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ABSTRACT. Let A = (@n k)n,k>0 be a non-negative matrix. We denote by
Lgp(,w)7cg(u,)(A) the supremum of those ¢, satisfying the following inequality:

e 1 1+ N > e
")
z_%w" (14" ; 1+k Za’wxa 2€<Z_%wnxfz> ’

where z > 0, z € {(w), 0 <r < 1,0 < ¢ <p<1and (wy),_, is a non-
negative and non-increasing sequence of real numbers. In this paper, first we
introduce the weighted sequence space Cj (w) (0 < p < 1) of non-absolute type
which is a p-normed space and is isometrically isomorphic to the space £, (w).
Then we focus on the evaluation of L, (w),cr (w) (A?) for a lower triangular
matrix A, where 0 < ¢ < p < 1. A lower estimate is obtained. Moreover, in
this paper a Hardy type formula is obtained for Lgp’cg(Hﬁ) where Hp is the
generalized Hausdorff matrix, 0 < ¢ < p <1 and a > 0. A similar result is also
established for the case in which H is replaced by (H[)".

1. INTRODUCTION AND PRELIMINARIES

Let p € R\{0} and let ¢,(w) denote the space of all real sequences z = ()72,
such that X

12l ) = | D wilakl” | < oo,
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where w = (w,,)$%, is a non-increasing and non-negative sequence of real numbers.
We write x > 0 if x;, > 0 for all k. We also write x 1 for the case that zo < z; <
-+- < x, <---. The symbol x | is defined in a similar way.

Let X be a normed sequence space, Y be the same as X with a different norm
and A = (ank)n k>0 be an infinite matrix of real or complex numbers; Then, it is
said that A defines a matrix mapping from X into Y, and we denote it by writing
A: X =Y, if for every sequence = = (xy) in X the sequence Az = {(Ax),}, the
A-transform of x is in Y, where

(Ax), = Zan,kazk, n=0,1,...
k=0

For p,q € R\{0}, the lower bound involved here is the number Ly, ) cr(w)(A)
which is defined as the supremum of those ¢ obeying the following inequality:

w)

1Azl oy = Il

where z > 0, z € {,(w) and A = (ank)nk>0 1S a non-negative matrix. Here
o0

0<g<p<1and
o L
1 (1—0—7")’C 1
o el )

HxHCg(w) = <Z Wn
Ifw=(1,1,1,..), we use Ly, cr(A) instead of Ly, () crw)(A)-

n=0

The organization of this paper is given as follows: In Section 2, we introduce
the weighted sequence space C}(w)(0 < p < 1) of non-absolute type and give
an inclusion relation concerning with this space. We also show that C](w) is a
p—normed space which is isometrically isomorphic to the space ¢,(w).

In section 3, we consider the transpose of non-negative lower triangular matrices
as operators from the sequence space ¢,(w) into the weighted sequence space
Cy(w) where 0 < ¢ < p < 1, and obtained a lower estimate for Ly, (w),cr(w)(A") (see
Theorem 3.1). Then we apply our results to some famous classes of non-negative
lower triangular matrices such as row stochastic matrices, weighted mean matrices
and Norlund matrices.

In Section 4, a Hardy type formula is obtained for Ly, cr(Hy), where H is
the generalized Hausdorff matrix, 0 < ¢ < p < 1 and o > 0. A similar result is
also established for the case in which H is replaced by (H)". (see Theorems 4.3
and 4.7). In continue, we apply our results to some special generalized Hausdorff
matrices such as generalized Gamma, generalized Holder, generalized Cesaro and
generalized Fuler matrices. Our results provide some analogue to those given in

[9] and [10].

2. THE WEIGHTED SEQUENCE SPACE Cp(w)(0 <p < 1)

The main purpose of the present section, following [I, 2], is to introduce the
weighted sequence space C](w)(0 < p < 1) of non-absolute type and is to derive
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an inclusion relation concerning with its. Moreover, we show that C}(w) is a
p—normed space and is isometrically isomorphic to the space ¢,(w).

Let 0 < r <1 and w = (w,,) be a non-increasing sequence of non-negative real
numbers. The weighted sequence space C}(w) is defined as below:

0;;<w>={<xn>e (1 p<oo},

where 0 < p < 1. More prec1sely, C, (w) is the set of all sequences such that

C"-transforms of them are in the space £,(w), where C" denotes the matrix C" =
(c n,k)n,kzo defined by

) (1+ 7“)
— T
k=n

1+k

{ 0 0<k<n,

Cpp = -
n.k (14r)Fm
B k> n.

