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Abstract. This work creates two categories of “array-weighted sets” for the
purposes of constructing universal matrix-normed spaces and algebras. These
universal objects have the analogous universal property to the free vector space,
lifting maps completely bounded on a generation set to a completely bounded
linear map of the matrix-normed space.

Moreover, the universal matrix-normed algebra is used to prove the existence
of a free product for matrix-normed algebras using algebraic methods.

1. Introduction

In [13], universal Banach spaces and algebras were constructed as left adjoints
to forgetful functors to categories of weighted sets. This paper considers a similar
construction to build universal matricial Banach spaces and algebras from “array-
weighted” sets.

Much like a weighted set is a Banach space stripped of its vector space structure,
an “array-weighted set” will be a matricial Banach space stripped of its vector
space structure, leaving a set with a net of nonnegative-valued functions. Thus,
the categories of array-weighted sets are a proposed replacement to the category
of sets for construction of matrix-normed objects. As such, one can then consider
adapting algebraic constructions to matricial Banach algebras, such as generators
and relations from [3, 9, 10, 17, 18, 22, 23].

Section 2 establishes notation and existing results, which will be used through-
out the paper for weighted sets and matrix-normed spaces. Section 3 develops
the categories of array-weighted sets. Section 4 then builds the matrix-normed
space for a given array-weighted set, showing several key examples to highlight
the resulting structure. Finally, Section 5 describes a theory of matricial Banach
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algebras generalizing the theory of operator algebras. In particular, Section 5.3
uses the universal matricial Banach algebra to show the existence of the free
product of matricial Banach algebras using an algebraic proof.

The author would like to thank the referees of this paper for their comments
and patience in its revision. The author would also like to extend his thanks
to Dr. Nathan Smith from the University of Texas at Tyler for the conversation
which developed Example 3.5.10.

2. Preliminaries

This section covers some previous results which are either motivating for the
current work or needed for the current work’s constructions. In particular, the
primary results regarding weighted sets and their constructions are reviewed from
[13] in Section 2.1. Likewise, some foundational results into matrix-normed spaces
are revisited from [5, 8, 20, 24] in Section 2.2 and 2.3. However, be aware that
while [13] considered Banach spaces for both real and complex fields, all vector
spaces and algebras for the current work will be over C to be consistent with the
literature of matrix-normed spaces. Moreover, this section sets the notation that
will be used throughout the current work.

2.1. Weighted sets and their constructions. In [13], universal Banach spaces
and algebras were constructed as left adjoints of forgetful functors to categories
of “weighted sets”. The object “weighted set” has gone by different names in
previous works: “bewertete Menge” in [9, Definition 1.1.7], “crutched set” in [14,
p. 14], and “normed set” in [11, p. 7], where∞ is allowed as a weight value. This
paper will use the following terminology, conventions, and categories.

Definition 2.1.1 (Weighted set conventions, [13]). A weighted set is a set S
equipped with a weight function wS : S → [0,∞). Given two weighted sets S
and T , a function φ : S → T is bounded if there is L ≥ 0 such that for all s ∈ S,
wT (φ(s)) ≤ L · wS(s). Let

bnd(φ) := inf {L ∈ [0,∞) : wT (φ(s)) ≤ L · wS(s)∀s ∈ S} ,
the bound constant of φ. If bnd(φ) ≤ 1, φ is contractive. Let WSet1 denote
the category of weighted sets with contractive maps, and WSet∞ denote the
category of weighted sets with bounded maps.

A Banach space stripped of its vector space structure is a weighted set, and
that relationship can be encapsulated in a forgetful functor. The main content of
[13, Theorem 3.1.1] is that this forgetful functor has a left adjoint, constructing
a Banach space from a weighted set.

Definition 2.1.2 (Scaled-free Banach space, [13, p. 281]). For a weighted set S,

let Ŝ := S\w−1
S (0), all elements with nonzero weight. Define the discrete measure

µS : P
(
Ŝ
)
→ [0,∞] by µS(T ) :=

∑
s∈T

wS(s). The scaled-free Banach space of S

is

BanSp(S) := `1
(
Ŝ, µS

)
,
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a weighted `1-space over C. Define ζS : S → BanSp(S) by

ζS(s) :=

{
0, s 6∈ Ŝ,
δs, s ∈ Ŝ,

where δs is the point mass at s ∈ Ŝ.

Theorem 2.1.3 (Universal property of the scaled-free Banach space, [13, The-
orem 3.1.1]). Let Ban∞ be the category of Banach spaces with bounded linear
maps, and FWSet∞

Ban∞
: Ban∞ → WSet∞ the forgetful functor stripping all lin-

ear structure. For a weighted set S and a Banach space W , consider a bounded
function φ : S → FWSet∞

Ban∞
(W ). Then, there is a unique bounded linear map

φ̂ : BanSp(S)→ W such that FWSet∞
Ban∞

(
φ̂
)
◦ ζS = φ. Moreover,

bnd(φ) =
∥∥∥φ̂∥∥∥

B(BanSp(S),W )
.

Likewise, one would like to construct a Banach algebra from a weighted set
in a similar fashion. While the functor BanSp creates a linear structure, a mul-
tiplicative structure can be created using the construction of the Banach tensor
algebra.

Definition 2.1.4 (Banach tensor algebra, [16, p. 165]). Let Ban1 be the category
of Banach spaces with contractive linear maps. For Banach space V , inductively
define the projective tensor powers of V in the following way:

V ⊗̂1 := V, V ⊗̂(n+1) :=
(
V ⊗̂n

)
⊗̂V ∀n ∈ N,

where ⊗̂ denotes the projective tensor product. The Banach tensor algebra of V
is

T (V ) :=
∐
n∈N

Ban1

V ⊗̂n,

the `1-direct sum of these projective tensor powers, equipped with the usual tensor

multiplication determined by the canonical isomorphism V ⊗̂m⊗̂V ⊗̂n → V ⊗̂(m+n).
Define ιV : V → T (V ) to be the inclusion map into the first tensor power of V
in T (V )

Theorem 2.1.5 (Universal property of the Banach tensor algebra, [16, Satz 1]).
Let BanAlg1 be the category of Banach algebras with contractive algebra homo-
morphims, and FBan1

BanAlg1
: BanAlg1 → Ban1 the forgetful functor stripping mul-

tiplicative structure. For a Banach space V and a Banach algebra B, consider a
contractive linear map φ : V → FBan1

BanAlg1
(B). Then, there is a unique contractive

algebra homomorphism φ̂ : T (V )→ B such that FBan1
BanAlg1

(
φ̂
)
◦ ιV = φ.

Composing the left adjoints BanSp and T creates a new left adjoint, BanAlg :=
T ◦ BanSp, with the following universal property.

Theorem 2.1.6 (Universal property of the scaled-free Banach algebra, [13, The-
orem 3.2.4]). Let FWSet1

BanAlg1
: BanAlg1 →WSet1 be the forgetful functor stripping
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all algebraic structure. For a weighted set S and a Banach algebra B, consider a
contractive map φ : S → FWSet1

BanAlg1
(B). Then, there is a unique contractive algebra

homomorphism φ̂ : BanAlg(S)→ B such that FWSet1
BanAlg1

(
φ̂
)
◦ ιBanSp(S) ◦ ζS = φ.

2.2. Matricial Banach spaces and important examples. The central goal
of this paper is to adapt the constructions of the previous section to “matricial
Banach spaces”. The core idea of this structure is a Banach space equipped with
norms on the matrices over the space that have a boundedness condition with
the action of the scalar matrices.

However, since this idea is to be abstracted in Section 3, the presentation here
will be categorical and functorial to keep notation consistent between general sets
and vector spaces. Fundamentally, an m×n-matrix of elements is a function from
a cartesian product into the appropriate target set, which is described below.

Definition 2.2.1 (The functor Mm,n). For n ∈ N, let [n] := {1, . . . , n}, the set
of the first n natural numbers. Letting Set denote the category of sets, define

Mm,n(−) := Set([m]× [n],−)

for m,n ∈ N, a covariant hom-functor from Set to itself. For a set S, Mm,n(S) is
the set of all functions from [m]× [n] to S. An element A of Mm,n(S) is an array,
or matrix, with entries from S. For 1 ≤ j ≤ m and 1 ≤ k ≤ n, the j, k-entry of
A will be denoted with function notation as A(j, k).

Moreover,given sets S and T , the action of Mm,n on a function φ : S → T gives
a function Mm,n(φ) : Mm,n(S)→Mm,n(T ) defined entrywise by

Mm,n(φ)(A)(j, k) := φ(A(j, k))

for 1 ≤ j ≤ m and 1 ≤ k ≤ n, simply applying φ to all entries of A. This action
is precisely the ampliation of maps found in [5, 8, 20, 24].

If S already has existing algebraic structure, said structure can be extended to
Mm,n(S). Below are the conventions taken for this paper for vector spaces.

Definition 2.2.2 (Matrix conventions, vector spaces). For a vector space V and
m,n ∈ N, Mm,n(V ) is equipped with the usual pointwise addition and scalar mul-
tiplication. The set of scalar matrices will be distinguished by Mm,n := Mm,n(C).
For k, l ∈ N, the actions Mk,m ×Mm,n(V ) → Mk,n(V ) and Mm,n(V ) ×Mn,l →
Mm,l(V ) will be by matrix multiplication.

At last, the definition of a matrix-normed space can be given.

Definition 2.2.3 (Matrix-normed spaces, [5, p. 264]). For n ∈ N, equip Cn with
the Euclidean norm. For m,n ∈ N, let Mm,n be equipped with the operator norm
from Cn to Cm. For a vector space V , a matrix-norm on V is a net (‖ · ‖V,m,n)m,n∈N
such that

(1) ‖ · ‖V,m,n is a norm on Mm,n(V ),
(2) ‖ABC‖V,k,l ≤ ‖A‖Mk,m

‖B‖V,m,n‖C‖Mn,l

for all k,m, n, l ∈ N, A ∈ Mk,m, B ∈ Mm,n(V ), C ∈ Mn,l. A vector space V
equipped with such a matrix-norm is a matrix-normed space.
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Be aware that [8, p. 246] and [24, p. 1] use an alternate set of axioms only
involving square matrices. However, by [20, Exercises 13.1-2], the two are inter-
changeable.

For maps between matrix-normed spaces, the linear maps between each level
of matrices are required to be bounded by a uniform constant. The standard
definition given in [5, 8, 20, 24] uses square matrices. Since this paper will be
handling specifically nonsquare matrices in Section 3, an equivalent formulation
will be used, which was referenced in [8, p. 246].

Definition 2.2.4 (Completely bounded maps). Given matrix-normed spaces V
and W , a linear map φ : V → W is completely bounded if

(1) Mm,n(φ) is bounded for all m,n ∈ N,

(2) ‖φ‖CB(V,W ) := sup
{
‖Mm,n(φ)‖B(Mm,n(V ),Mm,n(W )) : m,n ∈ N

}
<∞.

The map φ is completely contractive if ‖φ‖CB(V,W ) ≤ 1.

Notably, a matrix-normed space V is a normed space when stripped of all its
matrix-norms, except for the norm on M1,1(V ) ∼= V . To compare matrix-normed
spaces with Banach spaces, the current work will require that this underlying
normed space be complete. As noted in [8, p. 246], the underlying normed space
is complete if and only if all the matrix levels above it are as well. Hence, the
following definitions are made unambiguously.

Definition 2.2.5 (Matricial Banach space). A complete matrix-normed space
is a matricial Banach space. Let MBan∞ be the category of matricial Banach
spaces with completely bounded linear maps, and MBan1 be the category of
matricial Banach spaces with completely contractive linear maps.

For a Banach space, one would like to extend its existing norm to a matrix
norm. However, such an extension is not unique, as shown in the following
standard constructions.

Definition 2.2.6 (Minimal operator space structure, [8, Theorem 2.1]). Given a
Banach space V , let MIN(V ) be V equipped with the matrix-norm given by

‖A‖MIN(V ),m,n := sup
{
‖Mm,n(φ)(A)‖Mm,n

: φ ∈ V ∗, ‖φ‖V ∗ ≤ 1
}
,

the injective tensor norm on V ⊗Mm,n.

Definition 2.2.7 (Maximal operator space structure, [5, Example 2.4]). For a
Hilbert space H and n ∈ N, let H(n) denote the `2-direct sum of H with itself n
times. Given a Banach space V , let MAX(V ) be V equipped with the matrix-
norm given by

‖A‖MAX(V ),m,n := sup

‖Mm,n(φ)(A)‖B(H(n),H(m)) :
H is a Hilbert space,
φ : V → B(H) linear,
‖φ‖B(V,B(H)) ≤ 1

 .

Definition 2.2.8 (Absolute maximum matrix-norm structure, [8, Theorem 2.1]).
Recall that M∗n,m can be identified as Mm,n equipped with the trace norm. Given
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a Banach space V , let AMAX(V ) be V equipped with the matrix-norm given by

‖A‖AMAX(V ),m,n := inf

{
p∑
l=1

‖vl‖V ‖Cl‖M∗n,m : A =

p∑
l=1

vl ⊗ Cl

}
,

the projective tensor norm on V ⊗M∗n,m

Please note that each of these constructions is distinct from the others.

Example 2.2.9 (Distinction between MIN, MAX, and AMAX). Observe that∥∥∥∥[1 0
0 1

]∥∥∥∥
MIN(C),2,2

=

∥∥∥∥[1 0
0 1

]∥∥∥∥
MAX(C),2,2

= 1 6= 2 =

∥∥∥∥[1 0
0 1

]∥∥∥∥
AMAX(C),2,2

,

so AMAX(C) 6∼=MBan1 MAX(C) and AMAX(C) 6∼=MBan1 MIN(C). By [21, Propo-
sition 2.7], MAX

(
`2([3])

)
6∼=MBan1 MIN

(
`2([3])

)
.

Of all of the ways a norm can be extended to a matrix-norm, the two most
important for the purposes of this paper are MIN and AMAX as they are the
least and greatest matrix-norm, respectively, which extend the original Banach
space norm. The minimality of MIN is well-known as stated in [5, Example 2.3]
and yields the following universal property.

