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THE IDEAL OF ORDERABLE SUBSETS OF A SET

JOHN L. HICKMAN

The Ordering Principle (OP),* which states that every set can be
linearly ordered, is not provable in Zermelo-Fraenkel (ZF) set theory.
Let O(S) be the set of all orderable subsets of a set S: obviously O(S) will
be of intrinsic interest only when S cannot be ordered, that is, only when
O(S) ΦP(S), the power-set of 5. If X, YeO(S), then I u FeO(S); and if
Xe O(S) and F c Z , then Ye O(S). Thus O(S) is an ideal of P(S) (regarded as
the usual algebra), and clearly O(S) D P°(S), where P°(S) is the set (ideal) of
all finite subsets of S. We therefore have two extreme possibilities (when
S is non-orderable): (i) the lower extreme, whenO(S) = P°(S); and (ii) the
upper extreme, when O(S) is a maximal ideal. Both these extremes, as
well as varying positions in between, can be attained.

Definition 1

(i) A set S is called "finite" if there is a bijection f\n-*S for some
natural number n.
(ii) A set S is called "Dedekind-finite" if there is no T c S with T Φ S for
which there is a bijection /: S -> T.
(iii) A set S is called "medial" if S is infinite and Dedekind-finite.
(iv) A set S is called "quasi-minimal" if for every I c S , exactly one of X,
S - Xis finite.

In (i) above, we are regarding natural numbers (and ordinals in
general) to be defined in such a way that each is the set of all smaller
natural numbers (ordinals). It is easily seen that every quasi-minimal (qm)
set is medial, and that a set S is Dedekind-finite if and only if there is no
injection /: ω —> S. Concerning the existence of qm sets, we refer to §1
of [1].

Lemma 1 If S is quasi-minimal, then ?(S) is Dedekind-finite.

*The work contained in this paper was done whilst the author held a Research Fellowship at
the Australian National University.
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Proof: Suppose that there is an injection /: ω —> P(S); then, in view of
Definition 1 (iv), there is an injection /0: ω — P°(S). Since each fo(ή) is
finite, there exists a function g: ω —» P°(S) such that for each n we have
g(ή) c £ (n + 1) and g(ή) Φ g(n + 1). Put X = \){g{2n + 1) - g(2n); n < ω}, and
y = U {^(2w + 2) - £ (2n + 1); w < u>}. Then X, Y c S, X Π F = (δ, and X, 7 are
both infinite. This is a contradiction.

Lemma 2 If S is quasi-minimal, then S cannot be ordered.

Proof: Suppose that S is ordered by <, and take xoeS such that the set
{yeS:xo<y} is infinite. Define the sequence (xn) recursively by setting
xn+ι equal to the immediate successor of xn if such exists, and setting
#«+i = %n otherwise. Thus we have xn ^ xn+1 for each n. If we had xn < xn+1

for each n, then there would exist an injection /: ω -* S, a contradiction.
Thus we must have xn = xn+ι for some n, and so we have found xe S having
no immediate successor and such that {y e S: x < y} is infinite. Similarly,
we can find z e S having no immediate predecessor and such that {3; e S;
z > y} is infinite. It follows from Definition 1 (iv) that x < z. Clearly there
must exist yeS with x < y < z. Define X, Z by X = {u e S: x < u < y} and
Z = {u e S; y < u < z}. Then X, Z c S, X Π Z = 0, and X, Z are both infinite,
a contradiction.

An alternate proof of Lemma 2 was discovered and presented by
G. Monro in his thesis (unpublished).

Theorem 1 Let S be a set. Then S is quasi-minimal if and only if

(1) O(S) = P°(S);
(2) O(S) is a (proper) maximal ideal of P(S).

Proof: Let S be qm and take I c S . By Lemma 2, X is order able if and
only if X is finite, which establishes (1), and from this and Definition 1 (iv)
we obtain XeO(S)<^>S - Xf(θ(S), establishing (2). Conversely, if (1) and (2)
hold, then for each i c S , exactly one of X, S - X is finite, and so S is qm.

We have thus obtained an easy illustration of both extremes being
achieved. In view, however, of the fact that quasi-minimal sets have no
"middle-order" subsets, it could be argued that Theorem 1 represents a
rather pathological case, and that it would therefore be interesting to
provide examples of one or other of the extremes being attained, while at
the same time keeping as far away as possible from qm sets.

We propose to provide such examples, using the Fraenkel-Mostowski
method of permutation models. In order to translate our results from FM
set theory to the more usual ZF set theory, all we need do is to perform a
routine application of the Jech-Sochor Embedding Theorem. Therefore we
assume familiarity with the description of FM set theory and the construc-
tion of permutation models as given in Chapter 4 of [2], as well as with the
statement of the Jech-Sochor Embedding Theorem as presented in Chapter
6 of [2]. Our first example is drawn straight from §4.4 of [2].