If the weighted sequence w be (1,1,1,...), we use the notation C} instead of

Cr(w).
Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1. The set C)(w) becomes a linear space with the coordinatewise
addition and scalar multiplication which is the p-normed space with the p-norm

00 00 p
1 (1+7)"
2l = ll2lEr W) = n D Ty
P () — (1+r) ; 1+k
Proof. This is a routine verification and so we omit the detail. O

One can easily check that the absolute property does not hold on the space
Cp(w), that is, ||x||C£(w) # |l|=| ”C{,(w) for at least one sequence in the space C} (w),
and this says us that C}(w) is a sequence space of non-absolute type, where

|z| = (Jzg|) and 0 < p < 1. Also, it is immediate by the well known inclusion
ly(w) C £y(w) that the inclusion Cf(w) € C7(w) holds whenever 0 < ¢ < p < 1.

Theorem 2.2. The weighted sequence space Cy(w) is isometrically isomorphic

to the space €y(w), that is C)(w) = £,(w).

Proof. 1t is enough to show the existence of an isometric isomorphism between
the spaces C)(w) and £,(w). Consider the transformation A defined from CJ(w)
to £,(w) by  — y = Az, where y = {y,,} is the C"-transform of the sequence z,

i.e.
I V'~ (1+7r)"
= R AT NuU{0}. 2.1
Y (1+r> ; T e M€ {0} (2.1)

The linearity of A is clear. Further, it is trivial that + = 0 whenever Az = 0
and hence A is injective. Let y € £,(w) for 0 < p < 1 and define the sequence

T = {xn} by

Tp=M+1)[yn — (L +7)ynt1]; n € NU{0}.
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Then, we have

oo
Hzll] = > wy
n=0

oo (147)

)

(1+r" Z 1T+k
k=n

p

[e.e]
n=0

(1+r " kz_: 11172 (k+1) [yx — (1 +7) Y]

p

= an

1+r (i (1+ T)kyk - i (1+ T)kH?Jk:ﬂ)

k=n

= 2 walyal” = HyHZ(w)

n=0

Thus, we have that x € Cj(w) and consequently A is surjective and p—norm
preserving. Hence, A is a linear bijection which says us that the spaces C](w)
and £,(w) are linearly isomorphic, as desired. O

The following lemma has an essential role in the rest of this paper.

Lemma 2.3. ([8], Corollary 4.3.3). Let x € {,(w),x > 0 and let w be a non-
increasing and non-negative sequence of real numbers. Then

> w, (Zk+1> > (anmp> 0<p<1). (2.2)

n=0 k=n

Here the constant pP s the best possible.

Inequality (2.2) which is the weighted version of Copson inequality [6], can
be rewritten as Ly, (w)¢,w) (C) = p, where C' = (cux)nr>0 is the Copson matrix

defined by
0 0<k<n,
Cnk =

k%l k>n.

We conclude this section by giving a sequence of the points of the space C}) (w)
which forms a basis(Schauder basis) for that space, where 0 < p < 1. Because
of the isomorphism A, defined in the proof of Theorem 2.2, is onto the inverse
image of the basis {ex},— of the space £, is the basis of the new space C}(w).
Therefore, we have the following:

o0
Theorem 2.4. Let 0 < p < 1. Define the sequence b = {b,(cn)} of elements
k=0
of the weighted sequence space Cj(w) by
—k(1+7) n==k-—1,

B ={ k+1 n=k,
0 0.w.
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for every fited n € NU{0} . Then the sequence {b(”)}zozo is a basis for the space

Cr(w), and any x € C)(w) has a unique representation of the form

T = i (C"z), b,

n=0

Proof. This is a routine verification and so we omit the detail. OJ

In the rest of this paper we consider matrix operators from the space £,(w)
into the weighted sequence space C}(w) and try to calculate their lower bounds.

3. LOWER BOUND FOR THE TRANSPOSE OF LOWER TRIANGULAR MATRICES

Let A = (an)n k>0 be a non-negative infinite matrix and define 7" : £,(w) —
Cp(w) represented by [T, ; = A, where A and B are the standard bases of
lp(w) and C)(w), respectively. In this section, we focus on the evaluation of
Ly, (w),cr(w) (A"), where 0 < ¢ < p < 1 and A is a non-negative lower triangular
matrix. Our result gives a lower estimate for this value in terms of the constant
M which is defined by Chen and Wang in [1], as:

an < May,;, (0<k<j<n). (3.1)

Here M > 1. We shall assume that M is the smallest value appeared in (3.1). If
(3.1) fails, we set M = oo. In continue, we apply our result to the weighted mean
matrices, (AWM) = (ank), 4o, and the Norlund matrices, (AVM) = (byk), 1>0-
for some cases, where the vx;efghted mean matrices and the Nérlund matrices are
defined as below:

Y )<k <
i p = W 0<k < n
0 otherwise,

and

wy, _y,
< k<
bn,k — w! O — k — n
0 otherwise.

