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A STRONG COMPLETENESS THEOREM
FOR 3-VALUED LOGIC

H. GOLDBERG, H. LEBLANC, and G. WEAVER

We establish here that Wajsberg’s axiomatization of SC;, the 3-valued
sentential calculus, is strongly complete, Theorem 1, p. 329, and by re-
bound weakly complete, Theorem 2, p. 329. Theorem 2 is a familiar result,
obtained by Wajsberg himself in [5], and Theorem 1 can be recovered from
results in [3]. But because of its simplicity and directness our proof of
Theorem 1 may be worth reporting.’

The primitive signs of SC, are ‘~’, ‘2’7, (¢, ’)’, and a denumerable
infinity of sentence letters, say ‘p’, ‘q’, ‘v’ ‘p", ‘q"”, ‘r"’, etc. The wffs of
SC; are those sentence letters, plus all formulas of the sort ~A, where A
is a wff, plus all those of the sort (A D B), where A and B are wifs. The
length 1(P) of a sentence letter P is 1; the length I[(~A) of a negation ~A is
I(A) + 1; and the length I({A D B)) of a conditional (A D B) is I(A) + I(B) + 1.
We abbreviate the wif ‘~(p O p)’ as ‘f’, and wffs of the sort (A D ~A) as 4.
We also omit outer parentheses whenever clarity permits. The axioms of
SC; are all wifs of SC, of the following four sorts:

Al. AD(BDA),

A2. (ADB)D>((B>C)>(4A>0),
A3. (ADA)DA,

A4. (~A D ~B)D(BDA).

A wff A of SC; is provable from a set S of wffs of SC3—S+A, for short—if
there is a column of wffs of SC; (called a proof of A from S) which closes
with A and every entry of which is an axiom, a member of S, or the
ponential of two earlier entries in the column. A wff A of SC; is provable—
+A, for short—if A is provable from ©. A set S of wffs of SC; is syntacti-
cally (in)consistent if there is a (there is no) wff A of SC, such that both A
and ~A are provable from S. And S is maximally consistent if (a) S is

1. Wajsberg’s proof of Theorem 2 in [5] is ‘‘effective’’: it shows how to prove A
whenever A is valid. Ours merely guarantees that A is provable.
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syntactically consistent, and (b) S+A for any wff A of SC; such that SuU {4}
is syntactically consistent.

Our truth-values are 0, 3, and 1. Truth-value assignments are func-
tions from all the sentence letters of SC; to {0, 3, 1}, and the truth-values
under these of negations and conditionals are reckoned as the following
matrix directs:

Matrix I
B
ADB |0 + 1 |~A4
o|l1 1 1 1
A 3|z 1 1 3
11{0 1 0

A set S of wffs of SC; is semantically consistent if there is a truth-value
assignment under which all members of S evaluate to 1. 'S entails a wif A
of SC;—S kA, for short—if, no matter the truth-value assignment a, A
evaluates to 1 under o if all members of S do. And A is valid—kFA, for
short—if, no matter the truth-value assignment @, A evaluates to 1 under a.®

We collect in (lemma) LI some auxiliary facts about provability and
syntactic inconsistency. LI(a)-(d) hold by definition. Instructions for
proving LI (e)-(p) can be found in [5].

L1. (a) If S+ A, then S'+ A for every superset S' of S.*

(b) If S+A, then theve is a finite subset S' of S such that S'+A.
(c) If A belongs to S, then S+-A.

(d) If S-A and S+A D B, then S +B.

(e FADMUAD>B2C))>2((ADMA>B)>MADMA>DO)).
(f) -~A4A D (4 O B).

(g) A D A.

(h) (4 D> A) D A.

(i) ~A D A.

(G) w~~A DA.

k) mFAD ~~A.

(1) (A D B) D (~B D ~A).

(m)-~ (A D B) D A.

(n) -~(4 D B) D ~B.

(o) A D (~B D ~(A D B)).

2. The possibility of assigning truth-values to just the sentence letters occurring in
(members of) a set S of wffs of SC3 or in a wff A of SC; is considered on p. 328.

3. In view of the last three definitions, 1 is our only ‘‘designated’’ value.

4. Hence, in particular, if A, then S + A for every set S of wffs of SC3 (a’); hence, in
particular, if A is an axiom of SC3, then S A for every S (a”). Because of (a’),
each one of (e)-(p) holds prefaced with ‘S’, a fact we shall regularly take for
granted.
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(p) FA D (~B > (A DB)).

(@) If SU{A}+ B, then S-A D (A D B). (The Stutterer’s Deduction Theorem)®
(r) If S is syntactically inconsistent, then S +A for every wff A of SCs.

(s) S is syntactically inconsistent if and only if S +-f.

(t) If Su{A}is syntactically inconsistent, then S FA.

(w) If Su {A} is syntactically inconsistent, then S+ A.

