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A SECOND ORDER AXIOMATIC THEORY OF STRINGS

HOWARD C. WASSERMAN

Introduction A second order axiomatic theory with equality is presented
which completely characterizes systems of the form (X *, A, 1, x, ), where
X* is the set of all strings over the non-null alphabet X, A is the null
string, 1€ X, * is string concatenation, and ! is the mapping on X* such that
for all x € X*, I(x) is the string resulting from x by substituting 1 for each
occurrence of a letter in x. The theory is based on eleven axioms, all but
one of which, a second order induction principle, are first order state-
ments. The language of the theory is based on four primitive first order
constants: two individual constants 0 and 1, a 2-place function constant -,
and a 1l-place function constant L. For simplification of presentation and
for motivation, the theory also includes three defined first order constants:
a 2-place predicate <, and two 1-place predicates ATOM and NAT. The
reader is advised that a more obvious notion of ‘‘string system’’ than that
given above would be that of an ordered triple (X*, A, .£), where [ is the
length function mapping X* onto the set of natural numbers such that (o) =
length of o. But the desire to provide a second order theory led us to
include in our definition the specification of a particular member 1 of X, so
that via the 1-adic number representation system there would be an
internal representation 1* of the set of natural numbers. Given - this
internal representation, we were then able to utilize 7, a unary operation on
X*, to correspond to the length function (.

1 The theory and it’s intended models

Ax.1 (Vx)(vy)(Ve)[(x-9)-z2=x-(v-2)]
Ax.2 (Vx)[0-x=xax-0=x]

D1 (vx)(vy)[x <y = (F2)Bw)(y =z -x-w)]
D2 (VX)[ATOM(x) =x # 0A(VY)(y<x Dy =xvy = 0)]

Ax.3 ATOM (1)
Ax4 (Vx)[x<0Dx=0]

D3 (V%) [NAT (x) = (V9)(ATOM(p)ay < x D y = 1)]
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Note: ~NAT/(0), since, by D2, -~ ATOM (0), hence, by Ax.4, -~ (3y)(ATOM (y)a
9 < 0), and thus -NAT(0).

Ax.5 (Vx)(vy)[x-y=xDy=0]

Note: Ax.5 does nof state that 0 is the only right identity (a triviality), but
states, more strongly, that no object other than 0 can operate on the right
upon any object y leaving y unchanged.

Ax.6  (VP)[P(0) A (Vx)(NAT(x) o P(x) D P(x-1))] D [(Vx)(NAT(x) D P(x))]

Ax.T  (Vx)[(3y)(x = L(y)) D NAT(x)]

Ax.8 (vx)[L(x)=0>Dx=0]

Ax9 (Vx)(Vy)[L(x-y) =L(®) L))

Ax.10 (Vx)[(x #0aL(x) #1) D (39)(32)(y £ 0az #0ax=y-2)]

Ax.11 (Va)(VY)(V2)(Vw) [(x+y = 2. w al(x) = L(z) AL(y) = L(w))
D(x=2zay=w)]

The intended models of Ax.1-Ax.11 are the string systems over non-
null alphabets. More specifically, we give

Definition 1 A string system is an ordered 5-tuple (X*, A, 1, *,1), where
X* is the set of all strings over the non-null alphabet X, A is the null
string, 1€ X, * is the binary operation of string concatenation on X*, and [
is the substitution operation on X* such that for every xe X*, I(x) is the
string obtained from x by substituting 1 for each occurrence of a letter in x.

Definition 2 A concatenation system is any model (C, 0, 1, -, L) of Ax.1-
Ax.11.

Clearly, every string system (X*, A, 1, *,[) is a concatenation system, the
substring relation on X* is the extension of <, X is the extension of ATOM,
and 1* is the extension of NAT. In section 2, we shall show that every
concatenation system is, up to isomorphism, a string system.

2 The isomorphism theorem For the remainder, let{C, 0, 1, -, L) be a
fixed but arbitrary concatenation system, let A denote the extension of
ATOM in C, and N the extension of NAT in C. Let IN denote the set of all
natural numbers, and let &: IN — N be defined recursively, as follows:

®0)=0,8n+1)=&n-1
Lemma 1 L(0) =0.

