a Takamura splitting family associated
with a simple crust Y = n0Θ0 +

∑N
j=1 br(j) (br(j) =

∑ej

i=1 n
(j)
i Θ(j)

i ). Suppose that
Ψ : M → ∆×∆† is J-generic and any subbranch br(j) is not proportional. Then

(1) The number of singular points of all subordinate fibers is n0(N − 2 + c).
(2) The number of subordinate fibers is at most (n0/d)(N − 2 + c).
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Here d = gcd(m0, n0) and c =
∑N

j=1 n
(j)
1 − r0n0.

Remark 3.2. In almost all cases, there are (n0/d)(N − 2 + c) subordinate
fibers. But the number of subordinate fibers may decrease since the positions of
subordinate fibers depend on p1, p2, . . . , pN , q1, q2, . . . , qc, that is, the subordinate
fibers may coincide to each other.

Before we give the proof of Proposition 3.1, we need the following lemma
due to Takamura [13, Proposition 7.2.1. p. 124, Proposition 10.2.1. p. 180, and
Proposition 11.4.2. p. 200].

Lemma 3.3 (Takamura [13]). Let br
(j)

be a subbranch of a branch Br
(j)

. If
br

(j)
is not a proportional subbranch, then singular points of subordinate fibers are

not on the deformations of tubular neighborhoods of branches.

We note that if a subbranch is proportional, then the deformation of tubular
neighborhoods of branches has singular points.

Proof of Proposition 3.1. We fix t ∈ ∆ \ {0}, and we determine the
number of singular points and singular values. By assumption, the simple crust
Y does not have a proportional subbranch. So by Lemma 3.3, singular points are
not on the deformations of tubular neighborhoods of branches. Hence in order to
know the positions and the numbers of singular points of subordinate fibers, we
solve the following system of equations:

πt(z, ζ) = s 6= 0,
∂πt

∂ζ
(z, ζ) = 0 and

∂πt

∂z
(z, ζ) = 0,

where πt(z, ζ) is expressed by (1). (Note: Any attachment point pi is not a base
coordinate of the singular points of subordinate fibers since for s 6= 0, (pi, ζ) (resp.
(1/pi, η)) does not satisfy the equation πt(z, ζ) − s = 0 (resp. πt(w, η) − s = 0).
Hence pN = ∞ is not a base coordinate of singular points. So we only consider
the expression (1).) The calculations are very complicated, so we give the details
in Section 5. Here we give a survey of the proof.

From πt(z, ζ) 6= 0 and ∂πt(z, ζ)/∂ζ = 0, we obtain

t = −m0ζ
n0

∏N−1
j=1 (z − pj)n

(j)
1

(m0 − ln0)f(z)
. (2)

(See Section 5.1.) Substitute (2) into πt(ζ, z) = s, which yields
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s =
(
− ln0

m0 − ln0

)l

ζm0

N−1∏

j=1

(z − pj)m
(j)
1 . (3)

From (2) and ∂πt(z, ζ)/∂z = 0, the following equation holds:

J(z) =
N−1∑

i=1

(m0n
(i)
1 − n0m

(i)
1 )Gi(z)f(z)−m0

N−1∏

j=1

(z − pj)f ′(z) = 0,

where f ′(z) = df(z)/dz and

Gi(z) := (z − p1)(z − p2) · · · (z − pi−1)(z − pi+1) · · · (z − pN−1).

(See Section 5.2.) The coefficient of the highest degree term of J(z) is

N−1∑

i=1

(
m0n

(i)
1 − n0m

(i)
1

)−m0c = −n0

N−1∑

i=1

m
(i)
1 + m0

( N−1∑

i=1

n
(i)
1 − c

)

= −n0

(
r0m0 −m

(N)
1

)
+ m0

(
r0n0 − n

(N)
1

)

= n0m
(N)
1 −m0n

(N)
1 . (4)

Since a simple crust Y has no proportional subbranches, n0m
(N)
1 −m0n

(N)
1 is not

equal to zero. So the degree of J(z) is (N − 2 + c). From the assumption, the
splitting family Ψ : M → ∆×∆† is J-generic. Hence the equation has (N −2+ c)
roots. We denote the roots of J(z) = 0 by αk (k = 1, 2, . . . , N − 2 + c). From (2),
we have

ζn0 =
(ln0 −m0)t

m0

∏N−1
j=1 (αk − pj)n

(j)
1

, (5)

and thus for each αk, the number of roots of (5) is n0. Hence there are n0(N−2+c)
singular points.