Theorem 2.2.10 (Universal property of MIN). Let FBan∞
MBan∞

: MBan∞ → Ban∞
be the forgetful functor stripping all matrix-norm structure except the underly-
ing norm. For a Banach space V and a matricial Banach space W , consider a
bounded linear map ϕ : FBan∞

MBan∞
(W ) → V . Then, there is a unique completely

bounded linear map ϕ̂ : W → MIN(V ) such that FBan∞
MBan∞

(ϕ̂) = ϕ. Moreover,

‖ϕ̂‖CB(W,MIN(V )) = ‖ϕ‖B(FBan∞
MBan∞ (W ),V ).

The proof of the above theorem arises from the same logic as [20, Exercise 14.1],
except using a general matricial Banach space instead of an operator space. On
the other hand, the maximality of AMAX will be proven as the author has no
knowledge of its proof in the literature.

Lemma 2.2.11 (Maximality of AMAX). Let W be a matricial Banach space.
For m,n ∈ N and A ∈Mm,n(W ),

‖A‖W,m,n ≤ ‖A‖AMAX(FBan∞
MBan∞ (W )),m,n.

Proof. For some w ∈ W and C ∈ Mm,n, let P := (C∗C)1/2 and U ∈ Mm,n

satisfy C = UP as in the polar decomposition. By the spectral theorem, write

P =
n∑
j=1

sj
(
hjh

∗
j

)
for some orthonormal basis (hj)

n
j=1 ⊆ Cn ∼= Mn,1 and positive
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scalars (sj)
n
j=1. Then,

‖w ⊗ C‖W,m,n = ‖U (w ⊗ P )‖W,m,n

=

∥∥∥∥∥U
(

n∑
j=1

(sjw)⊗
(
hjh

∗
j

))∥∥∥∥∥
W,m,n

≤ ‖U‖Mm,n

n∑
j=1

∥∥(sjw)⊗
(
hjh

∗
j

)∥∥
W,n,n

≤ ‖U‖Mm,n

n∑
j=1

sj ‖hj‖Mn,1
‖w‖W,1,1

∥∥h∗j∥∥M1,n

= ‖w‖FBan∞
MBan∞ (W )

n∑
j=1

sj

= ‖w‖FBan∞
MBan∞ (W ) ‖C‖M∗n,m .

If A =

p∑
l=1

wl ⊗ Cl, then

‖A‖W,m,n ≤
p∑
l=1

‖wl ⊗ Cl‖W,m,n ≤
p∑
l=1

‖wl‖FBan∞
MBan∞ (W ) ‖Cl‖M∗n,m .

Taking the infimum over all ways of representing A gives the result.
�

Likewise, AMAX gains a universal property from its extremal nature as well.

Theorem 2.2.12 (Universal property of AMAX). For a Banach space V and a
matricial Banach space W , consider a bounded linear map φ : V → FBan∞

MBan∞
(W ).

Then, there is a unique completely bounded linear map φ̂ : AMAX(V )→ W such

that FBan∞
MBan∞

(
φ̂
)

= φ. Moreover,∥∥∥φ̂∥∥∥
CB(AMAX(V ),W )

= ‖φ‖B(V,FBan∞
MBan∞ (W )).

Again, the proof of the above theorem is nearly identical to [20, Exercise 14.1],
except using a general matricial Banach space instead of an operator space. It
is of note that MAX has a universal property almost identical to AMAX, except
that the target space for MAX must be an abstract operator space as defined in
[20, p. 184].

2.3. Constructions for matricial Banach spaces. For Sections 4 and 5.2,
some important constructions for matricial Banach spaces will be presented.
First, if a matrix-normed space is not complete, the matrix-norms may be ex-
tended naturally to the metric completion.

For abstract operator spaces as defined in [20, p. 184], completions are trivial
since by [24, Theorem 3.1], an abstract operator space is completely isometrically
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isomorphic to a subspace of operators on a Hilbert space. Thus, the completion
can be done in the space of operators. However, this result does not apply to
more general matrix-normed spaces. As such, this result will be done in detail.

Definition 2.3.1 (Notation for the completion). Given a normed space V , let
C(V ) be the completion of V and κV : V → C(V ) the canonical embedding of V
into C(V ).

Lemma 2.3.2 (Limits of matrix-norms). Let V be a matrix-normed space, m,n ∈
N, and A ∈ Mm,n

(
C
(
FBan∞
MBan∞

(V )
))

. Consider sequences (Bp)p∈N , (Cp)p∈N ⊆
Mm,n(V ) such that

lim
p→∞

κV (Bp(j, k)) = lim
p→∞

κV (Cp(j, k)) = A(j, k)

for all 1 ≤ j ≤ m and 1 ≤ k ≤ n. Then, the limits lim
p→∞
‖Bp‖V,m,n and

lim
p→∞
‖Cp‖V,m,n converge and are equal.

Proof. Let ε > 0. For 1 ≤ j ≤ m and 1 ≤ k ≤ n, there is Nj,k ∈ N such

that if p ≥ Nj,k, then ‖κV (Bp(j, k))− A(j, k)‖C(FBan∞
MBan∞ (V )) <

ε

2mn
. Choose

N := max {Nj,k : 1 ≤ j ≤ m, 1 ≤ k ≤ n}. For p, q ≥ N , [24, Proposition 2.1]
gives ∣∣∣‖Bp‖V,m,n − ‖Bq‖V,m,n

∣∣∣ ≤ ‖Bp −Bq‖V,m,n

≤
m∑
j=1

n∑
k=1

‖Bp(j, k)−Bq(j, k)‖V,1,1

=
m∑
j=1

n∑
k=1

‖κV (Bp(j, k))− κV (Bq(j, k))‖C(FBan∞
MBan∞ (V ))

≤
m∑
j=1

n∑
k=1

‖κV (Bp(j, k))− A(j, k)‖C(FBan∞
MBan∞ (V ))

+
m∑
j=1

n∑
k=1

‖A(j, k)− κV (Bq(j, k))‖C(FBan∞
MBan∞ (V ))

<
m∑
j=1

n∑
k=1

ε

2mn
+

m∑
j=1

n∑
j=1

ε

2mn

= ε.

The sequence
(
‖Bp‖V,m,n

)∞
p=1

is Cauchy and, therefore, convergent. A similar

argument shows
(
‖Cp‖V,m,n

)∞
p=1

is also convergent. Then,∣∣∣∣ lim
p→∞
‖Bp‖V,m,n − lim

p→∞
‖Cp‖V,m,n

∣∣∣∣ ≤ lim
p→∞
‖Bp − Cp‖V,m,n
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≤
m∑
j=1

n∑
j=1

lim
p→∞
‖Bp(j, k)− Cp(j, k)‖V,1,1

≤
m∑
j=1

n∑
j=1

lim
p→∞
‖κV (Bp(j, k))− κV (Cp(j, k))‖C(FBan∞

MBan∞ (V ))

= 0.

�

Definition 2.3.3 (Matricial completion). Given a matrix-normed space V , let

MC(V ) := C
(
FBan∞
MBan∞

(V )
)

equipped with the functions defined by

‖A‖MC(V ),m,n := lim
p→∞
‖Bp‖V,m,n ,

where (Bp)p∈N ⊆Mm,n(V ) is any sequence satisfying

lim
p→∞

κV (Bp(j, k)) = A(j, k).

for all 1 ≤ j ≤ m and 1 ≤ k ≤ n. By Lemma 2.3.2, this definition is unambiguous.

Lemma 2.3.4. Equipped with the above functions, MC(V ) is matricial Banach
space such that

‖Mm,n (κV ) (A)‖MC(V ),m,n = ‖A‖V,m,n
for all m,n ∈ N and A ∈Mm,n(V ).

Proof. Let m,n, j, k ∈ N, A,B ∈ Mm,n(MC(V )), C ∈ Mj,m, and D ∈ Mn,k. For
a sequence (Ap)p∈N ⊆Mm,n(V ) that point-wise converges to A, note that CApD
point-wise converges to CAD also. Thus,

‖CAD‖MC(V ),j,k = lim
p→∞
‖CApD‖V,j,k

≤ lim
p→∞
‖C‖Mj,m

‖Ap‖V,m,n ‖D‖Mn,k

= ‖C‖Mj,m
‖A‖MC(V ),m,n ‖D‖Mn,k

.

For a sequence (Bp)p∈N ⊆ Mm,n(V ) that point-wise converges to B, note that
Ap +Bp point-wise converges to A+B. Thus,

‖A+B‖MC(V ),m,n = lim
p→∞
‖Ap +Bp‖V,m,n

≤ lim
p→∞
‖Ap‖V,m,n + lim

p→∞
‖Bp‖V,m,n

= ‖A‖MC(V ),m,n + ‖B‖MC(V ),m,n .

If A ∈ Mm,n(V ), then the constant sequence Ap := A converges point-wise
to Mm,n (κV ) (A), so ‖Mm,n (κV ) (A)‖MC(V ),m,n = ‖A‖V,m,n. As the underlying

normed space of MC(V ) is C
(
FBan∞
MBan∞

(V )
)
, MC(V ) is a matricial Banach space.

�
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As a result, the canonical embedding κV is completely isometric. Moreover,
MC(V ) has the following universal property, analogous to the universal property
of the metric completion in [1, Example I.4.17C(8)].

Theorem 2.3.5 (Universal property of the matricial completion). Given a ma-
tricial Banach space W and a completely bounded linear map φ : V → W , there
is a unique completely bounded linear map φ̂ : MC(V )→ W such that φ̂◦κV = φ.
Moreover, ∥∥∥φ̂∥∥∥

CB(MC(V ),W )
= ‖φ‖CB(V,W )

The proof of the theorem proceeds identically to the normed space case. The
second construction is the extension of the `1-direct sum of Banach spaces.

Definition 2.3.6 (Matricial `1-direct sum). Given an index set Λ, let (Vλ)λ∈Λ be
matricial Banach spaces. Define

V :=
∐
λ∈Λ

Ban1

FBan∞
MBan∞

(Vλ) ,

the `1-direct sum of the underlying Banach spaces. For λ ∈ Λ, let $λ : Vλ → V
be the canonical inclusion, and πλ : V → Vλ the canonical projection. Define
norm functions

‖A‖V,m,n :=
∑
λ∈Λ

‖Mm,n (πλ) (A)‖Vλ,m,n ,

each an `1-sum norm. One can check that these norms constitute a matrix-norm
on V . Equipped with this matrix-norm, V is the matricial `1-direct sum of the
Vλ.

Much like the `1-direct sum of Banach spaces, the matricial `1-direct sum
of matricial Banach spaces has a weakened version of the coproduct universal
property.

Theorem 2.3.7 (Universal property of the coproduct, MBan∞). For a matricial
Banach space W , let φλ : Vλ → W be completely bounded linear maps satisfying

sup
{
‖φλ‖CB(Vλ,W ) : λ ∈ Λ

}
<∞.

There is a unique completely bounded linear map φ : V → W such that φ◦$λ = φλ
for all λ ∈ Λ. Moreover,

‖φ‖CB(V,W ) = sup
{
‖φλ‖CB(Vλ,W ) : λ ∈ Λ

}
.

The proof of the above theorem mirrors its Banach space counterpart in [7,
Example 2.2.4.h]. Moreover, this theorem guarantees that MBan1 has all co-
products. As such, the notation ∐

λ∈Λ

MBan1

Vλ

will be used to denote the matricial `1-direct sum of the family (Vλ)λ∈Λ. Also,
be aware that this coproduct is not the coproduct of operator spaces from [19,
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p. 269], even when the summands are operator spaces as shown in the example
below.

Example 2.3.8 (Distinction between coproducts). Letting

V := MIN(C)
∐MBan1

MIN(C),

observe that∥∥∥∥[(1, 0) (0, 0)
(0, 0) (0, 1)

]∥∥∥∥
V,2,2

= 2 6= 1 = max {‖(1, 0)‖V,1,1, ‖(0, 1)‖V,1,1} ,

Hence, V is not an abstract operator space in the sense of [20, p. 184]. Conse-
quently, V is not the operator space coproduct of MIN(C) with itself. Moreover,
this means that

MIN
(
C
∐Ban1

C
)
6∼=MBan1 MIN(C)

∐MBan1

MIN(C).

However, AMAX will preserve coproducts.

Corollary 2.3.9 (AMAX and direct sums). Given an index set Λ, let (Vλ)λ∈Λ

be Banach spaces. Then,

AMAX

(∐
λ∈Λ

Ban1

Vλ

)
∼=MBan1

∐
λ∈Λ

MBan1

AMAX (Vλ) .

The proof follows immediately as AMAX is a left adjoint functor. The final
construction is the analogue of the projective tensor product.

Definition 2.3.10 (Haagerup tensor product, [5, §3]). Given matricial Banach
spaces V and W , let m,n, p ∈ N, A ∈ Mm,p(V ), and B ∈ Mp,n(W ). Define the
tensor matrix product A�B ∈Mm,n(V ⊗W ) of A and B entrywise by

(A�B)(i, k) :=

p∑
j=1

A(i, j)⊗B(j, k).

Define the Haagerup matrix-norm on V ⊗W by

‖C‖V⊗hW,m,n := inf

{
p∑
l=1

‖Al‖V,m,ql ‖Bl‖W,ql,n : C =

p∑
l=1

Al �Bl

}
.

Let V ⊗hW denote V ⊗W equipped with this matrix-norm and completed into
a matricial Banach space, the Haagerup tensor product of V and W .

Similar to the projective tensor product, the Haagerup tensor product has a
universal property when dealing with a class of bilinear maps.

Definition 2.3.11 (Completely bounded bilinear maps, [20, p. 250]). Given ma-
tricial Banach spaces V and W , let m,n, p ∈ N, A ∈Mm,p(V ), and B ∈Mp,n(W ).
For a bilinear map φ : V ×W → Z, define the φ-matrix product A�φB ∈Mm,n(Z)
of A and B entrywise by

(A�φ B)(i, k) :=

p∑
j=1

φ (A(i, j), B(j, k)) .



SCALED-FREE OBJECTS II 227

The map φ is completely bounded if there is L ≥ 0 such that

‖A�φ B‖Z,m,n ≤ L · ‖A‖V,m,p‖B‖W,p,n

for all m,n, p ∈ N, A ∈Mm,p(V ), and B ∈Mp,n(W ). Let

‖φ‖CB(V,W ;Z) := inf

{
L ∈ [0,∞) :

‖A�φ B‖Z,m,n ≤ L · ‖A‖V,m,p‖B‖W,p,n
∀m,n, p ∈ N, A ∈Mm,p(V ), B ∈Mp,n(W )

}
.