Here W, = >} _,w), and w’ = (w},) is a non negative sequence with w(, > 0. The
details are given below.

Theorem 3.1. Let 0 < ¢ <p <1 and A = (ank)ni>o0 be lower triangular matric
with non-negative entries. Then

J
t 2 N
Linwy.cyw (A7) 2 M (}gﬁg W) |

Here M is defined by (3.1).

Proof. Let x > 0 with ||z[|¢,w) = 1. Since ¢ — 1 < 0, it follows from Hélder’s
inequality, Lemma 3.13 of [3] and Fubini’s theorem with the monotonicity of the
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weighted sequence w, that

0 oo 0 q
14r)"
400ty = 5 (e 5 G5 5 o)

k=0
0<r<1l o0 © X q
S (s Y ae
k=0 n==k =n

Lem. 2.3

) (e’ q
> ¢ wk( > an,krn)
k=0 n=~k

> ¢t 3wk Y ajrri | YD angan
. =,

k=0 ji=k

—1
> ¢THIM S we Y ajpri | Y anv,
=k n=j

k=0 j=

00 0o -1 J
> @MY wiag | Y an g, (Z %,k)
=0 i k=0

J n=j

J
_ . —1
> 0 (S o el Sl 0

where the last inequality is based on Holder’s inequality. On the other hand,
since ¢ — 1 < 0, we have

1

Atzl|T > (= "~ At
[A" [, () > |A'z]

q

q—1
Cq(w)

Inserting this estimate into the corresponding term in (3.2) gives

J
2arq—1 | )

Also, since 0 < ¢ < p <1, we have |||, = [|z]ly, ) = 1. Therefore

J
> 2 q—l : .
ey = 4M (}25 aﬂv’“)'

k=0

14|

| 4% |

This leads us to the lower estimate in Theorem 3.1 and completes the proof. [

In the following we state some application of Theorem 3.1. First, consider the
non-negative matrix A for which a, ; < a,+1(0 < k < n). Then Equation (3.1)
with M = 1, is satisfied. Applying Theorem 3.1, we get the following results.
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Corollary 3.2. Let 0 < g < p < 1, and A be a lower triangular matrix with
non-negative entries. If an i < apnpy1 for 0 < k <n, then

J
L, w),c1(w) (At) q <;I>1£Za7’“) (3.3)

For row stochastic matrix(A non-negative square matrix for which the sum of
all rows are 1), (3.3) takes the form

Lgp (w),Cf(w (At)

We also have the following corollaries for the Norlund matrices and the weighted
mean matrices.

Corollary 3.3. Let 0 < ¢ <p < 1. Ifwy >0 and w), T, then

Leywczon ((ABM)') 2 ¢* (3.4)

Corollary 3.4. Let 0 < ¢ <p < 1. Ifw}) >0 and w,, |, then
t
Leywczo ((AN1)") 2 ¢

Consider the weighted mean matrix (AWM ) associated with the sequence w’ =

(w!,), where w' 1 and 1nf m > ¢. For this matrix, by the same argument as
in ([10], p. 2415), one can prove that the exact value of Ly, () cs(w) ((AKM) ) is

greater than the lower estimate in (3.4). In fact
¢
Loy ((A51)°) > ¢

Also, for the Nt')rlund matrix (AYM), associated with the sequence w’ = (w),)

with w’ | and mf - > ¢, we have

e
L (w),C5 () ((AfX/M)t> > ¢

Next, consider the weighted mean matrix (A}fj/,é” ) associated with the sequence
W' = (w))>,, where | = 0,1,2,---, wj =w}] = --- =w; =1 and w], = % for

n > [. For this matrix Equation (3.1) with M = 2, is satisfied. By Theorem 3.1
we have

Leyaozo ((A021)') > 217,

Applying Theorem 3.1 to a row stochastic matrix A with a,; > @y +1(0 <
k < n), we have

pr(w),C;(w) (At> > q2Mq’1.