Remark 3.4. From above discussion, singular points of subordinate fibers
are isolated.

Deleting the term in ζ from (2) and (3), we have
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tm0/d

sn0/d
=

m
m0/d
0 (m0 − ln0)(ln0−m0)/d

(−ln0)ln0/d

{ N−1∏

j=1

(z − pj)(m0n
(j)
1 −n0m

(j)
1 )/d

}
× 1

f(z)m0/d
.

(6)

We set

g(z) :=
m

m0/d
0 (m0 − ln0)(ln0−m0)/d

(−ln0)ln0/d

{ N−1∏

j=1

(z − pj)(m0n
(j)
1 −n0m

(j)
1 )/d

}
× 1

f(z)m0/d
.

Namely, g(z) is the right hand side of the equation (6). For each αk (k =
1, 2, . . . , N − 2 + c) of the root of J(z) = 0, we solve the equation in s

sn0/d =
tm0/d

g(αk)
. (7)

(Note: g(αk) is not zero since αk is not either of p1, p2, . . . , pN , q1, q2, . . ., or qc.)
For each αk, the number of the singular values s is n0/d. We note that there may
exist αi and αj (i 6= j) such that g(αi) = g(αj), that is, the right hand side of the
equation (7) coincides to each other. So there appear at most (n0/d)(N − 2 + c)
subordinate fibers. This completes the proof of Proposition 3.1. ¤

Remark 3.5. If g(α1), g(α2), . . ., and g(αN−2+c) are all different, then there
exist (n0/d)(N−2+c) subordinate fibers and each subordinate fiber has d singular
points.

Rewriting the equation (6), then we obtain

N−1∏

j=1

(z−pj)(m0n
(j)
1 −n0m

(j)
1 )/d− (−ln0)ln0/dtm0/d

m
m0/d
0 (m0 − ln0)(ln0−m0)/dsn0/d

f(z)m0/d = 0. (8)

We denote by Ds(z) the left hand side of this equation. Namely,

Ds(z) :=
N−1∏

j=1

(z−pj)(m0n
(j)
1 −n0m

(j)
1 )/d− (−ln0)ln0/dtm0/d

m
m0/d
0 (m0 − ln0)(ln0−m0)/dsn0/d

f(z)m0/d.

For each s, we define a branched covering map

hs : π−1
t (s) → C\{p1, p2, . . . , pN−1}
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by

hs(z, ζ) := z.

This is the map from a fiber π−1
t (s) to the core of the singular fiber π−1(0). For

z0 ∈ C \ {p1, p2, . . . , pN−1}, the inverse image h−1
s (z0) = {(z0, ζ) : πt(z0, ζ) − s

= 0}. It follows that (z0, ζ0) ∈ h−1
s (z0) is a ramification point if and only if (z0, ζ0)

satisfies πt(z0, ζ0) − s = 0 and ∂πt(z0, ζ0)/∂ζ = 0. So the branch points of hs is
given by the roots of this equation Ds(z) = 0 since the equation (8) is obtained
only from the system of equations

πt(z, ζ)− s = 0 and
∂πt

∂ζ
(z, ζ) = 0.

Next we show

Proposition 3.6. Let X be a stellar singular fiber such that the core is a
projective line. Suppose that Ψ : M → ∆ ×∆† is J-generic and the simple crust
Y has no proportional subbranch. Then any subordinate fiber has only nodes.

(Note: This statement is nothing other than (3) of Theorem 1.1.) To prove
Proposition 3.6, we need to show some results.

Lemma 3.7. If α is a kth root of Ds(z) = 0, then α is a (k − 1)st root of
J(z) = 0.

