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ON RAMANUJAN’S CUBIC CONTINUED FRACTION
AS A MODULAR FUNCTION
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Abstract. We first extend the results of Chan ([4]) and Baruah ([2]) on the modular
equations of Ramanujan’s cubic continued fraction C(τ) to all primes p by finding the affine
models of modular curves and then derive Kronecker’s congruence relations for these modular
equations. We further show that by its singular values we can generate ray class fields modulo
6 over imaginary quadratic fields and find their class polynomials after proving that 1/C(τ) is
an algebraic integer.

1. Introduction. Let H be the complex upper half plane and τ ∈ H. We define the
Rogers-Ramanujan continued fraction by

r(τ ) = q1/5

1 + q

1 + q2

1 + q3

1 + · · ·

= q1/5
∞∏
n=1

(1 − qn)(n/5)

where q = e2πiτ and (n/5) is the Legendre symbol.
In Ramanujan’s first letter to Hardy, he showed that
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Since r(τ ) is a modular function, the existence of radical expressions is clear by class field
theory. Strictly speaking r(τ ) is a modular function for Γ (5) ([10, Lemma 2.2]) so that any
singular value of r(τ ) at imaginary quadratic argument is contained in some ray class field.
Thus the splitting field of its minimal polynomial is abelian. In other words its Galois group is
solvable and hence any singular value of r(τ ) can be written by radicals. But finding the rad-
ical expressions explicitly is another problem which was settled down by Gee and Honsbeek
who used, to this end, the Shimura reciprocity law ([10]).
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Besides, one of other important subjects is the one about modular equations. Since the
modular function field of level 5 has genus 0, there should be certain polynomials giving rela-
tions between r(τ ) and r(nτ) for all positive integers n. These are what we call the modular
equations. Most of the followings were originally stated by Ramanujan and later on proved
by several people.

n mathematician (year)
2 Rogers (1920)
3 Rogers (1920)
4 Andrews, Berndt, Jacobsen, Lamphere (1992)
5 Rogers, Watson, Ramanathan (1984)
7 Yi (2001)

11 Rogers (1920)

These modular equations for r(τ ) satisfy certain Kronecker’s congruences in prime level.
Moreover, for an element τ of an imaginary quadratic field the singular value r(τ ) is a unit
that can be expressed in terms of radicals over Q. For more details, the reader should refer
to [8]. On the other hand, Cais and Conrad succeeded in generalizing the above results on
modular equations to all primes p by means of geometric method, namely using the theory of
arithmetic models of modular curves ([3, Theorem 6.8]).

In [8], Duke mentioned that Ramanujan’s cubic continued fraction C(τ) defined as

C(τ) = q1/3

1 + q + q2

1 + q2 + q4

1 + q3 + q6

1 + · · ·

= q1/3
∞∏
n=1

(1 − q6n−1)(1 − q6n−5)

(1 − q6n−3)2
,

has modularity for Γ (6). Like the case of Rogers-Ramanujan continued fraction there are
some known results on modular equations with v := C(τ) and u := C(nτ) on a case-by-case
basis.

n mathematician (year) equation

2 Chan (1995) v2 + 2vu2 − u = 0
3 Chan (1995) 4v3u2 + 2v3u+ v3 − u+ u2 − u3 = 0
5 Baruah(2002) v6 − vu+ 5vu(v3 + u3)(1 − vu)+ u6

−v2u2(16v3u3 − 20v2u2 + 20vu− 5) = 0
7 Baruah(2002) v8 − vu− 56v3u3(v2 + u2)+ 7vu(v3 + u3)(1 − 8v3u3)

+28v2u2(v4 + u4 + u8 + v4u4(21 − 64v3u3) = 0

Chan’s results can be found in [4, Theorem 1] and Baruah’s results in [2, Theorem 3.1 and
3.2], in which they used the theory of combinatorics. And the latter further presented the
modular equation for the case n = 11 in the same paper which is too long to write it down
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so that we omit here. In general their existence was known to Klein long ago, but in our case
there does not seem to have been a systematic construction given before for all primes p.

Unlike the arguments of Chan-Baruah and Cais-Conrad we first find in Section 3 the
affine models of some modular curves from the theory of algebraic functions and then ex-
tend the above results to all primes p (Theorem 9), from which we rediscover Chan’s re-
sults when n = 2, 3 (Theorem 8). And, we also provide a table of modular equations for
n = 5, 7, 11, 13, 17 by means of our algorithm and the Maple program. We then further give
an analytic proof of the Kronecker congruence relations for these modular equations (Theo-
rem 10).

By Hauptmodul t we mean the normalized generator of a genus zero function field and
we write t = q−1 +0+∑∞

k=1 ckq
k for its q-series. Obviously it is unique for it function field.

Since C(τ) is a generator for the function field of Γ1(6)∩ Γ 0(3) (Theorem 4), we show
in Section 4 that the singular value of C(τ) generates the ray class field K(6) modulo 6 over
an imaginary quadratic field K(Theorem 13) by means of certain new method of Cho and
Koo ([6]). Here we also use the fact that 1/C(3τ ) is the Hauptmodul of Γ1(6) ∩ Γ0(18).
Although singular values of the Rogers-Ramanujan and Ramanujan-Göllnitz-Gordon con-
tinued fractions at imaginary quadratic arguments are known to be units ([8, Theorem 2]
or [7, Theorem 12]), we can hardly say that in our case the Ramanujan’s cubic contin-
ued fraction C(τ) is a unit or even an algebraic integer. For a counterexample, we have
C((3 + √−3)/6) = −1/ 3

√
4([1]) (or C((1 + i)/2) = (1 − √

3)/2 ([4])). Hence, in the matter
of estimating class polynomials we first prove that 1/C(τ) instead becomes an algebraic in-
teger (Theorem 16) and then by using this fact and the idea of Gee ([9]) we establish relevant
class polynomials of K(6) whose coefficients seem to be relatively small when compared with
others’ works ([5], [13] and [16]).

In Section 2 we provide necessary preliminaries about modular functions and Klein
forms, and give some lemmas illustrating the cusps of congruence subgroups which will be
used in Section 3.

2. Preliminaries. Before discussing the main results we would like to state some nec-
essary definitions and properties from the theory of modular functions. Let Γ (1) = SL2(Z) be
the full modular group. For any integer N ≥ 1, we have congruent subgroups Γ (N), Γ1(N),
Γ0(N) and Γ 0(N) of Γ (1) consisting of matrices

(
a b
c d

)
congruent moduloN to

(
1 0
0 1

)
,
(

1 ∗
0 1

)
,( ∗ ∗

0 ∗
)

and
( ∗ 0∗ ∗

)
respectively. And, let H = {τ ∈ C ; Im τ > 0} be the complex upper half

plane and H∗ = H ∪ Q ∪ {∞}.
Then a congruence subgroupΓ acts on H∗ by linear fractional transformations as γ (τ) =

(aτ + b)/(cτ + d) for γ = (
a b
c d

) ∈ Γ and the quotient space Γ \H∗ becomes a compact
Riemann surface with an appropriate complex structure. We identify γ with its action on H∗.
By definition an element s of Q ∪ {∞} is called a cusp, and two cusps s1, s2 are equivalent
under Γ if there exists γ ∈ Γ such that γ (s1) = s2. The equivalence class of such s is called
a cusp. We also call s itself a cusp by abuse of terminology. Indeed, there exist at most finitely
many inequivalent cusps of Γ . Let s be any cusp of Γ , and let ρ be an element of SL2(Z)
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such that ρ(s) = ∞. We define the width of the cusp s in Γ \H∗ by the smallest positive
integer h satisfying ρ−1

(
1 h
0 1

)
ρ ∈ {±1} · Γ . Then the width depends only on the equivalence

class of the cusp s under Γ and is independent of the choice of ρ.
By a modular function with respect to a congruence subgroup Γ we mean a C-valued

function f (τ) of H satisfying the following three conditions.
(1) f (τ) is meromorphic on H.
(2) f (τ) is invariant under Γ , i.e., f ◦ γ = f for all γ ∈ Γ .
(3) f (τ) is meromorphic at all cusps of Γ .
The precise meaning of the last condition is as follows. For a cusp s for Γ , let h be the

width for s and ρ be an element of SL2(Z) such that ρ(s) = ∞. Since

(f ◦ ρ−1)(τ + h) =
(
f ◦ ρ−1

(
1 h

0 1

)
ρ

)
(ρ−1τ ) = (f ◦ ρ−1)(τ ) ,

f ◦ ρ−1 has a Laurent series expansion in qh = e2πiτ/h, namely for some integer n0, (f ◦
ρ−1)(τ ) = ∑

n≥n0
anq

n
h with an0 	= 0. This integer n0 is called the order of f (τ) at the cusp

s and denoted by ordsf (τ ). If ordsf (τ ) is positive (resp. negative), then we say that f (τ)
has a zero (resp. a pole) at s. If a modular function f (τ) is holomorphic on H and ordsf (τ )
is non-negative for all cusps s, then we say that f (τ) is holomorphic on H∗. Since we may
identify a modular function with respect to Γ with a meromorphic function on the compact
Riemann surface Γ \H∗, any holomorphic modular function with respect to Γ is a constant.

Let A0(Γ ) be the field of all modular functions with respect to Γ , and A0(Γ )Q be the
subfield of A0(Γ ) which consists of all modular functions f (τ) whose Fourier coefficients
belong to Q. We may identify A0(Γ ) with the field C(Γ \H∗) of all meromorphic functions
on the compact Riemann surface Γ \H∗, and if f (τ) ∈ A0(Γ ) is non-constant, then the field
extension degree [A0(Γ ) : C(f (τ ))] is finite and is equal to the total degree of poles of f (τ).
Since we will consider the modular functions with neither zeros nor poles on H, the total
degree of poles of f (τ) is − ∑

s ordsf (τ ) where the summation runs over all the inequivalent
cusps s at which f (τ) has poles.

Next, we illustrate some facts about the Klein forms which will be used in the expression
of C(τ). For a complete treatment, the reader may consult [15].