Theorem 2.3.12 (Universal property of ⊗h, [20, Exercise 17.3]). Given matricial
Banach spaces V , W , and Z, consider a completely bounded bilinear map φ :
V ×W → Z. There is a unique completely bounded linear map φ̂ : V ⊗hW → Z
such that φ̂(v ⊗ w) = φ(v, w) for all v ∈ V and w ∈ W . Moreover,∥∥∥φ̂∥∥∥

CB(V⊗hW,Z)
= ‖φ‖CB(V,W ;Z) .

By [5, Proposition 3.1], ⊗h is associative. Moreover, ⊗h interacts well with
MIN(C), AMAX, and the projective tensor product of Banach spaces. The first
result shows that MIN(C) acts as an identity for ⊗h.

Proposition 2.3.13 (Unit object of ⊗h). For a matricial Banach space V ,

V ⊗h MIN(C) ∼=MBan1 MIN(C)⊗h V ∼=MBan1 V.

The proof of the above proposition is showing the canonical maps λ ⊗ v 7→
λv and v ⊗ λ 7→ λv are completely isometric, which follow readily from direct
computation. Tedious calculations can show that ⊗h is a monoidal product on
the categories MBan∞ and MBan1.

Lastly, AMAX actually converts the projective tensor into the Haagerup tensor.
This will be proven as the author has no knowledge of its proof in the literature.

Theorem 2.3.14 (AMAX, ⊗̂, ⊗h). Given Banach spaces V and W ,

AMAX
(
V ⊗̂W

) ∼=MBan1 AMAX(V )⊗h AMAX(W ).

Proof. Define φ : AMAX(V ) × AMAX(W ) → AMAX
(
V ⊗̂W

)
by φ(v, w) :=

v⊗w. This map is quickly seen to be bilinear, so it remains to show it completely
bounded. For m,n, p ∈ N, let A ∈ Mm,p(V ) and B ∈ Mp,n(W ). Write A =
q∑
t=1

vt⊗Ct and B =
r∑
s=1

ws⊗Ds for vt ∈ V , ws ∈ W , Ct ∈Mm,p, and Ds ∈Mp,n.

Observe that

A�φ B =

q∑
t=1

r∑
s=1

(vt ⊗ ws)⊗ (CtDs)
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by the bilinearity of φ. Thus,

‖A�φ B‖AMAX(V ⊗̂W),m,n ≤
q∑
t=1

r∑
s=1

‖vt ⊗ ws‖V ⊗̂W ‖CtDs‖M∗n,m

=

q∑
t=1

r∑
s=1

‖vt‖V ‖ws‖W ‖CtDs‖M∗n,m

≤
q∑
t=1

r∑
s=1

‖vt‖V ‖ws‖W ‖Ct‖M∗p,m ‖Ds‖M∗n,p

=

(
q∑
t=1

‖vt‖V ‖Ct‖M∗p,m

)(
r∑
s=1

‖ws‖W ‖Ds‖M∗n,p

)
.

Taking infima yields

‖A�φ B‖AMAX(V ⊗̂W),m,n ≤ ‖A‖AMAX(V ),m,p‖B‖AMAX(W ),p,n.

By Theorem 2.3.12, there is a unique completely contractive linear map φ̂ :
AMAX(V ) ⊗h AMAX(W ) → AMAX

(
V ⊗̂W

)
such that φ̂(v ⊗ w) = φ(v, w) =

v ⊗ w.
Define ϕ : V ×W → FBan∞

MBan∞
(AMAX(V )⊗h AMAX(W )) by ϕ(v, w) := v⊗w.

This map is quickly seen to be bilinear, so it remains to show it bounded. For
v ∈ V and w ∈ W ,

‖ϕ(v, w)‖AMAX(V )⊗hAMAX(W ),1,1 = ‖v ⊗ w‖AMAX(V )⊗hAMAX(W ),1,1

= ‖v‖AMAX(V ),1,1 · ‖w‖AMAX(W ),1,1

= ‖v‖V · ‖w‖W .

By the universal property of the projective tensor product, there is a unique
contractive linear map ϕ̂ : V ⊗̂W → FBan∞

MBan∞
(AMAX(V )⊗h AMAX(W )) such

that ϕ̂(v⊗w) = ϕ(v, w) = v⊗w. By Theorem 2.2.12, there is a unique completely
contractive linear map ϕ̃ : AMAX

(
V ⊗̂W

)
→ AMAX(V )⊗hAMAX(W ) such that

FBan∞
MBan∞

(ϕ̃) = ϕ̂.
Immediate calculations show that(

ϕ̃ ◦ φ̂
)

(v ⊗ w) = v ⊗ w and
(
φ̂ ◦ ϕ̃

)
(v ⊗ w) = v ⊗ w,

for all v ∈ V and w ∈ W . By the universal properties of ⊗̂, AMAX, and ⊗h,
ϕ̃ ◦ φ̂ = idAMAX(V )⊗hAMAX(W ) and φ̂ ◦ ϕ̃ = idAMAX(V ⊗̂W).

�

3. Array-Weighted Sets

This section introduces a new category of objects for the construction of a
scaled-free matrix-normed space. The content of this section is based heavily on
the results in [13, §2] and can be considered an extension of both [9, §1.1] and
[11, §2.2].
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As with Banach spaces, the forgetful functor from MBan∞ to Set stripping
all structure will not have a left adjoint, meaning there is no free matricial Ba-
nach space. Instead, one could consider the forgetful functor from MBan∞ to
WSet∞, where all structure is dropped except for the norm and the underlying
set. However, due to [13, Theorem 3.1.1] and Theorem 2.2.12, closure of left
adjoints states that the left adjoint must be AMAX ◦BanSp. Consequently, the
absolute maximum matrix-norm is imposed, which does not allow tighter bounds
on the matrix-norm beyond the underlying normed space.

The objects defined in Section 3.1 will remedy this issue through an “array-
weight”, which will allow finer control for the object built in Section 4. Section
3.2 produces two extremal ways of extending a weight function on a set to an
array-weight, much like extending a norm to a matrix-norm. Section 3.3 describes
a minimal way of appending an element with weight value 0 to an existing array-
weighted set, which is useful in building an array-weight on the disjoint union in
Section 3.4. Section 3.5 discusses maps of these array-weighted sets into MIN(C),
which will have an effect on linear independence of generators in Section 4.

3.1. Definitions and Basic Results. To motivate the main definition of this
section, consider the following two properties of a matrix-normed space. The
norm of a matrix is bounded below by any compression or rearrangement of rows
and columns. Likewise, the norm of a matrix is bounded above by the sum of
the norms of its blocks. The following example illustrates these two properties
explicitly.

Example 3.1.1. Let V be a matrix-normed space. For integers 1 ≤ j ≤ m and
a one-to-one function α : [j] → [m], define the isometry Uα : Cj → Cm on the
standard basis by Uα (ea) := eα(a).

For integers 1 ≤ j ≤ m and 1 ≤ k ≤ n, let α : [j] → [m] and β : [k] → [n]
be one-to-one, and α × β : [j] × [k] → [m] × [n] be the cartesian product map.
From Definition 2.2.1, recall that A ∈Mm,n(V ) is fundamentally a function from
[m] × [n] to V , so the composition A ◦ (α × β) ∈ Mj,k(V ) would be defined
entrywise by

(A ◦ (α× β)) (a, b) = A(α(a), β(b))

for all 1 ≤ a ≤ j and 1 ≤ b ≤ k. A quick calculation shows that A ◦ (α × β) =
U∗αAUβ, so

‖A ◦ (α× β)‖V,j,k = ‖U∗αAUβ‖V,j,k ≤ ‖U
∗
α‖Mj,m

‖A‖V,m,n ‖Uβ‖Mn,k
= ‖A‖V,m,n.

In the case j < m, let γ : [m − j] → [m] be one-to-one such that ran(α) ∩
ran(γ) = ∅. Then, the identity Im of Mm,m can be written as UαU

∗
α + UγU

∗
γ .
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Thus,

‖A‖V,m,n = ‖ImA‖V,m,n

=
∥∥(UαU∗α + UγU

∗
γ

)
A
∥∥
V,m,n

=
∥∥UαU∗αA+ UγU

∗
γA
∥∥
V,m,n

≤ ‖Uα‖Mm,j
‖U∗αA‖V,j,n + ‖Uγ‖Mm,m−j

∥∥U∗γA∥∥V,m−j,n
= ‖U∗αA‖V,j,n +

∥∥U∗γA∥∥V,m−j,n
=

∥∥A ◦ (α× id[n]

)∥∥
V,j,n

+
∥∥A ◦ (γ × id[n]

)∥∥
V,m−j,n .

In the case k < n, an identical calculation shows that

‖A‖V,m,n ≤
∥∥A ◦ (id[m] × β

)∥∥
V,m,k

+
∥∥A ◦ (id[m] × δ

)∥∥
V,m,n−k

for δ : [n− k]→ [n] one-to-one satisfying ran(β) ∩ ran(δ) = ∅.
This interplay between the norms is the core notion for the main definition.

However, since an arbitrary set need not have an action of C upon it, matrix
multiplication will be replaced with function composition.

Definition 3.1.2. For a set X, an array-weight on X is a net (wX,m,n)m,n∈N such
that

(1) wX,m,n : Mm,n(X)→ [0,∞) for all m,n ∈ N,
(2) wX,j,k (A ◦ (α× β)) ≤ wX,m,n(A) for all 1 ≤ j ≤ m, 1 ≤ k ≤ n, A ∈

Mm,n(X), and one-to-one functions α : [j]→ [m] and β : [k]→ [n],
(3) wX,m,n(A) ≤ wX,j,n

(
A ◦

(
α× id[n]

))
+ wX,m−j,n

(
A ◦

(
γ × id[n]

))
for all

1 ≤ j < m and one-to-one functions α : [j] → [m] and γ : [m− j] → [m]
satisfying ran(α) ∩ ran(γ) = ∅,

(4) wX,m,n(A) ≤ wX,m,k
(
A ◦

(
id[m] × β

))
+ wX,m,n−k

(
A ◦

(
id[m] × δ

))
for all

1 ≤ k < n and one-to-one functions β : [k] → [n] and δ : [n − k] → [n]
satisfying ran(β) ∩ ran(δ) = ∅.

A set equipped with such an array-weight is an array-weighted set.

By Example 3.1.1, every matrix-normed space is an array-weighted set when
stripped of its linear structure. Similarly, maps between array-weighted sets are
motivated by those between matrix-normed spaces.

Definition 3.1.3. Given two array-weighted sets X and Y , a function φ : X → Y
is completely bounded if there is L ≥ 0 such that for all m,n ∈ N and A ∈
Mm,n(X), wY,m,n (Mm,n(φ)(A)) ≤ L · wX,m,n(A). Let

cbnd(φ) := inf

{
L ∈ [0,∞) :

wY,m,n (Mm,n(φ)(A)) ≤ L · wX,m,n(A)
∀m,n ∈ N, A ∈Mm,n(X)

}
,

the complete bound constant of φ. If cbnd(φ) ≤ 1, φ is completely contractive.

Adaptions of the usual functional analysis proofs yield the following founda-
tional results.
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Proposition 3.1.4 (Complete-boundedness criteria). Given array-weighted sets
X and Y , consider a function φ : X → Y . The following are equivalent:

(1) the function φ is completely bounded;
(2) the ampliated function Mm,n(φ) : Mm,n(X)→Mm,n(Y ) is bounded for all

m,n ∈ N and

sup {bnd (Mm,n(φ)) : m,n ∈ N} <∞;

(3) wY,m,n (Mm,n(φ)(A)) = 0 for all m,n ∈ N and A ∈ Mm,n(X) satisfying
wX,m,n(A) = 0, and

sup

({
wY,m,n (Mm,n(φ)(A))

wX,m,n(A)
:
m,n ∈ N, A ∈Mm,n(X),

wX,m,n(A) 6= 0

}
∪ {0}

)
<∞.

In this case, cbnd(φ) agrees with both suprema and

wY,m,n (Mm,n(φ)(A)) ≤ cbnd(φ)wX,m,n(A)

for all m,n ∈ N and A ∈Mm,n(X)

Corollary 3.1.5 (Composition). Let X, Y , and Z be array-weighted sets and
φ : X → Y and ψ : Y → Z be completely bounded functions. Then, ψ◦φ : X → Z
is completely bounded and

cbnd(ψ ◦ φ) ≤ cbnd(ψ) cbnd(φ).

If φ and ψ are completely contractive, so is ψ ◦ φ.

3.2. Maximum and Minimum Array-Weight Structures. Given an array-
weighted set X, X is a weighted set when stripped of all its weight functions,
except for the underlying weight function on M1,1(X) ∼= X. Given a weighted
set, the weight function can be extended to an array-weight in two extremal ways,
just as with matrix-normed spaces in Examples 2.2.6 and 2.2.8.

Definition 3.2.1 (Minimum array-weight structure). Given a weighted set S,
let mA(S) be S equipped with the weight functions

wmA(S),m,n(A) := max {wS (A(j, k)) : 1 ≤ j ≤ m, 1 ≤ k ≤ n} ,
the maximum weight of an entry in A.

Definition 3.2.2 (Maximum array-weight structure). Given a weighted set S,
let MA(S) be S equipped with the weight functions

wMA(S),m,n(A) :=
m∑
j=1

n∑
k=1

wS (A(j, k)) ,

the sum of the weights of the entries in A.

Routine calculations show that each of these nets of weight functions constitute
array-weights on S and wmA(S),1,1(s) = wMA(S),1,1(s) = wS(s) for all s ∈ S.
Moreover, mA and MA are, respectively, the least and greatest array-weight that
agree with the original weight function. The proofs of these two facts follow
from inductive use of the definition of an array-weight and reflect the proof of
[24, Proposition 2.1]. As a direct result of this optimality, mA and MA have
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the following universal properties, reflecting the universal properties of MIN and
AMAX.

Theorem 3.2.3 (Universal property of mA). Let AWSet∞ be the category of
array-weighted sets with completely bounded maps, and FWSet∞

AWSet∞
: AWSet∞ →

WSet∞ the forgetful functor stripping all weight functions except the underlying
weight function. For a weighted set S and an array-weighted set Y , consider
a bounded function φ : FWSet∞

AWSet∞
(Y ) → S. Then, there is a unique completely

bounded map φ̂ : Y → mA(S) such that FWSet∞
AWSet∞

(
φ̂
)

= φ. Moreover,

cbnd
(
φ̂
)

= bnd(φ).

