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A STRONG COMPLETENESS THEOREM
FOR 3-VALUED LOGIC

H. GOLDBERG, H. LEBLANC, and G. WEAVER

We establish here that Wajsberg's axiomatization of SC3, the 3-valued
sentential calculus, is strongly complete, Theorem 1, p. 329, and by re-
bound weakly complete, Theorem 2, p. 329. Theorem 2 is a familiar result,
obtained by Wajsberg himself in [5], and Theorem 1 can be recovered from
results in [3], But because of its simplicity and directness our proof of
Theorem 1 may be worth reporting.1

The primitive signs of SC3 are '~', '=», '( ' , ' ) ' , and a denumerable
infinity of sentence letters, say '/>', (q9, 'r'r, 'p", (q", 'r", etc. The wffs of
SC3 are those sentence letters, plus all formulas of the sort ~A9 where A
is a wff, plus all those of the sort (A ̂  B), where A and B are wffs. The
length l(P) of a sentence letter P is 1; the length l(~A) of a negation ~A is
l(A) + 1; and the length l((A => B)) of a conditional {A D B) is l(A) + l(B) + 1.
We abbreviate the wff ( ~ ( p p)9 as <f, and wffs of the sort (A D ~A) as A.
We also omit outer parentheses whenever clarity permits. The axioms of
SC3 are all wffs of SC3 of the following four sorts:

Al. A^{B^A),

A2. ( A ^ 5 ) D ((B ^ C) ^ (A ^ C)),
A3. {A^A)^A,
A4. (~A 3 ~B) 3 (B ^ A).

A wff A of SC3 is provable from a set S of wffs of$C3—S\-A, for short—if
there is a column of wffs of SC3 (called a proof of A from S) which closes
with A and every entry of which is an axiom, a member of S, or the
ponential of two earlier entries in the column. A wff A of SC3 is provable—
I-A, for short—if A is provable from 0. A set S of wffs of SC3 is syntacti-
cally (inconsistent if there is a (there is no) wff A of SC3 such that both A
and ~A are provable from S. And S is maximally consistent if (a) S is

1. Wajsberg's proof of Theorem 2 in [5] is "effective": it shows how to prove A
whenever A is valid. Ours merely guarantees that A is provable.
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syntactically consistent, and (b) S \~A for any wff A of 5C3 such that S u {A}
is syntactically consistent.

Our truth-values are 0, f, and 1. Truth-value assignments are func-
tions from all the sentence letters of SC3 to {0, f, l},2 and the truth-values
under these of negations and conditionals are reckoned as the following
matrix directs:

Matrix I

B

A 3 B 0 I 1 ~A

0 1 1 1 1

A I I 1 1 \
1 0 \ 1 0

A set S of wffs of SC3 is semantically consistent if there is a truth-value
assignment under which all members of S evaluate to 1. S entails a wff A
of SC3—SNA, for short—if, no matter the truth-value assignment a, A
evaluates to 1 under a if all members of S do. And A is valid—f=A, for
short—if, no matter the truth-value assignment α, A evaluates to 1 under a.3

We collect in (lemma) LI some auxiliary facts about provability and
syntactic inconsistency. LI (a)-(d) hold by definition. Instructions for
proving LI (e)-(p) can be found in [5],

LI. (a) IfShA, then S'Ή A for every superset S1 of S.4

(b) If Sv-A, then there is a finite subset S' of S such that S' \-A.
(c) If A belongs to S, then Si-A.
(d) IfSY-A and S\-A 3 B, then S i-£.
(e) h(A D (A3 (B D C))) ^ ((A => (A 3 £)) 3 (A 3 (A => C))).
(f) h~A 3 (A z>£).
(g) h^A,
(h) MA ^A)^A.
(i) hJ^A,
(3) 1 A^A.

(k) h-AD — A .

(1) h(A DJ?) D (~£ 3 ~A).

(m)h-(A 3 5) DA.