Let τ ∈ H and γ = (
a b
c d

) ∈ SL2(Z). And let a = (a1, a2) ∈ R2 − Z2. Then the Klein
form ka(τ ) satisfies the followings:

(K0) k−a(τ ) = −ka(τ ).
(K1) ka(γ (τ )) = (cτ + d)−1kaγ (τ ).
(K2) For any b = (b1, b2) ∈ Z2 we have ka+b(τ ) = ε(a,b)ka(τ ), where ε(a,b) =

(−1)b1b2+b1+b2 eπi(b2a1−b1a2).
(K3) For a = (r/N, s/N) ∈ (1/N)Z2 −Z2 and any γ ∈ Γ (N) with an integerN > 1,

ka(γ (τ )) = εa(γ ) · (cτ + d)−1 · ka(τ ) where

εa(γ ) = −(−1)((a−1)r+cs+N)(br+(d−1)s+N)/N2 · eπi(br2+(d−a)rs−cs2)/N2
.
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(K4) Let τ ∈ H, z = a1τ + a2 with a = (a1, a2) ∈ Q2 −Z2, and further let q = e2πiτ ,
qz = e2πiz = e2πia2e2πia1τ . Then

ka(τ ) = − 1

2πi
eπia2(a1−1) · qa1(a1−1)/2 · (1 − qz) ·

∞∏
n=1

(1 − qnqz)(1 − qnq−1
z )

(1 − qn)2
,

and ordqka(τ ) = 〈a1〉(〈a1〉 − 1)/2 where 〈a1〉 denotes the number such that 0 ≤ 〈a1〉 < 1
and a1 − 〈a1〉 ∈ Z.

(K5) Let f (τ) = ∏
a k
m(a)
a (τ ) be a finite product of Klein forms with a = (r/N, s/N)

∈ (1/N)Z2 − Z2 for an integer N > 1, and let k = − ∑
am(a). Then f (τ) is a modular

function with respect to Γ (N) if and only if k = 0 and{∑
am(a)r

2 ≡ ∑
am(a)s

2 ≡ ∑
am(a)rs ≡ 0 mod N if N is odd∑

am(a)r
2 ≡ ∑

am(a)s
2 ≡ 0 mod 2N,

∑
am(a)rs ≡ 0 mod N if N is even.

Furthermore, we need the following three lemmas for later use which can be proved by
using the standard theory of modular functions.

Let N , m be positive integers and Γ = Γ1(N) ∩ Γ0(mN). Note that if we let Γ \Γ (1)/
Γ (1)∞ = {Γ γ1Γ (1)∞, . . . , Γ γgΓ (1)∞}, then {γ1(∞), . . . , γg (∞)} is a set of all non-equiv-
alent cusps of Γ which satisfies that γi(∞) and γj (∞) are not equivalent under Γ for any
i 	= j . Let

M = {(c̄, d̄) ∈ Z/mNZ × Z/mNZ ; (c̄, d̄) = 1̄, i.e., (c, d,mN) = 1} .
and ∆ be a subgroup of (Z/mNZ)× defined as

∆ = {±(1 +Nk) ∈ (Z/mNZ)× ; k = 0, . . . ,m− 1} .
For example, if N = 5 and m = 3, then∆ = {±1, ±(1 + 5 · 2)} because (15, 1 + 5 · 1) 	= 1.
For (c1, d1), (c2, d2), we define a relation ∼ on M by (c1, d1) ∼ (c2, d2) if there exist s̄ ∈ ∆
and n̄ ∈ Z/mNZ such that c2 = s̄ · c1 and d2 = s̄ · d1 + n̄ · c1. It is easy to see that
∼ is an equivalence relation. We further define a map φ : Γ \Γ (1)/Γ (1)∞ → M/ ∼ by
φ(Γ

(
( a bc d )

)
Γ (1)∞)= [(c̄, d̄)]. Here we see without difficulty that the map φ is well-defined

and bijective. Thus we get the following lemma.

LEMMA 1. Suppose that a, c, a′, c′ ∈ Z and (a, c) = (a′, c′) = 1. We understand
that ±1/0 = ∞. Then, with the notation ∆ as above, a/c and a′/c′ are equivalent under
Γ1(N) ∩ Γ0(mN) if and only if there exist s̄ ∈ ∆ ⊂ (Z/mNZ)× and n ∈ Z such that

(
a′
c′

) ≡(
s̄−1a+nc

s̄c

)
mod mN .

PROOF. Let Γ = Γ1(N) ∩ Γ0(mN). We take b, d , b′, d ′ ∈ Z such that
(
a b
c d

)
,
(
a′ b′
c′ d ′

) ∈
Γ (1). Note that the followings are equivalent:

(1) a/c and a′/c′ are equivalent under Γ .
(2) Γ

((
a b
c d

))
Γ (1)∞ = Γ

((
a′ b′
c′ d ′

))
Γ (1)∞.

(3) [(c̄, d̄)] = [(c′, d ′)] in M/ ∼.
(4) There exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c′ = s̄c̄ and d ′ = s̄d̄ + n̄c̄.

Since ad − bc = a′d ′ − b′c′ = 1, we rewrite (4) as follows:
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(4′) There exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c′ = s̄c̄ and (ad − bc) · d ′ =
s̄ · (a′d ′ − b′c′) · d̄ + n̄c̄.

And we get the following statements equivalent to (4′):
(5) There exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c′ = s̄c̄ and ādd ′ = s̄a′ dd ′ + n̄c̄.
(6) There exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c′ = s̄c̄ and ā = s̄a′ + n̄c̄

by observing (dd ′, c̄) = 1̄. This completes the proof. �

For a positive divisor x of mN , let πx : (Z/mNZ)× → (Z/xZ)× be the natural homo-
morphism. Observe that πx is surjective. For a positive divisor c of mN , let s′c,1, . . . , s′c,nc
∈ (Z/(mN/c)Z)× be all the distinct coset representatives of πmN/c(∆) in (Z/(mN/c)Z)×

where nc = ϕ(mN/c)/|πmN/c(∆)|. Here, ϕ is the Euler’s ϕ-function. Then for any s′c,i
with i = 1, . . . , nc we take sc,i ∈ (Z/mNZ)× such that πmN/c(sc,i ) = s′c,i . We further let
Sc = {sc,1, . . . , sc,nc ∈ (Z/mNZ)×}.

For a positive divisor c of mN , let a′
c,1, . . . , a

′
c,mc

∈ (Z/cZ)× be all the distinct coset
representatives of πc(∆∩ ker(πmN/c)) in (Z/cZ)×, where

mc = ϕ(c)

|πc(∆ ∩ ker(πmN/c))| = ϕ(c)

|πmN/(c,mN/c)(∆)|/|πmN/c(∆)| .

Then for any a′
c,j with j = 1, . . . ,mc we take ac,j ∈ (Z/mNZ)× such that πc(ac,j ) = a′

c,j .
We choose representatives ac,j of ac,j so that 0 < ac,1, . . . , ac,mc < mN , (ac,j ,mN) = 1
and put Ac = {ac,1, . . . , ac,mc }.

LEMMA 2. With the notations as above, let S = {(c̄·sc,i , ac,j ) ∈ Z/mNZ×Z/mNZ ;
0 < c|mN, sc,i ∈ Sc, ac,j ∈ Ac}. For given (c̄ · sc,i , ac,j ) ∈ S, we can take x, y ∈ Z such
that (x, y)= 1, x̄ = c̄ · sc,i and ȳ = ac,j because (c · sc,i , ac,j ,mN) = 1. Then the set of y/x
for such x, y is a set of all the inequivalent cusps of Γ1(N)∩Γ0(mN) and the number of such
cusps is

|S| =
∑
c>0
c|mN

nc ·mc =
∑
c>0
c|mN

ϕ(c)ϕ(mN/c)

|πmN/(c,mN/c)(∆)| .

PROOF. Let M ′ be the set

{(c̄, ā) ∈ Z/mNZ × Z/mNZ ; (c̄, ā) = 1̄, i.e., (c, a,mN) = 1}
and define a relation (c1, a1) ∼ (c2, a2) if there exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that
c2 = s̄ · c1 ∈ Z/mNZ and a2 = s̄−1a1 + n̄c1 ∈ Z/mNZ. Since ∼ is an equivalence relation
onM ′ and there is a bijection between Γ \Γ (1)/Γ (1)∞ andM ′/∼, it is enough to prove that
the natural map f : S → M ′/∼ is a bijection.

We first prove the injectivity. Suppose that [(c̄ · sc,i , ac,j )] = [(c′ · sc′,i′, ac′,j ′)]. Then
there exist s̄ ∈ ∆ and n̄ ∈ Z/mNZ such that c′ · sc′,i′ = s̄ · c̄ · sc,i ∈ Z/mNZ and ac′,j ′ =
s̄−1ac,j + n̄ · c̄ · sc,i ∈ Z/mNZ. Since s̄, sc,i , sc′,i′ ∈ (Z/mNZ)× and c, c′ |mN , we obtain

c = c′. Hence πmN/c(sc,i′) = πmN/c(s̄) · πmN/c(sc,i ) which implies that s′
c,i′ ∈ πmN/c(∆)s′c,i

and by the choice of sc,i , i ′ = i. Therefore πmN/c(s̄) = 1̄, i.e., s̄ ∈ ∆ ∩ ker(πmN/c). Thus
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ac,j ′ = πc(s̄
−1)ac,j ∈ (Z/cZ)×, which implies ac,j ′ ∈ πc(∆ ∩ ker(πmN/c))ac,j , from which

we get ac,j ′ = ac,j .
Now we prove the surjectivity. Let [(c′, a′)] ∈ M ′/ ∼. We take c = (c′,mN). Then

c′/c ∈ (Z/(mN/c)Z)× implies c′/c ∈ πmN/c(∆)s
′
c,i = πmN/c(∆)πmN/c(sc,i ) for some i.

Since (c′, a′) = 1̄ ∈ Z/mNZ, we get 1 = (c′, a′,mN) = (c, a′), namely a′ ∈ (Z/cZ)×, and
hence a′ ∈ πc(∆ ∩ ker(πmN/c))a′

c,j for some j . We further claim that there exist s̄ ∈ ∆ and

n̄ ∈ Z/mNZ such that c′ = s̄ · c · sc,i and a′ = s̄−1ac,j + n̄ · c̄ · sc,i . It is enough to prove that
there exists s̄ ∈ ∆ such that πmN/c(s̄) = c′/c ·πmN/c(sc,i)−1 ∈ πmN/c(∆) ⊂ (Z/(mN/c)Z)×

and πc(s̄) = a′−1
a′
c,j ∈ πc(∆ ∩ ker(πmN/c)) ⊂ (Z/cZ)× which is equivalent to prove the

following isomorphisms

πmN/(c,mN/c)(∆)/πmN/(c,mN/c)(∆ ∩ ker(πmN/c)) ∼= πmN/c(∆) and

πmN/(c,mN/c)(∆ ∩ ker(πmN/c)) ∼= πc(∆ ∩ ker(πmN/c))

under the natural maps. Now note that the kernel of the natural map πmN/(c,mN/c)(∆) →
πmN/c(∆) is obviously equal to πmN/(c,mN/c)(∆ ∩ ker(πmN/c)). Suppose that s̄ ∈ ∆ ∩
ker(πmN/c) and πc(s̄) = 1̄ ∈ (Z/cZ)×. Then s ≡ 1 mod mN/c and s ≡ 1 mod c, which
implies s ≡ 1 mod mN/(c,mN/c). This completes the proof. �

Here we observe that Lemma 2 gives us a set of all the inequivalent cusps of Γ1(N) ∩
Γ0(mN). And we can figure out the width of each cusp by the following lemma. We under-
stand ±1/0 as ∞.