Theorem 3.2.4 (Universal property of MA). For a weighted set S and an array-
weighted set Y , consider a bounded function φ : S → FWSet∞

AWSet∞
(Y ). Then, there is

a unique completely bounded map φ̂ : MA(S) → Y such that FWSet∞
AWSet∞

(
φ̂
)

= φ.

Moreover,

cbnd
(
φ̂
)

= bnd(φ).

The proof of both theorems is nearly identical to the proof in [20, Exercise
14.1].

3.3. Appending a Zero-Weight Element. As with weighted sets, an array-
weighted set need not have an element of weight 0. In the weighted set case,
one need only append a new element and extend the weight function for the new
element to have weight 0 as in [11, p. 7]. However, an array-weighted set has a net
of weights that must be extended while preserving the existing relations between
them. Since this construction is the prototype for the array-weight structure of
a disjoint union, appending a zero-weight element will be shown in detail.

Definition 3.3.1 (Minimally appending a zero-weight element). Given an array-
weighted set X, let Z(X) := X ] {Θ}, the disjoint union of X with a distin-
guished singleton Θ, which will be the zero-weight element. For m,n ∈ N, define
wZ(X),m,n : Mm,n(Z(X))→ [−∞,∞] by the supremum below.

wZ(X),m,n(A) := sup




wX,j,k (A ◦ (σ × τ)) :

[j]
σ // [m]

and

[k]
τ // [n]

one-to-one,
A ◦ (σ × τ) ∈Mj,k(X)


∪ {0}


Lemma 3.3.2. Equipped with the above functions, Z(X) is an array-weighted set
such that wZ(X),m,n(A) = wX,m,n(A) for all m,n ∈ N and A ∈Mm,n(X).

Proof. Fix m,n ∈ N and A ∈ Mm,n(Z(X)). From definition, wZ(X),m,n(A) ≥ 0,
so next, the weight of A is shown to be finite. Given integers 1 ≤ j ≤ m
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and 1 ≤ k ≤ n, let σ : [j] → [m] and τ : [k] → [n] be one-to-one such that
A ◦ (σ × τ) ∈Mj,k(X). Using the maximality of MA,

wX,j,k (A ◦ (σ × τ)) ≤ wMA(FWSet∞
AWSet∞ (X)),j,k (A ◦ (σ × τ))

=

j∑
a=1

k∑
b=1

wFWSet∞
AWSet∞ (X) (A(σ(a), τ(b)))

≤
∑

A(a,b)∈X

wFWSet∞
AWSet∞ (X) (A(a, b)) ,

so a supremum yields

wZ(X),m,n(A) ≤
∑

A(a,b)∈X

wFWSet∞
AWSet∞ (X) (A(a, b)) <∞.

Next, the weight of A is shown to bound the weights of its subarrays. For
integers 1 ≤ j ≤ m and 1 ≤ k ≤ n, let α : [j] → [m] and β : [k] → [n] be
one-to-one. For integers 1 ≤ a ≤ j and 1 ≤ b ≤ k, consider one-to-one functions
σ : [a] → [j] and τ : [b] → [k] such that A ◦ (α × β) ◦ (σ × τ) ∈ Ma,b(X). Note
that (α× β) ◦ (σ × τ) = (α ◦ σ)× (β ◦ τ) is one-to-one as well, so

wX,a,b (A ◦ (α× β) ◦ (σ × τ)) ≤ wZ(X),m,n(A).

A supremum then shows that

wZ(X),j,k (A ◦ (α× β)) ≤ wZ(X),m,n(A).

Finally, the weight of A is shown to be bounded by the sum of its blocks. For
an integer 1 ≤ j < m, let α : [j]→ [m] and γ : [m− j]→ [m] be one-to-one such
that ran(α) ∩ ran(γ) = ∅. For integers 1 ≤ a ≤ m and 1 ≤ b ≤ n, consider one-
to-one functions σ : [a]→ [m] and τ : [b]→ [n] such that A ◦ (σ × τ) ∈Ma,b(X).
The range of σ could easily intersect with the ranges of both α and γ, so this
entanglement will be handled by constructing two auxiliary functions.

In the case that σ−1(ran(α)) and σ−1(ran(γ)) are both nonempty, enumerate
each as (sl)

c
l=1 and (tp)

a−c
p=1, respectively. Define α̂ : [c]→ [a] by α̂(l) := sl and γ̂ :

[a−c]→ [a] by γ̂(p) := tp. Likewise, define σ1 : [c]→ [j] by σ1(l) := α−1 (σ (α̂(l)))
and σ2 : [a − c] → [m − j] by σ2(p) := γ−1 (σ (γ̂(p))). By design, the following
two squares commute in Set.

[c]
α̂ //

σ1
��

[a]

σ

��
[j] α

// [m]

[a− c] γ̂ //

σ2
��

[a]

σ

��
[m− j] γ

// [m]
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Notice also that ran (α̂) ∩ ran (γ̂) = ∅. Then,

wX,a,b (A ◦ (σ × τ)) ≤ wX,c,b
(
A ◦ (σ × τ) ◦

(
α̂× id[b]

))
+wX,a−c,b

(
A ◦ (σ × τ) ◦

(
γ̂ × id[b]

))
= wX,c,b

(
A ◦

(
(σ ◦ α̂)×

(
τ ◦ id[b]

)))
+wX,a−c,b

(
A ◦

(
(σ ◦ γ̂)×

(
τ ◦ id[b]

)))
= wX,c,b

(
A ◦

(
(α ◦ σ1)×

(
id[n] ◦ τ

)))
+wX,a−c,b

(
A ◦

(
(γ ◦ σ2)×

(
id[n] ◦ τ

)))
= wX,c,b

(
A ◦ (α× id[n]) ◦ (σ1 × τ)

)
+wX,a−c,b

(
A ◦ (γ × id[n]) ◦ (σ2 × τ)

)
≤ wZ(X),j,n

(
A ◦ (α× id[n])

)
+wZ(X),m−j,n

(
A ◦ (γ × id[n])

)
.

In the case ran(σ) ⊆ ran(α), then a ≤ j. Define σ̂ : [a] → [j] by σ̂(l) :=
α−1(σ(l)), which is one-to-one. By design α ◦ σ̂ = σ. Then,

wX,a,b (A ◦ (σ × τ)) = wX,a,b
(
A ◦

(
(α ◦ σ̂)×

(
id[n] ◦ τ

)))
= wX,a,b

(
A ◦

(
α× id[n]

)
◦ (σ̂ × τ)

)
≤ wZ(X),j,n

(
A ◦

(
α× id[n]

))
≤ wZ(X),j,n

(
A ◦

(
α× id[n]

))
+wZ(X),m−j,n

(
A ◦ (γ × id[n])

)
.

A similar calculation occurs in the case ran(σ) ⊆ ran(γ).
Taking all three cases into account, a supremum then gives

wZ(X),m,n (A) ≤ wZ(X),j,n

(
A ◦ (α× id[n])

)
+ wZ(X),m−j,n

(
A ◦ (γ × id[n])

)
as desired. A similar argument shows the same result in the second coordinate.

In the case A ∈Mm,n(X),

wX,j,k(A ◦ (σ × τ)) ≤ wX,m,n(A) = wX,m,n
(
A ◦

(
id[m] × id[n]

))
for all integers 1 ≤ j ≤ m, 1 ≤ k ≤ n, A ∈ Mm,n(X), and one-to-one functions
σ : [j]→ [m] and τ : [k]→ [n]. Thus, wZ(X),m,n(A) = wX,m,n(A).

�

Note that wZ(X),1,1(Θ) = 0, and moreover, this is the least such array-weight.

Theorem 3.3.3 (Minimality of Z(X)). Let (vm,n)m,n∈N be another array-weight

on Z(X) such that vm,n(A) = wX,m,n(A) for all m,n ∈ N and A ∈ Mm,n(X).
Then, vm,n(A) ≥ wZ(X),m,n(A) for all m,n ∈ N and A ∈Mm,n(Z(X)).
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Proof. For integers 1 ≤ j ≤ m and 1 ≤ k ≤ n, consider one-to-one functions
σ : [j]→ [m] and τ : [k]→ [n] such that A ◦ (σ × τ) ∈Mm,n(X). Then,

wX,j,k (A ◦ (σ × τ)) = vj,k (A ◦ (σ × τ)) ≤ vm,n(A).

A supremum gives the result.
�

3.4. The Disjoint Union of Array-Weighted Sets. As done with WSet1 in
[11, p. 7] and MBan∞ in [8, p. 247], subsets and quotients of array-weighted
sets inherit a natural array-weight structure and characterize the equalizer and
coequalizer, respectively, in AWSet∞. Products are formed by a restricted carte-
sian product equipped with an `∞-type structure on each matrix level, much like
Ban1 in [7, Example 2.1.7.d] and MBan1 by extension.

The coproduct, however, is more difficult to describe. Like WSet1 in [11,
p. 7], the underlying set is a disjoint union, but extending the array-weights is
nontrivial as shown in Section 3.3. Since this construction will be useful in the
examples of Sections 4 and 5, the array-weight structure on the disjoint union
will be shown in detail.

Definition 3.4.1 (Array-weight on a disjoint union). Given an index set Λ, let
(Xλ)λ∈Λ be array-weighted sets. Let

D :=
⋃
λ∈Λ

({λ} ×Xλ)

be the disjoint union of the underlying sets with canonical inclusions ρλ : Xλ → D
by ρλ(x) := (λ, x). For m,n ∈ N, define wD,m,n : Mm,n(D)→ [−∞,∞] by

wD,m,n(A) := sup

wY,m,n (Mm,n(φ)(A)) :

Y an array-weighted set,

D
φ // Y a function,

φ ◦ ρλ completely contractive
∀λ ∈ Λ

 .

Lemma 3.4.2. Equipped with the above functions, D is an array-weighted set.

Proof. Fix m,n ∈ N and A ∈ Mm,n(D). First, the supremum is shown to be of
a nonempty set. Let c0 : D → C be the constant map to 0. Trivially, c0 ◦ ρλ is
completely contractive to MIN(C) for all λ ∈ Λ, so

wD,m,n(A) ≥ wMIN(C),m,n (Mm,n (c0) (A)) = 0.

Next, the supremum is shown to be finite. For each 1 ≤ j ≤ m and 1 ≤ k ≤ n,
there is λj,k ∈ Λ and xj,k ∈ Xλj,k such that A(j, k) = ρλj,k (xj,k). Let Y be any
array-weighted set and φ : D → Y a function such that φ ◦ ρλ is completely
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contractive for all λ ∈ Λ. Using the maximality of MA,

wY,m,n (Mm,n(φ)(A)) ≤ wMA(FWSet∞
AWSet∞ (Y )),m,n (Mm,n(φ)(A))

=
m∑
j=1

n∑
k=1

wFWSet∞
AWSet∞ (Y ) (φ(A(j, k)))

=
m∑
j=1

n∑
k=1

wY,1,1
(
φ
(
ρλj,k (xj,k)

))
≤

m∑
j=1

n∑
k=1

wXλj,k ,1,1 (xj,k)

so a supremum yields

wD,m,n(A) ≤
m∑
j=1

n∑
k=1

wXλj,k ,1,1 (xj,k) <∞.

Now, the weight of A is shown to bound the weights of its subarrays. Let
α : [j]→ [m] and β : [k]→ [n] be one-to-one. A quick check shows that

Mj,k(φ) (A ◦ (α× β)) = (Mm,n(φ)(A)) ◦ (α× β),

so
wY,j,k (Mj,k(φ) (A ◦ (α× β))) = wY,j,k ((Mm,n(φ)(A)) ◦ (α× β))

≤ wY,m,n (Mm,n(φ)(A))

≤ wD,m,n(A).

A supremum then shows that

wD,j,k (A ◦ (α× β)) ≤ wD,m,n(A).

Finally, the weight of A is shown to be bounded by the sum of its blocks. Let
α : [j]→ [m] and γ : [m− j]→ [m] be one-to-one such that ran(α) ∩ ran(γ) = ∅.
Then,

wY,m,n (Mm,n(φ)(A)) ≤ wY,j,n
(
(Mm,n(φ)(A)) ◦

(
α× id[n]

))
+wY,m−j,n

(
(Mm,n(φ)(A)) ◦

(
γ × id[n]

))
= wY,j,n

(
Mj,n(φ)

(
A ◦

(
α× id[n]

)))
+wY,m−j,n

(
Mm−j,n(φ)

(
A ◦

(
γ × id[n]

)))
≤ wD,j,n

(
A ◦

(
α× id[n]

))
+wD,m−j,n

(
A ◦

(
γ × id[n]

))
A supremum then gives

wD,m,n (A) ≤ wD,j,n
(
A ◦ (α× id[n])

)
+ wD,m−j,n

(
A ◦ (γ × id[n])

)
as desired. A similar argument shows same result in the second coordinate.
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�

Notice that the inclusion maps are completely isometric as shown by appending
a zero-weight element.

Lemma 3.4.3. For λ ∈ Λ, m,n ∈ N, and A ∈Mm,n (Xλ), then

wD,m,n (Mm,n (ρλ) (A)) = wXλ,m,n(A).

Proof. Define φ : D → Z (Xλ) by

φ(µ, x) :=

{
x, µ = λ,
Θ, µ 6= λ.

A quick calculation shows that φ ◦ ρµ is completely contractive for all µ ∈ Λ.
Thus,

wXλ,m,n(A) = wZ(Xλ),m,n(A)

= wZ(Xλ),m,n (Mm,n(φ) (Mm,n (ρλ) (A)))

≤ wD,m,n (Mm,n (ρλ) (A)) .

For any array-weighted set Y and function φ : D → Y such that φ ◦ ρµ is
completely contractive for all µ ∈ Λ,

wY,m,n (Mm,n(φ) (Mm,n (ρλ) (A))) = wY,m,n (Mm,n (φ ◦ ρλ) (A))

≤ wXλ,m,n(A).

A supremum then gives

wD,m,n (Mm,n (ρλ) (A)) ≤ wXλ,m,n(A).

�

So constructed, D has the following universal property, analogous to the ma-
tricial `1-direct sum of Theorem 2.3.7.

Theorem 3.4.4 (Universal property of the coproduct, AWSet∞). For an array-
weighted set Y , let φλ : Xλ → Y be completely bounded maps satisfying

sup {cbnd (φλ) : λ ∈ Λ} <∞.
There is a unique completely bounded map φ : D → Y such that φ ◦ ρλ = φλ for
all λ ∈ Λ. Moreover,

cbnd(φ) = sup {cbnd (φλ) : λ ∈ Λ} .

