A SECOND ORDER AXIOMATIC THEORY OF STRINGS

HOWARD C. WASSERMAN

Introduction A second order axiomatic theory with equality is presented which completely characterizes systems of the form $\langle X^*, \lambda, 1, *, l \rangle$, where X^* is the set of all strings over the non-null alphabet X, λ is the null string, $1 \in X$, * is string concatenation, and l is the mapping on X^* such that for all $x \in X^*$, l(x) is the string resulting from x by substituting 1 for each occurrence of a letter in x. The theory is based on eleven axioms, all but one of which, a second order induction principle, are first order statements. The language of the theory is based on four primitive first order constants: two individual constants 0 and 1, a 2-place function constant ., and a 1-place function constant L. For simplification of presentation and for motivation, the theory also includes three defined first order constants: a 2-place predicate ≤, and two 1-place predicates ATOM and NAT. The reader is advised that a more obvious notion of "string system" than that given above would be that of an ordered triple $\langle X^*, \lambda, \mathcal{L} \rangle$, where \mathcal{L} is the length function mapping X^* onto the set of natural numbers such that $\mathcal{L}(\sigma)$ = length of σ . But the desire to provide a second order theory led us to include in our definition the specification of a particular member 1 of X, so that via the 1-adic number representation system there would be an internal representation 1* of the set of natural numbers. Given this internal representation, we were then able to utilize l, a unary operation on X^* , to correspond to the length function \mathcal{L} .

1 The theory and it's intended models

Ax.1
$$(\forall x)(\forall y)(\forall z)[(x \cdot y) \cdot z = x \cdot (y \cdot z)]$$

Ax.2 $(\forall x)[0 \cdot x = x \land x \cdot 0 = x]$
D1 $(\forall x)(\forall y)[x \le y \equiv (\exists z)(\exists w)(y = z \cdot x \cdot w)]$
D2 $(\forall x)[ATOM(x) \equiv x \ne 0 \land (\forall y)(y \le x \supset y = x \lor y = 0)]$
Ax.3 ATOM (1)
Ax.4 $(\forall x)[x \le 0 \supset x = 0]$
D3 $(\forall x)[NAT(x) \equiv (\forall y)(ATOM(y) \land y \le x \supset y = 1)]$

Note: $\vdash NAT(0)$, since, by D2, $\vdash \sim ATOM(0)$, hence, by Ax.4, $\vdash \sim (\exists y)(ATOM(y) \land y \leq 0)$, and thus $\vdash NAT(0)$.

Ax.5
$$(\forall x)(\forall y)[x \cdot y = x \supset y = 0]$$

 $\supset (x = z \land y = w)$

Note: Ax.5 does *not* state that 0 is the only right identity (a triviality), but states, more strongly, that no object other than 0 can operate on the right upon any object y leaving y unchanged.

Ax.6
$$(\forall P) [P(0) \land (\forall x) (\mathsf{NAT}(x) \land P(x) \supset P(x \cdot 1))] \supset [(\forall x) (\mathsf{NAT}(x) \supset P(x))]$$

Ax.7 $(\forall x) [(\exists y)(x = \mathsf{L}(y)) \supset \mathsf{NAT}(x)]$
Ax.8 $(\forall x) [\mathsf{L}(x) = 0 \supset x = 0]$
Ax.9 $(\forall x)(\forall y) [\mathsf{L}(x \cdot y) = \mathsf{L}(x) \cdot \mathsf{L}(y)]$
Ax.10 $(\forall x) [(x \neq 0 \land \mathsf{L}(x) \neq 1) \supset (\exists y)(\exists z)(y \neq 0 \land z \neq 0 \land x = y \cdot z)]$
Ax.11 $(\forall x)(\forall y)(\forall z)(\forall w)[(x \cdot y = z \cdot w \land \mathsf{L}(x) = \mathsf{L}(z) \land \mathsf{L}(y) = \mathsf{L}(w))$

The intended models of Ax.1-Ax.11 are the string systems over non-null alphabets. More specifically, we give

Definition 1 A string system is an ordered 5-tuple $\langle X^*, \lambda, 1, *, l \rangle$, where X^* is the set of all strings over the non-null alphabet X, λ is the null string, $1 \in X$, * is the binary operation of string concatenation on X^* , and l is the substitution operation on X^* such that for every $x \in X^*$, l(x) is the string obtained from x by substituting 1 for each occurrence of a letter in x.

