A Note on Hardy Spaces and
Functions of Bounded Mean Oscillation
on Domains in C”
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1. Introduction

It has been considered a part of the folklore for some time that the result of
C. Fefferman identifying the dual of H!(R") as BMO(R?") can be extended
(in suitable form) to the unit ball in C”. In fact the result for the ball ap-
peared in extenso in an unpublished version of [CRW]. The main purpose
of this note is to give a proof of the theorem in the more general context
of strongly pseudoconvex domains in C”, and in the case of pseudoconvex
domains of finite type in C2.

In X be a Hausdorff space. A guasimetric d on X is a continuous function
d: X X X — R* which satisfies the usual requirements for a topological met-
ric except that the triangle inequality is replaced by

d(x,z2)<Cd(x,y)+d(»,2)), x,y,zeX.

Let Q be a smoothly bounded domain in C” (n=2). We define 3C{(Q) to
be the usual Hardy space of holomorphic functions on Q (see [K1]). We
may identify it as a closed subspace of L!(9Q) by passing to the (almost
everywhere) radial limit function f on 89Q. Let d be a quasimetric on 49.
Then BMO(92) can be defined in the usual way, in terms of the quasimetric
d and the Lebesgue measure on d2: the semi-norm on BMO is

1
g =sup ——— S g(t) —gpx,nlda(?).
” ”BMO Xr IB(x’ r)l B(x’ r)I B(x r)l

Here the balls B(x, r) are defined using the quasimetric, gp(y, ) is the average
of g over the ball, do is (2n—1)-dimensional area measure on the boundary
of Q, and | B(x, r)| = a(B(x, r)). Of course in practice it is important to select
a quasimetric that is compatible with the complex structure.

Now BMOA(Q) denotes the space of holomorphic functions in JC'(Q)
whose boundary values are in BMO(3€) with norm || f||« = .f |l +| ./ lamo-
It is easy to prove that BMOA(Q) is a proper closed subspace of BMO(d12).
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We reserve the notation H(9Q) for the real variable Hardy space that is
defined when 91 is viewed as a space of homogeneous type using the balls
and measures being discussed here.

It should be noted that the following question is natural, and of fundamen-
tal importance: How are the boundary functions of elements of JC! (which
functions exist by standard results - see [K1, Chap. 8]) related to H'(3Q)?
The answer is that the former functions form a subset of the latter. This is
proved with an elegant technique by Dafni in [Da] and also in [KL] by an
approach more closely related to the techniques here.

For a strongly pseudoconvex domain {2, we now define the quasimetric
d on d(? as follows. For x € 0%, let 7, denote the complex tangent plane in
C" at x. For >0, A, , denotes the set of points in C” at distance < ¢ from
the ball in the plane 7, with center at x and radius V7. Let B, ,=A, N3
The quasimetric on 91 is defined by

d(x,y)=inf{t >0; ye B, ;,, xe By ,}.

For a pseudoconvex domain of finite type in C2, let d be the quasimetric
defined in [NSW1]. For convenience, we now recall it: Let p e dQ, and let
A(p, 6) be defined as in [NRSW, p. 116]. Since A(p, 6) is strictly increasing
in 6, there is a unique n =7(6, p) (also depending on p) such that A(p, 3) =
6. Let X, X, be real vector fields such that X;, X, and T span the real tan-
gent space to d{2 at each point p. Here X;, X, span the complex tangent
space over R at each point and 7 points in the “complex normal” direction.
Then we define the ball B(p, §) on 09 by

B(p,0)={qe dQ:g=expp(oy X 1+ X5 +{T)
where |oj| <7 for j=1,2, and |{]|=<4}.

Notice that |B(p, 6)| = 525.
Thus the quasimetric on 92 is defined as follows:

d(z,w)=inf{t:z, we B(z,t) and ze€ B(w, t)}.

The reader may check that, in complex dimension 2, the definition of the
quasimetric on a strongly pseudoconvex domain and that on a finite type
domain are consistent.

We will prove the following theorem.

THEOREM 1.1. Let Q be a bounded strongly pseudoconvex domain in C”,
or a bounded pseudoconvex domain of finite type in C*. Then the dual
of 3¢(Q) is BMOA(Q). Namely, if g€ BMOA(RQ), then the linear function-
al on 3CX(Q) defined by I,(f)= {30 f(W)g(W)da(w) is bounded, and every
bounded linear functional on IC{(Q) arises in this way. Moreover, the BMO
norm of g is comparable to the operator norm of I,

C7ells = supllZg(N: [ fllser = 1} = Cll gl

We make an effort in this paper to isolate the particular properties of a do-
main, and of its canonical kernels, that are needed to prove Theorem 1.1.
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Strongly pseudoconvex domains in C” and finite type domains in C? are but
two instances of such domains.

In this spirit, in Section 2 we will prove a theorem about Carleson mea-
sures on a class of “admissible” domains (to be defined there), which include
strongly pseudoconvex domains in C” and pseudoconvex domains of finite
type in C2. The proofs of sufficiency and necessity for Theorem 1.1 are given
in Section 3 and Section 4, respectively.