LEMMA 3. Let a/c be a cusp of Γ = Γ1(N) ∩ Γ0(mN) with a, c ∈ Z and (a, c) = 1.
Then the width h of a cusp a/c in Γ \H∗ is given by

h = m

(c2/4,m)

if N = 4, (m, 2) = 1 and (c, 4) = 2,

h = mN

((c,N) · (m, c2/(c,N))

otherwise.

PROOF. First, we consider the case where N does not divide 4. We take b, d ∈ Z such
that

(
a b
c d

) ∈ SL2(Z). Observe that the width of the cusp a/c in Γ \H∗ is the smallest positive
integer h such that(

1 − ach ∗
−c2h 1 + ach

)
=

(
a b

c d

) (
1 h

0 1

) (
a b

c d

)−1

∈ {±1} · (Γ1(N) ∩ Γ0(mN)) .

If
(

1−ach ∗
−c2h 1+ach

)
∈ {−1} · (Γ1(N) ∩ Γ0(mN)), then by taking the trace we have 2 ≡ −2

mod N , which is a contradiction. So
(

1−ach ∗
−c2h 1+ach

)
∈ Γ1(N) ∩ Γ0(mN). Thus h ∈ (N/(ac,

N))Z ∩ (mN/(c2,mN))Z = (mN/cm)Z if cm = (c,N) · (m, c2/(c,N)). We can verify our
statement for the cases N = 1, 2, 4. �
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Now, we remark that an arbitrary intersection

Γ = Γ0(N1) ∩ Γ 0(N2) ∩ Γ1(N3) ∩ Γ 1(N4) ∩ Γ (N5)

is in fact conjugate to the above form Γ1(N) ∩ Γ0(mN). More precisely,

α−1Γ α = Γ1(N) ∩ Γ0(mN)

where α =
(

lcm(N2,N4,N5) 0
0 1

)
, N = lcm(N3, N4, N5) and m = lcm(N1, N3, N5) · lcm(N2,

N4, N5)/N . Note that if we let {s1, . . . , sg } be a set of all the inequivalent cusps of some
congruence subgroup Γ ′ and set Γ ′ = α−1Γ α for some α, then {α(s1), . . . , α(sg )} gives us a
set of all the inequivalent cusps of Γ .

3. Ramanujan’s cubic continued fraction C(τ). Hereafter we use ζn as exp(2πi/
n). In this section, by using the lemmas in Section 2 we establish certain properties of Ra-
manujan’s cubic continued fraction C(τ). Since C(τ) has an infinite product expression, we
can show by routine calculations that it has the following finite product of Klein forms

C(τ) = ζ 5
12

5∏
j=0

k( 1/6 j/6 )

k( 3/6 j/6 )
(τ ) .

THEOREM 4. Let C(τ) be the Ramanujan’s cubic continued fraction as before. Then
C(τ) is a generator for the function field of Γ1(6) ∩ Γ 0(3).

PROOF. Using (K5) we can check that the level of C(τ) is 6. Write γn as the matrix(
1 n
0 1

) ∈ SL2(Z). By the definition of C(τ) in Section 1, it is readily verified that C(γ1τ ) =
C(τ + 1) = ζ3C(τ). Hence C(τ)3 is invariant under γ1. Since Γ1(6) = 〈Γ (6), γ1〉, we obtain
that C(τ)3 ∈ A0(Γ1(6)).

We first show that C(C(τ)3) = A0(Γ1(6)). Lemmas 2 and 3 imply that cusps are of the
form 6/c where c|6 and the width is c. Applying (K1) and (K4), C(

(
1 0
c 1

)
τ )3 is of the form

(some root of unity) · qr6/c + (higher terms) ,

where r = 9/c
∑5
j=0(〈(1 + cj)/6〉(〈(1 + cj)/6〉 − 1)− 〈(3 + cj)/6〉(〈(3 + cj)/6〉 − 1)). An

easy calculation shows that r = 0, 0,−1, 1 according as c = 1, 2, 3, 6. Therefore C3(τ ) has
only a simple pole at 1/3 and only a simple zero at ∞, which proves the claim.

Let Γ ′ be a subgroup of Γ (1) such that C(C(τ)) = A0(Γ
′), which is possible by the

above claim. Then [A0(Γ
′) : A0(Γ1(6))] = [C(C(τ)) : C(C(τ)3)] = 3, i.e., [Γ1(6) : Γ ′] =

3. Note that C(τ) is invariant under the action of γ3 because C(γ1τ ) = C(τ + 1) = ζ3C(τ).
So Γ ′ ⊇ 〈Γ (6), γ3〉 = Γ1(6) ∩ Γ 0(3). Observing that [Γ1(6) : Γ1(6) ∩ Γ 0(3)] = 3 we can
conclude that Γ ′ = Γ1(6) ∩ Γ 0(3). �

Since C(τ) has rational Fourier coefficients, the above theorem implies that Q(C(τ)) =
A0(Γ1(6)∩Γ 0(3))Q. Thus the following proposition indicates the existence of modular equa-
tion.
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PROPOSITION 5. Let n be a positive integer. Then

Q(C(τ), C(nτ)) = A0(Γ1(6) ∩ Γ 0(3) ∩ Γ0(6n))Q .

PROOF. Since Q(C(τ)) = A0(Γ1(6) ∩ Γ 0(3))Q, we see that for any α ∈ GL+
2 (Q),

C(ατ) = C(τ) implies α ∈ Q× · (Γ1(6) ∩ Γ 0(3)). Let Γ = Γ1(6) ∩ Γ 0(3) and β = (
n 0
0 1

)
.

Note that

Γ ∩ Γ0(6n) = Γ1(6) ∩ Γ 0(3) ∩ Γ0(6n) = Γ ∩ β−1Γβ .

Hence it is clear that C(τ), C(nτ) ∈ A0(Γ ∩ β−1Γβ)Q. Thus it is enough to show that
Q(C(τ), C(nτ)) ⊃ A0(Γ ∩β−1Γβ)Q. Let Γ ′ be the subgroup of SL2(Z) such that Q(C(τ),

C(nτ)) = A0(Γ
′)Q and let γ be an element of Γ ′. Since Q(C(τ)) = A0(Γ1(6) ∩ Γ 0(3))Q

and C(τ) is invariant under γ, γ ∈ Γ . Moreover, C(nτ) is invariant under γ and C(τ) is
invariant under βγβ−1, from which we have γ ∈ Γ ∩ β−1Γβ. Therefore, Γ ′ ⊂ Γ ∩β−1Γβ,
namely A0(Γ

′)Q ⊃ A0(Γ ∩ β−1Γβ)Q. This completes the proof. �

In general, if we let C(f1(τ ), f2(τ )) be the field of all modular functions with respect
to some congruence subgroup for which f1(τ ) and f2(τ ) are nonconstant, then [C(f1(τ ),

f2(τ )) : C(fi(τ ))] is equal to the total degree di of poles of fi(τ ) for i = 1, 2. So there
exists a polynomial Φ(X, Y ) ∈ C[X,Y ] such that Φ(f1(τ ), Y ) is a minimal polynomial of
f2(τ ) over C(f1(τ )) with degree d1, and similarly so isΦ(X, f2(τ )) with degree d2. Then for
every positive integer n, Proposition 5 guarantees the existence of a polynomial Φn(X, Y ) ∈
Q[X,Y ] such that Φn(C(τ), C(nτ)) = 0 and Φn(X, Y ) is irreducible both as a polynomial
in X over C(Y ) and as a polynomial in Y over C(X), because if an element of C[X,Y ] is
irreducible, then it is irreducible as an element of C(X)[Y ] or C(Y )[X].

Let Γ ′ = Γ1(6)∩ Γ0(18n). Then Γ ′ is conjugate to Γ1(6)∩ Γ 0(3)∩ Γ0(6n) as follows:(
3 0
0 1

)
Γ ′

(
3 0
0 1

)−1

= Γ1(6) ∩ Γ 0(3) ∩ Γ0(6n) .

So Q(C(3τ ), C(3nτ)) = A0(Γ
′)Q. Since it is much easier to handle with Γ ′ than with the

group Γ1(6) ∩ Γ 0(3) ∩ Γ0(6n), we will concentrate on the modular equation for C(3τ ) and
C(3nτ), which gives rise to in return the modular equation of C(τ) and C(nτ). Now that it is
also easier to handle with a Hauptmodul having a simple pole at ∞, we hereafter let

f (τ) = 1

C(3τ )
and Γ = Γ1(6) ∩ Γ0(18)

and consider the modular equation Fn(X, Y ) ∈ Q[X,Y ] for f (τ) and f (nτ). Actually(
1 1
0 1

) ∈ Γ and f (τ) = q−1 + q2 + O(q5). It means that f (τ) is the Hauptmodul for Γ .
Since Q(C(τ)) = A0(Γ1(6) ∩ Γ 0(3))Q, we see from the proof of Theorem 4 that C(τ) has
a simple pole only at 1/3 and a simple zero only at ∞. Thus for inequivalent cusps under Γ ,
f (τ) has its only simple pole at ∞ and a simple zero only at 1/9.

LEMMA 6. Let a, c, a′, c′ ∈ Z and f (τ) = 1/C(3τ ). Then we obtain the following
assertions.
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(1) f (τ) has a pole at a/c ∈ Q ∪ {∞} with (a, c) = 1 if and only if (a, c) = 1, c ≡ 0
mod 18.

(2) f (nτ) has a pole at a′/c′ ∈ Q ∪ {∞} if and only if there exist a, c ∈ Z such that
a/c = na′/c′, (a, c) = 1, c ≡ 0 mod 18.

(3) f (τ) has a zero at a/c ∈ Q ∪ {∞} with (a, c) = 1 if and only if (a, c) = 1, c ≡ 9
mod 18.

(4) f (nτ) has a zero at a′/c′ ∈ Q ∪ {∞} if and only if there exist a, c ∈ Z such that
a/c = na′/c′, (a, c) = 1, c ≡ 9 mod 18.