The cases M = (%) and M = (%6) of the above statement give the following
0
analogue of ([10], Corollaries 2.6 and 2.7), respectively.
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Corollary 3.5. Let 0 < g <p< 1. Ifw), | a for « >0, then
. w/O q—1
Leyrcy ((A0Y)') = QZ(j) :
Corollary 3.6. Let 0 < g <p<1. Ifwy >0, w,, 1 «, then
q—1
NM\t of &
Lty (w).cw) ((Aw’ )> =4 <w—,0> -
4. GENERALIZED HAUSDORFF MATRICES

Let a > 0 and du is a Borel probability measure on [0,1]. The generalized
Hausdorff matrix associated with du, H} = (hj, )n >0 is defined by

A B G VA R e MO

nk —

0 n <k.

Clearly h, = (3F%) A" *py, for n > k > 0, where

1
o= [ Oaue) (k=0.12,.0),
0

and Apg = ik — frt1-
The generalized Hausdorff matrix contains some famous classes of matrices. These
classes are as follows:

(1) The choice du(f) = B(1—6)°~1d# gives rise the generalized Cesaro matrix

of order f;

(2) The choice du(f) = [log#|°~' /T'(3)d0 gives the generalized Holder matrix
of order f3;

(3) The choice du(8) = p6°~1d6 gives the generalized Gamma matrix of order
g

(4) The choice du(6) = point evaluation at 6 = 3 gives rise to the generalized
Euler matrix of order f3;

The generalized Cesaro, generalized Holder and generalized Gamma matrices
have non-negative entries whenever 5 > 0, and also does the Euler matrices
when 0 < 5 < 1.

In this section we will consider the generalized Hausdorff matrix as an operator
from ¢, into the sequence space C;’ where 0 < ¢ < p < 1. Afterwards we
focus on the evaluation of Ly, cr (H ﬁ‘) A Hardy type formula is exhibited as a
lower estimate. A similar result is also established for the case in which HJ is

replaced by (Hﬁ‘)t. As a consequence, we apply our results to the generalized
Gamma, generalized Holder and generalized Cesaro matrices which were recently
considered in [5] on the ¢, spaces and in [7] and [10] on the block weighted
sequence space {,(w, F') and on the sequential weak ¢,, respectively.

First, we state and prove the following statement about below boundedness of
lower triangular matrix operators which has essential role in this section.
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Lemma 4.1. Let 0 < ¢ < p < 1 and let A = (ank)ni>0 be a lower triangular
matrix with non-negative entries. If

n

[ee]
sup E ank = R, and inf E anr = C >0,
n>0 k>0

=" k=0 n=k

then o
sz,cg (4) = qCERqT‘

Proof. Suppose that z is a non-negative sequence. By the same reason as we have
seen in ([10], Lemma 3.1), we have

n n q
E anph < R E an kT | -
k=0 k=0

Since A is a non-negative lower triangular matrix, using Lemma 2.3, we have

q
g o= = (1 )k i
Rl q Z ((1—&—17")" Z 1—:_]3 ;)am:rj)
j:

n=0 k=n

q
0<r<1 1 00 o0 1 k
—q 1 e
> R kz T+k Oak,g%
=n =

n=0 j=

S Rloage 00 n q
- q Z Z An kT
k=0

n=0

o0 n o0 o0
> 3 Sl — @13l (z )
k=0 n=k

n=0 k=0

00
> 'O = 'Clzl,
k=0

which implies || Az, > qC%RqZI |||, , and this leads us to the desired inequal-
q P
ity. 0

Using the above lemma enables us to calculate the lower bound of the gener-
alized Euler matrix which is essential in the rest of this section.

Lemma 4.2. Let o > 0 and E*(8) = (2, (6))nk>0 be the generalized Euler
matriz of order 3 where 0 < 8 < 1. Then -

Li,c; (B*(B) > g6 (0<q<p<l),

Locy (B*(B) =% (0<q<).

Proof. Let 0 < 8 < 1. The column sums of E%(3) are all equal to S~!. Also,
as we have seen in ([10], Lemma 3.2), sup, > 2 ef;(8) = 1. Thus, for 0 <
p < 1, applying Lemma 4.1 to case that R = 1 and C = 37!, we deduce that
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Ly, cr (E4(B)) > qﬂﬁ. For p = 1, using Holder’s inequality and Fubini’s theorem,
we have

qy 1/q
|E*(B)alloy = {z <(1jr)k > T e <ﬁ>xj> }
k=0 n=Fk J=0

gy 1/q
S {z (z HﬁZ@Mﬂ)%) }

k=0 \ n—k j=0
Lem. 2.3 0 o0 q l/q
L q{z(z :,nw)xn)}
k=0 \n=0

> 05 (£ (0)n)

k=0 \n=0

= 0% (£ et ) ) =05l
n=0 \k=0
which gives the desired inequality and completes the proof. (]
For x > 0, we have Hjz = fol E*(p)xdu(p). Hence Lemma 4.2 enables us to

estimate the value of Ly, c-(H}). The details are given below.