We thank Daowei Ma and Guido Weiss for useful conversations. We men-
tion again that Galia Dafni [Da] has addressed some of the issues treated
here from a different point of view (i.e. the Caldéron reproducing formula).
We extend our thanks to the referee, who provided several useful comments
on the original version of this paper.

2. Carleson Measures on Admissible Domains

Let  be a bounded domain in C” with smooth boundary 9%, and let d be a
quasimetric on d{2. Let K(z, w) be the Bergman kernel with associated Berg-
man projection ® from L2(Q) to the Bergman space A%(Q). Let P denote
the Szegd projection from L?(Q) to 3C%(R). Let B(z, 6) denote the ball
on 9 with center at z, and radius é with respect to d, that is, the set of
points w € 9Q with d(w, zy) < 6. For a subset S of 09, |S| denotes its (2n —1)-
dimensional area measure.

We say 92 has a homogeneous structure with respect to d if there are con-
stants 0<n <1, ¢>1, 8>1, and 0 <y <<1 such that the following condi-
tions are satisfied:

(1) If B(z, r))NB(z,,r,)# 9 and r; =r,, then B(z,, r,) C B(zy, ¢cry);
(2) C'd(z,w)<|z—w|=<Cd(z, w)".

(3) Br'=|B(z,r)|>B~'r'7 for all ze 3Q and all 1> r > 0;

(4) |B(z,cr)|=<B|B(z,r)| for all ze dQ and all r > 0.

If Q is a strongly pseudoconvex domain in C” or a pseudoconvex domain
of finite type in C?, and if d is the quasimetric defined in the introduction,
then it is known that the above conditions hold with v <1/m where m is the
maximum type of the domain (see [S2; NSW1; NRSW]). Thus @ has a ho-
mogeneous structure. The concept of homogeneous structure that we intro-
duce here is closely related to (indeed, is inspired by) the concept of “space
of homogeneous type” as introduced in [CW].

Let r be a smooth function defined in a neighborhood of € such that —r
is a defining function for @ and such that in Q and near 9, r(z) is the dis-
tance from z to the boundary 9. For z,€ dQ and 6 > 0, the Carleson region
C(zg, 9) is defined by

C(z9,0) ={z€Q: w(z) € B(zg, 0), I(2) < 6}.

Fix a small positive number ¢, andlet Q, ={ze€ Q: r(z) <e}. Let w: Q,— dQ
be the normal projection. We define a function r: 2, X Q, — R as follows:
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r(z, w)=inf{t: t = r(z), t =|r(w)|,
C(w(w), |[r(w)|) C C(w(2), 1), C(w(z), r(z)) C C(m(W), 1)}.

Thus, when z, w e 92, we have r(z, w) = d(z, w). From now on, we shall use
C to denote a positive constant depending only on ¢, 8, v, and the domain
(2, but this constant does not always have the same value at each occurrence.

DEeriNITION 2.1.  Let © be a bounded domain in C” with smooth boundary.
We say that Q is admissible if Q! has a homogeneous structure and if the
Bergman kernel K for Q satisfies the following “homogeneity condition”:

|K(z, w)| = C(r(z, w)-|B(x(2), r(z, w))|) ™" (2.1
We will prove the following theorem.

THEOREM 2.2. Let Q C C” be an admissible domain. Suppose that the Szegé
projection P maps LP(0Q) boundedly onto 3CP(Q) for all pe[2,x), and
that Q satisfies Condition R (see [BelL]). Then |Vf|*(z) r(z) dV(z) is a Carle-
son measure for every fe€ BMOA(Q).

REMARK 1. Suppose that 2 is a bounded strongly pseudoconvex domain in
C". Then Q is admissible by the asymptotic expansion of Fefferman [Fef,
Thm. 2]. It is known that P: L?(dQ) - JC”(Q) is bounded for all 1< p <o
(see [PS]), and Q satisfies Condition R (see [BE]). In fact, in what fol-
lows we do not need the full force of Condition R. We require only that
P: C*(09) —» W'(Q) be bounded, where W is the standard Sobolev space.

REMARK 2. Let Q be a pseudoconvex domain of finite type in C2 Then all
the hypotheses of Theorem 2.2 are satisfied - see [BelLL; PS; NRSW]. Thus
the conclusion of Theorem 2.2 holds for these two classes of domains.

To prove Theorem 2.2, we first need to prove a lemma.

LEMMA 2.3. There is a constant C > 0 such that, for each B= B(zy,6) C3Q
and each fe BMO(0Q), we have

1

IfBl:‘lBl

[ son da(w)lscufn*log(i).
B | B|

Proof. The argumentisin the spirit of the John-Nirenberg theorem. Without
loss of generality, we assume that |[dQ\ B|=1. We shall write c¢B = B(z,, ¢d)
if B= B(z,, 0). Here c is the constant from the definition of a homogeneous
structure. Choose the least positive integer N such that Q C ¢VB. Thus we
have

cN"BcooccVB
and, by Definition 2.1, we have
N1 Bl =|cN1B| =109 = |cVB| = 8V|B).
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Hence