Proof: L(0)-L(0)=L(0-0)=L(0), by AX.9 and Ax.2. Thus, L(0) =0, by
Ax.5,

Lemma 2 For all m, neIN, &(m + n) = &(m) - &(n).
Proof (by induction on n): (i) = 0: trivial, by definition of & and Ax.2.
(ii) Assume true for k, and suppose z = & + 1. Then:

dm+n)=d(m+k+1)=d(m+k):-1=&(m)- k) 1
= &(m) - &k + 1) = &(m) * B(n).
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Lemma 3 & is a bijection.

Proof: (i) & is 1-to-1: Suppose m, ne IN with m < n. Then n= m + k, for
some k= 1. Then:

®(n) = &(m) - (k) = &(m) «(d(k - 1) - 1). (by Lemma 2)

Now, 1< ®(k-1)-1,and 1 # 0 by Ax.3. Hence, by Ax.4, (k- 1)-1 # 0.
Thus, by Ax.5, &(m) - (&(k - 1)+ 1) # &(m); i.e., &(n) # d(m).

(ii) ® is surjective: Let P = Range(®). By Ax.6, it suffices to show that
Oe P, and for all xeN, if xe P, then x-1e¢ P, We have that 0e¢ P since
®(0) = 0. Suppose xe¢ P. Then, for some nelN, x= &(#n). Then x-1=
&(n + 1), and hence x-1¢ P.

Definition 3 Let L': C — IN such that for all xe C, L'(x) = &~*(L(%)) (n.b.,
L(x) e N by Ax.7).

Lemma 4

(a) For every xe C, L'(x) = 0 if and only if x = 0.

(b) For all x, ye C, L'(x-y) = L'(x) + L'(y).

(c) For every xeC, if L'(x) > 1, then theve ave x,, x,€ C - {0} such that
X=X Xy,

(d) For all x,, %3, ¥1, 2€ C, if %, %, = ¥, -y, and L'(x;) = L'(;)(i = 1, 2), then
X; = y,-(i = 1, 2).

Proof:

(a) L'"®) =0<=>3"L(x)) = 0<=L(x) = 3(0)<=L(x) =0<=>x=0
(by Ax.8 and Lemma 1).

(b) L'(x-9) = 7' (L(x-y)) = &~ (L(x) - L(p)) (by Ax.9)
= & (L(x%) + 2~ (L(y) (by Lemma 2)
= L"(x) + L'(y).

(c) Let xe C such that L'(x) > 1. Then & (L(x)) # 0 and & '(L(x)) # 1. Since
®7'(0) =0 and & *(L(x)) #0, L(x) # 0; hence, by Lemma 1, x # 0. Now,
®(1) = ®0+1) = &0)-1 =0-1=1. Hence & '(1) =1. But  *(L(x)) # 1.
Hence, L(x) #1. Thus, ¥+ 0 and L(x) # 1. Hence, by Ax.10, there are
%, %, € C - {0} such that x = x, - x5.

(d) Let x,, x,, y,, y,€ C such that x,-x,=19,-y,and L'(x;) = L'(y;) (=1, 2).
Then x;:x, = v,-y, and L(x;) = L(y;)( = 1, 2). Hence, by Ax.11, x; =
yl(z = 1, 2)-

Lemma 5 For every xe C, xe€ A if and only if L'(x) = 1.

Proof: Let xeC. Suppose L'(x) =1. Suppose ye C such that y <x. Then
x=19,-y+y, for some y,, y,€C. Suppose y # 0. Then, by Lemma 4(a),
L'(y) > 0. But, by Lemma 4(b), L'(x) = L'(y,) + L'(y) + L'(y,). Hence, since
L'(x) =1, L'(y,) = L'(y,) = 0, and, thus, by Lemma 4(a), y, = . = 0. Hence,
by Ax.2, y = x. Thus, x¢€ A.

Now suppose L'(x) # 1. If L'(x) =0, then, by Lemma 4(a), x = 0, and
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x¢ A. Suppose, now, that L'(x) > 1. Then, by Lemma 4(c), there are
%, %, € C - {0} such that x = x,-x,. Hence x, <x. But x, # 0. Moreover,
since (by Lemma 4(a)) L'(x;) > 0 and L'(x) = L'(x,) +L"(x,) (by Lemma 4(b)),
L'(x) # L'(x,), and hence x, # x. Since x, # 0, x, # x, and x, <x, we have
that x¢ A.

