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A SECOND ORDER AXIOMATIC THEORY OF STRINGS

HOWARD C. WASSERMAN

Introduction A second order axiomatic theory with equality is presented
which completely characterizes systems of the form (X*, λ, 1, *, Z), where
X* is the set of all strings over the non-null alphabet X, λ is the null
string, 1 e X, * is string concatenation, and I is the mapping on X* such that
for SillxeX*, l(x) is the string resulting from x by substituting 1 for each
occurrence of a letter in x. The theory is based on eleven axioms, all but
one of which, a second order induction principle, are first order state-
ments. The language of the theory is based on four primitive first order
constants: two individual constants 0 and 1, a 2-place function constant ,
and a 1-place function constant L. For simplification of presentation and
for motivation, the theory also includes three defined first order constants:
a 2-place predicate ^, and two 1-place predicates ATOM and NAT. The
reader is advised that a more obvious notion of "string system'* than that
given above would be that of an ordered triple (X*, λ, «C), where JC is the
length function mapping X* onto the set of natural numbers such that -C(σ) =
length of σ. But the desire to provide a second order theory led us to
include in our definition the specification of a particular member 1 of X, so
that via the 1-adic number representation system there would be an
internal representation 1* of the set of natural numbers. Given this
internal representation, we were then able to utilize I, a. unary operation on
X*, to correspond to the length function -C.

1 The theory and it's intended models

Ax.l (Vx)(Vy)(Vz) [(x-y)-z =x (yz)]
Ax.2 (Vx)[0-x = ΛΓΛΛ; 0 = X]

Dl (Vx)(Vy) [x < y = (3z)(3w)(y = z x w)]
D2 (V#)[ATOM(x) = x Φ Os^(Vy)(y ^x 3 y = xvy = 0)]

Ax.3 ATOM (1)
Ax.4 (Vx) [x ^ 0 3 x = 0]

D3 (V#)[NAT(#) = (Vy)(AΊOM(y)Λy^ x D 3; = 1)]
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Note: i-NAT (0), since, by D2, i— ATOM (0), hence, by Ax.4, i— (3y)( ATOM ( V)Λ
y < 0), and thus hNAT (0).

Ax.5 (V#)(V;y) [X y = x 3 y = 0]

Note: Ax.5 does not state that 0 is the only right identity (a triviality), but
states, more strongly, that no object other than 0 can operate on the right
upon any object y leaving y unchanged.

Ax.6 (VP) [P(0) Λ (V*)( NAT'(ΛΓ) Λ P(X) => P(x 1))] D [(V#)( NAT (x) => P(x))]
Ax.7 (V*)[(3y)(x = L(y)) 3 NAT W]
Ax.8 (V#)[L(#) = 0 3 ^ = 0]
Ax.9 (Vx)(Vy)[L(x-y) = L(x)-L(y)]
Ax.10 (Vx)[(x Φ OΛL(Λ ) Φ 1) => (3;y)(a£)(;y * 0 Λ * * 0A* = ;y.£)]
Ax. 11 (VΛτ)(V3;)(V>ε)(V̂ )[(Ar 3; = z w*L(x) = L(*)ΛL(;y) = L(w))

3 (ΛΓ = 2: Ay = w)]

The intended models of Ax. 1-Ax. 11 are the string systems over non-
null alphabets. More specifically, we give

Definition 1 A string system is an ordered 5-tuple (X*, λ', 1, *, I), where
X* is the set of all strings over the non-null alphabet X, λ is the null
string, 1 e l , * is the binary operation of string concatenation on X*, and I
is the substitution operation on X* such that for every xeX*, l(x) is the
string obtained from x by substituting 1 for each occurrence of a letter in x.

Definition 2 A concatenation system is any model (C, 0, 1, , L) of Ax.l-
Ax.ll.

Clearly, every string system (X*, λ, 1, *, I) is a concatenation system, the
substring relation on X* is the extension of ^, X is the extension of ATOM,
and 1* is the extension of NAT. In section 2, we shall show that every
concatenation system is, up to isomorphism, a string system.

2 The isomorphism theorem For the remainder, let (C, 0, 1, , L) be a
fixed but arbitrary concatenation system, let A denote the extension of
ATOM in C, and N the extension of NAT in C. Let IN denote the set of all
natural numbers, and let Φ: IN —* N be defined recursively, as follows:

Φ(0) = 0, Φ(n + 1) = Φ(ή) 1

Lemma 1 L(0) = 0.

Proof: L(0) L(0) = L(0 0) = L(0), by Ax.9 and Ax.2. Thus, L(0) = 0, by
Ax.5.