Q
N= E 1+ log([69|/|B|)> < Clog(la—lc>.
v logc | B|

Thus we have
N

S F(w)do— f5| = ES (f(w)—fg)da(w)1
oO\B k=1YckB\c*"'B
N
<3 | | £W) = fokg| do(w)
k=1YckB\c*"'B

+ % lc*B\c*~'B|| foxg— 3]
k=1

N N &k
Skzl”f||*|ck3|+k2 2 |fc’B"'fcf"B”CkB|

=1j=1

N
SC||f||=«=k2 (|c“B|+k|c*B])
=1
N k
= Cllfll*kE |c*B|(k+1)
=1

N
< C||f)«(N+1) 3 |c*B\c*~'B|
k=1

=C|fl+N|oQ|

< C| f|l« log(C/|BY).
The desired inequality then follows easily. O
Proof of Theorem 2.2. Let f € BMOA(Q). We shall demonstrate that

|Vf|2r(z)dV(z) is a Carleson measure. Let C = B(zg, 6) X (0,6) =B X (0,5)
be a Carleson region. We write

SR)=fp+P((f—SB)xc28)(2) + P((f— fB)X)(?)
= ¢1(2) + ¢$2(2) + ¢3(2),

where x =1—x.25. Here x denotes a characteristic function.
Since ¢, is a constant, it follows that V¢, =0. Since ¢, is holomorphic,
|Vé,(z)|* = A|p2(z)|> Hence, by Green’s formula, we have

Se'V‘bz‘z”z“z’ dV(z) < SQIV%(Z)Izr(z) dV(z)

SQ Alé2(2)[2r(z) aV(2)

~{ 2P do)+{ 182281 aV (),
a9 0



56 STEVEN G. KrRANTZ & SoNG-YING L1

where we have used the fact that the Bergman norm of a holomorphic func-
tion is majorized by the 3C? norm (just use Fubini’s theorem or the co-area
formula [Fed]). Now this is

<c( I8P dota)
a

<C S | FO9) — faPxer do(z)
aQ

=C| flE]e*B|
=C| fIZ|B|.

It remains to estimate [e|Ve3|>(2)r(z)dV(z). Suppose that d¢;/dz; €
L%(Q). Then

%ﬂ(z):g Kz, w) 222 (wy aviw)
Zj Q ow;

J

_ S f_(x(z, w) b3 (W) dV(w).
Q O0W;

Therefore, by the divergence theorem,

0 d
993 (2)= [ Kz w3005 dotw).
a0 w;

Even if d¢3/dz; is not in 3C%(Q), the above equality still holds, since ¢5 can
be approximated in the 3¢%(Q) norm by functions in C*(2)NJIC(Q) (this
assertion follows easily from Condition R). Thus

A3 . _ or
e (D= [RCRDERI By 2 A9
ar ar
+ gan K(z, W)¢3(W)(_8_w_; (w)— oW, (Z)> do(w)

=I,(z2) +1,(z).
Since K(-, z) € A(Q) € 3C*(Q), we have

L@ = K@wésm) %(z) do(w)
J

a9

= aa—r(z)<¢3,K(-, 2

=L@ | (S —I)1=xcrm) WKz, W) do(w)
Wi a0

_ or
ow;

J

(2) S (F(W) — f) K (2, W) do(w).
IO\ cB
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Thus, since K satisfies (2.1), we have

n@l=Cl 1700 fall Kz Wl dot)

1

Sck§2mim_ck-m'f (W) =Jp|do(w)
<£< D c—k[ ! S | F(W) = forg| do(W) +| fuep— f, ID
AV 'CkBI c*B “r e
C k
S?< E C'_k(”fll*+ E Ifch—fcf_'BD)
k=2 Jj=1
C Lk
=5( = et +xi 1)
k=2
C
=23 i)
_ ol
o )
Therefore,

| lll(z)l"-r(z)dV(z)<C<”f I ) | Ir@lave

< C<£;L> -6%|B|

=C@|f]3B].

This is the estimate that we need for I; to see that |Vf(z)|*r(z) is a Carleson
measure.

We now turn to estimate jellz(z)lzr(z) dV(z). Since dr/dw; is smooth, we
have

[I,(z)|=C SanK(Z, w||és(W)|w—z|da(w) <| 3], ¥z >

where ¥,(-) =|K(z, ‘)|-|-—z|, p>1, and 1/p+1/p’=1. Now, since fe
BMOA(Q), we have that fe LP(dQ) for all 1 < p < oo (see [CW]). Therefore,
we have

I#3]l, = CQ, pY| f—f3ll,
= Cp(|| ]I+ /8D

= Cp(I/1lp+ 11 /1|« log(C/| B(zo, 8)])).