Proof. Let L be the supremum above. Define φ : D → Y by φ(λ, x) := φλ(x),
the coproduct map in Set. By design, φ ◦ ρλ = φλ, and uniqueness follows from
the universal property of the coproduct in Set. All that remains is to prove that
φ is completely bounded and that cbnd(φ) = L.

To that end, if L = 0, then cbnd (φλ) = 0 for all λ ∈ Λ. Consequently,

wY,1,1 (φ(λ, x)) = wY,1,1 (φλ(x)) = 0
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for all λ ∈ Λ and x ∈ Xλ. Using MA, wY,m,n (Mm,n(φ)(A)) = 0 for all m,n ∈ N
and A ∈ Mm,n(D). Thus, φ is trivially completely bounded, and cbnd(φ) = 0 =
L.

If L 6= 0, let YL be the underlying set of Y equipped with the scaled array-

weight wYL,m,n :=
1

L
wY,m,n. Observe that the identity map σ : YL → Y is an

isomorphism in AWSet∞ with cbnd(σ) = L and cbnd
(
σ−1
)

=
1

L
. For all λ ∈ Λ,

cbnd
(
σ−1 ◦ φ ◦ ρλ

)
= cbnd

(
σ−1 ◦ φλ

)
≤ cbnd

(
σ−1
)

cbnd (φλ) ≤ 1.

Consequently,

1

L
wY,m,n (Mm,n(φ)(A)) = wYL,m,n (Mm,n(φ)(A)) ≤ wD,m,n(A),

or rather, wY,m,n (Mm,n(φ)(A)) ≤ LwD,m,n(A). Hence, φ is completely bounded
and cbnd(φ) ≤ L. Equality can be shown using arrays from each Xλ.

�

Letting AWSet1 be the category of array-weighted sets with completely con-
tractive maps, this theorem guarantees that AWSet1 has all coproducts. As
such, the notation ∐

λ∈Λ

AWSet1
Xλ

will be used to denote the disjoint union of the family (Xλ)λ∈Λ.
Admittedly, the description of the array-weight for the disjoint union is not

ideal as it relies upon an abstract supremum. One would like to have a more
intrinsic or explicit description of the array-weight, but this structure remains
nebulous in general. Even when the constituent sets arise as subsets of a common
array-weighted set, the resultant array-weight on the disjoint union may not be
immediately obvious.

Example 3.4.5. Consider X := {1,−1} as an array-weighted subset of MIN(C),
and let X1 := {1} and X2 := {−1} be considered as array-weighted subsets of
X. Note that

wX,2,2

([
1 1
1 −1

])
=
√

2

while

wAMAX(C),2,2

([
1 1
1 −1

])
= 2
√

2

and

wMA(C),2,2

([
1 1
1 −1

])
= 4.

Notice that the map φ : D → AMAX(C) by φ(x) := x satisfies φ◦ρn is completely
contractive for n = 1, 2. Hence,

wX,2,2

([
1 1
1 −1

])
< 2
√

2 ≤ wD,2,2

([
1 1
1 −1

])
≤ 4.
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The above inequality shows that X 6∼=AWSet1 D. Hence, even though X1 and X2

inherited their array-weight structure from X and together constitute X, their
disjoint union structure is distinct from X.

The behavior shown in the example above demonstrates that AWSet1 does not
behave quite the same as WSet1. In WSet1, every object can be decomposed
into a coproduct in a natural way. The following notation was a suggestion from
a referee of [13].

Definition 3.4.6 (The constantly weighted set). Given a set S and λ ∈ [0,∞),
let Wλ(S) denote the set S equipped with the constant weight function wWλ(S) :
S → [0,∞) by wWλ(S)(s) := λ.

Proposition 3.4.7 (Decomposition of a weighted set). Given a weighted set S,

S ∼=WSet1

∐
s∈S

WSet1
WwS(s) ({s}) ,

The proof of the proposition is immediate from direct calculation. However,
Example 3.4.5 shows that such a decomposition is not always possible for an
arbitrary array-weighted set. However, if an array-weighted set has the maximum
structure, such a decomposition is immediate.

Corollary 3.4.8 (Decomposition of a maximally array-weighted set). Given a
weighted set S,

MA(S) ∼=AWSet1

∐
s∈S

AWSet1
MA

(
WwS(s) ({s})

)
.

The proof follows as MA is a left adjoint functor applied to a coproduct. More-
over, the disjoint union of array-weighted sets gives another method of appending
a zero-weight element, as illustrated in the following example.

Example 3.4.9. Consider X := {1, 0} as an array-weighted subset of MIN(C), and
let X1 := {1} and X2 := {0} be considered as array-weighted subsets of X. Note
that

wZ(X1),2,2

([
1 1
1 Θ

])
=
√

2

while

wX,2,2

([
1 1
1 0

])
=

1

2
+

1

2

√
5.

and

wMA(C),2,2

([
1 1
1 0

])
= 3.

However, note also that

wAMAX(C),2,2

([
1 1
1 0

])
=
√

5,
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and that the map φ : D → AMAX(C) by φ(x) := x satisfies φ ◦ ρn is completely
contractive for n = 1, 2. Hence,

wZ(X1),2,2

([
1 1
1 Θ

])
< wX,2,2

([
1 1
1 0

])
<
√

5 ≤ wD,2,2

([
1 1
1 0

])
≤ 3.

Notably, the inequality above shows that Z (X1) 6∼=AWSet1 D, and both are dis-
tinct from X.

Recall that Theorem 3.3.3 describes the least way to append a zero-weight
element. The above example seems to imply that the disjoint union structure
would be the greatest way to append a zero-element, which is indeed the case.

Corollary 3.4.10. Let Z := {Θ} be equipped with the trivial array-weight

wZ,m,n(B) := 0

for all m,n ∈ N and B ∈Mm,n(Z). Given an array-weighted set X, let (vm,n)m,n∈N
be another array-weight on Z(X) such that v1,1(Θ) = 0 and vm,n(C) = wX,m,n(C)
for all m,n ∈ N and C ∈Mm,n(X). Then,

vm,n(A) ≤ wX∐AWSet1Z,m,n(A)

for all m,n ∈ N and A ∈Mm,n(Z(X)).

Proof. Let Y denote Z(X) equipped with the array-weight ν. Define φ1 : X → Y
by φ1(x) := x and φ2 : Z → Y by φ2(Θ) := Θ, the usual set inclusions. By
assumption, φ1 is completely isometric. For m,n ∈ N and B ∈Mm,n(Z), observe
that

νm,n(B) ≤ wMA(FWSet∞
AWSet∞ (Y )),m,n(B)

=
m∑
j=1

n∑
k=1

wFWSet∞
AWSet∞ (Y )(B(j, k))

=
m∑
j=1

n∑
k=1

wFWSet∞
AWSet∞ (Y )(Θ)

= 0

= wZ,m,n(B),

meaning that φ2 is also completely isometric. By Theorem 3.4.4, there is a unique

completely contractive map φ : X
∐AWSet1

Z → Y such that φ ◦ ρj = φj for all

j = 1, 2. For m,n ∈ N and A ∈Mm,n(Z(X)), a calculation shows

νm,n(A) = νm,n (Mm,n(φ)(A)) ≤ wX∐AWSet1Z,m,n(A).

�

3.5. Array-Free Elements. In pure algebra, the basis of a vector space is tra-
ditionally shown to be linearly independent by using characteristic functions,
regarded as functions into the field. This relationship between characteristic
functions and linear independence motivates the following definition.
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Definition 3.5.1. For an array-weighted set X, an element x ∈ X is array-free
in X if the characteristic function of x is completely bounded when regarded as
a map from X to MIN(C).

This first example illuminates the relationship between array-freeness and lin-
ear independence.

Example 3.5.2. Let V be a matrix-normed space and X ⊂ V a finite, linearly
independent subset equipped with the inherited array-weight from V . For x ∈ X,
consider the characteristic function χ : X → C of x. Letting W := span(X),
define a linear map φ : W → C on the basis X by φ(y) := χ(y) for all y ∈ X.
As W is finite-dimensional, φ is bounded. Letting ι : W → V be the inclusion
map, there is a bounded linear map ϕ : V → C such that ϕ ◦ ι = φ by the
Hahn-Banach Theorem. By Theorem 2.2.10, ϕ is completely bounded from V to
MIN(C). Letting ε : X → W be the inclusion of generators, then ϕ ◦ ι ◦ ε = χ is
completely bounded. Thus, x is array-free in X.

The next proposition motivates the nomenclature.

Proposition 3.5.3 (Array-free and finite support functions). Given an array-
weighted set X, let Y be a subset of X. All functions from X to MIN(C) with
finite support contained in Y are completely bounded if and only if x is array-free
in X for all x ∈ Y .

Proof. (⇒) This direction is immediate as a characteristic function has finite
support.

(⇐) Let φ : X → C have finite support (xj)
p
j=1 ⊆ Y . Then, φ =

p∑
j=1

φ (xj)χj,

where χj is the characteristic function of xj. For m,n ∈ N and A ∈ Mm,n(X), a
quick calculation shows that

Mm,n(φ)(A) =

p∑
j=1

φ (xj)Mm,n (χj) (A),

so

‖Mm,n(φ)(A)‖MIN(C),m,n ≤
p∑
j=1

|φ (xj)| ‖Mm,n (χj) (A)‖MIN(C),m,n

≤

(
p∑
j=1

|φ (xj)| cbnd (χj)

)
wX,m,n(A).

Thus, φ is completely bounded.
�

Consequently, array-free elements act like free elements in the sense that a
finite number of them can be mapped arbitrarily while the remainder of the set is
annihilated. The most important case for Sections 4 and 5 is when all elements of
an array-weighted set are array-free. To detect this quickly, the following metric
is introduced.
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Definition 3.5.4. Given an array-weighted set X, the bounded range number of
X is

brn(X) := inf

{
wX,m,n(A)√

mn
: m,n ∈ N, A ∈Mm,n(X)

}
.

The value finds its name in the following theorem.

Theorem 3.5.5 (Bounded range maps and brn). Given an array-weighted set
X, the following are equivalent:

(1) all bounded range maps from X to MIN(C) are completely bounded;
(2) the constant map to 1 regarded as a map from X to MIN(C) is completely

bounded;
(3) brn(X) > 0.

In this case, x is array-free in X for all x ∈ X.

Proof. (1⇒ 2) This is immediate as the constant map to 1 has bounded range.
(2 ⇒ 3) Let c1 : X → C be the constant map to 1. For all m,n ∈ N and

A ∈Mm,n(X),
√
mn = wMIN(C),m,n (Mm,n (c1) (A)) ≤ cbnd (c1)wX,m,n(A).

Thus, cbnd (c1) 6= 0 and

wX,m,n(A)√
mn

≥ 1

cbnd (c1)
,

so brn(X) ≥ 1

cbnd (c1)
> 0.

(3 ⇒ 1) Let φ : X → C have range bounded by M . For m,n ∈ N and
A ∈Mm,n(X), then

‖Mm,n(φ)(A)‖MIN(C),m,n ≤

(
m∑
j=1

n∑
k=1

|φ(A(j, k))|2
)1/2

≤

(
m∑
j=1

n∑
k=1

M2

)1/2

= M
√
mn

≤ M

brn(X)
wX,m,n(A).

Thus, φ is completely bounded.
�

Combining the previous two results gives the following statement for finite
array-weighted sets.

Corollary 3.5.6 (Array-free and finite sets). Given a finite array-weighted set
X, the following are equivalent:

(1) all maps from X to MIN(C) are completely bounded;
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(2) the constant map to 1 regarded as a map from X to MIN(C) is completely
bounded;

(3) brn(X) > 0;
(4) x is array-free in X for all x ∈ X.

While Criterion (3) is both necessary and sufficient for all elements of a finite
set to be array-free, it is not necessary for infinite sets.

Example 3.5.7. Let V be `∞ with any matrix-norm. Letting (~ej)j∈N ⊂ V be the

standard basis, define xj :=
1

j
~ej and X := {xj : j ∈ N} ⊂ V with the inherited

array-weight from V . Then, brn(X) = 0.
For j ∈ N, consider the characteristic function χ : X → C of xj. Define a

bounded linear map φ : `∞ → C by φ (~x) := j~x(j), the scaled evaluation map
at j. By Theorem 2.2.10, φ is completely bounded from V to MIN(C). Letting
ε : X → V be the inclusion map, then φ ◦ ε = χ is completely bounded. Thus, xj
is array-free in X.

The maximal and minimal array-weight structures give stark extremes on
array-freeness. The maximal array-weight behaves exactly like a weighted set
in this regard.

Example 3.5.8. Let S be a weighted set. For s ∈ S, let χ : S → C be the charac-
teristic function of s. Then, χ is bounded if and only if wS(s) 6= 0. Consequently,
χ is completely bounded from MA(S) to MIN(C) if and only if wS(s) 6= 0 by
Theorem 3.2.4. Therefore, s is array-free in MA(S) if and only if wS(s) 6= 0.

On the other hand, no element from a set with the minimal array-weight is
array-free, regardless of the underlying weight function.

Example 3.5.9. Let S be a weighted set and φ : mA(S)→ MIN(C) a completely
bounded function. For any s ∈ S and n ∈ N, let An be the n × n-array with
only s as an entry. Likewise, let Jn,n be the n×n-matrix with only 1 as an entry.
Then, Mn,n(φ) (An) = φ(s)Jn,n, so

|φ(s)|n = ‖Mn,n(φ) (An)‖MIN(C),n,n ≤ cbnd(φ)wmA(S),n,n (An) = cbnd(φ)wS(s).

Hence, φ(s) = 0, meaning that φ cannot be the characteristic function of s.
Therefore, s is not array-free in mA(S).

In the previous two examples, elements which were not array-free were auto-
matically mapped to 0. However, this need not be the case.

Example 3.5.10. Consider X := {1,−1} with the inherited array-weight from
MIN(C). Observe that the natural inclusion map ι : X → MIN(C) is completely
isometric, and neither element is mapped to 0. Unfortunately, neither element is
array-free. To show this fact, brn(X) will be shown to be 0.
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To that end, let Jm,n be the m × n-matrix with all entries 1. Inductively
construct the following sequence of matrices.