(n) f-~(A D 5 ) D - JB.

(o) h-A 3 (^JB 3 -(A 3 5)) .

2. The possibility of assigning truth-values to just the sentence letters occurring in

(members of) a set S of wffs of SC3 or in a wff A of SC3 is considered on p. 328.

3. In view of the last three definitions, 1 is our only "designated" value.

4. Hence, in particular, if HA, then S hA for every set 5 of wffs of SC3 (a'); hence, in

particular, if A is an axiom of SC3, then S \-A for every 5 (a") Because of (a'),

each one of (e) - (p) holds prefaced with 'S', a fact we shall regularly take for

granted.
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(p) h Ϊ D (TTβΌ (A ΏB)).
(q) IfSU {A}\-B, then ShA 3 (A 3 5) . (The Stutterer's Deduction Theorem)5

(r) If S is syntactically inconsistent, then S \-A for every wff A o/SC3.
(s) S is syntactically inconsistent if and only if Shi.
(t) If S u {A} is syntactically inconsistent, then S hA.
(u) If S u {A} is syntactically inconsistent, then ShΛ,

Proof: (q) Suppose the column made up of Cly C2, . . ., and Cp constitutes a
proof of B from S u {A}. We establish by mathematical induction on i that
ShA 3 (A 3 C* ) for each £ from 1 through p, and hence in particular that
S hA 3 ( A 3 B). Case 1: d is an axiom or a member of S. Then S h d by
LI (a) or LI (c). But Shd 3 (A 3 C, ) by L i (a"). Hence S h i D d by
Li (d). But S h(A 3 d) 3 (A 3 (A 3 C, )) by Li (a"). Hence S (-A 3 {A 3 Q)
by L i (d). Cαs£ 2; C, is A. Then S hA D {A 3 C, ) by L i (a"). C«s<? 5: C,
in the ponential of Ch and Ch ^ Cf . Then ShA 3 (A 3 Q) and ShA 3 (A D
(CA D CO) by the hypothesis of the induction. Hence S h i D f i D d) by
L i (c) and LI (d).
(r) Suppose S h β and Sh~B for some wff B of SC3. Then by LI (f) and
L i (d) ShA for any wff A of SC3.
(s) Shp 3 p by L i (g). Hence, if S Hf, then S is syntactically inconsistent.
Hence LI (s) by LI (r).
(t) Suppose S u {A} is syntactically inconsistent. Then S u {A} i—A by
LI (r), hence S h A 3 A by Li (q), and hence S h i by LI (h) and Li (d).
(u) Proof by Li (t), L i (i), and L i (d).

Now for proof that if a set S of wffs of SC3 is syntactically consistent,
then S is semantically consistent as well. We hew at first to two-valued
precedent: i.e., we assume S to be syntactically consistent and then extend
S into the familiar superset Soo of two-valued textbooks.6 The members of
Soo, and hence those of S, will thereafter be shown to evaluate to 1 under
some truth-value assignment of our own devising. Construction of Soo, the
reader will recall, is as follows: (a) Take So to be S, (b) assuming the wffs
of SC3 to be alphabetically ordered and A, to be for each i from 1 on the
alphabetically f-th wff of SC3, take S, to be S/_1 u {A,-} if 5 M u K ] is
syntactically consistent, otherwise take S, to be Si,1 itself, and (c) take Soo
to be £ Si.

Here as in the two-valued case, it is easily verified that:

(1) Soo is syntactically consistent

and

(2) Soo is maximally consistent.

5. The familiar Deduction Theorem: If S U {A} h B, then S hA 3 B, does not hold
here. Though '/> 3 r ' is provable from (the set consisting of) *p 3 (q 3 r ) ' and
'p 3 q', ' (p 3 (q 3 r)) 3 ((/> 3 q) 3 (p 3 r)Y is not valid and hence not provable.