For each z e @(zo, 6), we shall use the notation B(z) = B(«(z), r(z)) and
c*B(z) = B(%(z), ¢ Xr(z)). Hence there is a least positive integer N such that

aQ c cVB(z).
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Again, since the Bergman kernel K satisfies the homogeneity condition (2.1)
we have

|K(z, w)| = C(r(z, w)| B(w(2), r(z, w)|)™", z,weQ.
By the definition of r(z, w), we know that if we B(xw(z), r(z)) then

r(z, w)=r(z).
If we c*B(z) —c*~'B(z), then we have

lr(zy<r(z,w)<cr*!

rz), k=12,...,N.
Therefore,

|K(z, w)| =< C(c*~'r(z))~!|c*'B(2)| ™!
Now, by the fact that 9( is compact and by axiom (2), we see that

|z—w|= C(c**r(z))”
if we c*B(2)\c*'B(2),

k=1,2,...,N.
It is obvious that

|K(z, w)| =< C(r(2)|B(z)) 7",

|z—w|=Cr(z)",
if we B(z).

By Lemma 1.2 in [Beal.], one has
c"*|B(z)| = |c*B(z)| = B¥| B(z)|. (2.2)

Let p’=1++%/2. Notice that, by the fact that 87/8.(log(1/8)) < C(y) for all
0 <6 <1 and the inequalities above, we have

el = | 1K@l b dotm

N

S |K(z, w)|p'|w—z|”'da(w)
k=19YckB(z)\c*~'B(z)

+S |K(z, w)|P'|w—2z|P do(w)
B(z)

—ptk—1) 1
C<r< ) ’

_ w—2z|? do(w
TR g, 21 Ao

IA

p» N

c L) S M B@D 7 (e r @) e B2)

r(z) -0

1 P N , , ,

sc:(——) S ¢~k |k B(2) [P (ckr ()P
(z)) K=o

Lod
< Cr(z) ?'|B(z)|™? s ¢ HA=MP kY (=P F D) (7P <
k=0
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< Cr(z) P Y Bz)| P r(z)?" Y KA
k=0

< Cr(z) " Y B(z)| 77 *r(z)P.

Here we have used (2.2).
Since | B(z)| = r(z)"/*/8, we have

|B(z)|7P" "< Cr(z) Pt
Since 0 <y << 1, we have p’=1+4+v%2<1+1/16 and

|B(z)| "< Cr(z)™""®" = Cr(z)~""2.
Thus we have

—n' —n' 4 249 ’ ’
r(z) P Y B(2)| 7P i (2)P < Cr(z) ™Y 22 < Cr(z) 7P,

Hence
F(Z)—p’IB(z)l"P"Hr(Z)YP'S Cr(z)p")'/4-—1 < CI’(Z)(_]+7/4)_

Combining the above estimates, we obtain

llz(Z)l = ”¢3“p“‘l’z“p'
= C<”f"p+”f”* log(TB—(Z%—‘S)T» r(z)Hr®

c —14/4
= (11171 log( g ) e+
=C(| S+l rz) ",

Hence
Sellz(z)lzr(z) dvz) = C(||fi+1f1)? Se r(z) 2t r(z) dV1(z)

< C(|f i+ f]l+)2(47y)| B|s 7"
<C(|f i+ /11)2 B0, 8)]-

Therefore,
S€|V¢3|2r(z) dv(z) = cgeul(z)lzr(z) dV(Z)+CSe|12(z)|2r(z) aV(z)

< C(|/ I +[.f1:)?|B(z0, 8)-

This shows that |Vf |2(z)r(z) is a Carleson measure. The proof is therefore
complete. O

3. The Duality Theorem

In this section we will prove several lemmas. Taken together, these imply
that BMOA(Q) C (3¢!(Q))* - that is, the sufficiency of Theorem 1.1.
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Let u(z) € L'(0Q). We define a Hardy-Littlewood extension function M(u)

of u from 39 to {Q, by
_ do(§)
M(u)(z)=sup |t0(&)|———: B(w(z), r(z)) C B(zg, r) C 0%
B B(zp, 1) | B(20, )|

for ze(},.

Let u € L1(Q). We shall use N(u)(z) to denote the radial maximal function
on 09 of u, defined by

N(u)(z) =supflu(z+tv(2))|: 0<t<e}, ze€0W

Then we have the following lemma.

LEMMA 3.1. Let Q be a bounded strongly pseudoconvex domain in C" or a
bounded pseudoconvex domain of finite type in C2. If u is a nonnegative
plurisubharmonic function in Q such that N(u) e L'(3Q), then we have

|u(z)| = CM(N(u))(z) forall z€Q,.

Proof. In Q is a strongly pseudoconvex domain, then the lemma is due to
Hormander [HO, Lemma 4.2] (see also [S2; Ba; K2]). Here we use their idea
to prove the lemma for the case when Q is a pseudoconvex domain of finite
type in C2. We shall use the notation and local coordinates described in
[NRSW, p. 118]. We need only to prove the desired inequality for ze€(},,
where ¢ is a fixed small positive number.
Suppose that @ C C?is of type m. Then there are positive constants &g, €,
C,, and C, such that C; <1< C, and the following properties (i)-(v) hold.
(i) For every point p € a2, there is a neighborhood U of 3 and a biholo-
morphic mapping H,: C*— C? with H,(0) = p and H,({|z|<eo}) CU and
satisfying H, = P,oU,T,, where:
(a) T, is the translation defined by 7,,(z) = z+ p;
(b) U,is a unitary mapping with U,(0, {) equaling the inward unit normal
to dQ2 at p; and
(©) Pplt1, £2) = (b1, E2+ == 2 di(P)E[), Where d;:0Q—C, k=2,...,m,
are smooth. (This implies that J, = detU, is a constant C with
IC|=1)
(ii) For each p e dQ there exists a smooth function #7: CX R — R such
that: .
(@) {z€C?:|z| <, H,(z)eQ}=(ze€ Cz_ :|z] < ep, Imzy > hP(21, Re 2,));
(b) hP(0,0) =0, VA*(0,0) =0, and 8'h?/8z{(0,0) = 3’h"/87{(0,0) =0
for 2<j=m; and
(c) The set {#”), 40 is a bounded subset of C*({(z, ?): |z]| < 2¢y, || <
2¢€0}).