A0 :=
[
1
]
,

Am+1 :=

[
J1,2m −J1,2m

Am Am

]
∀m ∈W,

where W := N ∪ {0} is the whole numbers. From definition, A0 ∈ M1,1(X). For
induction, assume for some m ∈ W that Am ∈ Mm+1,2m(X). Then, Am+1 has
1 + (m + 1) = m + 2 rows and 2 · 2m = 2m+1 columns. Moreover, all entries in
Am+1 are either from Am, J1,2m , or −J1,2m . Consequently, the entries of Am+1 are
either 1 or −1. Thus, Am+1 ∈Mm+2,2m+1(X) as desired.

Notice that A0A
∗
0 = I1 and

Am+1A
∗
m+1 =

[
2m+1 0

0 2AmA
∗
m

]
for m ∈ W, where Im is the identity of Mm,m. For induction, assume for some
m ∈W that AmA

∗
m = 2mIm+1. Then,

Am+1A
∗
m+1 =

[
2m+1 0

0 2 · 2mIm+1

]

=

[
2m+1 0

0 2m+1Im+1

]

= 2m+1

[
1 0
0 Im+1

]
= 2m+1Im+2

as desired.
Computing directly, wX,m+1,2m (Am) = 2m/2 and

brn(X) ≤ wX,m+1,2m (Am)√
(m+ 1)2m

=
2m/2

2m/2
√
m+ 1

=
1√
m+ 1

for all m ∈W. Consequently, brn(X) = 0.
By Theorem 3.5.6, at least one of 1 or −1 is not array-free. Let χx denote the

characteristic function of x ∈ X and observe that ι = χ1 − χ−1. Consequently,
χ1 is completely bounded if and only if χ−1 is. Hence, 1 is array-free if and only
if −1 is, meaning neither can be.

4. Scaled-Free Matricial Banach Space

This section concerns the construction of building matricial Banach spaces
from array-weighted sets. While the main idea is to build the appropriate free
algebraic object and construct a universal matrix-norm as in previous works [3, 9,
10, 13], the interplay between the levels of an array-weight necessitates a quotient
structure in general. This issue is illustrated in Example 4.11.
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By Example 3.1.1, there is a natural forgetful functor FAWSet∞
MBan∞

: MBan∞ →
AWSet∞ where all linear structure is removed, leaving the matrix-norm as an
array-weight structure. The goal is now to reverse this process.

Definition 4.1 (Matricial Banach space construction). Given an array-weighted
set X, let VX be the free complex vector space on X and θX : X → VX the
embedding of generators. Define

NX :=

{
v ∈ VX :

φ(v) = 0∀φ : VX → MIN(C) linear such that
φ ◦ θX is completely contractive

}
.

One can check that the set NX is a linear subspace of VX . Let QX := VX/NX

with quotient map qX : VX → QX . Define functions ‖ · ‖QX ,m,n : Mm,n (QX) →
[−∞,∞] by

‖A‖QX ,m,n := sup

‖Mm,n(φ)(A)‖W,m,n :
W a matricial Banach space,
φ : QX → W linear,
φ ◦ qX ◦ θX completely contractive


for all m,n ∈ N.

Lemma 4.2. Equipped with the above functions, QX is a matrix-normed space
and

‖Mm,n (qX ◦ θX) (A)‖QX ,m,n ≤ wX,m,n(A)

for all m,n ∈ N and A ∈Mm,n(X).

Proof. Notice that the supremum nonnegative since the zero map from QX to
MIN(C) is completely contractive on the generating set X. Now, the inequality
on matrices of generators will be shown. Consider a matricial Banach space W
and a linear map φ : QX → W such that φ ◦ qX ◦ θX is completely contractive.
For m,n ∈ N and A ∈Mm,n(X), observe that

‖Mm,n(φ) (Mm,n (qX ◦ θX) (A))‖W,m,n = ‖Mm,n (φ ◦ qX ◦ θX) (A)‖W,m,n
≤ wX,m,n(A).

A supremum then yields

‖Mm,n (qX ◦ θX) (A)‖QX ,m,n ≤ wX,m,n(A).

Next, the norm of individual vectors and matrices will be shown to be finite.
Consider a matricial Banach space W and a linear map φ : QX → W such that
φ ◦ qX ◦ θX is completely contractive. Let n ∈ N, (xj)

n
j=1 ⊆ X, and (λj)

n
j=1 ⊂ C.

Then,∥∥∥∥∥φ
(

n∑
j=1

λj (qX ◦ θX) (xj)

)∥∥∥∥∥
W,1,1

=

∥∥∥∥∥
n∑
j=1

λj (φ ◦ qX ◦ θX) (xj)

∥∥∥∥∥
W,1,1

≤
n∑
j=1

|λj| ‖(φ ◦ qX ◦ θX) (xj)‖W,1,1

≤
n∑
j=1

|λj|wX,1,1 (xj) ,
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so a supremum gives∥∥∥∥∥
n∑
j=1

λj (qX ◦ θX) (xj)

∥∥∥∥∥
QX ,1,1

≤
n∑
j=1

|λj|wX,1,1 (xj) <∞.

For m,n ∈ N, let B ∈Mm,n (QX). Then,

‖Mm,n(φ)(B)‖W,m,n ≤ wFAWSet∞
MBan∞ (W ),m,n (Mm,n(φ)(B))

=
m∑
j=1

n∑
k=1

wFAWSet∞
MBan∞ (W ),1,1(φ(B(j, k)))

=
m∑
j=1

n∑
k=1

‖φ(B(j, k))‖W,1,1

≤
m∑
j=1

n∑
k=1

‖B(j, k)‖QX ,1,1,

and a supremum yields

‖B‖QX ,m,n ≤
m∑
j=1

n∑
k=1

‖B(j, k)‖QX ,1,1 <∞.

Say v ∈ QX satisfies ‖v‖QX ,1,1 = 0. There is w ∈ VX such that qX(w) = v.
For a linear map φ : VX → MIN(C) such that φ ◦ θX is completely contractive,

there is a unique linear map φ̂ : QX → MIN(C) such that φ̂ ◦ qX = φ. Then,

φ̂ ◦ qX ◦ θX = φ ◦ θX is completely contractive, meaning

0 ≤ |φ(w)| =
∣∣∣(φ̂ ◦ qX) (w)

∣∣∣ =
∣∣∣φ̂(v)

∣∣∣ ≤ ‖v‖QX ,1,1 = 0.

As φ was arbitrary, w ∈ NX , and v = qX(w) = 0.
For m,n ∈ N and B,C ∈ Mm,n (QX), consider a matricial Banach space W

and a linear map φ : QX → W such that φ ◦ qX ◦ θX is completely contractive.
Then,

‖Mm,n(φ)(B + C)‖W,m,n ≤ ‖Mm,n(φ)(B)‖W,m,n + ‖Mm,n(φ)(C)‖W,m,n
≤ ‖B‖QX ,m,n + ‖C‖QX ,m,n ,

and a supremum gives

‖B + C‖QX ,m,n ≤ ‖B‖QX ,m,n + ‖C‖QX ,m,n
Let j, k ∈ N, D ∈ Mj,m, and E ∈ Mn,k. A quick calculation shows that
Mj,k(φ)(DBE) = D ·Mm,n(φ)(B) · E, so

‖Mj,k(φ)(DBE)‖W,j,k = ‖D ·Mm,n(φ)(B) · E‖W,j,k
≤ ‖D‖Mj,m

‖Mm,n(φ)(B)‖W,m,n ‖E‖Mn,k

≤ ‖D‖Mj,m
‖B‖QX ,m,n‖E‖Mn,k

.
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A supremum shows that

‖DBE‖QX ,j,k ≤ ‖D‖Mj,m
‖B‖QX ,m,n‖E‖Mn,k

.

�

With this matrix-norm constructed, the space is completed to ensure the cre-
ation of a matricial Banach space.

Definition 4.3 (Scaled-free matricial Banach space). Given an array-weighted
set X, the scaled-free matricial Banach space of X is MBanSp(X) := MC (QX).
Define ηX := κQX ◦ qX ◦ θX , the association of generators. By Lemma 4.2, ηX is
completely contractive.

So constructed, the scaled-free matricial Banach space has the following uni-
versal property, analogous to [13, Theorem 3.1.1]

Theorem 4.4 (Universal property of MBanSp). Given a matricial Banach space
W and a completely bounded map φ : X → FAWSet∞

MBan∞
(W ), there is a unique

completely bounded linear map φ̂ : MBanSp(X) → W such that FAWSet∞
MBan∞

(
φ̂
)
◦

ηX = φ. Moreover,

cbnd(φ) ≥
∥∥∥φ̂∥∥∥

CB(MBanSp(X),W )
.

Proof. By the universal property of VX , there is a unique linear ϕ : VX → W such
that ϕ ◦ θX = φ. For v ∈ NX , there is ψ ∈ W ∗ such that |ψ(ϕ(v))| = ‖ϕ(v)‖W,1,1
and ‖ψ‖W ∗ = 1. By Theorem 2.2.10, ψ is completely contractive from W to
MIN(C). Then, ψ ◦ φ = ψ ◦ ϕ ◦ θX is a completely contractive function from X
to MIN(C), so

‖ϕ(v)‖W,1,1 = |ψ(ϕ(v))| = 0.

Thus, NX ⊆ ker(ϕ), so there is a unique linear $ : QX → W such that $◦qX = ϕ
by the universal property of the quotient.

If cbnd(φ) = 0, then φ(x) = 0 for all x ∈ X, and consequently, ϕ is the zero
map, as is $. In this case, cbnd(φ) = 0 = ‖$‖CB(QX ,W ).

If cbnd(φ) 6= 0, let $̂ :=
1

cbnd(φ)
$ be the scaled map. For m,n ∈ N and

A ∈Mm,n(X),

‖Mm,n ($̂ ◦ qX ◦ θX) (A)‖W,m,n =
1

cbnd(φ)
‖Mm,n ($ ◦ qX ◦ θX) (A)‖W,m,n

=
1

cbnd(φ)
‖Mm,n(φ)(A)‖W,m,n

≤ wX,m,n(A).

Thus, $̂ ◦ qX ◦ θX is completely contractive, so

1

cbnd(φ)
‖Mm,n ($) (B)‖W,m,n = ‖Mm,n ($̂) (B)‖W,m,n ≤ ‖B‖QX ,m,n
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for all B ∈Mm,n (QX). Hence, $ is completely bounded and

cbnd(φ) ≥ ‖$‖CB(QX ,W ) .

In either case, there is a unique completely bounded linear map

φ̂ : MBanSp(X)→ W

such that φ̂ ◦ κQX = $ by Theorem 2.3.5 and∥∥∥φ̂∥∥∥
CB(MBanSp(X),W )

= ‖$‖CB(QX ,W ) ≤ cbnd(φ).

Notice that

φ̂ ◦ ηX = φ̂ ◦ κQX ◦ qX ◦ θX = $ ◦ qX ◦ θX = ϕ ◦ θX = φ

as desired. Uniqueness follows from universal properties of the free vector space,
the quotient vector space, and the completion.

�

Thus, MBanSp is a left adjoint functor, meaning it will behave well with co-
products and other left adjoints. Applying MBanSp to the disjoint union array-
weighted set from Theorem 3.4.4 gives the following result.

Corollary 4.5. For an index set Λ, let Xλ be an array-weighted set for each
λ ∈ Λ. Then,

MBanSp

(∐
λ∈Λ

AWSet1
Xλ

)
∼=MBan1

∐
λ∈Λ

MBan1

MBanSp (Xλ) .

Composing forgetful functors, observe that

FWSet∞
AWSet∞

◦ FAWSet∞
MBan∞

= FWSet∞
Ban∞

◦ FBan∞
MBan∞

.

By the composition of left adjoints, both MBanSp ◦MA and AMAX ◦BanSp
qualify as a left adjoint to the forgetful functor composition. By uniqueness of
left adjoints, these two functors must be naturally isomorphic.

Corollary 4.6. Given a weighted set S, then

MBanSp(MA(S)) ∼=MBan1 AMAX(BanSp(S))

∼=MBan1 AMAX
(
`1 ({s : wS(s) 6= 0})

)
.

On the other hand, the right adjoint mA trivializes MBanSp by Example 3.5.9.

Proposition 4.7 (Failure of mA). Given a weighted set S, then MBanSp(mA(S))
is the zero space.

Proof. Let φ : VmA(S) → MIN(C) be a linear map such that φ ◦ θmA(S) is com-

pletely contractive. By Example 3.5.9,
(
φ ◦ θmA(S)

)
(s) = 0 for all s ∈ S. Hence,

θmA(S)(s) ∈ NmA(S) for all s ∈ S. Consequently, NmA(S) = VmA(S).
�
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An immediate question that arises is whether or not the quotient is necessary
in the construction of MBanSp(X). When all elements of X are array-free, it is
pleasantly not.

Proposition 4.8. If all x ∈ X are array-free in X, then NX = {0}.

Proof. Let v ∈ NX . There are (xj)
n
j=1 ⊆ X and (λj)

n
j=1 ⊂ C such that v =

n∑
j=1

λjθX (xj). For 1 ≤ j ≤ n, let χj be the characteristic function of xj. Then,

there is a unique linear χ̂j : VX → C such that χ̂j ◦ θX = χj. Define φj :=
1

cbnd (χj)
χ̂j. For m,n ∈ N and A ∈Mm,n(X),

‖Mm,n (φj ◦ θX) (A)‖MIN(C),m,n =
1

cbnd (χj)
‖Mm,n (χ̂j ◦ θX) (A)‖MIN(C),m,n

=
1

cbnd (χj)
‖Mm,n (χj) (A)‖MIN(C),m,n

≤ wX,m,n(A).

By definition of NX ,

0 = φj (v)

=
1

cbnd (χj)
χ̂j (v)

=
1

cbnd (χj)

n∑
k=1

λk (χ̂j ◦ θX) (xk)

=
1

cbnd (χj)

n∑
k=1

λkχj (xk)

=
λj

cbnd (χj)
.

Hence, λj = 0. Since j was arbitrary, v = 0.
�

Combining this with Corollary 3.5.6 numerically characterizes when NX is triv-
ial for finite array-weighted sets.

Theorem 4.9 (Array-free and finite sets, Part II). Given a finite array-weighted
set X, then NX = {0} if and only if brn(X) > 0.

Proof. (⇐) By Corollary 3.5.6, all x ∈ X are array-free in X. By Proposition
4.8, NX = {0}.