Proof. For simplicity, we set

Mj :=
m0n

(j)
1 − n0m

(j)
1

d
and a(s) :=

(−ln0)ln0/dtm0/d

m
m0/d
0 (m0 − ln0)(ln0−m0)/dsn0/d

.

Then we have

Ds(z) =
N−1∏

j=1

(z − pj)Mj − a(s)f(z)m0/d.

We compute ∂Ds(z)/∂z:
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∂Ds

∂z
(z) =

N−1∑

j=1

MjGj(z)
N−1∏

i=1

(z − pi)Mi−1 − a(s)
m0

d
f(z)m0/d−1f ′(z)

=

∑N−1
j=1 MjGj(z)

∏N−1
i=1 (z − pi)Mi−1f(z)− a(s)m0f(z)m0/df ′(z)

d× f(z)
.

For a root α of Ds(z) = 0, the equation a(s)f(α)m0/d =
∏N−1

i=1 (α − pi)Mi holds.
We substitute this equation into the last expression. Then we have

∂Ds

∂z
(α) =

∑N−1
j=1 MjGj(α)

∏N−1
i=1 (α− pi)Mi−1f(α)−m0

∏N−1
i=1 (α− pi)Mif ′(α)

d× f(α)

=

∏N−1
i=1 (α− pi)Mi−1

[ ∑N−1
j=1 MjGj(α)f(α)−m0

∏N−1
i=1 (α− pi)f ′(α)

]

d× f(α)

=
∏N−1

i=1 (α− pi)Mi−1J(α)
d× f(α)

. (9)

On the other hand, if α is a root of Ds(z) = 0 of multiplicity k, then we have

Ds(z) = (z − α)kg(z), g(α) 6= 0.

The derivative is given by

∂Ds(z)
∂z

= k(z − α)k−1g(z) + (z − α)kg′(z)

= (z − α)k−1[kg(z) + (z − α)g′(z)]. (10)

From (9) and (10), we obtain

J(z) = (z − α)k−1[kg(z) + (z − α)g′(z)]
d× f(z)∏N−1

i=1 (z − pi)Mi−1
.

Since (α − pi) 6= 0, f(α) 6= 0 and [kg(α) + (α − α)g′(α)] 6= 0, α is a (k − 1)st
multiple root of the equation J(z) = 0. It follows that if α is a root of Ds(z) = 0
of multiplicity k, then α is a root of J(z) = 0 of multiplicity k−1. This completes
the proof of Lemma 3.7. ¤

If k = 1, then α is not a root of J(z) = 0, that is, α is not a z-coordinate of a



996 K. Ahara and I. Awata

singular point. For p1, p2, . . . , pN−1, q1, q2, . . . , qc which are in J-generic positions,
if α is a root of Ds(z) = 0 of multiplicity greater than two, then α is a multiple
root of J(z) = 0 by Lemma 3.7. This contradicts the assumption of J-generic. So
Ds(z) = 0 has at most double roots. Hence we get

Corollary 3.8. If p1, p2, . . . , pN−1, q1, q2, . . . , qc are in J-generic posi-
tions, then the equation Ds(z) = 0 has at most double roots.

Lemma 3.9. The following two conditions are equivalent :

(1) The equation Ds(z) = 0 has multiple roots.
(2) The value s is singular, that is, π−1

t (s) is a subordinate fiber.

Proof. (1)⇒(2): If Ds(z) = 0 has a multiple root α, then α is a root of
J(z) = 0. Since a root of J(z) is a z-coordinate of a singular point, s is a singular
value.

(2)⇒(1): For a singular value s, let α be a z-coordinate of a singular point of
π−1

t (s). Then J(α) = 0, and s and α satisfy the equation (7):

sn0/d =
tm0/d

g(α)
.

The equation Ds(z) = 0 is the deformation of (7). This means that s and α satisfy
Ds(α) = 0, that is, α is a root of Ds(z) = 0. Moreover, by Lemma 3.7, α is a
multiple root of Ds(z) = 0. ¤

Next we show

Lemma 3.10. For a root α of the equation Ds(z) = 0, the equation πt(α, ζ)−
s = 0 in ζ has double roots. Moreover, the equation πt(α, ζ)− s = 0 in ζ does not
have a multiple root whose multiplicity is greater than two.