(ii1) For pe dQ and 2 < j < m, there are constants A;(p) such that
aa+ﬁhp
dzazf

CiAi(p)=s X (0,0)

at+f=<j

= CyA;(p).



Hardy Spaces and BMO Functions in C" 61

(iv) For pe0Q and 6 >0,

CIA(p,(S)S E

at+fB<m

A
0zdzf
(v) For every pe dQ and all 6 with 0 <6 <6,
B(p, CiA(p, 8)) C Hy({(z1, t +ihP(z1, 1)) |24 <9, [t| < A(p, 6)})
C B(p, C;A(p, d)).

The construction in (i)-(v) appears in [NRSW]. Bear in mind here that
our notation for balls in the boundary is different from that in [NRSW]. In
our notation, the measure of a boundary ball is comparable to [5((8)]?-6;
in theirs it is comparable to 62A(p, 8) (see [NSW1; NRSW] for details).

In order to prove that u(z) < C-M(N(u))(z), it suffices to show that

do(w)
H(Z)SCSUD{SB(H(Z)J) N ) | B(7(z), )|
Let p=7(z) and v(§) = |u-H,(£¢)|. We shall write
§=1(§, &) =(x1+ixy, t+is).

Recall that, since A(p, ) is strictly increasing in 6, there is a unique 5(z) =
r(z) such that A(p, n(z)) =r(z). Let

VI/5= {(‘Els t+lhp(£ls t)): IEIIS 77(19, 6): |t| 56], 6560
It is clear from (v) that
B(p, C,6) C H,(W;) C B(p, C,9).

Therefore, since H), is a smooth biholomorphic mapping in a fixed neigh-
borhood of p, it is sufficient to prove that if 0 <s¢<§,/C then

(0,0)[6%8 < C, A(p, §).

: B(w(z), Cyr(z)) C B(w(2), r)].

v(0, isg) < Csup {ﬁ SW N)(§E)da(£):6p=6= SOJ +Cs [lu|;-

For each 0<s7<6,/C, since v(0, &) is subharmonic in £, we have, for
A’ ={|§,—iso| <s¢/C]}, that

(0, isg) < S v(O,Ez)dsa’tsCSO_zS (0, £) ds dt.
A A

1
|47
Next we claim that if £,e A’ and ¢,€e A"= {|£,|$n(p, 50)/C,}, then

Hpy(Ag X {&,)) C Q.
By (ii), it suffices to prove that Im(¢) > A?(&,, Re(&,)) for all £, € A” and

£, € A'. This follows from |Re&;| < s5,/C and properties (ii)(b) and (iv).
Therefore,

v(0, isg) < CSO_ZS
A

0(0, £,) dt ds

1
A IA”I

<C'sg? S S V(E,, £y) dixy dxy ds di
o
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<Cssn(poso | ol ) dxidx; dsd

AI X AII

< Csiln(z, 54) 2 S N()(£) do(t)

Wso

| No@ o
2

Ws,|

=<C

This completes the proof. _

LEMMA 3.2. Let Q be an admissible domain in C". Let f e 3CY(Q) be such
that |Vf|*(z)r(z) dV(z) is a Carleson measure. Suppose that there is a 1<
g < and a constant C such that

|u(z)| = C(M(N(|u|"))(2))?, z€Q., ue ().
Then lse (3CH(Q))*, where l; is the linear functional on 3¢! induced by f.

Proof. We shall follow the argument given by Fefferman and Stein in [FS].
Fix zo € Q. Let G(z, zy) be the Green’s function for the ordinary Laplacian
on Q. For u € 3¢'(Q) we have, by Green’s formula, that

K f, uy| = jw Fudo(z)

- S A(fu) G(z, 20) dV(z)—Sﬂ JuAG(z,2) dV(2)

IA

SQ 121 a— 576(2  20) dV(2)

+ C| f(z0)||u(z0)]

1/2 172
_C(SQIVflzr(z)lu(z)ldV(z)) (SgWulzjurlr(z)dV(z))
+ C(1+|Vf |(20)| Vi |(z0) +| f(z0)]|u(z0)])
172
< c( SQ|Vf|2r(z)|u(z)| dV(z)) (SQ|Vu]2|u|—1r(z) dV(z)>

+C|rzo)| 7" A+ SNl
We then apply [HO, Thm. 2.4"] and [S2, Cor., p. 40] to obtain the estimate

1/2

SQIVflz(z)r(z)Iu(z)l dv(z) = SQIVfIZ(Z)f(Z)M(N(Iulll"))"(Z)dV(Z)

=< CoIN(u|" 7))
=< Colllu]"||g= Cglull;.
Now
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S |u(z)| 7| Vul*r(z) dV(z) = S Alu(z)|r(z) dr(z)
Q Q

= | @ldo@-| ju@lar@ ave)
aQ Q

=<llulli+Cllul.