(⇒) As X is finite, VX , QX , and MBanSp(X) are finite-dimensional, so κQX is
an isomorphism of matrix-normed spaces. Moreover, if NX = {0}, then qX is a
vector space isomorphism as well.
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Given any function φ : X → C, there is a unique linear map ϕ : VX → C
such that ϕ ◦ θX = φ. There is also a unique linear map $ : QX → C such that
$◦qX = ϕ. Since QX is finite-dimensional, $ is bounded and, by Theorem 2.2.10,
completely bounded from QX to MIN(C). Then, there is a unique completely

bounded linear map φ̂ : MBanSp(X) → MIN(C) such that φ̂ ◦ κQX = $ by

Theorem 2.3.5. Notice that φ̂ ◦ ηX = φ is completely bounded. Since φ was
arbitrary, Corollary 3.5.6 states that brn(X) > 0.

�

In fact, MBanSp of a singleton array-weighted set is readily computed.

Theorem 4.10 (Characterization of singletons, MBanSp). Let X = {x} be a
singleton array-weighted set. Then,

MBanSp(X) ∼=MBan1

{
AMAX(C), brn(X) > 0,
{0}, brn(X) = 0.

Proof. Let χ : X → C be the constant map to 1, which is the characteristic
function of x. From Corollary 3.5.6, χ is completely bounded to MIN(C) if and
only if brn(X) > 0. Notice that given any map φ : X → C, φ = φ(x)χ. Thus, if
brn(X) = 0, φ is completely bounded to MIN(C) if and only if φ(x) = 0. Hence,
θX(x) ∈ NX , meaning MBanSp(X) ∼= {0}.

If brn(X) > 0, define φ : X → C by φ(x) := brn(X). A quick check shows
that φ is completely contractive from X to AMAX(C). Thus, there is a unique

completely contractive linear φ̂ : MBanSp(X)→ AMAX(C) such that φ̂◦ηX = φ.
Consequently,

brn(X) ≤ ‖ηX(x)‖MBanSp(X),1,1 .

On the other hand, consider a completely contractive map ψ : X → W for
some arbitrary matricial Banach space W . For m,n ∈ N and A ∈Mm,n(X),

Mm,n (ψ) (A) = ψ(x)⊗ Jm,n,

where Jm,n is the matrix with all entries 1. Then,
√
mn ‖ψ(x)‖W,1,1 = ‖ψ(x)⊗ Jm,n‖MIN

(
F

Ban1
MBan1

(W )
)
,m,n

≤ ‖ψ(x)⊗ Jm,n‖W,m,n

≤ ‖ψ(x)⊗ Jm,n‖AMAX
(
F

Ban1
MBan1

(W )
)
,m,n

=
√
mn ‖ψ(x)‖W,1,1 ,

forcing equality. Consequently,

‖Mm,n (ψ) (A)‖W,m,n
wX,m,n(A)

=

√
mn ‖ψ(x)‖W,1,1
wX,m,n(A)

≤ 1,

so ‖ψ(x)‖W,1,1 ≤ brn(X). In particular, this states that

brn(X) = ‖ηX(x)‖MBanSp(X),1,1 .
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Define ϕ : C→ MBanSp(X) by ϕ(λ) :=
λ

brn(X)
ηX(x). This map is immediately

linear and contractive by the calculations above. By Theorem 2.2.12, ϕ is com-
pletely contractive from AMAX(C) to MBanSp(X). A routine calculation now

shows that ϕ ◦ φ̂ = idMBanSp(X) and φ̂ ◦ ϕ = idAMAX(C).
�

Unfortunately, the quotient structure is necessary in general. The following
example shows NX to be nontrivial while not annihilating either generator. It
also yields MIN(C) rather than AMAX(C) or {0} like the previous examples.

Example 4.11. Let X, ι, and χx for x ∈ X be as defined in 3.5.10. Define
v := ηX(1) ∈ MBanSp(X), and wx := θX(x) ∈ VX for x ∈ X.

First, MBanSp(X) is characterized as the span of v. Consider a linear map
φ : VX → MIN (C) such that φ ◦ θX is completely contractive. Observe that

φ ◦ θX = φ (w1) ι+ (φ (w1) + φ (w−1))χ−1.

Since χ−1 is not completely bounded, φ (w−1) = −φ (w1), meaning that φ ◦ θX =
φ (w1) ι. For λ, µ ∈ C,

φ (λw1 + µw−1) = (λ− µ)φ1 (w1) ,

which is guaranteed to be 0 when λ = µ. Consequently,

NX = span {w1 + w−1} ,

and MBanSp(X) = span{v}.
Next, the norm of v⊗Im is computed, where Im is the identity of Mm,m. By The-

orem 4.4, there is a unique completely contractive linear map ι̂ : MBanSp(X)→
MIN(C) such that ι̂ ◦ ηX = ι. For m ∈ N,

1 = ‖Im‖Mm,m
= ‖Mm,n (ι̂) (v ⊗ Im)‖MIN(C),m,m ≤ ‖v ⊗ Im‖MBanSp(X),m,m .

Letting Am be defined as in Example 3.5.10, then

Im = 2−m+1Am−1A
∗
m−1

and

Mm,2m−1 (ηX) (Am−1) = v ⊗ Am−1

for all m ∈W. Therefore,

v ⊗ Im = v ⊗
(
2−m+1Am−1A

∗
m−1

)
= 2−m+1 (v ⊗ Am−1)A∗m−1

so

‖v ⊗ Im‖MBanSp(X),m,m =
∥∥2−m+1 (v ⊗ Am−1)A∗m−1

∥∥
MBanSp(X),m,m
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≤ 2−m+1 ‖v ⊗ Am−1‖MBanSp(X),m,2m−1

∥∥A∗m−1

∥∥
M2m−1,m

= 2−m+1 ‖Mm,2m−1 (ηX) (Am−1)‖
MBanSp(X),m,2m−1 ‖Am−1‖Mm,2m−1

≤ 2−m+1wX,m,2m−1 (Am−1) ‖Am−1‖Mm,2m−1

= 2−m+1 ‖Am−1‖2
Mm,2m−1

= 2−m+1 · 2m−1

= 1.

Thus, ‖v ⊗ Im‖MBanSp(X),m,m = 1 for all m ∈ N.
Lastly, ι̂ is shown to be completely isometric and, thereby, an isomorphism

in MBan1. For all m,n ∈ N and B ∈ Mm,n(MBanSp(X)), there is a unique

B̂ ∈Mm,n such that B = v ⊗ B̂. Thus,∥∥∥B̂∥∥∥
MIN(C),m,n

= ‖Mm,n (ι̂) (B)‖MIN(C),m,m ≤ ‖B‖MBanSp(X),m,m

and

‖B‖MBanSp(X),m,n ≤ ‖v ⊗ Im‖MBanSp(X),m,m

∥∥∥B̂∥∥∥
Mm,n

= 1 ·
∥∥∥B̂∥∥∥

MIN(C),m,n
.

Consequently,

‖Mm,n (ι̂) (B)‖MIN(C),m,n = ‖B‖MBanSp(X),m,n

as desired.

5. Matricial Banach Algebras

This section considers algebras equipped with a matrix-norm compatible with
matrix multiplication. As an algebra is a vector space with a multiplication of
vectors, the conventions for algebras used here will be analogous to the vector
space conventions used previously.

Definition 5.1 (Matrix conventions, algebras). For an algebra A and m,n ∈
N, Mm,n(A) is equipped with the same operations from being a vector space:
pointwise addition, pointwise scalar multiplication, and actions of scalar matrices
on left and right. Moreover, the action Mm,p(A) ×Mp,n(A) → Mm,n(A) will be
by matrix multiplication for all p ∈ N.

The notion of an L∞-matrix-normed algebra was introduced in [6, Definition
1.4]. Here, the definition is generalized to consider rectangular matrices without
the L∞-condition.

Definition 5.2. A matrix-normed algebra is a complex algebra A equipped with
a matrix-norm (‖ · ‖A,m,n)m,n∈N such that

‖AB‖A,m,n ≤ ‖A‖A,m,p ‖B‖A,p,n
for all m, p, n ∈ N, A ∈ Mm,p(A), and B ∈ Mp,n(A). A complete matrix-
normed algebra is a matricial Banach algebra. Let MBanAlg∞ be the category
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of matricial Banach algebras with completely bounded algebra homomorphisms,
and MBanAlg1 be the category of matricial Banach algebras with completely
contractive algebra homomorphisms.

The goal of this section will be to build examples of this structure from various
existing structures. Section 5.1 takes a Banach algebra and imbues it with an
extremal matrix-norm. Section 5.2 takes a matricial Banach space and creates a
matrix-norm on the tensor algebra. Section 5.3 concludes by proving the existence
of a free product of matricial Banach algebras using array-weighted sets.

5.1. The Absolute Maximum Matricial Banach Algebra. An algebra A
with a matrix-norm is a normed algebra when stripped of all its matrix-norms,
except for the norm on M1,1(A) ∼= A. For a Banach algebra, one would like
to extend its existing norm to a matrix norm. As with Banach spaces, many
such extensions exist, but AMAX happens to give a matricial Banach algebra
structure, as well as being the maximal such structure.

Lemma 5.1.1. Given a Banach algebra A, AMAX(A) is a matricial Banach
algebra.

Proof. By [8, Theorem 2.1], AMAX(A) is already a matricial Banach space
in addition to being a complex algebra. All that remains is to prove sub-
multiplicativity of the matrix-norm. To that end, let m, p, n ∈ N, A ∈ Mm,p(A),

and B ∈Mp,n(A). Write A =

j∑
l=1

al ⊗ Cl and B =

q∑
k=1

bk ⊗Dk. Then,

AB =

j∑
l=1

q∑
k=1

(albk)⊗ (ClDk) ,

so

‖AB‖AMAX(A),m,n ≤
j∑
l=1

q∑
k=1

‖albk‖A ‖ClDk‖M∗n,m

≤
j∑
l=1

q∑
k=1

‖al‖A ‖bk‖A ‖Cl‖M∗p,m ‖Dk‖M∗n,p

=

(
j∑
l=1

‖al‖A ‖Cl‖M∗p,m

)(
q∑

k=1

‖bk‖A ‖Dk‖M∗n,p

)
.

Two infima then yield

‖AB‖AMAX(A),m,n ≤ ‖A‖AMAX(A),m,p ‖B‖AMAX(A),p,n .

�

Thus, an adaptation of Theorem 2.2.12 shows that AMAX serves as left adjoint
to a second forgetful functor.

Theorem 5.1.2 (Universal property of AMAX, algebra version). Let BanAlg∞
denote the category of Banach algebras with bounded algebra homomorphisms,
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and F
BanAlg∞
MBanAlg∞

: MBanAlg∞ → BanAlg∞ be the forgetful functor stripping
all matrix-norm structure except the underlying norm. For a Banach algebra A
and a matricial Banach algebra B, consider a bounded algebra homomorphism

φ : A → F
BanAlg∞
MBanAlg∞

(B). Then, there is a unique completely bounded algebra

homomorphism φ̂ : AMAX(A)→ B such that F
BanAlg∞
MBanAlg∞

(
φ̂
)

= φ. Moreover,

∥∥∥φ̂∥∥∥
CB(AMAX(A),B)

= ‖φ‖B(A,FBanAlg∞
MBanAlg∞

(B)).

Again, the proof of the above theorem is nearly identical to [20, Exercise 14.1].

5.2. Haagerup Tensor Algebra. A matrix-normed algebra is a matrix-normed
space when stripped of its multiplicative structure. For a matricial Banach space,
one would like to construct a multiplicative structure much like the Banach tensor
algebra. Indeed, this can be accomplished by merging the matricial `1-direct sum
and Haagerup tensor product.

Definition 5.2.1. Given a matricial Banach space V , inductively define the
Haagerup tensor powers of V in the following way:

V ⊗h1 := V, V ⊗h(n+1) :=
(
V ⊗hn

)
⊗h V ∀n ∈ N.

The Haagerup tensor algebra of V is

Th(V ) :=
∐
n∈N

MBan1

V ⊗hn,

the matricial `1-direct sum of these Haagerup tensor powers, equipped with the
multiplication is determined by the canonical isomorphisms

(
V ⊗hm

)
⊗h
(
V ⊗hn

)
→

V ⊗h(m+n). Define εV : V → Th(V ) to be the inclusion map into the first tensor
power of V in Th(V ).

Lemma 5.2.2. Given a matricial Banach space V , Th(V ) is a matricial Banach
algebra.

Proof. By construction, Th(V ) is a matricial Banach space, and one can check
that the tensor multiplication makes Th(V ) into a complex algebra. All that
remains to show is that the matrix-norm is sub-multiplicative on matrices.

To that end, let m, p, n ∈ N, A ∈ Mm,p (Th(V )), and B ∈ Mp,n (Th(V )). Write

A(j, l) =
∞∑
q=1

xj,l,q and B(l, k) =
∞∑
r=1

yl,k,r, where xj,l,q, yl,k,q ∈ V ⊗hq for all 1 ≤ j ≤
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m, 1 ≤ l ≤ p, 1 ≤ k ≤ n, and q ∈ N. Then,

(AB)(j, k) =

p∑
l=1

A(j, l)B(l, k)

=
∞∑
q=1

∞∑
r=1

p∑
l=1

xj,l,q ⊗ yl,k,r

=
∞∑
q=1

∞∑
r=1

(Mm,p (πq) (A)�Mp,n (πr) (B)) (j, k),

where πq and πr are the coordinate projections of the `1-sum. Then,

‖AB‖Th(V ),m,n ≤
∞∑
q=1

∞∑
r=1

‖Mm,p (πq) (A)�Mp,n (πr) (B)‖V ⊗h(q+r),m,n

≤
∞∑
q=1

∞∑
r=1

‖Mm,p (πq) (A)‖V ⊗hq ,m,p ‖Mp,n (πr) (B)‖V ⊗hr,p,n

=

(
∞∑
q=1

‖Mm,p (πq) (A)‖V ⊗hq ,m,p

)(
∞∑
r=1

‖Mp,n (πr) (B)‖V ⊗hr,p,n

)
= ‖A‖Th(V ),m,p ‖B‖Th(V ),p,n .

�

So constructed, Th(V ) enjoys the following universal property, analogous to
[16, Satz 1].