PROOF. Since f (τ) is a Hauptmodul for Γ with a simple pole only at ∞, f (τ) has the
only simple pole at all a/c ∈ Q ∪ {∞} such that has a pole only at all a/c ∈ Q ∪ {∞} such
that a/c is equivalent to ∞ under Γ . By Lemma 1 a/c is equivalent to ∞ under Γ if and
only if there exist s ∈ ∆ = {±1,±7,±13 ∈ (Z/18Z)×} = (Z/18Z)× and n ∈ Z such that(
a
c

) ≡
(
s̄−1

0

)
mod 18. So the first assertion follows. Furthermore, f (τ) has a zero at a/c if

and only if a/c is equivalent to 1/9 under Γ . Applying Lemma 1 we have
(
a
c

) ≡ (
s̄−1+9n

9

)
mod 18. Hence we get the statement (3). Statements (2) and (4) easily follow from (1) and
(3). �

Let d1 (resp. dn) be the total degree of poles of f (τ) (resp. f (nτ)). Let Fn(X, Y ) be a
polynomial such that

Fn(X, Y ) =
∑

0≤i≤dn
0≤j≤d1

Ci,jX
iY j ∈ Q[X,Y ]

and Fn(f (τ ), f (nτ)) = 0. Ishida and Ishii ([12, Lemmas 3 and 6]) showed the following the-
orem by means of the standard theory of algebraic functions, which will be useful in knowing
which coefficients Ci,j are zero in Fn(X, Y ).

THEOREM 7. For any congruence subgroup Γ ′, let f1(τ ), f2(τ ) be nonconstants such
that C(f1(τ ), f2(τ )) = A0(Γ

′) with the total degree Dk of poles of fk(τ ) for k = 1, 2, and
let

F(X, Y ) =
∑

0≤i≤D2
0≤j≤D1

Ci,jX
iY j ∈ C[X,Y ]

be such that F(f1(τ ), f2(τ )) = 0. Let SΓ ′ be a set of all the inequivalent cusps of Γ ′, and for
k = 1, 2,

Sk,0 = {s ∈ SΓ ′ ; fk(τ ) has zeros at s}
and

Sk,∞ = {s ∈ SΓ ′ ; fk(τ ) has poles at s} .
Further let

a = −
∑

s∈S1,∞∩S2,0

ordsf1(τ ) and b =
∑

s∈S1,0∩S2,0

ordsf1(τ ) .
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Here we assume that a (resp. b) is 0 if S1,∞ ∩S2,0 (resp. S1,0 ∩S2,0) is empty. Then we obtain
the following assertions.

(1) CD2,a 	= 0. If further S1,∞ ⊂ S2,∞ ∪ S2,0, then CD2,j = 0 for any j 	= a.
(2) C0,b 	= 0. If further S1,0 ⊂ S2,∞ ∪ S2,0, then C0,j = 0 for any j 	= b.
(3) Ci,D1 = 0 for all i satisfying 0 ≤ i < |S1,0 ∩ S2,∞| or D2 − |S1,∞ ∩ S2,∞| < i ≤

D2.
(4) Ci,0 = 0 for all i satisfying 0 ≤ i < |S1,0 ∩ S2,0| or D2 − |S1,∞ ∩ S2,0| < i ≤ D2.
If we interchange the roles of f1(τ ) and f2(τ ), then we may obtain further properties

similar to (1) through (4). Suppose further that there exist r ∈ R and N,n1, n2 ∈ Z with
N > 0 such that fk(τ + r) = ζ

nk
N fk(τ ) for k = 1, 2, where ζN = e2πi/N . Then we obtain the

following assertion.
(5) n1i + n2j ≡/ n1D2 + n2a mod N ⇒ Ci,j = 0. Here note that n2b ≡ n1D2 + n2a

mod N .

We now give another proof of Chan’s result [4, Theorem 1] using Theorem 7.

THEOREM 8. Let C(τ) be Ramanujan’s cubic continued fraction. Then
(1) {C(τ)}2 + 2C(τ){C(2τ )}2 − C(2τ ) = 0.
(2) {C(τ)}3 = C(3τ )(1 − C(3τ )+ {C(3τ )}2)/(1 + 2C(3τ )+ 4{C(3τ )}2).

PROOF. To prove (1) (resp. (2)), we should find the modular equation F2(X, Y ) (resp.
F3(X, Y )) for f (τ) and f (2τ ) (resp. f (3τ )), where f (τ) = 1/C(3τ ).

(1) By Proposition 5 the congruence subgroup which we should consider is Γ1(6) ∩
Γ0(36). Hence

∆2 = {±1,±5,±7,±11,±13,±17 ∈ (Z/36Z)×} = (Z/36Z)× ,

where∆2 is the subgroup in Section 2. We will first calculate d1. By Lemmas 2 and 6 we must
consider S18, A18, S36 and A36. It is easy to see that S18 = S36 = {1} and A18 = A36 = {1},
because n18, m18, n36 and m36 are 1. So all the cusps of Γ1(6) ∩ Γ0(36) at which f (τ) has
poles are 1/18 and 1/36 by (1) of Lemma 6, where 1/36 is equivalent to ∞ by Lemma 1. By
Lemma 3 the widths of both 1/18 and ∞ are 1. Since f (τ) = q−1 +O(1), ord∞f (τ)= −1.

For convenience, we write αn as the matrix
(

1 0
n 1

) ∈ SL2(Z). Since α18 ∈ Γ1(6)∩Γ0(18),
(f ◦ α18)(τ ) = f (τ) = q−1 +O(1) and we obtain ord1/18f (τ) = −1. Thus the total degree
d1 of poles of f (τ) is 2. Next, we will estimate d2. Similarly, by Lemmas 2 and 6 we should
consider S36 and A36, which are already obtained in the above as S36 = {1} and A36 = {1}.

All the cusps of Γ1(6) ∩ Γ0(36) at which f (2τ ) has poles is 1/36 by (2) of Lemma 6.
Since 1/36 is equivalent to ∞, the width of ∞ is 1 and f (2τ ) = q−2 + O(1), we obtain
ord∞f (2τ ) = −2. So the total degree d2 of poles of f (2τ ) is 2. Hence, F2(X, Y ) is of the
form

∑
0≤i≤2, 0≤j≤2 Ci,jX

iY j .
Now, using Theorem 7 we can determine which coefficients Ci,j are zero. If we let

f1(τ ) = f (τ) and f2(τ ) = f (2τ ) in the theorem, we know that S1,∞ = {1/18, 1/36},
S1,0 = {1/9}, S2,∞ = {1/36} and S2,0 = {1/9, 1/18}. Since S1,∞ ∩ S2,0 = {1/18}, we have
a = 1.
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Note that

(f ◦ α9)(τ ) = 1/(C ◦ (
3 0
0 1

)
α9)(τ ) = 1/(C ◦ α3)(3τ ) = q1/2 + · · ·

and the width of 1/9 is 4 in (Γ1(6) ∩ Γ0(36))\H∗. Then b = ord1/9f1(τ ) = 2.
It follows from Theorem 7 (1) that C2,1 	= 0 and C2,0 = C2,2 = 0, and from (2) that

C0,2 	= 0 and C0,1 = C0,0 = 0. In order to use (5) of the theorem we calculate the followings
in advance:

f1

(
τ + 1

3

)
= f

(
τ + 1

3

)
= 1

C(3τ + 1)
= ζ 2

3 f (τ) = ζ 2
3 f1(τ )

f2

(
τ + 1

3

)
= f

(
2τ + 2

3

)
= 1

C(6τ + 2)
= ζ3f (2τ ) = ζ3f2(τ ) .

So we may assume that N = 3, n1 = 2, n2 = 1. Applying these to (5) of Theorem 7,
C2,2 = C1,2 = C1,1 = C0,1 = C2,0 = C0,0 = 0. Hence, we have simplified our modular
equation to the form F2(X, Y ) = C2,1X

2Y + C1,0X + C0,2Y
2. Since C0,2 	= 0, we may

assume that C0,2 = 1.
Next, by replacing X (resp.Y ) by the q-expansion of f (τ) (resp.f (2τ )), we get that

C2,1 = −1 and C1,0 = 2. Thus, F2(X, Y ) = −X2Y + 2X + Y 2. Multiplying F2(1/C(τ),
1/C(2τ )) by C(τ)2C(2τ )2 we obtain the first assertion.

In a similar way, by considering Γ1(6) ∩ Γ0(54) and ∆3 = (Z/54Z)× we can evaluate
the polynomial

F3(X, Y ) =
∑

0≤i≤d3
0≤j≤d1

Ci,jX
iY j

such that F3(f (τ ), f (3τ )) = 0. In this case, since S18 = S54 = {1}, A18 = {1, 5} and
A54 = {1}, f (τ) has poles at 1/18, 5/18 and 1/54 all with width 1 by Lemma 3, where 1/54
is equivalent to ∞ under Γ1(6) ∩ Γ0(54).

We already know that f (τ) = q−1 +O(1) and (f ◦ α18)(τ ) = f (τ) = q−1 +O(1). By
the properties (K1) through (K5)(
f ◦

(
5 −2

18 −7

))
(τ ) = (some root of unity) · f (τ) = (some root of unity) · q−1 +O(1) .

Considering the widths of cusps we have ord∞f (τ) = ord1/18f (τ) = ord5/18f (τ) = −1.
Therefore, d1 = 3. Likewise, f (3τ ) has a pole only at 1/54 ∼ ∞ and f (3τ ) = q−3 +O(1).
Hence, ord∞f (3τ ) is −3. Therefore, d3 = 3.

We let f1(τ ) = f (τ) and f2(τ ) = f (3τ ) in Theorem 7. Then S1,∞ = {1/18, 5/18,
1/54}, S1,0 = {1/9, 2/9, 1/27}, S2,∞ = {1/54} and S2,0 = {1/27}. Since S1,∞ ∩ S2,0 = φ,
the number a in Theorem 7 is 0. By (1) of Theorem 7, we have C3,0 	= 0. Changing the
roles of f1(τ ) and f2(τ ) we get C0,3 	= 0 and Cj,3 = 0 for all j 	= 0. Then by the same
argument as above, substituting τ + 1/3 for τ in f (τ) and f (3τ ) we obtain that C1,0 =
C1,1 = C1,2 = C1,3 = C2,0 = C2,1 = C2,2 = C2,3 = 0. So, we may write F3(X, Y ) =
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C0,0 +C0,1Y +C0,2Y
2 +C0,3Y

3 +C3,0X
3 +C3,1X

3Y +C3,2X
3Y 2. Since C0,3 	= 0, we let

it be 1.
Now, by replacing X (resp.Y ) by the q-expansion of f (τ) (resp.f (3τ )), we conclude

that C0,0 = 0, C0,1 = 4, C0,2 = 2, C3,0 = −1, C3,1 = 1 and C3,2 = −1. So, F3(X, Y ) =
4Y +2Y 2 +Y 3 −X3 +X3Y −X3Y 2. If we multiply F3(1/C(τ), 1/C(3τ )) by C(τ)3C(3τ )3,
our second assertion is established. �

We shall find a relation between f (τ) and f (pτ) for a prime p > 3 since we have dealt
with the cases p = 2, 3 already.