Lemma 2 For all m, we IN, Φ(m + n) = Φ(m) Φ(n).

Proof (by induction on n): (i) n = 0: trivial, by definition of Φ and Ax.2.

(ii) Assume true for k, and suppose n = k + 1. Then:

Φ(m + n) = Φ(m + k + 1) = Φ(m + k) 1 = Φ{m) Φ(&) 1
= Φ(m) Φ(k + 1) = Φ(m) Φ(n).
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Lemma 3 Φ is a bίjection.

Proof: (i) Φ is 1 - to - 1: Suppose m, ne IN with m< n. Then n = m + k, for
some k > 1. Then:

Φ(ή) = Φ(m) Φ(k) = Φ(m) -(Φ(k - 1) 1). (by Lemma 2)

Now, 1 ^ Φ(k - 1) 1, and 1 Φ 0 by Ax.3. Hence, by Ax.4, Φ(k - 1) 1 Φ 0.
Thus, by Ax.5, Φ(ra) (φ(k - 1) 1) Φ Φ(m); i.e., Φ(n) Φ Φ(m).

(ii) Φ is surjective: Let P = Range (Φ). By Ax.6, it suffices to show that
OeP, and for all xeN, if xeP, then x-leP. We have that OeP since
Φ(0) = 0. Suppose xeP. Then, for some we IN, x=Φ(n). Then x l =
Φ{n + 1), and hence x le P.

Definition 3 Let L f: C — IN such that for all xe C, L'(x) = Φ " U W ) (n.b.,
L(#)eNby Ax.7).

Lemma 4

(a) For every xe C, L'(x) = 0 if and only if x = 0.

(b) For all x,yeC, L'(x-y) = L'(#) + L'( y).
(c) F o r ez ery xe C, z/ L'(AT) > 1, #*£w ^ e r β βrβ Λ:^ x2e C - {θ} SMC/Ϊ ίftαί

Λ: = ΛΓX ΛΓ2.

(d) F o r all xl9 x2i yu y2 e C, if xγ-x2 = 3>i 3>2 <m<2 L'te) = Lr(y, )(* = 1,2), ίfcew
Λ:,- = y, (f = 1, 2).

Proof:

(a) L'(ΛΓ) = OΦ^Φ^LW) = 04ΦLM = Φ(0)φ=>L(*) = 0<^>Λ:= 0
(by Ax.8 and Lemma 1).

(b) V{χ.y) = φ-\L{x-y)) = Φ'̂ LW L(y)) (by Ax.9)
= Φ"ι(L(x)) + Φ'ι(L(y)) (by Lemma 2)
= L'(*) + L'(y).

(c) Let Λ e C such that L rW > 1. Then Φ'^LW) # o and Φ ' ^ L M ) Φ 1. Since
Φ'^O) = 0 and Φ"\L(x)) Φ 09 L(x) Φ 0; hence, by Lemma 1, x Φ 0. Now,
Φ(l) = Φ(0 + 1) = Φ(0) l = 0-1 = 1. Hence Φ"x(l) = 1. But Φ'^LW) Φ 1.
Hence, L(x) Φ 1. Thus, ΛΓ Φ 0 and L(ΛΓ) ^ 1. Hence, by Ax.10, there are
xl9 x2e C - {0} such that x = xγ # 2 .

(d) Let ΛΓi, Λ:2, yl9 y2e C such that xx*x2 = ̂ i*y2 and L f(^ t ) = Lf(:yf ) (z = 1, 2).

Then Xι'X2 = ^i ^ 2 and L(AΓ, ) = Lfy,-)^ = 1? 2). Hence, by Ax.ll, Xi =

Λ« = 1, 2).

L e m m a 5 For every xe C, xeA if and only if V{x) = 1.

Proof: Let xeC. Suppose L'(x) = 1. Suppose yeC such that y ^ x. Then
# = 3>i *3> *3>2 fc>r some 3^, y 2 e C . Suppose 3> * 0. Then, by Lemma 4(a),
U(y) > 0. But, by Lemma 4(b), L'(x) = Ufa) + L'(y) + U(y2). Hence, since
L'(x) = 1, L'iyi) = Lf(^2) = 0, and, thus, by Lemma 4(a), ^i = y2 = 0. Hence,
by Ax.2, y = x. Thus,Λ:eA.