Proof. The equation Ds(z) = 0 is a discriminant of the equation πt(z, ζ)−
s = 0 in ζ. Since Ds(z) = 0 is obtained by the system of equations;

πt(z, ζ)− s = 0 and
∂πt

∂ζ
(z, ζ) = 0,

if α is a root of Ds(z) = 0, then the equation πt(α, ζ) − s = 0 in ζ has multiple
roots. On the other hand, the root of ∂πt(α, ζ)/∂ζ = 0 is obtained by solving the
following equation:



Subordinate fibers of Takamura splitting families 997

ζm0−ln0−1
N−1∏

j=1

(α− pj)m
(j)
1 −ln

(j)
1

{
ζn0

N−1∏

j=1

(α− pj)n
(j)
1 + tf(α)

}l−1

×
[
m0ζ

n0

N−1∏

j=1

(α− pj)n
(j)
1 − (m0 − ln0)tf(α)

]
= 0.

Since πt(α, ζ) 6= 0, we have ζm0−ln0−1 6= 0, ζn0
∏N−1

j=1 (α− pj)n
(j)
1 + tf(α) 6= 0 and

m0ζ
n0

N−1∏

j=1

(α− pj)n
(j)
1 − (m0 − ln0)tf(α) = 0,

which is rewritten

ζn0 =
(ln0 −m0)t

m0

∏N−1
j=1 (α− pj)n

(j)
1

.

This equation in ζ has simple roots only. Hence the equation πt(α, ζ) − s = 0 in
ζ has double roots. Moreover, the equation πt(α, ζ)− s = 0 in ζ does not have a
multiple root whose multiplicity is greater than two. This completes the proof of
Lemma 3.10. ¤

We use the following Lemma.

Lemma 3.11. Let h : M → ∆ be an m-fold branched covering map with two
branch points b1 and b2, where M is a complex surface and ∆ is a disk. If all
ramification indices are two, then the inverse image h−1(∆) consists of annuli and
disks.

Proof. Let D1 be a small disk centered at b1, such that D1 does not contain
b2. Around a ramification point b̃1 of b1 whose ramification index is two, the inverse
image h−1(D1) is a disk given by pasting two disks together. (See Figure 2.) So
h−1(∆) is constructed by the following way: Prepare m disks. According to the
position of ramification points, the way of pasting is either of four cases in Figure
3. Hence it follows that h−1(∆) consists of annuli and disks. This completes the
proof of Lemma 3.11. ¤

Proof of Proposition 3.6. Now we complete the proof of Proposition
3.6. We fix t ∈ ∆† \ {0}. For a singular value s0 ∈ ∆ \ {0}, we take a non-singular
value s1 near s0. The fiber π−1

t (s0) is a subordinate fiber and the fiber π−1
t (s1) is a
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Figure 2. Cut lines of two disks, and paste together along the lines.

Figure 3. Four cases: Cut off the lines and paste the lines of the same numbers.

general fiber. Let γ be a path from s1 to s0 in ∆, which does not pass the others sin-
gular values. Namely, γ : [0, 1] → ∆\S is a path such that γ(0) = s1 and γ(1) = s0,
where S is the set of the other singular values: S = {s ∈ ∆ \ {s0} : π−1

t (s) is a
singular fiber}. (See Figure 4.) By Corollary 3.8 and Lemma 3.9, for the singular
value s0, the equation Ds0(z) = 0 has double roots. We denote by α1, α2, . . . , αr

the double roots of Ds0(z) = 0 (r is the number of double roots of Ds0(z) = 0),
and denote by αr+1, αr+2, . . . , αr+u the simple roots of Ds0(z) = 0 (u is the num-
ber of simple roots of Ds0(z) = 0). We note that, by Lemma 3.7, α1, α2, . . . , αr

are the z-coordinates of singular points of the subordinate fiber π−1
t (s0). For a

non-singular value s1, let α
(1)
1 , α

(2)
1 , α

(1)
2 , α

(2)
2 , . . . , α

(1)
r , α

(2)
r , α′r+1, . . . , α

′
r+u be the
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Figure 4.