THEOREM 9. Let p be a prime greater than 3. Then Fp(X, Y ) = ∑
0≤i,j≤p+1

Ci,jX
iY j ∈ Q[X,Y ] satisfies the following conditions.

(1) Cp+1,0 	= 0 and Cp+1,1 = Cp+1,2 = · · · = Cp+1,p+1 = 0, C0,0 = 0.
(2) If p ≡ 1 mod 6 and i + j ≡ 0 or 1 mod 3, then Ci,j = 0.
(3) If p ≡ −1 mod 6 and i − j ≡ 1 or 2 mod 3, then Ci,j = 0.

PROOF. The congruence subgroup under consideration is Γ ′ = Γ1(6) ∩ Γ0(18p), and
hence ∆ = {±(1 + 6k) ∈ (Z/18pZ)× ; k = 0, 1, . . . , 3p − 1} where ∆ is the sub-
group as in Section 2. Since (Z/6Z)× = {1,−1}, we have to consider Sj and Aj only
for j ∈ {9, 18, 9p, 18p} by Lemmas 2 and 6. Since nj = 1 for all j = 9, 18, 9p and
18p, Sj = {1}. Thus all the inequivalent cusps under consideration are 1/9, 1/18, 1/9p and
1/18p with widths 2p, p, 2 and 1, respectively by Lemma 3. It follows from Lemma 1
that 1/18p is equivalent to ∞. If we let f1(τ ) = f (τ) and f2(τ ) = f (pτ) in Theorem
7, then by Lemma 6, S1,∞ = {1/18, 1/18p} and S1,0 = {1/9, 1/9p}. Further we obtain
that S2,∞ = {1/18, 1/18p} and S2,0 = {1/9, 1/9p}. Let αn be an matrix

(
1 0
n 1

)
in SL2(Z).

Since α18 ∈ Γ , (f ◦ α18)(τ ) = f (τ) = q−1 + O(1) and we obtain ord∞f (τ) = −1
and ord1/18f (τ) = −p. So the total degree d1 of poles of f (τ) is p + 1. Since f (pτ) =
q−p +O(1), we get ord∞f (pτ) = −p. In order to find ord1/18f (pτ), we first take b, d ∈ Z

such that
(

1 b
18 d

) ∈ SL2(Z). Since there exists x ∈ Z such that d − 6x ≡ 0 mod p,(
3p 0
0 1

) (
1 b

18 d

)
=

(
p 3b − x

6 (d − 6x)/p

) (
3 x

0 p

)
where

(
p 3b − x

6 (d − 6x)/p

)
∈ SL2(Z) .

Thus the Fourier expansion of f (pτ) at 1/18 can be derived from(
f ◦

(
p 0
0 1

) (
1 b

18 d

) )
(τ )= 1/

(
C ◦

(
3p 0
0 1

) (
1 b

18 d

) )
(τ )

=
(

1

C
◦

(
p 3b − x

6 (d − 6x)/p

) (
3 x

0 p

) )
(τ )

by (K1) and (K2). We see by (K4) that the above expression is of the form

(some root of unity) · qkp + higher order term,

where k = 9(〈p/2〉(〈p/2〉 − 1) − 〈p/6〉(〈p/6〉 − 1)) with the notation as in (K4). Since
p ≡ ±1 mod 6 we have k = −1. Hence ord1/18f (pτ) = −1 and the total degree of poles
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of f (pτ) is p + 1. Therefore Fp(X, Y ) is of the form Fp(X, Y ) = ∑
0≤i,j≤p+1 Ci,jX

iY j .
Since S1,∞ ∩ S2,0 is empty, a = 0 in Theorem 7 and hence Cp+1,0 	= 0, Cp+1,1 = Cp+1,2 =
· · · = Cp+1,p+1 = 0. Changing the role of f1(τ ) and f2(τ ) we have b = ord1/9f2(τ ) +
ord1/9pf2(τ ) = p + 1 and C0,0 = 0. Then all the other assertions follows from Theorem 7
(5). Next, we observe that f1(τ + 1/3) = f (τ + 1/3) = 1/C(3τ + 1) = ζ 2

3 f (τ) = ζ 2
3 f1(τ )

and that f2(τ+1/3) = f (p(τ+1/3)) = 1/C(3pτ+p) = ζ
−p
3 f (pτ) implies f2(τ+1/3) =

ζ 2
3 f2(τ ) (resp. ζ3f2(τ )) if p ≡ 1 mod 6 (resp. if p ≡ −1 mod 6). Therefore, Ci,j = 0

when i + j ≡ 0, 1 mod 3 (resp. i − j ≡ 1, 2 mod 3) if p ≡ 1 mod 6 (resp.p ≡ −1
mod 6). This completes the proof. �

p the modular equation of v(:= C(τ)) and w(:= C(pτ))

5 v6−v5w5−5v5(3w5+2w2)+5v4(4w4+w)−20v3w3−5v2(2w5−w2)+5vw4−vw+w6 = 0

7 v8 − v7w7 − 7v7(9w7 + 8w4)+ 28v6w2 − 56v5w3 − 7v4(8w7 − 3w4 − w)− 56v3w5

+28v2w6 + 7vw4 − vw + w8 = 0

11 v12 − v11w11 − 11v11(93w11 + 128w8 + 32w5 − 4w2)− 22v10(128w10 + 96w7 − 34w4 +w)
−44v9(32w9 + 28w6 +w3)− 11v8(128w11 + 128w8 + 28w5 − 17w2)− 22v7(96w10

+124w7 − 7w4 + w)− 154v6(8w9 + w6 −w3)− 22v5(16w11 + 14w8 + 31w5 − 3w2)

+11v4(68w10 + 14w7 − 8w4 + w)− 22v3(2w9 − 7v3w6 +w3)+ 11v2(4w11 + 17w8

+6w5 −w2)− 11v(2w10 + 2w7 − w4)− vw + w12 = 0

13 v14 − v13w13 − 13v13(315w13 + 512w10 + 192w7 − 8w4 − 2w)
+13v12(1024w11 + 768w8 − 240w5 + 23w2)

+52v11(256w12 +48w9 −186w6 +15w3)−13v10(512w13 +832w10 +264w7 −132w4 +w)
+26v9(96w11 − 36w8 − 194w5 + 15w2)+ 39v8(256w12 − 24w9 − 172w6 + 31w3)

−39v7(64w13 + 88w10 + 100w7 − 11w4 + w)− 39v6(248w11 + 172w8 − 3w5 − 4w2)

−13v5(240w12 + 388w9 − 9w6 − 3w3)+ 13v4(8w13 + 132w10 + 33w7 − 13w4 + w)

+13v3(60w11 + 93w8 + 3w5 − 2w2)+ 13v2(23w12 + 30w9 + 12w6 − 2w3)

+13v(2w13 − w10 − 3w7 + w4)− vw + w14 = 0

17 v18 − v17w17 − 17v17(3855w17 + 8192w14 + 5120w11 + 640w8 − 144w5 − 2w2)

+17v16(16384w16 + 36864w13 + 12288w10 − 7488w7 + 712w4 − w)

−136v15(3072w15 − 1024w12 − 2952w9 + 1059w6 − 79w3)

−34v14(4096w17 + 37888w14 + 25280w11 − 7512w8 + 1001w5 − 89w2)

+17v13(36864w16 + 33792w13 − 13120w10 − 9560w7 + 1001w4 + 9w)
+17v12(8192w15 + 38016w12 + 17496w9 − 10177w6 + 1059w3)

−34v11(2560w17 + 25280w14 + 19328w11 − 3016w8 + 1195w5 − 117w2)

+17v10(12288w16 − 13120w13 − 26784w10 − 3016w7 + 939w4 + 5w)
+17v9(23616w15 + 17496w12 − 11536w9 − 2187w6 + 369w3)

−34v8(320w17 − 7512w14 − 3016w11 + 3348w8 − 205w5 − 24w2)

−17v7(7488w16 + 9560w13 + 3016w10 + 2416w7 − 395w4 + 5w)
−17v6(8472w15 + 10177w12 + 2187w9 − 594w6 + 16w3)

+34v5(72w17 − 1001w14 − 1195w11 + 205w8 + 132w5 − 18w2)

+17v4(712w16 + 1001w13 + 939w10 + 395w7 − 74w4 + w)

+17(632w15 + 1059w12 + 369w9 − 16w6 − 6w3)

+17v2(2w17 + 178w14 + 234w11 + 48w8 − 18w5 + w2)

−17v(w16 − 9w13 − 5w10 + 5w7 − w4)− vw + w18 = 0
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Now we can determine the modular equation Φp(X, Y ) = 0 by considering enough
terms of the Fourier expansion of Fp(f (τ), f (pτ)) in Theorem 9 with the observation
Φp(X, Y ) = Xp+1Yp+1Fp(1/X, 1/Y ).

The above table shows that the coefficients of the modular equations are congruent to
zero modulo p (p = 5, 7, 11, 13, 17) except for those of the terms vp+1, wp+1, vw and
vpwp, which indicates the existence of Kronecker’s congruences. For instance, when p = 5
the modular equation of v = C(τ) and w = C(5τ ) is

v6 − v5w5 − vw +w6

−5v5(3w5 + 2w2)+ 5v4(4w4 +w)− 20v3w3 − 5v2(2w5 −w2)+ 5vw4

≡ (v5 −w)(v −w5) mod 5.