6. See, for instance, [2], p. 73. The primary source is of course [1].
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For proof of (1), suppose Soo were syntactically inconsistent. Then by
LI (s) and LI (b) at least one finite subset Sr of Soo would be syntactically
inconsistent. But Sr is sure to be a subset of So, or (failing that) one of S1?

or (failing that) one of S2, etc., and each one of So, Sl9 S2, etc. is syntacti-
cally consistent. Hence (1). For proof of (2), suppose not Soo hA, where A
is the alphabetically i-th wff of SC3. Then by LI (c) A does not belong to
Soo, hence A does not belong to S t , hence Si.1 u {A} is syntactically incon-
sistent, and hence by LI (s) and LI (a) so is Soo U {A}.

Departing now from two-valued precedent, let a be the result of
assigning to each sentence letter P of SC3 the truth-value 1 if Soo h P (and
hence, by the syntactic consistency of Soo, not Soo H~P), the truth-value 0 if
Soo i — P (and hence, by the syntactic consistency of Soo, not S^ HP), other-
wise the truth-value \. We proceed to show of any wff A of SC3 that:

(i) If So© H A (and, hence, not S^ h~A), a(A) = 1,
(ii) IfSooϊ~~A (and, hence, notSoohA), a(A) = 0,
(iii) If neither S^ hA nor Soo H ~ A, a(A) = \.

The proof is by mathematical induction on the length I of A.

Basis: 1=1, and hence A is a sentence letter. Proof by the very construc-

tion of a.

Inductive Step: I > 1.

Case 1: A i s a negation ~JB. (i) Suppose So© ι — B . Then not Soo ̂ B, hence
by the hypothesis of the induction (h.i ., hereaf ter) a(B) = 0, and hence
a(~B) = 1. (ii) Suppose Soo I B. Then by LI (j) and LI (d) Soo \-B, hence
by h. i . a{B) = 1, and hence a(~B) = 0. (iii) Suppose ne i ther Soo ι — B nor
Soo i B. if B w e r e provable from Soo, then by LI (k) and LI (d) so would
~~B b e . Hence nei ther Soo^B nor S o o H ~ £ , hence by h. i . a(b) = | , and
hence a(~ B) - \.
Case 2: A is a conditional B 3 C. (i) Suppose Soo ̂ ~B D C. If S^ ι—B, then
a(B) = 0 by h.i. If Soo^C, then a(C) = 1 by h.i. If Sooh^, then SooHCby
LI (d), and hence again a(C) = 1. And, if Soo H~C, then Soo H ~ 5 by LI (1)
and LI (d), and hence again a(B) = 0. Hence, if any one of B, ~B, C, and
~ C is provable from Soo, then a(B) = 0 or a(C) = 1, and hence a{B ^ C) = 1.
If, on the other hand, none of B, ~B, C, and ~C is provable from Soo, then
<*(£) = a(C) = i by h.i., and hence α(J5 3 c) = 1. (ii) Suppose Soo H- ~(-B ^ C).
Then by LI (m)-(n) and LI (d) both Soo^-B and Sooh-C, hence by h.i.
a(B) = 1 and a(C) = 0, and hence a(B D C) = 0. (iii) Suppose neither Sooh-B ^>
C nor Soo \-~(B => C). Then 01(5) cannot equal 0 nor can a(C) equal 1, for by
h.i. ~B or C would then be provable from Soo, and hence by LI (f), LI (a),
and LI (d) so would B =) C be. Now suppose/zrsί that α(JB) = 1. Then α(C)
cannot equal 0, for by h.i. ~C would then be provable from Soo, and hence
by LI (o) and LI (d) so would ~(B => C) be. Hence α(C) must equal | , and
hence α?CB ̂  C) = | . Suppose rc£#i that #(#) = j>. Then o:(C) cannot equal | ,
for by h.i. neither B nor ~C would then be provable from Soo, hence by the
maximal consistency of So© both S u {B} and S U {~C} would be syntactically
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inconsistent, hence by LI (t) both B and ~C would be provable from Soo, and

hence by LI (p) and LI (d) so would B D C be. Hence a(C) must equal 0,

and hence a(B =) C) = | .