roots of Ds1(z) = 0 (2r + u is the number of the roots of Ds1(z) = 0). We note
that, by Lemma 3.9, since s1 is a non-singular value, Ds1(z) = 0 has simple roots
only. We assume that when we vary the parameter s from s1 to s0 along the
path γ, two simple roots α

(1)
i and α

(2)
i converge to αi (i = 1, 2, . . . , r). We set

L := {z ∈ C : Ds(z) = 0, s ∈ γ}. Then L is not connected. So we denote the con-
nected components of L by `1, `2, . . . , `r, `r+1, . . . , `r+u. Here for i = 1, 2, . . . , r,
∂`i = {α(1)

i , α
(2)
i } and `i contains αi. (See Figure 5.) For i = r+1, r+2, . . . , r+u,

∂`i = {α′i, αi}.
We defined a branched covering map hs : π−1

t (s) → C \ {p1, p2, . . . , pN−1} by
hs(z, ζ) = z. The inverse image h−1

s (z0) of z0 ∈ C \ {p1, p2, . . . , pN−1} is a set
{(z0, ζ) : πt(z0, ζ)− s = 0}. For a branch point z0, a point (z0, ζ0) ∈ h−1

s (z0) is a
ramification point whose ramification index is n if and only if ζ0 is an nth root of
the equation πt(z0, ζ)− s = 0 in ζ. By Lemma 3.10, for the roots α

(1)
i and α

(2)
i of

Ds1(z) = 0, πt(α
(j)
i , ζ)−s = 0 (j = 1, 2) has double roots, that is, the ramification

index of the ramification point over the branch point α
(j)
i is two. We denote by

∆i a disk which rounds `i and does not contain the others trace `k (k 6= i). By
Lemma 3.11, the inverse image h−1

s1
(∆i) consists of annuli and disks.

Let xi := (αi, βi) be a singular point of the subordinate fiber π−1
t (s0), and

let Fs1 be a Milnor fiber, and let µ be the Milnor number of Fs1 . (Note that
Fs1 is the intersection of π−1

t (s1) and a small ball Bε whose center is xi.) Since
the Milnor fiber Fs1 is a subset of h−1

s1
(∆i), from the above discussion on the

branched covering hs1 , Fs1 consists of annuli and disks. Since the singular point
xi is isolated (see Remark 3.4), the Milnor fiber Fs1 is connected by Theorem 2.8.
So Fs1 is either an annulus or a disk. By Theorem 2.9 (1), if the Milnor fiber Fs1

is a disk, then the Milnor number µ is zero and xi is not a singular point. This
contradicts that xi is a singular point. Hence the Milnor fiber Fs1 is an annulus
and the Milnor number µ is one. (Note: The first Betti number of an annulus is
equal to one.) By Theorem 2.9 (2), it follows that the singular point xi is a node.
This completes the proof of Proposition 3.6. ¤

Moreover we can describe vanishing cycles. Let ci be a simple closed curve
on the annulus such that hs1(ci) = `i (i = 1, 2, . . . , r). (See Figure 5 and Figure
6.) When the parameter s moves from s1 to s0 along the path γ, the simple
closed curve ci on the annulus contracts to a singular point xi (Figure 6). So the
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Figure 5.

Figure 6.

simple closed curve ci, one of the lifts of the trace `i, is a vanishing cycle of the
subordinate fiber π−1

t (s0).
Takamura [13], showed a stronger result than ours: The singular points of

subordinate fibers are Ar-singularities. Here r is the integer associated with the
ordinal singular fiber X and the simple crust Y . In this paper, it is the order of
zeros of J(z). His proof is as follows: We outline his proof when the order of zeros
of the arrangement polynomial J(z) is one. Let α be a double root of Ds0(z) = 0,
and let β be a double root of the equation πt(α, ζ)−s0 = 0 in ζ. (Note: By Lemma
3.10, if α is a double root of Ds0(z) = 0, then πt(α, ζ) − s0 = 0 also has double
roots.) Then the fiber π−1

t (s0) near the point (z, ζ) = (α, β) is locally defined by
the equation

(ζ − β)2 + (ζ − β)Q(z − α) + R(z − α) = 0.
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We denote the left hand side by T (z, ζ). Then ∂T (z, ζ)/∂ζ = 0 is equivalent to

∂T

∂ζ
(z, ζ) = 2(ζ − β) + Q(z − α) = 0.