As before, let Γ = Γ1(6) ∩ Γ0(18). For any integer a with (a, 6) = 1, we choose
σa ∈ Γ (1) so that σa ≡ (

a−1 0
0 a

)
mod 18. Then for every integer n prime to 6 one has

(3.1) Γ

(
1 0
0 n

)
Γ =

⋃
a>0
a|n

⋃
0≤b<n/a

Γ σa

(
a b

0 n/a

)
,

in which the right-hand side is a disjoint union. Indeed, first note that |Γ \Γ (
1 0
0 n

)
Γ | =

n
∏
p|n(1 + 1/p) and then use [17], Proposition 3.36.
Since σa depends only on a modulo 18, we fix σa as σ±1 = ± (

1 0
0 1

)
, σ±5 = ± (

65 18
18 5

)
and σ±7 = ± ( −5 18

18 −65

)
. Actually, since σa ∈ (±1) · Γ for a ∈ {±1,±5,±7}, we have

f ◦ σa = f .
For convenience, we let αa,b be σa

(
a b
0 n/a

)
for a, b in (3.1). We now consider the fol-

lowing polynomial Ψn(X, τ) with the indeterminate X

Ψn(X, τ) =
∏
a>0
a|n

∏
0≤b<n/a
(a,b,n/a)=1

(X − (f ◦ αa,b)(τ )) .

Note that degΨn(X, τ) = n
∏
p|n(1 + 1/p). Since all the coefficients of Ψn(X, τ) are ele-

mentary symmetric functions of the f ◦ αa,b, they are invariant under Γ , i.e., Ψn(X, τ) ∈
C(f (τ ))[X]. Hence we may write Ψn(X, f (τ)) instead of Ψn(X, τ).

When f (nτ) = f1(τ ) and f (τ) = f2(τ ), we define Sj,∞ to be the set of cusps which
are poles of fj (τ ). By Sj,0 we mean the set of cusps where fj (τ ) has zero. We recall from
Theorem 7 that a is a nonnegative integer defined by

a =
{

0 if S1,∞ ∩ S2,0 = φ ,

− ∑
s∈S1,∞∩S2,0

ordsf1(τ ) otherwise .

If we multiply a suitable power of f (τ) to Ψn(X, f (τ)), we have a polynomialFn(X, f (τ)) ∈
C[X, f (τ)] such that Fn(f (nτ), f (τ )) = 0. Note that S1,∞ = {1/18n} and S2,∞ = {1/18,
. . . , 1/18n}. It means that S1,∞ ∩ S2,0 = φ and so a = 0. Hence we are to work with just
Ψn(X, f (τ)) as a polynomial of X and f (τ) to prove the following theorem.
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THEOREM 10. With the notation as above, for any positive integer n with (n, 6) = 1
let Ψn(X, Y ) be a polynomial such that Ψn(f (τ), f (nτ)) = 0. Then we get the following
assertions.

(1) Ψn(X, Y ) ∈ Z[X,Y ] and degX Ψn(X, Y ) = degY Ψn(X, Y ) = n
∏
p|n(1 + 1/p).

(2) Ψn(X, Y ) is irreducible both as a polynomial in X over C(Y ) and as a polynomial
in Y over C(X).

(3) Ψn(X, Y ) = Ψn(Y,X).
(4) If n is not a square, then Ψn(X,X) is a polynomial of degree > 1 whose leading

coefficient is ±1.
(5) (Kronecker’s congruence) Let p be an odd prime. Then

Ψp(X, Y ) ≡ (Xp − Y )(X − Yp) mod pZ[X,Y ] .
PROOF. Since

f (τ) = 1

C(3τ )
= q−1

∞∏
n=1

(1 − q18n−9)2

(1 − q18n−3)(1 − q18n−15)
,

we let f (τ) = q−1 +∑∞
m=1 cmq

m with cm ∈ Z. We further let d = n
∏
p|n(1 + 1/p) and ψk

be an automorphism of Q(ζn) over Q defined byψk(ζn) = ζ kn if (k, n) = 1. Thenψk induces
an automorphism of the function field of formal power series Q(ζn)((q

1/n)) over Q(ζn) by
the action on the coefficients. We denote the induced automorphism by the same notation ψk .
Since (

f ◦
(
a b

0 n/a

) )
(τ )= f

( (
a b

0 n/a

)
τ

)
= f

(
a2τ + ab

n

)
= ζ−ab

n q−a2/n +
∞∑
m=1

cmζ
abm
n qa

2m/n ,

we obtain that ψk((f ◦ (
a b
0 n/a

)
)(τ )) = ζ−abk

n q−a2/n + ∑∞
m=1 cmζ

abkm
n qa

2m/n. Let b′ be the

unique integer such that 0 ≤ b′ < n/a and b′ ≡ bk mod n/a. Then ψk
(
f ◦ (

a b
0 n/a

)) =
f ◦ (

a b′
0 n/a

)
because ζ abkn = ζ ab

′
n . For all a ∈ {±1,±5,±7} we have f ◦σa = f , from which

we get that ψk(f ◦ αa,b) = f ◦ αa,b′ and all the coefficients of Ψn(X, f (τ)) are contained in
Q((q1/n)).

Note that Ψn(f (τ/n), f (τ )) = 0 yields [C(f (τ/n), f (τ )) : C(f (τ ))] ≤ d . Let F

be the field of all meromorphic functions on H which contains C(f (τ/n), f (τ )) as a sub-
field. We further observe that for any element γ of Γ the map h(τ) �→ h(γ (τ )) gives
an embedding of C(f (τ/n), f (τ )) into F, which is trivial on C(f (τ )). Also, note that
for any αa,b = σa

(
a b
0 n/a

)
in (3.1) there exists γa,b ∈ Γ such that

(
1 0
0 n

)
γa,bα

−1
a,b ∈ Γ .

Since f (αa,b(τ )) 	= f (αa′,b′(τ )) for αa,b 	= αa′,b′ , there are at least d distinct embeddings
of C(f (τ/n), f (τ )) into F over C(f (τ )) defined by f (τ/n) �→ (f ◦ (

1 0
0 n

) ◦ γa,b)(τ ) =
f (αa,b(τ )). Hence [C(f (τ/n), f (τ )) : C(f (τ ))] = d . This implies that Ψn(X, f (τ)) is
irreducible over C(f (τ )).
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With the notations as in Theorem 7, if we let

a = − ∑
s∈S1,∞∩S2,0

ordsf (τ ) , b = ∑
s∈S1,0∩S2,0

ordsf (τ ) ,

a′ = − ∑
s∈S2,∞∩S1,0

ordsf (nτ) , b′ = ∑
s∈S2,0∩S1,0

ordsf (nτ) ,

then F(X, Y ) in Theorem 7 is of the form

Cdn,aX
dnY a + C0,bY

b + Ca′,d1X
a′
Y d1 + Cb′,0X

b′ +
∑

0<i<dn
0<j<d1

Ci,jX
iY j ,

where d1(resp.dn) is the total degree of poles for f1(τ ) (resp.fn(τ )). Since F(X, f (τ)) is a
minimal polynomial of f (τ/n) over C(f (τ )) and F(f (τ/n), Y ) is also a minimal polynomial
of f (τ) over C(f (τ/n)), we obtain that

f (τ)aΨn(X, f (τ)) = F(X, f (τ))

Cdn,a

and Fn(X, Y ) is a polynomial in X and Y which is irreducible both as a polynomial in X
over C(Y ) and as a polynomial in Y over C(X). Since f (τ)aΨn(X, f (τ)) ∈ Q[X, f (τ)]
and all the Fourier coefficients of the coefficients of Ψn(X, f (τ)) are algebraic integers, we
conclude that f (τ)aΨn(X, f (τ)) ∈ Z[X, f (τ)], namely Fn(X, Y ) ∈ Z[X,Y ]. But we already
saw before this theorem that a = 0 in our case. Hence we conclude that Ψn(X, Y ) ∈ Z[X,Y ].
It proves (1) and (2).

Now that (X−(f ◦αn,0)(τ )) is a factor ofΨn(X, f (τ)) and f ◦αn,0 = f ◦σn◦
(
n 0
0 1

) = f ◦(
n 0
0 1

)
, we get Ψn(f (nτ), f (τ )) = 0, namelyΨn(f (τ), f (τ/n)) = 0. Hence, f (τ/n) is a root

of the equationΨn(f (τ),X) = 0 andΨn(f (τ),X) ∈ Z[X, f (τ)]. Meanwhile, f (τ/n) is also
a root of Ψn(X, f (τ)) = 0 and Ψn(X, f (τ)) is irreducible over C(f (τ/n)). So there exists
a polynomial g(X, f (τ )) ∈ Z[X, f (τ)] such that Ψn(f (τ),X) = g(X, f (τ ))Ψn(X, f (τ)).
However, the identity

Ψn(f (τ),X) = g(X, f (τ )) · g(f (τ ),X) · Ψn(f (τ),X)
implies g(X, f (τ )) = ±1. If g(X, f (τ )) = −1, Ψn(f (τ), f (τ )) = −Ψn(f (τ), f (τ )). Thus,
f (τ) is a root of the equation Ψn(X, f (τ)) = 0, which contradicts to the irreducibility of
Ψn(X, f (τ)) over C(f (τ )). Therefore, (3) is proved.

As for the verification of (4), we assume that n is not a square. Then f (τ) − (f ◦
αa,b)(τ ) = q−1 − ζ−ab

n q−a2/n + O(q1/n). The coefficient of the lowest degree in Ψn(f (τ),
f (τ)) is a unit. Since it is an integer and Ψn(X,X) is a polynomial of degree > 1, (4) is
proved.

In order to justify the last assertion, let p be a prime greater than 3. For g(τ ), h(τ ) ∈
Z[ζp]((q1/n)) and α ∈ Z[ζp], we know that g(τ ) ≡ h(τ) mod α if g(τ ) − h(τ) ∈ αZ[ζp]
((q1/p)). On the other hand, since f (τ) = q−1 + ∑∞

m=1 cmq
m with cm ∈ Z, we deduce that

f (α1,b(τ )) = ζ−b
p q−1/p +

∞∑
m=1

cmζ
bm
p qm/p ≡ q−1/p +

∞∑
m=1

cmq
m/p mod (1 − ζp) .
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Hence, f (α1,b(τ )) ≡ f (α1,0(τ )) mod (1 − ζp) for any b = 0, . . . , p − 1. Since cpm ≡ cm

mod p, we see that

f (αp,0(τ )) = q−p +
∞∑
m=1

cmq
pm ≡ q−p +

∞∑
m=1

c
p
mq

pm ≡ (f (τ ))p mod p .

So, f (αp,0(τ )) ≡ f (τ)p mod (1 − ζp). Similarly,

f (α1,0(τ ))
p = (q−1/p +

∞∑
m=1

cmq
m/p)p ≡ q−1 +

∞∑
m=1

c
p
mq

m = f (τ) mod (1 − ζp) .

Thus

Ψp(X, f (τ))=
∏

0≤b<p
(X − f (α1,b(τ )))× (X − f (αp,0(τ )))

≡ (X − f (α1,0(τ ))
p(X − f (τ)p)

≡ (Xp − f (α1,0(τ ))
p)(X − f (τ)p)

≡ (Xp − f (τ))(X − f (τ)p) mod (1 − ζp) .