Proof: (q) Suppose the column made up of C,, Cs, . . ., and C, constitutes a
proof of B from S U{A}. We establish by mathematical induction on i that
S+A D (A D C;) for each ¢ from 1 through p, and hence in particular that
S+A D (A D B). Case 1: C; is an axiom or a member of S. Then S+ C; by
Li(a) or L1(c). But SHC;: D(ADC;) by L1(a'"). Hence SHFAD C; by
L1(d). But SF(ADC;)) D(AD(ADC) by L1(a”). Hence SFA D (A D Cj)
by LI (d). Case 2: Ci;is A. Then SFA D (A D C;) by LI (a"). Case 3: C;
in the ponential of Cj and C; 2 C;. Then S-A D (A D C) and SFA D (A D
(Cr O C;)) by the hypothesis of the induction. Hence SFA D (4 D C;) by
LI (c)and L1 (d).

(r) Suppose S+B and St+~B for some wiff B of SC;. Then by LI (f) and
L1(d) S+A for any wff A of SC,.

(s) S-pDpby LI(g). Hence, if S+, then S is syntactically inconsistent.
Hence LI (s) by LI (r).

(t) Suppose SU{A} is syntactically inconsistent. Then SU{A}r~A by
LI (r), hence S-A D A by L1 (q), and hence S+A by L1 (h) and LI (d).

(u) Proof by LI (t), L1 (i), and L1 (d).

Now for proof that if a set S of wifs of SC; is syntactically consistent,
then S is semantically consistent as well. We hew at first to two-valued
precedent: i.e., we assume S to be syntactically consistent and then extend
S into the familiar superset S of two-valued textbooks.® The members of
S, and hence those of S, will thereafter be shown to evaluate to 1 under
some truth-value assignment of our own devising. Construction of S, the
reader will recall, is as follows: (a) Take S, to be S, (b) assuming the wffs
of SC; to be alphabetically ordered and A; to be for each i from 1 on the
alphabetically i-th wif of SC;, take S; to be S, U{A;} if S, U{4;} is
syntactically consistent, otherwise take S; to be S;_, itself, and (c) take Se
to be z(), S;.

i

Here as in the two~valued case, it is easily verified that:
(1) S is syntactically consistent
and

(2) S is maximally consistent,

. The familiar Deduction Theorem: If S U {A} + B, then S +A D B, does not hold
here. Though ‘p D7’ is provable from (the set consisting of) ‘p D (g D7)’ and
‘PO, pD@Dr) D Dg) D D)) is not valid and hence not provable.

w

6. See, for instance, [2], p. 73. The primary source is of course [1].
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For proof of (1), suppose S« were syntactically inconsistent. Then by
L1 (s) and LI (b) at least one finite subset S’ of S would be syntactically
inconsistent. But S’ is sure to be a subset of S, or (failing that) one of S,
or (failing that) one of S,, etc., and each one of S,, S, S,, etc. is syntacti-
cally consistent. Hence (1). For proof of (2), suppose not Sew+A, where A
is the alphabetically i-th wff of SC;. Then by LI (c) A does not belong to
S«, hence A does not belong to S;, hence S;., U {A} is syntactically incon-
sistent, and hence by L1 (s) and L1 (a) so is Se U {A}.

Departing now from two-valued precedent, let @ be the result of
assigning to each sentence letter P of SC; the truth-value 1 if S« P (and
hence, by the syntactic consistency of Sw, not S -~ P), the truth-value 0 if
S+~ P (and hence, by the syntactic consistency of Sw, not S, - P), other-
wise the truth-value 3. We proceed to show of any wff A of SC, that:

(i) If SwrA (and, hence, not S, - ~A), a(4) = 1,
(ii) If Sw+ ~A (and, hence, not Sw+A), a(4) =0,
(iii) If neither SooA nov S+~ A, a(A) = 3.

The proof is by mathematical induction on the length [ of A.

Basis: 1 =1, and hence A is a sentence letter. Proof by the very construc-
tion of a.

Inductive Step: 1 > 1.

Case 1: A is a negation ~B. (i) Suppose S« ~~B. Then not S, - B, hence
by the hypothesis of the induction (h.i., hereafter) a(B) = 0, and hence
a(~B) = 1. (ii) Suppose Se ~~B. Then by LI (j) and LI (d) S« B, hence
by h.i. a(B) = 1, and hence a(~B) = 0. (iii) Suppose neither S« +~ B nor
Swt~~B, If B were provable from S, then by L1 (k) and L1 (d) so would
~~ B be. Hence neither S+ B nor S« -~ B, hence by h.i. a(d) = 3, and
hence a(~ B) = 3.