Definition 2 A concatenation system is any model $(C, 0, 1, \cdot, L)$ of Ax.1-Ax.11.

Clearly, every string system $\langle X^*, \lambda, 1, *, l \rangle$ is a concatenation system, the substring relation on X^* is the extension of \leq , X is the extension of ATOM, and 1^* is the extension of NAT. In section 2, we shall show that every concatenation system is, up to isomorphism, a string system.

2 The isomorphism theorem For the remainder, let $\langle C, 0, 1, \cdot, L \rangle$ be a fixed but arbitrary concatenation system, let A denote the extension of ATOM in C, and N the extension of NAT in C. Let IN denote the set of all natural numbers, and let $\Phi: N \to N$ be defined recursively, as follows:

$$\Phi(0)=0,\ \Phi(n+1)=\Phi(n)\cdot 1$$

Lemma 1 L(0) = 0.

Proof: $L(0) \cdot L(0) = L(0 \cdot 0) = L(0)$, by Ax.9 and Ax.2. Thus, L(0) = 0, by Ax.5.

Lemma 2 For all $m, n \in \mathbb{N}, \Phi(m+n) = \Phi(m) \cdot \Phi(n)$.

Proof (by induction on n): (i) n = 0: trivial, by definition of Φ and Ax.2.

(ii) Assume true for k, and suppose n = k + 1. Then:

$$\Phi(m+n) = \Phi(m+k+1) = \Phi(m+k) \cdot 1 = \Phi(m) \cdot \Phi(k) \cdot 1$$
$$= \Phi(m) \cdot \Phi(k+1) = \Phi(m) \cdot \Phi(n).$$

Lemma 3 Φ is a bijection.

Proof: (i) Φ is 1-to-1: Suppose m, $n \in \mathbb{N}$ with m < n. Then n = m + k, for some $k \ge 1$. Then:

$$\Phi(n) = \Phi(m) \cdot \Phi(k) = \Phi(m) \cdot (\Phi(k-1) \cdot 1).$$
 (by Lemma 2)

Now, $1 \le \Phi(k-1) \cdot 1$, and $1 \ne 0$ by Ax.3. Hence, by Ax.4, $\Phi(k-1) \cdot 1 \ne 0$. Thus, by Ax.5, $\Phi(m) \cdot (\Phi(k-1) \cdot 1) \ne \Phi(m)$; i.e., $\Phi(n) \ne \Phi(m)$.

(ii) Φ is surjective: Let $P = \text{Range}(\Phi)$. By Ax.6, it suffices to show that $0 \in P$, and for all $x \in \mathbb{N}$, if $x \in P$, then $x \cdot 1 \in P$. We have that $0 \in P$ since $\Phi(0) = 0$. Suppose $x \in P$. Then, for some $n \in \mathbb{N}$, $x = \Phi(n)$. Then $x \cdot 1 = \Phi(n+1)$, and hence $x \cdot 1 \in P$.

Definition 3 Let L': $C \to \mathbb{N}$ such that for all $x \in C$, L'(x) = $\Phi^{-1}(L(x))$ (n.b., L(x) $\in \mathbb{N}$ by Ax.7).

Lemma 4

- (a) For every $x \in C$, L'(x) = 0 if and only if x = 0.
- (b) For all $x, y \in C$, $L'(x \cdot y) = L'(x) + L'(y)$.
- (c) For every $x \in C$, if L'(x) > 1, then there are $x_1, x_2 \in C \{0\}$ such that $x = x_1 \cdot x_2$.
- (d) For all $x_1, x_2, y_1, y_2 \in C$, if $x_1 \cdot x_2 = y_1 \cdot y_2$ and $L'(x_i) = L'(y_i)(i = 1, 2)$, then $x_i = y_i(i = 1, 2)$.

Proof:

(a)
$$\mathbf{L}'(x) = 0 \iff \Phi^{-1}(\mathbf{L}(x)) = 0 \iff \mathbf{L}(x) = \Phi(0) \iff \mathbf{L}(x) = 0 \iff x = 0$$
 (by Ax.8 and Lemma 1).