Thus [ f, u)| < C|lu||;, where C is a constant depending only on the norm of
the Carleson measure |V/f (z)]zr(z). Therefore, /r € (3¢(Q))* or, more simply,
fe (3 )™. O

Combining Theorem 2.2 with Lemmas 3.1 and 3.2, we have completed the
proof of the sufficiency in Theorem 1.1.

4. Proof of Theorem 1.1

We shall complete the proof of Theorem 1.1; that is, we are going to prove
that (3C1(2))* C BMOA(Q).

LEMMA 4.1. Let Q be a bounded domain in C". Then (3C1{(Q))* C P(L=(0Q)).
Here P is the Szego projection.

Proof. This is standard. Let / be a linear functional on JC'(Q). Because
Jc1(Q) is a closed subspace of L!(dQ), by the Hahn-Banach theorem we
can extend / to be a linear functional on L'(dQ) with the same norm. Since
LY{(0Q)* = L=(09), there is an fe L=(dQ) such that for each ue 3C'(Q) we
have

1) =S Fudo= S FP(u)do

a0 aQ

={(P(u), f>=<u, P(f)
=§ P(Nudo(z).
aQ

Therefore P(f) is a linear functional on 3C'(Q), and /(1) = (u, P(f)). The
proof of Lemma 4.1 is complete. O

For convenience, we shall from now on assume that  is a bounded, pseudo-
convex domain of finite type in C"” with smooth boundary. By the result of
Kerzman in [Ke] (see also [BellL]) and the result of Catlin [Ca] on the regu-
larity of the d-Neumann problem in a domain of finite type, we have, for
each we Q, that K(-, w) e C*(Q).

Let »(z) denote the unit inward normal vector to 32 at z € d€2. Then we
may choose an ¢y > 0 small enough that

z2=7(2)+r(z)v(n(z)) 4.1)
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for all ze Q. For each ae C*(£,,), we define kernels S(z, w) and S(z,w)
on 0 X3 by

€

S(z, w) = S " a(z+ () K(z+ tv(2), w) dt 4.2)

0
and

S.(z,w)= SEO a(z+tv(2)K(z+tv(z), w)dt. (4.3)

LEMMA 4.2. Let Q be a bounded strongly pseudocozzvex domain or pseudo-
convex domain of finite type in C%. Then S and S. satisfy the following
inequality:
|8(z, )| < C|B(z, r(z, E))| 7 (4.5)
further,
18(z, £) — S(w, £)|+|S(&, 2) — S(&, w)|
=< C|B(zo, 120, )| ™' 7| B(z0, )" (4.6)

if z,we B(zg,0), £€0Q—cB(zy,96), and z,€ 31).

Proof. By the asymptotic expansion of the Bergman kernel on a strongly
pseudoconvex domain in C” (see [Fef] or [BSj]), or by estimates for the
Bergman kernel for a finite type domain in C? in [NRSW, (5.2), (5.3)], we
have the estimates :

|K(z+1tv(z), £)| < C|B(z,d(z, £))|"'d(z, £)™*
and

d(z, £)

K (z+1v(2), )| =< C|B(z, d(z, ) "' —3

Thus we have

. d(z, &)
15z, &)< C SO IB(z, d(z, §)|~'d(z, )~ dt

€0 _1 d(z,
+ CS |B(z,d(z, £))|™ tzg)
d(z, %)
= C|B(z,d(z, £))| "'+ C|B(z, d(z, £))| '
< C|B(z,d(z, £))| "
This completes the proof of (4.5).
Next we prove (4.6). We first consider

15z, &) — S(w, £)| = S€°a(z+tv<z))1<(z+rv<z),s>dt
0 |

dt

—Sfo aw+tv(w) K(w+tv(w), £) dt| <
0
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€0
< S la(z+tv(z) —a(w+tv(w)||K(z+ tv(2), £)| dt
0

+ S€0|a(w+tv(w))]-|K(z+tV(z), £)—K(w+tv(w), &) dt|
0

=11(Z, w, E)+IZ(Z: w, g)
Observe that
la(z+tv(2)) —a(w+ tv(W)| = Clz—w+1(»(2) —v(W))]
=C(1+t)|z—w|
<C(1+8)6"=Co"

for some vy > 0 depending only on the type of Q. (In fact, 6" =%(z, ) if 6 <
1.) Therefore we have