Since every member of S belongs to Soo and hence by LI (c) is provable

from So©, every member of S is thus sure to evaluate to 1 under a. Hence:

L2. If S is syntactically consistent, then S is semantically consistent.

Our completeness theorems are now at hand. For suppose SNA.

Then, as the reader may wish to verify, S U {A} is semantically incon-

sistent, hence by,L£,Su{A} is syntactically inconsistent, and hence by

LI (u) Si-A. Hence:

Theorem 1 (The Strong Completeness Theorem) If S t= A, then S\-A.

Hence, taking S to be 0:

Theorem 2 (The Weak Completeness Theorem) If NA, then t-A.

Since the converse of L2 is also provable, it follows from LI (b) and

LI (s) that if every finite subset of S is semantically consistent, then S is

syntactically consistent. Hence, as a further corollary of L2\

Theorem 3 (The Compactness Theorem) If every finite subset of S is

semantically consistent, then S is semantically consistent.

Four closing remarks are in order.

(1) Shαpecki noted in [4] that ' ~ ' and '=>' are not "functionally complete,"

but ζ~', e^>', and the connective Ί' are (TA evaluates to | no matter the

truth-value of A). If with Slupecki we add to A1-A4 on p. 325 the following

two axiom schemata:

A5. ΊA => ~TA,

A6. - ΊA => ΊA,

the above proof of L2 easily extends to the case where A is of the sort ΊB.

Indeed, neither So© h ΊB nor Soo ̂ ~ ΊB (by LI (a) and LI (d) Soo would other-

wise be syntactically inconsistent), and a(ΊB) = a(~ΊB) = | . (i)-(iii) on

p. 328 are therefore sure to hold true.

(2) Suppose the truth-values of ~A, A D JB, and ΊA are reckoned as the

following matrix directs:

Matrix II

B

A^)B 0 i 1 -A ΊA

0 1 0 1 0 0

A I 1 1 1 1 0

1 0 I 1 I 0

Suppose also the truth-value assignment a on p. 328 is so redefined as to
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assign value 1 to P if Soof-P, value | if Soo\-~P, and value 0 if neither
Soo hP nor Sooh^P. Then the argument on pp. 328-9 will show that: (i') If
Soo\-A, a(Λ) = 1, (iif) if Sooh~A, a(A) = | , and (iii') if neither Soo i-^jior
Sooi-~A, a(A) = 0. So L2 holds true again. But, if ShA, then S u {A} is
again semantically inconsistent. So Theorems 1-2 hold true whether the
truth-values of ~Af A D JB, and TΛ be reckoned the familiar Lukasiewicz
way or as Matrix II directs. That SC3—as axiomatized by Wajsberg and
Slupecki—is strongly (and hence weakly) sound and consistent under two
different readings of '~', '=)', and 'T' (and, incidentally, under two only)
may not have been reported before.

(3) As noted on p. 326, our truth-value assignments are to all the sentence
letters of SC3 rather than just those occurring in (members of) a set S of
wffs of SC3 or just those occurring in a wff A of SC3. However, the
argument on pp. 327-9 is easily sharpened to show that if S is non-empty
and syntactically consistent, then there is a truth-value assignment to just
the sentence letters in S under which all members of S evaluate to 1.
Hence proof can be had that (a) if, no matter the truth-value assignment a
to the sentence letters in S U {A}, A evaluates to 1 under a if all members
of S do, then S HA, and (b) if, no matter the truth-value assignment a to the
sentence letters in A, A evaluates to 1 under a, then \-A.

(4) S is sometimes taken to entail A if, no matter the truth-value assign-
ment α, A does not evaluate under a to less than any member of Sdoes.
The account does not suit Wajsberg's axiomatization of SC3 since Ί' is
provable from (the set consisting of) 'p' and '~ρ9.
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