We substitute this for T (z, ζ) = (ζ − β)2 + (ζ − β)Q(z − α) + R(z − α) = 0, and
we have

T (z, ζ) = (ζ − β)2 − 2(ζ − β)2 + R(z − α) = −(ζ − β)2 + R(z − α) = 0.

We rewrite this:

(ζ − β)2 = R(z − α). (11)

On the other hand, since the equation T (z, ζ) = 0 in ζ is a double root at (z, ζ) =
(α, β) by Lemma 3.10, we have

Q(z − α)2 − 4R(z − α) = 0.

We substitute this for (11), we obtain the equation

(ζ − β)2 =
Q(z − α)2

4
.

We set ζ ′ := ζ − β and z′ := Q(z − α)/2. Then we have

(ζ ′)2 = (z′)2.

This means that (z, ζ) = (α, β) is a node, that is, an A1-singularity.

4. J-generic position.

In this section, we prove the following lemma.

Lemma 4.1. There exist points p1, p2, . . . , pN , q1, q2, . . . , qc in J-generic po-
sitions.

Proof. Recall that
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J(z) :=
N−1∑

i=1

(
m0n

(i)
1 − n0m

(i)
1

)
Gi(z)f(z)−m0

N−1∏

j=1

(z − pj)f ′(z),

where f ′(z) = df(z)/dz. We assume that p1, p2, . . . , pN−1, q1, q2 . . . , qc are
also parameters, and denote J(z) by J(x), where x = (z, p, q) ∈ CN+c, p =
(p(1), p(2), . . . , p(N−1)) and q = (q(1), q(2), . . . , q(c)). Set V := {x = (z, p, q) ∈
CN+c : J(x) = 0} and ∆ := {(p, q) ∈ CN−1+c : J(x) = ∂J(x)/∂z = 0}. First of
all, we show that V is a smooth complex manifold. Assume that V has a singular
point, and we deduce a contradiction. Suppose that x0 = (z0, p0, q0) is a singular
point of V , where p0 = (p(1)

0 , p
(2)
0 , . . . , p

(N−1)
0 ) and q0 = (q(1)

0 , q
(2)
0 , . . . , q

(c)
0 ). Then

∂J

∂z
(x0) =

∂J

∂pi
(x0) =

∂J

∂qj
(x0) = 0 (i = 1, 2, . . . , N − 1, j = 1, 2, . . . , c).

For simplicity, we set G1,i(x) := (z−p2)(z−p3) · · · (z−pi−1)(z−pi+1) · · · (z−pN−1).
Then we obtain the following equation:

∂J

∂p1
(x0) = −d× f(x0)

N−1∑

i=2

MiG1,i(x0) + m0G1(x0)f ′(x0) = 0,

that is,

m0G1(x0)f ′(x0) = d× f(x0)
N−1∑

i=2

MiG1,i(x0). (12)

We substitute (12) for J(x0), and we have

J(x0) = d

N−1∑

i=1

MiGi(x0)f(x0)−m0

N−1∏

j=1

(
z0 − p

(0)
j

)
f ′(x0)

= dM1G1(x0)f(x0) + d

N−1∑

i=2

MiGi(x0)f(x0)−m0

N−1∏

j=1

(
z0 − p

(0)
j

)
f ′(x0)

= dM1G1(x0)f(x0) + (z0 − p
(0)
1 )d

N−1∑

i=2

MiG1,i(x0)f(x0)

−m0

N−1∏

j=1

(
z0 − p

(0)
j

)
f ′(x0)
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= dM1G1(x0)f(x0) +
(
z0 − p

(0)
1

)
m0G1(x0)f ′(x0)

−m0

N−1∏

j=1

(
z0 − p

(0)
j

)
f ′(x0)

= dM1G1(x0)f(x0)−m0

(
z0 − p

(0)
1

)
f ′(x0)

[
−G1(x0) +

N−1∏

j=2

(
z0 − p

(0)
j

)]

= dM1G1(x0)f(x0).