Iz w, )= Co7 | |K(z+ (), )] di
0

d(z, %) | :
SCW{SO |B(z,d(z, £))| " d(z, )™ dt

€0 d ,
+* 1B e o EEY dt}
d(z,£) 4

= C8"|B(z,d(z, )|
=< C|B(z0, (2, )| ! | B(z0, )"
=< C,|B(2¢, (20, )77 | B(20, 0)["".
Now we turn to estimate I,(z, w, £). Let us estimate /,(z, w, £) in the case
of pseudoconvex domains of finite type in C? (the case of strongly pseudo-

convex domains is simpler).
First we choose a curve ¢: [0, 1] —» dQ such that

¢ (s) = exp(a;(8) X1+ ()Xo +{(8)T), ¢(0)=2z, d(1)=w,
1 1
S|ozj’-(s)|dsan(z,5), S|§"(s)|dssC5, j=1,2.
0 0

Therefore, by Theorem 3.1 in [NRSW], we have
|K(z+tv(z), £) — K(w+tv(w), £)|

Sl
<<
0

E—K(¢(S)+tv(¢(8)), £)ds
A)

1 2
< S 1xK@©) + @6l ds

0j=1

1
+S0|TK<¢(s)+tv(¢>(s)), £)|I¢(s)] ds <
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2 |
<C 3 | 26(5),d(6(9), D) 2d@(s), ) aj(s)| ds
J=

1
+Cgﬂn(¢(8),d(¢(8), £))~2d(6(s), £) 73| ()| ds

=< Cn(z,d(z, £))d(z, £) " *9(z, 8) + Cn(z, d(z, £)) "2d(z, £) 36

n(z, 6) + ) )
n(z,d(z,£))  d(z,§))

< Cx(z,d(z, £))2d(z, E)"2<
Also,
|K(z+tv(z), £) —K(w+ tv(w), §)|

L 9) 5
< Cn(z, d(z, £))2 2( n(z )
=Gl dz ) e e ) T

Therefore, since |B(z, d(z, £)| = 7(z, d(z, £))*d(z, £), we have
7(z, 8) N 5 )Sd(z,f) 1
77(2, d(zs E)) d(za E) 0 d(z’ E)

+CS d(z, £)t =2 dt

d(z,§)
_ ,8) 6

_CB ,d ’ 1( n(z >
=C|B(z,d(z, §))| n(z,d(z,é))_i_d(z’f)

<C|B(z,d(z, £))| "' ~""| B(z, 0)|"’

for some small positive . _ _
Similar arguments also give the desired estimate for |S(¢, z) —S(&, w)|.
Therefore, the proof of Lemma 4.2 is complete, ]

dt

IZ(Z, w, S) = C|B(Z, d(Z, E))l_l(

From the arguments of [NRSW, §5, §6], we now have the following propo-
sition.

ProrosiTION 4.3. Let Q be a bounded, strongly pseudoconvex domain in
C", or a pseudoconvex domain of finite type in C2. Then the singular inte-
gral operator Is induced by the kernel S(z, w) on 09 is bounded on LP(Q)
Jorall 1< p<oo,

ProrosiTioN 4.4. Let Q be a bounded strongly pseudoconvex domain in
C" or a bounded pseudoconvex domain of finite type in C* with smooth
boundary. Let S be a kernel on dQ x 89 defined in (4.2). Then I5(L*(3Q))C
BMO(0Q), where I is the singular integral operator induced by S.

Proof. Let fe L”(0Q). We are going to show that 75(f) e BMO(3Q).
Let B= B(zy,6) be any ball in Q. Let X5 denote the characteristic func-
tion of cB = B(z¢, c6). Then, by Lemma 4.2, we have the following inequality:

18(z, £)—S(w, £)| = C|B(z0, 8| | B(z0, d(z0, )]~ (4.7)
for all z, we B=B(z(,9) and £ € 0Q —cB.
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Let us write

Is(f)=Is(fXcp) + Is(f(1— X p)). (4.8)
Then

1),

5100 =57 § Is(f)(2) do(z)| do(w)

1

Is(f(l XB))(W) T8

d(w)

S Is(f(1— X.0))(2) do(2)

1

IS(chB)(W) ]Bl

do(w)

S I5(fX.p)(z) do(z)

I

Ig(f(l_XcB))(W)_m

S Is(fX.5)(2) do(2)

do(w)]

20 S |I5((f — f5) Xep)(W)| do(w).

We shall estimate the last two terms.
Applying Jensen’s inequality, we have

1/2
57 ), V15—t Xen) dotn) = [ 1567 = XedP2 0wy oo 51

= (BN Is(f ~fo) Xen)| 2
= C(1/|B)"?|| fXca] 12
=CU/|BN"*| f |l cB]'"?
= CB| s

where C is a positive constant depending only on Q and | 75|

Now we estimate the other term. It is easy to see from inequalities (4.5),
(4.6), and Proposition 4.3 that if X =1—X_5 then

I;I S da(w)

Is(f(1= X.5)) (W) —I_II%T SB Is(f(1— X)) (2) do(2)

S \Is(FX) W) —Is(fX) (z0)| do(w)

2
=18

=_2_§
1Bl Jp

2 3 3
=T8] /]l oo SB Saﬂ_cBlS(w, £) —8(zo, £)| do(£) do(w)

< 2 ”wg | clBzo. 0" |B(zo, d(zo, |77 do(8) dotw)
|B| 2—cB )