Theorem 5.2.3 (Universal property of the Haagerup tensor algebra). Let

FMBan1
MBanAlg1

: MBanAlg1 →MBan1

be the forgetful functor stripping multiplicative structure. For a matricial Banach
space V and a matricial Banach algebra B, consider a completely contractive
linear map φ : V → FMBan1

MBanAlg1
(B). Then, there is a unique completely contractive

algebra homomorphism φ̂ : Th(V )→ B such that FMBan1
MBanAlg1

(
φ̂
)
◦ εV = φ.

Proof. First, completely contractive maps are inductively constructed on the
Haagerup tensor powers of V . Let φ1 := φ be regarded as a completely con-
tractive linear map from V ⊗h1 to B. For induction, assume for some n ∈ N that
there are completely contractive linear maps φj : V ⊗hj → B for all 1 ≤ j ≤ n.
Define ϕ : V ⊗hn × V → B by ϕ(w, v) := φn(w) · φ(v), which is readily seen to be
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bilinear. Consider m, p, q ∈ N, A ∈Mm,p

(
V ⊗hn

)
and B ∈Mp,q(V ). Then,

(A�ϕ B)(i, k) =

p∑
l=1

ϕ (A(i, l), B(l, k))

=

p∑
l=1

φn (A(i, l)) · φ (B(l, k))

= (Mm,p (φn) (A) ·Mp,q(φ)(B)) (i, k)

for all 1 ≤ i ≤ m and 1 ≤ k ≤ q. Hence,

‖A�ϕ B‖B,m,q = ‖Mm,p (φn) (A) ·Mp,q(φ)(B)‖B,m,q

≤ ‖Mm,p (φn) (A)‖B,m,p ‖Mp,q(φ)(B)‖B,p,q

≤ ‖A‖V ⊗hn,m,p ‖B‖V,p,q .

Thus, ϕ is completely contractive bilinear. By Theorem 2.3.12, there is a unique
completely contractive linear map φn+1 : V ⊗(n+1) → B such that φn+1(w ⊗ v) =
φn(w) · φ(v).

Next, the maps are combined using the matricial `1-direct sum. By Theorem
2.3.7, there is a unique completely contractive linear map φ̂ : Th(V )→ B such that

φ̂◦$n = φn for all n ∈ N. In particular, notice that εV = $1, so φ̂◦εV = φ1 = φ as

desired. Uniqueness of φ̂ arises from the universal properties of ⊗h and
∐MBan1

.

All that remains is to show that φ̂ is multiplicative. Given v, w ∈ V , note that

φ̂(v ⊗ w) = φ2(v ⊗ w) = φ(v) · φ(w) = φ̂(v) · φ̂(w)

by construction of φ̂ and φ2. For induction, assume that for some n ∈ N,

φ̂ (v1 ⊗ · · · ⊗ vn) = φ̂ (v1) · · · φ̂ (vn) .

for all (vj)
n
j=1 ⊂ V . For any w ∈ V ,

φ̂ (v1 ⊗ · · · ⊗ vn ⊗ w) = φn+1 (v1 ⊗ · · · ⊗ vn ⊗ w)

= φn (v1 ⊗ · · · ⊗ vn) · φ (w)

= φ̂ (v1) · · · φ̂ (vn) · φ (w)

= φ̂ (v1) · · · φ̂ (vn) · φ̂ (w)

by construction of φ̂ and φn+1. Linearity and continuity of φ̂ extend this multi-
plicativity from elementary tensors to all elements of Th(V ).

�

As a left adjoint functor, Th behaves well with coproducts and other left ad-

joints. Let FBan1
MBan1

and F
BanAlg1
MBanAlg1

be the completely contractive variations of the
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forgetful functors stripping all norms, except the underlying norm. Composing
forgetful functors, observe that

FBan1
MBan1

◦ FMBan1
MBanAlg1

= FBan1
BanAlg1

◦ FBanAlg1
MBanAlg1

.

By the composition of left adjoints, both Th ◦AMAX and AMAX ◦T qualify as a
left adjoint to the forgetful functor composition. By uniqueness of left adjoints,
these two functors must be naturally isomorphic.

Corollary 5.2.4. Given a Banach space V ,

Th(AMAX(V )) ∼=MBanAlg1
AMAX(T (V )).

Composing left adjoints MBanSp and Th creates a new left adjoint, MBanAlg :=
Th ◦MBanSp, with the following universal property.

Theorem 5.2.5 (Universal property of MBanAlg). Let

FAWSet1
MBanAlg1

: MBanAlg1 → AWSet1

be the forgetful functor stripping all algebraic structure. For an array-weighted
set X and a matricial Banach algebra B, consider a completely contractive map
φ : X → FAWSet1

MBanAlg1
(B). Then, there is a unique completely contractive algebra

homomorphism φ̂ : MBanAlg(X) → B such that FAWSet1
MBanAlg1

(
φ̂
)
◦ εMBanSp(X) ◦

ηX = φ.

Proof. Letting FAWSet1
MBan1

be the completely contractive version of the forgetful
functor stripping all vector space structure, notice that

FAWSet1
MBan1

◦ FMBan1
MBanAlg1

= FAWSet1
MBanAlg1

.

Thus, φ : X → FAWSet1
MBan1

(
FMBan1
MBanAlg1

(B)
)

, so there is a unique completely con-

tractive linear map φ̃ : MBanSp(X) → FMBan1
MBanAlg1

(B) such that FAWSet1
MBan1

(
φ̂
)
◦

ηX = φ by Theorem 4.4. By Theorem 5.2.3, there is a unique completely contrac-

tive algebra homomorphism φ̂ : Th(MBanSp(X))→ B such that FMBan1
MBanAlg1

(
φ̂
)
◦

εMBanSp(X) = φ̃.

Consequently, φ̂ : MBanAlg(X)→ B and

FAWSet1
MBanAlg1

(
φ̂
)
◦ εMBanSp(X) ◦ ηX = φ̃ ◦ ηX = φ.

Uniqueness follows from the universal properties of Th and MBanSp.
�

Combining Theorem 4.10 with Corollary 5.2.4 gives the following characteri-
zation for singleton array-weighted sets.

Corollary 5.2.6 (Characterization of singletons, MBanAlg). Let X = {x} be a
singleton array-weighted set. Then,

MBanAlg(X) ∼=MBanAlg1

{
AMAX

(
`1
)
, brn(X) > 0,

{0}, brn(X) = 0.
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Proof. In the case brn(X) = 0, then direct calculation from Theorem 4.10 gives

MBanAlg(X) ∼=MBanAlg1
Th({0}) ∼=MBanAlg1

{0}.
When brn(X) > 0, then Theorem 4.10 and Corollary 5.2.4 give

MBanAlg(X) ∼=MBanAlg1
Th(AMAX(C))

∼=MBanAlg1
AMAX(T (C))

∼=MBanAlg1
AMAX(`1),

where `1 has the convolution product.
�

Using Corollary 4.6, the matricial Banach algebra of an array-weighted set
with the maximum structure can be computed also. Note that the coproduct of
Banach algebras is the free product from [15, Definition 1.4]

Corollary 5.2.7. Given a weighted set S,

MBanAlg(MA(S)) ∼=MBanAlg1
AMAX

 ∐
wS(s)6=0

BanAlg1
`1

 .

Proof. From definition,

MBanAlg(MA(S)) = Th(MBanSp(MA(S))),

so by Corollary 4.6

MBanAlg(MA(S)) ∼=MBanAlg1
Th(AMAX(BanSp(S))).

By Corollary 5.2.4,

MBanAlg(MA(S)) ∼=MBanAlg1
AMAX(T (BanSp(S))).

By Proposition 3.4.7,

MBanAlg(MA(S)) ∼=MBanAlg1
AMAX

(
T

(
BanSp

(∐
s∈S

WSet1
WwS(s)({s})

)))
.

As BanSp is a left adjoint, the coproduct can be brought out.

MBanAlg(MA(S)) ∼=MBanAlg1
AMAX

(
T

(∐
s∈S

Ban1

BanSp
(
WwS(s)({s})

)))
From direct calculation, BanSp

(
WwS(s)({s})

) ∼=Ban1 C if wS(s) 6= 0, and the zero
space otherwise. As such, the zero cofactors can be ignored.

MBanAlg(MA(S)) ∼=MBanAlg1
AMAX

T
 ∐
wS(s)6=0

Ban1

C


As T is a left adjoint, the coproduct can be brought out once again.

MBanAlg(MA(S)) ∼=MBanAlg1
AMAX

 ∐
wS(s)6=0

BanAlg1T (C)


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Finally, direct computation shows that T (C) ∼=BanAlg1
`1 equipped with the

convolution product.

MBanAlg(MA(S)) ∼=MBanAlg1
AMAX

 ∐
wS(s)6=0

BanAlg1
`1


�

Lastly, observe that all the statements for Th have been made with completely
contractive maps, rather than completely bounded maps. While one would like
to construct a tensor algebra compatible with completely bounded maps, this
cannot be done. The reason is that the multiplication of generators would become
unbounded, as demonstrated in the proposition below.

Proposition 5.2.8. Let FAWSet∞
MBanAlg∞

be the forgetful functor removing all algebraic

structure. An array weighted set X has a reflection along FAWSet∞
MBanAlg∞

if and only

if the only completely bounded map from X to MIN(C) is the zero map. In this
case, the reflection is the zero algebra equipped with the constant map from X.

The proof of this proposition is nearly identical to [13, Proposition 3.2.1]. More-
over, this proposition and Theorem 4.4 give the following nonexistence result,
analogous to [13, Corollary 3.2.5]

Corollary 5.2.9. There cannot exist a functor that is left adjoint to the forgetful
functor from MBanAlg∞ to MBan∞, which strips all multiplicative structure.

5.3. Free Product Matricial Banach Algebra. This section constructs the
coproduct of matricial Banach algebras, the free product matricial Banach alge-
bra. This is directly parallel to the free product of Banach algebras [15, Definition
1.4], operator algebras [4, Theorem 4.1], and C*-algebras [2]. However, with the
scaled-free matricial Banach algebra from Theorem 5.2.5, construction of this
object will be much more algebraic like [12, §3.2].

Definition 5.3.1 (Free product matricial Banach algebra). Let (Aλ)λ∈Λ be ma-
tricial Banach algebras. Define

Gλ := FAWSet1
MBanAlg1

(Aλ) ,

the underlying array-weighted set of each Aλ, and G :=
∐
λ∈Λ

AWSet1
Gλ their co-

product array-weighted set with inclusion maps ρλ : Gλ → G. Define B :=
MBanAlg(G), the scaled-free matricial Banach algebra of G with map of genera-
tors υG : G→ FAWSet1

MBanAlg1
(B) by υG := εMBanSp(G) ◦ ηG. Let J be the closed ideal

in B generated by⋃
λ∈Λ

 υG (ρλ(a+ b))− (υG (ρλ(a)) + υG (ρλ(b))) ,
υG (ρλ(ab))− υG (ρλ(a)) υG (ρλ(b)) ,
υG (ρλ(µa))− µυG (ρλ(a))

: a, b ∈ Aλ, µ ∈ C


and A := B/J the quotient matricial Banach algebra with quotient map q : B →
A. Defining ψλ := q ◦ υG ◦ ρλ for all λ ∈ Λ, each ψλ is a completely contractive
algebra homomorphism by construction of G and J .
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So constructed, A has the following universal property.

Theorem 5.3.2 (Universal property of the coproduct, MBanAlg1). For a ma-
tricial Banach algebra C, let φλ : Aλ → C be a completely contractive algebra
homomorphism for all λ ∈ Λ. Then, there is a unique completely contractive
homomorphism φ : A → C such that φ ◦ ψλ = φλ for all λ ∈ Λ.

Proof. By Theorem 3.4.4, there is a unique completely contractive function ϕ :
G→ FAWSet1

MBanAlg1
(C) such that ϕ◦ρλ = FAWSet1

MBanAlg1
(φλ) for all λ ∈ Λ. By Theorem

5.2.5, there is a unique completely contractive homomorphism $ : B → C such
that FAWSet1

MBanAlg1
($) ◦ υG = ϕ. Routine calculations show that J ⊆ ker($), so

there is a unique completely contractive homomorphism φ : A → C such that
φ ◦ q = $. Thus,

φ ◦ ψλ = φ ◦ q ◦ υG ◦ ρλ = $ ◦ υG ◦ ρλ = ϕ ◦ ρλ = φλ

as desired. Uniqueness follows from the universal properties of G, B, and the
quotient.

�

Moreover, use of the universal property shows that the homomorphisms ψλ are
completely isometric.
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Präsentationen von C∗-Algebren mittels Erzeugender und Relationen, Ph.D. thesis, Tech-
nischen Universität Carolo-Wilhelmina zu Braunschweig, March 1998.

10. K.R. Goodearl and P. Menal, Free and residually finite-dimensional C∗-algebras, J. Funct.
Anal. 90 (1990), no. 2, 391–410.

11. M. Grandis, Normed combinatorial homology and noncommutative tori, Theory Appl.
Categ. 13 (2004), No. 7, 114–128.

12. W. Grilliette, Presentations and Tietze transformations of C∗-algebras, New York J. Math.
18 (2012), 121–137.

13. W. Grilliette, Scaled-free objects, New York J. Math. 18 (2012), 275–289.
14. W. Grilliette, Formalizing categorical and algebraic constructions in operator theory, Ph.D.

thesis, University of Nebraska – Lincoln, 2011, Thesis (Ph.D.)–The University of Nebraska
- Lincoln, p. 296.



SCALED-FREE OBJECTS II 261

15. N. Grønbæk, Weak and cyclic amenability for noncommutative Banach algebras, Proc.
Edinburgh Math. Soc. (2) 35 (1992), no. 2, 315–328.

16. H. Leptin, Die symmetrische Algebra eines Banachschen Raumes, J. Reine Angew. Math.
239/240 (1969), 163–168.

17. T.A. Loring, From matrix to operator inequalities, Canad. Math. Bull. 55 (2012), no. 2,
339–350.

18. G.F. Nassopoulos, A functorial approach to group C∗-algebras, Int. J. Contemp. Math. Sci.
3 (2008), no. 21-24, 1095–1102.

19. T. Oikhberg and G. Pisier, The “maximal” tensor product of operator spaces, Proc. Edin-
burgh Math. Soc. (2) 42 (1999), no. 2, 267–284.

20. V.I. Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Ad-
vanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002.

21. V.I. Paulsen, Representations of function algebras, abstract operator spaces, and Banach
space geometry, J. Funct. Anal. 109 (1992), no. 1, 113–129.
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