However z0 is not either of p
(0)
1 , p

(0)
2 , . . . , p

(0)
N−1, q

(0)
1 , q

(0)
2 , . . . , q

(0)
c−1, or q

(0)
c . So

G1(x0) 6= 0 and f(x0) 6= 0, and dM1G1(x0)f(x0) 6= 0. It yields a contradiction to
J(x0) = 0. Hence V has no singular point, and V is a smooth manifold.

Let pr : V → CN−1+c, pr(z, p, q) := (p, q) be a projection. Since V is a
smooth manifold, we may apply Sard’s Theorem: The set of critical values of pr

is measure zero. The set of critical values is equal to ∆ = {x = (p, q) : J(x) =
∂J(x)/∂z = 0}. Hence ∆ is a measure zero set. If we take a point (p1, p2, . . . , pN ,
q1, q2, . . . , qc) in CN−2+c \ ∆, then p1, p2, . . . , pN , q1, q2, . . . , qc are in J-generic
positions. This completes the proof of Lemma 4.1. ¤

5. Completion of the proof of Proposition 3.1.

In this section, we compute ∂πt(z, ζ)/∂ζ and ∂πt(z, ζ)/∂z, and then we solve
the system of equations

πt(z, ζ)− s = 0,
∂πt

∂ζ
(z, ζ) = 0 and

∂πt

∂z
(z, ζ) = 0.

Finally, we derive the relation (2) and give the explicit form of the arrangement
polynomial J(z).

5.1. Computation to obtain the relation (2).
We recall that the deformation πt around the core is expressed by

πt(z, ζ) = ζm0−ln0

N−1∏

j=1

(z − pj)m
(j)
1 −ln

(j)
1

{
ζn0

N−1∏

j=1

(z − pj)n
(j)
1 + tf(z)

}l

.

The partial derivative πt of ζ is the following:
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∂πt

∂ζ
(ζ, z) =

N−1∏

j=1

(z − pj)m
(j)
1 −ln

(j)
1

×
[
(m0 − ln0)ζm0−ln0−1

{
ζn0

N−1∏

j=1

(z − pj)n
(j)
1 + tf(z)

}l

+ lζm0−ln0

{
ζn0

N−1∏

j=1

(z − pj)n
(j)
1 + tf(z)

}l−1

× n0ζ
n0−1

N−1∏

j=1

(z − pj)n
(j)
1

]

= ζm0−ln0−1
N−1∏

j=1

(z − pj)m
(j)
1 −ln

(j)
1

{
ζn0

N−1∏

j=1

(z − pj)n
(j)
1 + tf(z)

}l−1

×
[
(m0 − ln0)

{
ζn0

N−1∏

j=1

(z − pj)n
(j)
1 + tf(z)

}
+ ln0ζ

n0

N−1∏

j=1

(z − pj)n
(j)
1

]

= ζm0−ln0−1
N−1∏

j=1

(z − pj)m
(j)
1 −ln

(j)
1

{
ζn0

N−1∏

j=1

(z − pj)n
(j)
1 + tf(z)

}l−1

×
[
m0ζ

n0

( N−1∏

j=1

(z − pj)n
(j)
1

)
+ (m0 − ln0)tf(z)

]
.