Lemma 6 (Unique Decomposition) For every xe C - {0}, theve is a unique
sequence {(Xy, . .., X,y with x;€ A (1<i<mn) and such that n=L'"(x) and
X=Xye o Xy

Proof: Let xeC - {0} and let n = L'(x). The proof proceeds by induction
on n:

(i) ==1: Then, by Lemma 5, x¢ A.
(ii) Assume 7z > 1 and for every x'e C - {0} with m = L'(x") < n, there is a
unique sequence {x!, ..., x5) with x/e A (1 <i<m) and such that x'=x}-
... %n. Since n> 1, we have by Lemma 4(c) that there are y,, y,¢ C - {0}
such that x = y,.y,. Let n; = L'(y;)(i =1, 2). Then, by Lemma 4(b), n=n, +
n,, and, by Lemma 4(a), n; >0 (i =1, 2). Thus, n; <n(i=1, 2). Hence,
there are unique sequences (wy, . . ., Wny) and (2, . . ., Z,,) With w; € A (1<
i<m), 2i€e A(l<jsny), yy=wi ... Wy, and 9, =2,. . .+2,,. Thus, x=
Wit o o Wy " 210 o o * Zyye

Suppose also that (wj, ..., w,, 2, . . ., Z,) iS a sequence with w]e A
(l<is<mn), 2/eA(l<j<mn), and x=w]+. .. wy +2]+. .. 2zs;. Then, let-
ting ;= wi-. .. wp and u, = 2;-. . ." 2, we have that u,, u, € C such that
% =u u, and, since wleA(l<i<mn), z/eA(l<j<mny), it follows by
Lemma 4(b) and Lemma 5 that L'(x;) = L'(y;) =#; ({=1, 2). Thus, by
Lemma 4(d), »; = y; ({ =1, 2). Hence, by induction hypothesis, w; = w/ (1 <
i<m) and z; = 2/ (1 <j <n,), and the sequence (Wi, . . ., Wayy 215 « + «5 Zny) 1S
unique.

2°

We shall refer to the sequence (x;,...,x, of Lemma 6 as the
decomposition sequence for x.

Theorem (Isomorphism) The concatenation system (C, 0, 1, -, L) is iso-
movphic to the string system (A*, \, 1, *, I).

Proof: Define ¥: C — A* as follows: for every xe C,

A, ifx=0
W(x) = X, %. . . *%n, if x # 0, where (xy, . . ., X,)
is the decomposition sequence for x.

Proof: It follows easily by Lemma 6 (applied to C and to A*) that ¥ is a
1 - to - 1 mapping of C onto A* which maps 0 onto X, and such that for all
Y1, ¥2€C, ¥(y,+y,) = ¥(y,) x¥(y,). Moreover, ¥(1) = 1, since 1eA. Also,
1'"(¥(x)) = L'(x) for all xe C, and hence !(¥(x)) = L(x) for all xe C. Thus, ¥
is an isomorphism.

Corollary 1 The axiom system Ax.1-Ax.11 can be enlarged to one which
charvacterizes exactly the string systems over finite alphabets by adding

Ax.12 (3x)[(Vy)(ATOM(y) D y < x)].
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Proof: Clearly, every string system over a finite alphabet realizes Ax.12.

Moreover, if the concatenation system € ={C, 0, 1, -, L) satisfies
Ax.12, then so does the string system (4*, A, 1, *,1) isomorphic to €, and
hence, since every member of A* is the concatenation of only finitely many
letters, A is finite.

Corollary 2 Fov each n =1, the theory obtained by adding to the system
Ax.1-Ax.11 the axiom Ax.12.n, staling that theve exist exactly n atoms, is
categovical.

Proof: Given two models C, and C, of Ax.1-Ax.11, Ax.12.%#, an isomorphism
from C, onto C, may be obtained using the isomorphisms ¥,, ¥, (see the
proof of the preceding Theorem), and an arbitrary one-to-one correspon-
dence between the atoms of C, and the atoms of C,.
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