Theorem 4.3. For o > 0 we have

Lie; (H3) 2 a [ 570du(3), 0 <q<p<1) (4.1)
0.1]
and
Lycr (HY) > ¢ d’“‘T(m, (0<g<1). (4.2)
(0.1]

Proof. Consider (4.1). Let x > 0 with ||x|| ¢, = 1. Applying Minkowski’s inequality
and Lemma 4.2, we have

(03
|1#2]

> [ E(B)z] e, du(8)

. 0,1
o (0]

o = H (f | E(B)zdu(B)
4 0,1

Vv

<q J B‘l/qdu(ﬁ)> 1],

(0,1]

= q [ B Vdu(p).

(0,1]

This leads us to (4.1). The proof of (4.2) is similar. O
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In the next corollary we apply Theorem 4.3 to some special cases of generalized
Hausdorff matrices such as generalized Gamma, generalized Holder and general-
ized Cesaro matrices. Its proof can be easily adopted from the one of Corollaries
3.4, 3.5 and 3.6 of [10].

Corollary 4.4. Let f,a> 0 and 0 < ¢ < p < 1. Then
(1) Le,cp (P%(B)) = oo, (B<2)
(2) La,.cp (T(B))
(3) Lesop (T(B)) = 52r,  (B>4).
(4) Li,.c; (C*(B)) = oo.

(5) Ly, cr (H*(B)) = oc.

Vv
EQ
=
=
Vv
»Quh—l

3
N
N

In the rest of our paper we consider the transpose of the generalized Hausdorft
matrix, (Hﬁ‘)t, as an operator from £, into the sequence space C; where 0 < ¢ <
p < 1. First, we state and prove the following statement about below boundedness
of lower triangular matrices with non-negative entries which has essential role in
rest of this section.

Lemma 4.5. Let 0 < ¢ < p < 1 and let A = (anx)nr>0 be a upper triangular
matriz with non-negative entries. If

oo
sup g anr = R >0, and inf an = C,
n>0 k>0
=" k=0 n=0

then
Lg%q; (A) Z qu/qRqT_l.

Proof. Suppose that z is a non-negative sequence. By the same reason as we have
seen in ([10], Lemma 3.7), we have

00 00 q
E anpr] < BRI g A kTk | -

k=n k=n

Since A is a non-negative upper triangular matrix, using Lemma 2.3, we have

=n

q
e ad 147)" =
R4 Zo <(1+1r)" kZ (1113 Zkak,jxj>
n= J=

o<r<t o o e
> R T D kg
n=0 =k

k=n
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00 00 q
ZRH¢2<2%MQ
k=n

n=0

co o0 0o k
> @7 D anpTy = qquO:cZ (Zoan,k>
= n=

n=0 k=n

oo
> 'O ay > ¢"Clz |, ,
k=0

which implies || Az||. > ¢C/ iR |z|[,,, and this leads us to the desired inequal-
ity. O
Corollary 4.6. Let 0 < ¢ < p <1 and E*(B) be the generalized Euler matriz of
order 8 with 0 < <1 and a > 0. Then

Li,cr (B“(8)") = ¢577".

Proof. The proof is similar to that of Lemma 4.2. The only difference is that we
use Lemma 4.5 instead of Lemma 4.1. O

Now, we come to the evaluation of Lgmcg <(Hl‘j)t> .

Theorem 4.7. Let 0 < ¢ < p < 1. Then for a > 0 we have
Loy ((H2)") = q | 87" du(3). (4.3)
(0,1]

Proof. Let x > 0 and ||z||,, = 1. Since (H/‘j)tx = fol (E*(8)) zdu(B), applying
Minkowski’s inequality and Corollary 4.6, we have

[yl = |0 @ edu),
> [y [[(B(8)) ]| ¢, du(B)
> @fﬂTwwOmM
(0,1]
= q [ B du(p).
(0,1]
This leads us to (4.3) and completes the proof. O

Applying Theorem 4.7 to the special cases of generalized Hausdorff matrices
we have the following corollary.

Corollary 4.8. Let 0 < g < p < 1. Then for g > 0, we have

N D(B+1I(5)
(1) Ly, cr ((C' (ﬁ))t) > QFW—JF%)
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- 1 ,1=q _
(2) Lu,.c; (HY(B))) > w55 Jy 077 log 6" dp.

(3) Lapc; (T2(8))) = 722,
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