Ilallm SB kil S k+1 | kBIB(ZOs 6)|YZIB(ZO3 cka)l—l—’Yz dU(E) dU(W)

SFENS(W, £) = S(zo, £)) do(£)

S da(w)
30\ cB
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_ ol

1B SB éEJB(Zo, 8)[""|B(zo, ¢*8)| ™" do(2)

= C”f”ookgllB(ZO, E)I’yzc—-kqﬂ/mlB(Zo, 5)|—'yz

= . —ky¥m
=C|fll kE c
-1

=Cymllfl-
Therefore, the above two estimates imply that
L 1

|B| Jp | B|

This completes the proof of Proposition 4.4. |

Is(f)(w)—

|, 5@ av(@)| doow) = €

Next we shall use the kernel S introduced in (4.2) (associated to the Berg-
man kernel K) on a strongly pseudoconvex domain, or on a pseudoconvex
domain of finite type in C?, to study the Szegd projection. That is, we shall
prove the following thereom:

ProposiTION 4.5. Let Q be a bounded pseudoconvex domain of finite type
in C" with smooth boundary. Then the Szego projection has the following
property:

P(f)=A(f)+EP(f), [feL*(49),
where

A= rls, §=(, w)=g "2+ () K(z+10(2), w) dt,
Jj=1 0

and
E=Igri—rils +Q, Q(P(/NE@)=P(f)(z+er(z)).

Proof. We recall that if fe C*(0Q) then the Szegé projection P(f) € C*(dQ)
(see [Bo; BSh]). Suppose fe C*(d?) and F= P(f), so that F is holomorphic
in Q. By our choice of r we have that

V(Z)z(——ar —ar)

9z, 0z,
Thus
n
— F
(1, 3Fy=—3 9L (5L

Hence we choose a;(z) = —dr(z)/9z;. Since

F o
5Z—j(z)—§ K(z, w) 5 aviw),

Q W_]

the divergence theorem tells us that, when z € 62,
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F(z)—F(z+¢€yv(2))

-3 SS a2+ (@)K @+ (2), w) 2L (w) dViw) dt
j=1J0 Jo aw;

= é S Seaj(z+tv(z))K(z+tv(z),w)dt;—‘:(w)F(w) da(w).
i=1450 Yo J
Hence

F(2)—F(w)=3 I5(r;F)(z),
j=1
where r; = dr/dw; and I 5, is the integral operator with kernel

~ €0
Si(z, w)= S a;(z+1tv(2))K(z+1tv(z), w)dt.
0
We may write

F(z+€ov(2)) = O (P(fN(2).
Then Q. (P(-)) is a smoothing operator. Therefore,

n
P(N)(z)= 2 I5(r; P(f))(2)+ QO (P(/)(z).
j=1
However, since the kernel Sj(z, w) is conjugate holomorphic in w, we have

that

Is(f—P(f)=0, j=1,...,n
We conclude that

P(f)= _El Is (ri P(f) + 2 1id5,(f = P() + O (P(f))
j=
=A(f)+EP(f).

Therefore the proof of Proposition 4.5 is complete. L
THEOREM 4.6. Let Q be a bounded, strongly pseudoconvex domain in C"

or a pseudoconvex domain of finite type in C* with smooth boundary. Then
P(L7(09Q)) C BMOA(Q).

Proof. Let fe L*(0Q). Then, from the above argument, we have

P(f)(2)=A(f)(2)+EP(f)(z), z€0,

where A4 and E are given in Proposition 4.5. By Propositions 4.3, 4.4, and
4.5 and Lemma 4.2, we have A(f) e BMO(9{).
Now the operator £—Q, has kernel

n n
2 Ni(z, w)y= 2 (rj(w)—r;(2))S;(z, w).
J J=1
Since |r;(w) —r;(z)| = C|z—w|, by Proposition 4.4 we have N;(z, -) € L(3Q)

uniformly in z € 92 for some p=1+4+¢>1. Here p is close to 1, depending
only on 2. That is, we have
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||Nj(z, ')”Lp(ag) =<(C, forall zeo{.

Since fe L*(092) we have P(f)e L”(3Q), where p’ is conjugate exponent
to p. Therefore P(f)E(z, )€ L'(dQ) uniformly for z€dQ. Thus we have
E(P(f)) € L*(99), since Q, is a smooth operator. Combining the above
estimates, the proof of Theorem 4.6 is complete. O

Combining Lemmas 3.1, 3.2, 4.1, and Theorem 4.6, we see that the proof of
Theorem 1.1 is complete.

5. Closing Remarks

It seems likely that an alternate route to some of the estimates in the last
section are by way of the 7°(1) theorem - see, for instance, [Ch]. However,
the careful verification of the hypotheses of the 7°(1) theorem entail many of
the calculations that we have provided in Section 4. So, while the 7°(1) theo-
rem provides a conceptual framework in which to operate, it does not seem
to provide a saving in details.

In [KL] we develop some additional techniques for considering atomic
decompositions, factorization of JC? functions and related ideas. It should
also be noted that Dafni [Da] has developed an elegant technique for treat-
ing atomic decompositions and other matters related to the subject of the
present paper. Further ideas may also be found in [CRW].
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