Now, letΨp(X, f (τ))−(Xp−f (τ))(X−f (τ)p) be
∑
ν ψν(f (τ ))X

ν ∈ (1−ζp)Z[X, f (τ)],
where ψν(f (τ )) ∈ Z[f (τ)]. Since all the Fourier coefficients of ψν(f (τ )) are rational inte-
gers and divisible by 1 − ζp, we obtain that ψν(f (τ )) ∈ pZ[f (τ)]. Therefore

Ψp(X, f (τ)) ≡ (Xp − f (τ))(X − f (τ)p) mod pZ[X, f (τ)] . �

4. Constructions of ray class fields and class polynomials. Let K be an imaginary
quadratic field with discriminant dK and N be a positive integer. Let K(N) be the ray class
field modulo N overK and τ ∈ K ∩ H be a root of the primitive equation ax2 + bx + c = 0
such that b2 − 4ac = dK . In this section we show that C(τ) generates K(6) over K and then
determine the class polynomial ofK(6) by using the fact that 1/C(τ) is an algebraic integer.

We first consider the principal congruence subgroup Γ (N) of SL2(Z). If h is a mero-
morphic function on the modular curve X(N) = Γ (N)\H∗, its Laurent series expansion in
the parameter q1/N = e2πiτ/N is called the Fourier expansion of h. It is well known that
X(N) = Γ (N)\H∗ is defined over Q(ζN)([9, §2], [11]). Let FN be its function field over
Q(ζN). Then F1 = Q(j) for the j -invariant and define the automorphic function field F as
the union F = ⋃

N≥1 FN . For any subfield F′ of F and z ∈ K , let F′(z) be the field gener-
ated over Q by the set {h(z) ; h ∈ F′ and h is defined and finite at z} and K · F′(z) be the
compositum of K and F′(z).

For any lattice L in C, let g2(L) = 60
∑
ω∈L−{0} 1/ω4, g3(L) = 140

∑
ω∈L−{0} 1/ω6,

∆(L) = g2(L)
3 − 27g3(L)

2 and ℘(u;L) the Weierstrass ℘-function for u ∈ C. Further for
z ∈ H, L = Zz+ Z and a ∈ Q2 − Z2, let

fa(z) = g2(L)g3(L)

∆(L)
℘

(
a

(
z

1

)
;L

)
.
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THEOREM 11. Let K be an imaginary quadratic field and τ ∈ K ∩ H be a root of
a primitive equation aX2 + bX + c = 0 with a, b, c ∈ Z such that its discriminant is the
field discriminant of K . Let x (resp. y) be the least positive integer such that x = (Nx, a)

(resp. y = (Ny, c)). We define

F
(1)
min = Q(j, j ◦ ( Nx 0

0 1 ), f( 0 1/N )),

F
(2)
min = the field of all automorphic functions for Γ0(Nx) ∩ Γ1(N)

with rational Fourier coefficients,

F
(3)
min = the field of all automorphic functions for Γ0(Ny) ∩ Γ 1(N)

with rational Fourier coefficients,

F
(4)
min = Q

(
j, j ◦ ( 1 0

0 Ny

)
, f( 0 1/N ) ◦ ( 1 0

0 Ny

))
,

Fmax = the field of all automorphic functions for Γ 0(Nc) ∩ Γ0(Na) ∩ Γ (N)
whose Fourier coefficients with respect to e2πiz/Nc belong to Q(ζN) .

Then for any field F′ among the above five fields, K · F′(z) is the ray class field modulo N
over K . Furthermore, if F′′ is any intermediate field such that F

(i)
min ⊂ F′′ ⊂ Fmax for some i

(1 ≤ i ≤ 4) or FN ⊂ F′′ ⊂ Fmax, then K · F′′(z) is also the ray class field moduloN over K .

PROOF. Theorem 5.1 in [6]. �

LEMMA 12. Let K be an imaginary quadratic field with discriminant dK and τ ∈
K ∩ H be a root of the primitive equation ax2 + bx + c = 0 such that b2 − 4ac = dK , and
let Γ ′ be any congruence subgroup containing Γ (N) and contained in Γ1(N). Suppose that
(N, a) = 1. Then the field generated over K by all the values h(τ), where h ∈ A0(Γ

′)Q is
defined and finite at τ , is the ray class field modulo N over K .

PROOF. With the notations as in Theorem 11, if (N, a) = 1 then x in the theorem is
equal to 1. Therefore the inclusions F

(2)
min = A0(Γ1(N))Q ⊂ A0(Γ

′)Q ⊂ A0(Γ (N))Q ⊂
FN ⊂ Fmax imply the lemma. �

THEOREM 13. Let K be an imaginary quadratic field with discriminant dK and τ ∈
K ∩ H be a root of the primitive equation ax2 + bx + c = 0 such that b2 − 4ac = dK . Then
K(C(τ)) is the ray class field modulo 6 over K if (6, a) = 1. In particular, if Z[τ ] is the ring
of integers in K , thenK(C(τ)) is the ray class field modulo 6 over K .

PROOF. Since Q(C(τ)) = A0(Γ1(6)∩Γ 3(3))Q and Γ (6) ⊂ Γ1(6)∩ Γ 0(3) ⊂ Γ1(6),
we get the first assertion by Lemma 12. In particular, if Z[τ ] is the ring of integers inK , then
a = 1 and hence we readily conclude the last statement.

Next, we show that 1/C(τ) is an algebraic integer for an imaginary quadratic argument
τ .

THEOREM 14. Let K be an imaginary quadratic field with discriminant dK and t =
N (j1,N ) be the Hauptmodul of A0(Γ1(N)). Let s be a cusp of Γ1(N) whose width is hs and
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SΓ1(N) is the set of inequivalent cusps of Γ1(N)\H∗. If t ∈ q−1Z[[q]] and
∏
s∈SΓ1(N)−{∞}(t (z)

−t (s))hs is a polynomial in Z[t], then t (τ ) is an algebraic integer for τ ∈ K ∩ H.

PROOF. See [14, Theorem 5]. �

LEMMA 15. The Hauptmodul of A0(Γ1(6)) is 1/C3(τ )− 3.

PROOF. Let g(τ ) = 1/C3(τ ). It follows from Theorem 4 that C(C(τ)) = A0(Γ1(6) ∩
Γ 0(3)). So, g ◦γ = g for γ ∈ Γ1(6)∩Γ 0(3). Furthermore, using C ◦(

1 1
0 1

)
(τ ) = e2πi/3C(τ)

we have g ◦ (
1 1
0 1

) = g . But, Γ1(6) = 〈Γ1(6) ∩ Γ 0(3),
(

1 1
0 1

)〉, and so C(g(τ )) ⊂ A0(Γ1(6)).
Since

A0(Γ1(6)) : C(g(τ ))] = [C(C(τ)) : C(g(τ ))]
[A0(Γ1(6) ∩ Γ 0(3)) : A0(Γ1(6))] = [C(C(τ)) : C(g(τ ))]

[Γ1(6) : Γ1(6) ∩ Γ 0(3)] = 1,

g(τ ) is a generator of A0(Γ1(6)) with pole at ∞. And at ∞ we can easily find a q-expansion
g(τ ) = q−1 + 3 + a1q + a2q

2 + · · · . Therefore, the Hauptmodul of Γ1(6) is 1/C3(τ )− 3. �

THEOREM 16. Let K be an imaginary quadratic field with discriminant dK and τ ∈
K ∩ H. Then 1/C(τ) is an algebraic integer.

PROOF. We see by Lemma 15 that the Hauptmodul t (τ ) of A0(Γ1(6)) is 1/C3(τ )−3 ∈
q−1Z[[q]]. We recall that hs is the width of the cusp s and ζm = e2πi/m. Since Γ0(6) = Γ1(6),
we have SΓ1(6) = {∞, 0, 1/2, 1/3}.

(i)

C ◦
(

0 −1
1 0

)
(τ )= ζ 5

12

5∏
j=0

k( 1/6 j/6 )

k( 3/6 j/6 )

(
0 −1
1 0

)
(τ ) = ζ 5

12

5∏
j=0

k( j/6 −1/6 )

k( j/6 −3/6 )
(τ )

= ζ 5
12

5∏
j=0

(
exp

πi

6

{
−

(
j

6
− 1

)
+ 3

(
j

6
− 1

)})
1 − ζ−1

6

1 − ζ−3
6

× (1 +O(q))

= 1

2
+O(q) .

So,

C(0) = lim
τ→∞C ◦

(
0 −1
1 0

)
(τ ) = lim

q→0

1

2
+O(q) = 1

2
.

Thus we get t (0) = 1/C3(0)− 3 = 5.
(ii)

C ◦
(

1 0
2 1

)
(τ ) = ζ 5

12

5∏
j=0

k( (1+2j)/6 j/6 )

k( (3+2j)/6 j/6 )
(τ ) = 1 +O(q) .

Then, C(1/2) = limq→0(1 +O(q)) = 1 yields t (1/2) = −2.
(iii)

C ◦
(

1 0
3 1

)
(τ ) = ζ 5

12

5∏
j=0

k( (1+3j)/5 j/6 )

k( (3+3j)/6 j/6 )
(τ ) .
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We know by (K5) in Section 2 that ordqC ◦ (
1 0
3 1

)
(τ ) = −1/6. In other words, C(τ) has a

pole at 1/3 and t (1/3) = 1/C3(τ )− 3 = −3.
On the other hand, if follows from Lemma 3 that h0 = 6, h1/2 = 3 and h1/3 = 2.

Hence, the polynomial
∏
s∈SΓ1(6)−{∞}(t (z)− t (s))hs becomes (t − 5)6(t + 2)3(t + 3)2 and so

it belongs to Z[t]. Then by Theorem 14 that 1/C3(τ )−3 is an algebraic integer for τ ∈ K∩H.
Therefore 1/C(τ) is an algebraic integer, too. �

We see from Theorem 13 that if an imaginary quadratic number θ generates the ring of
integers in K = Q(θ), then K(C(θ)) is the ray class field modulo 6 over K . In this case to
find its class polynomial we shall use the Shimura’s reciprocity law by adopting the idea of
Gee ([9]).