(b)
$$L'(x \cdot y) = \Phi^{-1}(L(x \cdot y)) = \Phi^{-1}(L(x) \cdot L(y))$$
 (by Ax.9)
= $\Phi^{-1}(L(x)) + \Phi^{-1}(L(y))$ (by Lemma 2)
= $L'(x) + L'(y)$.

- (c) Let $x \in C$ such that L'(x) > 1. Then $\Phi^{-1}(L(x)) \neq 0$ and $\Phi^{-1}(L(x)) \neq 1$. Since $\Phi^{-1}(0) = 0$ and $\Phi^{-1}(L(x)) \neq 0$, $L(x) \neq 0$; hence, by Lemma 1, $x \neq 0$. Now, $\Phi(1) = \Phi(0+1) = \Phi(0) \cdot 1 = 0 \cdot 1 = 1$. Hence $\Phi^{-1}(1) = 1$. But $\Phi^{-1}(L(x)) \neq 1$. Hence, $L(x) \neq 1$. Thus, $x \neq 0$ and $L(x) \neq 1$. Hence, by Ax.10, there are $x_1, x_2 \in C \{0\}$ such that $x = x_1 \cdot x_2$.
- (d) Let $x_1, x_2, y_1, y_2 \in C$ such that $x_1 \cdot x_2 = y_1 \cdot y_2$ and $L'(x_i) = L'(y_i)$ (i = 1, 2). Then $x_1 \cdot x_2 = y_1 \cdot y_2$ and $L(x_i) = L(y_i)$ (i = 1, 2). Hence, by Ax.11, $x_i = y_i (i = 1, 2)$.

Lemma 5 For every $x \in C$, $x \in A$ if and only if L'(x) = 1.

Proof: Let $x \in C$. Suppose L'(x) = 1. Suppose $y \in C$ such that $y \leq x$. Then $x = y_1 \cdot y \cdot y_2$ for some $y_1, y_2 \in C$. Suppose $y \neq 0$. Then, by Lemma 4(a), L'(y) > 0. But, by Lemma 4(b), $L'(x) = L'(y_1) + L'(y) + L'(y_2)$. Hence, since L'(x) = 1, $L'(y_1) = L'(y_2) = 0$, and, thus, by Lemma 4(a), $y_1 = y_2 = 0$. Hence, by Ax.2, y = x. Thus, $x \in A$.

Now suppose $L'(x) \neq 1$. If L'(x) = 0, then, by Lemma 4(a), x = 0, and

 $x \notin A$. Suppose, now, that L'(x) > 1. Then, by Lemma 4(c), there are $x_1, x_2 \in C - \{0\}$ such that $x = x_1 \cdot x_2$. Hence $x_1 \le x$. But $x_1 \ne 0$. Moreover, since (by Lemma 4(a)) $L'(x_2) > 0$ and $L'(x) = L'(x_1) + L'(x_2)$ (by Lemma 4(b)), $L'(x) \ne L'(x_1)$, and hence $x_1 \ne x$. Since $x_1 \ne 0$, $x_1 \ne x$, and $x_1 \le x$, we have that $x \notin A$.

Lemma 6 (Unique Decomposition) For every $x \in C - \{0\}$, there is a unique sequence $\langle x_1, \ldots, x_n \rangle$ with $x_i \in A$ $(1 \le i \le n)$ and such that n = L'(x) and $x = x_1 \cdot \ldots \cdot x_n$.

Proof: Let $x \in C - \{0\}$ and let n = L'(x). The proof proceeds by induction on n:

- (i) n = 1: Then, by Lemma 5, $x \in A$.
- (ii) Assume n > 1 and for every $x' \in C \{0\}$ with m = L'(x') < n, there is a unique sequence $\langle x_1', \ldots, x_m' \rangle$ with $x_i' \in A$ $(1 \le i \le m)$ and such that $x' = x_1' \cdot \ldots \cdot x_m'$. Since n > 1, we have by Lemma 4(c) that there are $y_1, y_2 \in C \{0\}$ such that $x = y_1 \cdot y_2$. Let $n_i = L'(y_i)(i = 1, 2)$. Then, by Lemma 4(b), $n = n_1 + n_2$, and, by Lemma 4(a), $n_i > 0$ (i = 1, 2). Thus, $n_i < n$ (i = 1, 2). Hence, there are unique sequences $\langle w_1, \ldots, w_n \rangle$ and $\langle z_1, \ldots, z_{n_2} \rangle$ with $w_i \in A$ $(1 \le i \le n_1), z_i \in A$ $(1 \le j \le n_2), y_1 = w_1 \cdot \ldots \cdot w_{n_1}$, and $y_2 = z_1 \cdot \ldots \cdot z_{n_2}$. Thus, $x = w_1 \cdot \ldots \cdot w_{n_1} \cdot z_1 \cdot \ldots \cdot z_{n_2}$.