Since ∂πt(z, ζ)/∂ζ = 0 and πt(ζ, z) 6= 0,

−m0ζ
n0

N−1∏

j=1

(z − pj)n
(j)
1 = (m0 − ln0)tf(z). (13)

We note that q1, q2, . . . , qc are not z-coordinates of singular points of subordinate
fibers. If qi (i = 1, 2, . . . , c) is a z-coordinate of a singular point, then z = qi

satisfies the equation (13). But f(qi) = 0 and the left hand side of (13) is not zero.
So z = qi does not satisfy the equation (13), and we may assume f(z) 6= 0. Hence
we derive the equation (2):

t =
−m0ζ

n0
∏N−1

j=1 (z − pj)n
(j)
1

(m0 − ln0)f(z)
.

5.2. Deduction of J(z).
The partial derivative πt of z is the following:
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∂πt

∂z
= ζm0−ln0

n−1∏

j=1

(z − pj)m
(j)
1 −ln

(j)
1 −1

{ N−1∑

i=1

(m(i)
1 − ln

(i)
1 )Gi(z)

}

×
{

ζn0

N−1∏

j=1

(z − pj)n
(j)
1 + tf(z)

}l

+ lζm0−ln0

N−1∏

j=1

(z − pj)m
(j)
1 −ln

(j)
1

{
ζn0

N−1∏

j=1

(z − pj)n
(j)
1 + tf(z)

}l−1

× Ω1,

where

Ω1 = ζn0

N−1∏

j=1

(z − pj)n
(j)
1 −1

( N−1∑

i=1

n
(i)
1 Gi(z)

)
+ tf ′(z)

and f ′(z) = df(z)/dz. Put this in order,

∂πt

∂z
= ζm0−ln0

N−1∏

j=1

(z − pj)m
(j)
1 −ln

(j)
1 −1

{
ζn0

N−1∏

j=1

(z − pj)n
(j)
1 + tf(z)

}l−1

× Ω2,

where

Ω2 =
{ N−1∑

i=1

(m(i)
1 − ln

(i)
1 )Gi(z)

}{
ζn0

N−1∏

j=1

(z−pj)n
(j)
1 + tf(z)

}
+ l

N−1∏

j=1

(z−pj)×Ω1.

Substitute (2) into Ω1, and we have

Ω1 = ζn0

N−1∏

j=1

(z − pj)n
(j)
1 −1

{ N−1∑

i=1

n
(i)
1 Gi(z)− m0

m0 − ln0

N−1∏

j=1

(z − pj)
f ′(z)
f(z)

}
.

From (2), we also obtain the following equation:

ζn0

N−1∏

j=1

(z − pj)n
(j)
1 + tf(z) =

−ln0

m0 − ln0
ζn0

N−1∏

j=1

(z − pj)n
(j)
1 .

So
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Ω2 =
{ N−1∑

i=1

(m(i)
1 − ln

(i)
1 )Gi(z)

}{ −ln0

m0 − ln0
ζn0

N−1∏

j=1

(z − pj)n
(j)
1

}

+ lζn0

N−1∏

j=1

(z − pj)n
(j)
1

{ N−1∑

i=1

n
(i)
1 Gi(z)− m0

m0 − ln0

N−1∏

j=1

(z − pj)
f ′(z)
f(z)

}

= lζn0

N−1∏

j=1

(z − pj)n
(j)
1 × Ω3,

where

Ω3 =
−n0

m0 − ln0

{ N−1∑

i=1

(m(i)
1 − ln

(i)
1 )Gi(z)

}
+

N−1∑

i=1

n
(i)
1 Gi(z)

− m0

m0 − ln0

N−1∏

j=1

(z − pj)
f ′(z)
f(z)

=
1

m0 − ln0

[ N−1∑

i=1

(m0n
(i)
1 − n0m

(i)
1 )Gi(z)−m0

N−1∏

j=1

(z − pj)
f ′(z)
f(z)

]
.

Hence the following equivalences hold:

πt(z, ζ) 6= 0 and
∂πt

∂z
(z, ζ) = 0 ⇐⇒ Ω2 = 0

⇐⇒ Ω3 = 0

⇐⇒ (m0 − ln0)f(z)Ω3 = 0.

So we obtain

J(z) =
N−1∑

i=1

(
m0n

(i)
1 − n0m

(i)
1

)
Gi(z)f(z)−m0

N−1∏

j=1

(z − pj)f ′(z).
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