Case 2: A is a conditional B D C. (i) Suppose S -B O C. If Se, -~ B, then
a(B) =0 by h.i. If Sx+C, then a(C) =1 by h.i. If Se+ B, then S, +C by
L1 (d), and hence again a(C) = 1. And, if S +~C, then S, ~~B by L1 (1)
and LI (d), and hence again a(B) = 0. Hence, if any one of B, ~B, C, and
~C is provable from S, then a(B) = 0 or a(C) = 1, and hence a(B D C) = 1.
If, on the other hand, none of B, ~B, C, and ~C is provable from S., then
a(B) = a(C) = 3 by h.i., and hence a(B D C) = 1. (ii) Suppose Se +~(B D C).
Then by L1 (m)-(n) and LI (d) both Sew+B and S +~C, hence by h.i.
a(B) = 1 and a(C) = 0, and hence a(B D C) = 0. (iii) Suppose neither Seo B D
C nor Sw ~(B O C). Then a(B) cannot equal 0 nor can a(C) equal 1, for by
h.i. ~B or C would then be provable from S, and hence by LI (f), LI (a),
and LI (d) so would B O C be. Now suppose first that a(B) = 1. Then a(C)
cannot equal 0, for by h.i. ~C would then be provable from S, and hence
by L1 (o) and L1 (d) so would ~(B 2 C) be. Hence a(C) must equal 3, and
hence a(B O C) = 3. Suppose next that a(B) = 3. Then a(C) cannot equal 3,
for by h.i. neither B nor ~C would then be provable from S, hence by the
maximal consistency of S both S U {B} and S U {~C} would be syntactically
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inconsistent, hence by LI (t) both B and ~C would be provable from S, and
hence by L1 (p) and L1 (d) so would B D C be. Hence a(C) must equal 0,
and hence a(B O C) = 3.

Since every member of S belongs to S and hence by L1 (c) is provable
from S,, every member of S is thus sure to evaluate to 1 under a. Hence:

L2. If S is syntactically consistent, then S is semantically consistent.

Our completeness theorems are now at hand. For suppose SFA.
Then, as the reader may wish to verify, SU{A} is semantically incon-
sistent, hence by, L2, S U {Z} is syntactically inconsistent, and hence by
L1 (u) S-A. Hence:

Theorem 1 (The Strong Completeness Theorem) If SEA, then S+ A.
Hence, taking S to be 9:
Theorem 2 (The Weak Completeness Theorem) If FA, then -A.

Since the converse of L2 is also provable, it follows from L1 (b) and
L1 (s) that if every finite subset of S is semantically consistent, then S is
syntactically consistent. Hence, as a further corollary of L2:

Theorem 3 (The Compactness Theorem) If every finite subset of S is
semantically consistent, then S is semantically consistent.

Four closing remarks are in order.

(1) Stupecki noted in [4] that ‘~’ and ‘D’ are not ‘‘functionally complete,”’
but ‘~’, ¢D’, and the connective ‘T’ are (TA evaluates to 3 no matter the
truth-value of A). If with Stupecki we add to AI1-A4 on p. 325 the following
two axiom schemata:

A5, TAD~TA,
A6. ~TA D TA,

the above proof of L2 easily extends to the case where A is of the sort TB.
Indeed, neither Seo - TB nor S -~ TB (by LI(a) and LI (d) S would other-
wise be syntactically inconsistent), and a(TB) = a(~TB) = 3. (i)-(iii) on
p. 328 are therefore sure to hold true.

(2) Suppose the truth-values of ~A, A D B, and TA are reckoned as the
following matrix directs:

Matrix II

B
ADB |0 3 1 l~A l TA
0|1 o0 1 0 0
A 3|1 1 1 1 0
110 % 1 5 0

Supbose also the truth-value assignment a on p. 328 is so redefined as to
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assign value 1 to P if S+ P, value 3 if Sw ~~P, and value 0 if neither
Sew =P nor Se ~P. Then the argument on pp. 328-9 will show that: (i) If
SwrA, a(d) =1, (ii’) if Swt~A, a(A) = 3, and (iii’) if neither Se A nor
Sewt~A, a(A) =0. So L2 holds true again. But, if SFA, then SU{A}is
again semantically inconsistent. So Theorems 1-2 hold true whether the
truth-values of ~A, A D B, and TA be reckoned the familiar Yukasiewicz
way or as Matrix II directs. That SCy;—as axiomatized by Wajsberg and
Stupecki—is strongly (and hence weakly) sound and consistent under tfwo
different readings of ‘~’, ‘O’, and ‘T’ (and, incidentally, under two only)
may not have been reported before.

(3) As noted on p. 326, our truth-value assignments are to all the sentence
letters of SC; rather than just those occurring in (members of) a set S of
wffs of SC; or just those occurring in a wff A of SC;. However, the
argument on pp. 327-9 is easily sharpened to show that if S is non-empty
and syntactically consistent, then there is a truth-value assignment to just
the sentence letters in S under which all members of S evaluate to 1.
Hence proof can be had that (a) if, no matter the truth-value assignment «
to the sentence letters in S U{A}, A evaluates to 1 under a if all members
of Sdo, then S+A, and (b) if, no matter the truth-value assignment « to the
sentence letters in A, A evaluates to 1 under a, then -A.

(4) S is sometimes taken to entail A if, no matter the truth-value assign-
ment o, A does not evaluate under « to less than any member of S does.
The account does not suit Wajsberg’s axiomatization of SC; since ‘f’ is
provable from (the set consisting of) ‘p’ and ‘~ p’.
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