Suppose also that $\langle w_1', \ldots, w_{n_1}', z_1, \ldots, z_{n_2}' \rangle$ is a sequence with $w_i' \in A$ $(1 \le i \le n_1)$, $z_j' \in A$ $(1 \le j \le n_2)$, and $x = w_1' \cdot \ldots \cdot w_{n_1}' \cdot z_1' \cdot \ldots \cdot z_{n_2}'$. Then, letting $u_1 = w_1' \cdot \ldots \cdot w_{n_1}'$ and $u_2 = z_1' \cdot \ldots \cdot z_{n_2}'$, we have that $u_1, u_2 \in C$ such that $x = u_1 \cdot u_2$, and, since $w_i' \in A$ $(1 \le i \le n_1)$, $z_j' \in A$ $(1 \le j \le n_2)$, it follows by Lemma 4(b) and Lemma 5 that $L'(u_i) = L'(y_i) = n_i$ (i = 1, 2). Thus, by Lemma 4(d), $u_i = y_i$ (i = 1, 2). Hence, by induction hypothesis, $w_i = w_i'$ $(1 \le i \le n_1)$ and $z_j = z_j'$ $(1 \le j \le n_2)$, and the sequence $\langle w_1, \ldots, w_{n_1}, z_1, \ldots, z_{n_2} \rangle$ is unique.

We shall refer to the sequence $\langle x_1, \ldots, x_n \rangle$ of Lemma 6 as the decomposition sequence for x.

Theorem (Isomorphism) The concatenation system $\langle C, 0, 1, \cdot, L \rangle$ is isomorphic to the string system $\langle A^*, \lambda, 1, *, l \rangle$.

Proof: Define $\Psi: C \to A^*$ as follows: for every $x \in C$,

$$\Psi(x) = \begin{cases} \lambda, & \text{if } x = 0 \\ x_1 * \ldots * x_n, & \text{if } x \neq 0, \text{ where } \langle x_1, \ldots, x_n \rangle \\ & \text{is the decomposition sequence for } x. \end{cases}$$

Proof: It follows easily by Lemma 6 (applied to C and to A*) that Ψ is a 1 - to - 1 mapping of C onto A* which maps 0 onto λ , and such that for all $y_1, y_2 \in C$, $\Psi(y_1 \cdot y_2) = \Psi(y_1) * \Psi(y_2)$. Moreover, $\Psi(1) = 1$, since $1 \in A$. Also, $l'(\Psi(x)) = \mathbf{L}'(x)$ for all $x \in C$, and hence $l(\Psi(x)) = \mathbf{L}(x)$ for all $x \in C$. Thus, Ψ is an isomorphism.

Corollary 1 The axiom system Ax.1-Ax.11 can be enlarged to one which characterizes exactly the string systems over finite alphabets by adding

Ax.12
$$(\exists x)[(\forall y)(ATOM(y) \supset y \leq x)].$$

Proof: Clearly, every string system over a finite alphabet realizes Ax.12.

Moreover, if the concatenation system $\mathfrak{C} = \langle C, 0, 1, \cdot, L \rangle$ satisfies Ax.12, then so does the string system $\langle A^*, \lambda, 1, *, l \rangle$ isomorphic to \mathfrak{C} , and hence, since every member of A^* is the concatenation of only finitely many letters, A is finite.

Corollary 2 For each $n \ge 1$, the theory obtained by adding to the system Ax.1-Ax.11 the axiom Ax.12.n, stating that there exist exactly n atoms, is categorical.

Proof: Given two models C_1 and C_2 of Ax.1-Ax.11, Ax.12.n, an isomorphism from C_1 onto C_2 may be obtained using the isomorphisms Ψ_1 , Ψ_2 (see the proof of the preceding Theorem), and an arbitrary one-to-one correspondence between the atoms of C_1 and the atoms of C_2 .

Queens College of CUNY Flushing, New York