Now suppose Lr(x) Φ 1. If L'(x) = 0, then, by Lemma 4(a), x = 0, and
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xfίA. Suppose, now, that L'(x) > 1. Then, by Lemma 4(c), there are
xl9 x2e C - {θ} such that x = x1 x2. Hence x1 ^ x. But xγ Φ 0. Moreover,
since (by Lemma 4(a)) V{x2) > 0 and L'(x) = L'(xj + L'(x2) (by Lemma 4(b)),
L'(ΛΓ) * L'iXi), and hence xι Φ x. Since xx Φ 0, ΛΓX Φ X9 and ΛΓX < x, we have
that * / A

Lemma 6 (Unique Decomposition) For every xe C - {θ}, there is a unique
sequence (xl9 . . ., xn) with x{ e A (1 ̂  i ^ n) and such that n = L'(x) and
x = xx . . .-xn.

Proof: Let xe C - {θ} and let n = L'(x). The proof proceeds by induction
on n:

(i) n = 1: Then, by Lemma 5, xe A.
(ii) Assume n > 1 and for every #' e C - {θ} with m = L '(#') < rc, there is a
unique sequence (x[, . . ., x^) with #/ e A (1 < i ^ m) and such that x1 = x[
. . . #4. Since w > 1, we have by Lemma 4(c) that there are 3^, y2e C - {θ}
such that x-yι y2- Let n t = L f (^ )(i = 1, 2). Then, by Lemma 4(b), n= nλ +
n2, and, by Lemma 4(a), n{ > 0 (e = 1, 2). Thus, wf < w (i = 1, 2). Hence,
there are unique sequences (w1} . . ., wn^ and (^, . . ., zn2) with ^ e A (1 <
f ^ wj, ^ 6 i ( H j < w 2 ) , 3Ί = «Ί ' * wn19 and j ; 2 = zγ . . . ^ 2 . Thus, ^ =

Wi . . . W n i * ! . . . >2W2.

Suppose also that (^{, . . ., w*nι, zu . . ., zή2) is a sequence with w\eA
(1 ^ i ^ n^9 zj e A (1 ̂  j < n2), and ΛΓ = w[ . . . Wnx ̂ { . . . >ε«2 Then, let-
ting &i = w[ . . . Wnx and u2 = z[ . . . '£« 2 , we have that ul9 ^e C such that
Λ: = Mi w2, and, since w\ e A (1 ̂  i < n j , 2;/ e A (1 ̂  j ^ n2), it follows by
Lemma 4(b) and Lemma 5 that V(uι) = L'(^ ) -n{ (i = 1, 2). Thus, by
Lemma 4(d), Wj = yt (i = 1, 2). Hence, by induction hypothesis, w{ = w\ (1 ̂
i < nj and >ε; = >e/ (1 ̂  j ^ n^, and the sequence (wl9 . . ., wni, z19 . . ., zn2) is
unique.

We shall refer to the sequence (xl9 . . ., xn) of Lemma 6 as the
decomposition sequence for x.

Theorem (Isomorphism) The concatenation system (C, 0, 1, , L) is iso-
morphic to the string system (A*, λ, 1, *, I).

Proof: Define Ψ: C —> A* as follows: for every xe C,

ί λ, if # = 0
^f(x) = < ΛΓj. * . . . *#„, if x Φ 0, where (ΛΓI, . . ., xn)

( is the decomposition sequence for x.

Proof: It follows easily by Lemma 6 (applied to C and to A*) that Ψ is a
1 - to - 1 mapping of C onto A* which maps 0 onto λ, and such that for all
yx, y 2 eC, ^(^1*^2) = Myi) *My2) Moreover, ψ(l) = 1, since leA. Also,
Z'(Φ(#)) = L'(ΛΓ) for all xe C, and hence l(*(x)) = U#) for all xe C. Thus, *
is an isomorphism.

Corollary 1 The axiom system Ax.l-Ax.ll can be enlarged to one which
characterizes exactly the string systems over finite alphabets by adding

Ax.12 (3#)[(Vy)(ATOM.(3θ ^ y < x)].
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Proof: Clearly, every string system over a finite alphabet realizes Ax. 12.

Moreover, if the concatenation system <£ = (C, 0, 1, , L) satisfies
Ax.12, then so does the string system (A*, λ, 1, *, I) isomorphic to®, and
hence, since every member of A* is the concatenation of only finitely many
letters, A is finite.

Corollary 2 For each n ̂  1, the theory obtained by adding to the system
Ax.l-Ax.ll the axiom Ax.l2.n, stating that there exist exactly n atoms, is
categorical.

Proof: Given two models Cλ and C2 of Ax.l-Ax.ll, AxΛ2.n, an isomorphism
from Ci onto C2 may be obtained using the isomorphisms Φί9 % (see the
proof of the preceding Theorem), and an arbitrary one-to-one correspon-
dence between the atoms of CL and the atoms of C2.
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