We first consider the finite Galois extension F1 ⊂ FN . Let αN ∈ SL2(Z/NZ) rep-
resent the Γ (N)-equivalence class of a linear fractional transformation α ∈ SL2(Z) on
H∗. For h ∈ FN , the action hαN = h ◦ α is well defined and induces an isomorphism
SL2(Z/NZ)/{±1} ∼= Gal(FN/F1(ζN)) = Gal(C · FN/C · F1). And for d ∈ (Z/NZ)×, let
σd denote the automorphism of Q(ζN) given by ζN �→ ζ dN . Then the action of σd gives rise to
a natural isomorphism Gal(F1(ζN)/F1) ∼= Gal(Q(ζN)/Q) ∼= (Z/NZ)×, which we can lift
to FN by changing h = ∑

k ckq
k/N ∈ FN to hσd = ∑

k σd(ck)q
k/N . Thus h �→ hσd defines

a group action of (Z/NZ)× on FN whose invariant field FN,Q is the subfield of FN having
Fourier coefficients in Q. Here we have FN,Q ∩ F1(ζN) = F1.

Now, define the subgroup GN = {( 1 0
0 d

) ; d ∈ (Z/NZ)×} of GL2(Z/NZ). Then the
map (Z/NZ)× ∼→GN gives an isomorphism GN ∼= Gal(FN/FN,Q). From this fact we get
the following exact sequence

1 → {±1} → GL2(Z/NZ) → Gal(FN/F1) → 1 .

Passing to the projective limit we then have an exact sequence

1 → {±1} → GL2(Ẑ) → Gal(F/F1) → 1 .

Let O = Z[θ ] be the ring of integers ofK and letKp = Qp⊗QK and Op = Zp⊗Z O.
By theory of complex multiplication j (θ) generates the Hilbert class field over K and the
maximal abelian extensionKab is equal to K(F(θ)). Moreover, the sequence

1 → O× →
∏
p

O×
p → Gal(Kab/K(j (θ))) → 1

is exact. Here the map
∏
pO×

p → Gal(Kab/K(j (θ))) is the Artin map [∼,K]. In addition,
the ray class field modulo N over K is K(FN(θ)) and the subgroup of

∏
p O×

p which acts
trivially onK(FN(θ)) with respect to the Artin map is generated by O× and

∏
p((1+NOp)∩

O×
p ).

Let J fK be the finite idéles
∏′
p K

×
p of K . The restricted product is taken with respect to

the subgroup O×
p ⊂ K×

p . For every prime p we consider the map (gθ )p defined by (gθ )p :
K×
p → GL2(Qp) as the injection satisfying (gθ )p(xp)

(
θ
1

) = xp
(
θ
1

)
. Since Z[θ ] is the



600 B. CHO, J. K. KOO AND Y. K. PARK

ring of integers of K , θ has the minimal polynomial X2 + BX + C ∈ Z[X] which satisfies
θ2 + Bθ + C = 0. Then for sp and tp ∈ Qp we explicitly have

(gθ )p : spθ + tp �→
(
tp − B · sp −C · sp

sp tp

)
.

Therefore on J fK we get an injective map gθ = ∏
p(gθ )p : J fK → ∏′

p GL2(Qp). Here the
restricted product is taken with respect to the subgroups GL2(Zp) ⊂ GL2(Qp). Moreover,
g−1
θ (GL2(Ẑ)) = ∏

pO×
p . So we get the row exact diagram

1 −−−→ O× −−−→ ∏
p O×

p

[∼,K]−−−→ Gal(Kab/K(j (θ))) −−−→ 1
↓ gθ

1 −−−→ {±1} −−−→ GL2(Ẑ) −−−→ Gal(F/F1) −−−→ 1 .

And by the Shimura’s reciprocity law, h(θ)[x−1,K] = h(gθ (x))(θ) for h ∈ F and x ∈∏
p O×

p . For a positive integerN , g−1
θ (StabFN ) = ∏

p((1+NOp)∩O×
p ) where StabFN is the

inverse image of Gal(F/FN) in GL2(Ẑ). Using the isomorphism g−1
θ (StabF1)/g

−1
θ (StabFN )

� (O/NO)× we define the reduction map gθ,N of gθ modulo N from (O/NO)× to GL2

(Z/NZ). Define WN,θ = gθ,N ((O/NO)×) ⊂ GL2(Z/NZ). Precisely speaking, WN,θ is a
finite subgroup {( t−Bs −Cs

s t

) ∈ GL2(Z/NZ) ; t, s ∈ Z/NZ}.
THEOREM 17. Let K be an imaginary quadratic field of discriminant dK and θ =√

dK/2 (resp. (3 + √
dK)/2) if dK ≡ 0 mod 4 (resp. dK ≡ 1 mod 4), and let Q =

[a, b, c] be a primitive positive definite quadratic form of discriminant dK and τQ denote
(−b + √

dK)/2a ∈ H. Define u = (up)p ∈ ∏
p GL2(Zp) as follows. (p runs over all

rational primes.)
Case 1 : dK ≡ 0 mod 4

up =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
a b/2
0 1

)
if p � a ,(−b/2 −c

1 0

)
if p|a and p � c ,(−a − b/2 −c− b/2

1 −1

)
if p|a and p|c .

Case 2 : dK ≡ 1 mod 4

up =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
a (3 + b)/2
0 1

)
if p � a ,(

(3 − b)/2 −c
1 0

)
if p|a and p � c ,(−a + (3 − b)/2 −c − (3 + b)/2

1 −1

)
if p|a and p|c .

Then h(θ)[a,−b,c] = hu(τQ) for any h ∈ F such that h(θ) ∈ K(j (θ)).
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PROOF. See [9]. �

With the notations as above, if h ∈ Fp for a prime p, then h(θ)[a,−b,c] = hup(τQ)

because the action hu depends only on the p-component. Here we observe that our continued
fraction C(τ) is contained in F6. Let f (τ) = 1/C(τ). Then f (θ)[a,−b,c] = f (u2,u3,u5,... )(τQ)

= fMQ(τQ) where MQ ∈ M2(Z) ∩ GL+
2 (Q) satisfies MQ ≡ up mod 6 for all primes p.

Therefore, we may take MQ = 3u2 − 2u3 ∈ GL2(Z/6Z).
Let H be the Hilbert class field ofK . Then there is a surjective homomorphism ofWN,θ

onto Gal(K(N)/H) defined by α �→ (h(θ) �→ hα
−1
(θ)). Let C be the kernel of this surjection.

In fact, C is the image of gθ (O×
K) in GL2(Z/NZ). Since Gal(K(N)/K)/Gal(K(N)/H) is

isomorphic to Gal(H/K) ∼= C(dK), where C(dK) is the form class group of discriminant dK .
Thus, the image of the homomorphism

C(dK) → Gal(K(N)/K)

[Q]−1 �→ (h(θ) �→ hMQ(θ))

gives all the coset representatives of Gal(K(N)/H) in Gal(K(N)/K). Hence, we obtain that
{hα·MQ ; α ∈ WN,θ /C and Q is any reduced primitive quadratic form of discriminant dK} is
the set of all the conjugates of h(θ) overK .

Let
F(X) =

∏
α∈W6,θ /C
Q∈C(dK)

(X − f α·MQ(τQ)) ∈ K[X]

be the minimal polynomial of f (θ) over K . Then, F(X) is in Z[X]. Indeed, since f has
rational Fourier coefficients and e2πiθ/3 ∈ R for θ defined in Theorem 17, f (θ) is always
real. Observing 0 = F(f (θ)) = F(f (θ)) = F(f (θ)) = F(f (θ)) we see that F(X) ∈
(K ∩R)[X] = Q[X]. Furthermore, f (θ) is an algebraic integer by Theorem 16 so that F(X)
is a polynomial with integral coefficients, that is, F(X) ∈ Z[X].

Now before closing this section we present an example with K = Q(
√−3) as follows.

PROPOSITION 18. Let K = Q(
√−3) be an imaginary quadratic field and K(6) be

the ray class field of K modulo 6. And let F(X) be the class polynomial of K(6). Then
F(X) = X3 + 6X2 + 4.

PROOF. If K = Q(
√−3), then we have θ = (3 + √−3)/2 and dK = −3. We may

assume that a positive definite quadratic formQ is [1, 1, 1] and τQ = (−1+√−3)/2. Then as
is well known it is the unique reduced primitive quadratic form of discriminant −3. It follows
from Theorem 17 that u2 = u3 = (

1 2
0 1

)
, MQ = 3u2 − 2u3 = (

1 2
0 1

) ∈ GL2(Z/6Z). And
B = −3, C = 3 because θ2 − 3θ + 3 = 0. Using these we getW6,θ and C as follows.

W6,θ =
{

±
(

1 0
0 1

)
,±

(
1 0
2 1

)
,±

(
1 0
4 1

)
,±

(
2 3
3 5

)
,

±
(

2 3
5 5

)
,±

(
2 3
1 5

)
,±

(
1 3
3 4

)
,±

(
1 3
1 4

)
,±

(
1 3
5 4

) }
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C =
{

±
(

1 0
0 1

)
,±

(
1 −3
1 −2

)
,±

(
2 −3
1 −1

) }
.

So, W6,θ /C has 3 distinct cosets
[(

1 0
0 1

)]
,
[( −2 −3

1 1

)]
,
[(

1 0
4 1

)]
. Therefore{

f

(
1 2
0 1

) (−1 + √−3

2

)
, f

(−2 −3
1 1

)
(1 2
0 1)

(−1 + √−3

2

)
, f

(
1 0
4 1

)(
1 2
0 1

)(−1 + √−3

2

)}
=

{
f

(
3 + √−3

2

)
, f

(−2θ − 3

θ + 1

)
, f

(
θ

4θ + 1

)}
is the set of all the conjugates of f (θ) over K . Hence, through the approximation of these
three values by using the fact F(X) ∈ Z[X] we get

F(X)=
(
X − f

(
3 + √−3

2

))(
X − f

(−2θ − 3

θ + 1

))(
X − f

(
θ

4θ + 1

))
=X3 + 6X2 + 4 . �

By means of the same arguments we have the following class polynomials whose coef-
ficients seem to be relatively small when compared with others’ works, for examples, Morain
([16]), Kaltofen-Yui ([13]) and Chen-Yui ([5]).

dK the class polynomial of K(6)

−3 X3 + 6X2 + 4
−4 X4 − 8X3 − 8X − 8
−7 X4 + 16X3 − 8X + 16
−8 X4 − 20X3 + 12X2 + 16X − 8
−11 X6 + 30X5 − 72X4 + 8X3 + 120X2 + 16
−15 X6 + 60X5 + 132X4 + 56X3 + 96X2 + 96X + 64
−19 X12 + 96X11 + 232X9 − 1440X8 + 960X6 + 4608X5 + 256X3 + 6144X2 + 256

Acknowledgments. We thank the referee for many useful comments and corrections.
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