Theorem 2 It is relatively consistent with ZF to assume the existence of
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an infinite set S such that O(S) = P°(S) and such that no subset of S is
quasi-minimal.

Proof: Let 9W be a model of FM + AC containing a countably infinite set A
of atoms (see Problem 1 of §4.6 of [2]). We list A as {a0, bΌ, au bu . . .},
and for each n ̂  0 we put Bn = {an, bn}. We let / be the ideal of all finite
subsets of A, and let © be the group of all permutations g: A -* A such that
g"Bn = Bn for each n. These constructions are of course carried out in 9W.

Clearly / is normal with respect to ©, and so © and / together define a
permutation model 91 as described in Chapter 4 of [2]. Putting sym(x) =
{ge G;g(x) = x] and fix(#) = {ge G; Vyex(g(y) = y)} for each xeM, we see
that the criterion for membership in 91 is as follows:

(#) Take x e M. Then we have x e N if and only if x c N and fix (is1) c sym (x)
for some Eel.

Now A e N; in fact, A is the set of atoms of 91. We wish to show that
91 N O(A) = ?°(A). Thus take Xe N such that X is an infinite subset of A, and
suppose that 91 N"X is ordered by Λ c l x l " . By (#) we know that
fίx(£) c sym(R) for some Eel. Moreover, we also know that fiχ(Z)) c sym(X)
for some D e I; put C = D U E. Now X is by assumption infinite relative to
91, and hence must also be infinite relative to 9W. On the other hand, C is
finite. Therefore there must exist n ^ 0 such that C Π Bn = 0 and X Π Bnφφ.
Without loss of generality we may assume aneX. Let geG be such that
g(an) = bn, g(bn) = an, and g(a) = a otherwise. Thus ge fix(C) c fix(Z>) c
sym (X), and so g(X) = X. But fl»eX, and so bn = g(an)eg(X) = Z. We have
thus shown that Bn c X. Now E orders X relative to 91, and so R certainly
orders X relative to 9W. Since Bn QX, we must have either (any bn)eR or
(bn, an) eR; we may assume the former.

Since ge fix(C) c fίx(£) c sym(R), we have g(R) = R, from which we
obtain (bn, an) = g((an, bn))eg(fi) = R, a contradiction. Thus 91N=X/O(A),
from which 91NOU) = P°(A) follows easily.

Our next task is to show that 91 \="A has no qm subsets". Now clearly
BnQ N for any given n, and since we have Bne /and fix(jBj c sym(Bn)9 we
see that in fact Bn e N. Now consider in 9W the set / = {(n, Bn); n < ω}. Since
Bne N for each w, it follows that/ c JV. Moreover, for any ge G we have

^(/) = {^((n, Bn))-y n < ω} = {(^(n), ^ 5 j ) : n < ω}
= {(n, 5n):w<ω} = /.

Thus fiχ(0) c sym(/), and so fe N. Therefore, within 91 we have a function
/: ω -» P(A) such that (i) |/(w) N 2 for each n; (ii) f(m) Γ)f(n) = 0 for m Φ n;
(Hi) A =\J{f(ri); n < ω}. Keeping within 91, take any X c A. If X is finite,
then X is certainly not qm. On the other hand, if X is infinite, then
Γ = {n<ω; X Π f(n) Φ 0} is a countably infinite set, from which it follows
easily that there is an injection fo:ω-* P(X). Thus by Lemma 2 we
conclude that neither is X qm in this case.

Hence we have shown that 9lh"Ά has no qm subsets", and now finish
off the proof of our theorem by applying the Embedding Theorem to the
model 91.
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While the set referred to in Theorem 2 has no qm subsets, it is
nevertheless Dedekind-finite. This is unavoidable. For let S be a
Dedekind-infinite set. Then there exists an injection/: ω —> S; put T =/"ω.
We can order T by setting f(m) <f(n) just when m <n; thus O(S) Φ P°(S).

Theorem 3 // is relatively consistent with ZF to assume the existence of a
set S having no quasi-minimal subsets and such that O(S) is a maximal
ideal in P(S).

Proof: Once again we let 3W be an FMC-model containing a countably
infinite set A of atoms. This time we endow A with a linear order < under
which A is dense and without endpoints; thus A is order-isomorphic to the
rationale. We partition A into an ω* + co-sequence of open intervals Ji such
that

A = . . . ύ J-i LJ Jo ύ Jγ LJ . . ., where " ϋ " denotes ordered union.

Thinking of A as the set of rationale we could for example define Ji to be
the set {a e A: V~2 + i < a < V~2 + i + l}.

As before we let / be the ideal of all finite subsets of A, This time,
however, we define © as follows. Let g: A —> A be a permutation, and put
g e G if and only if

(1) For each i there exists j such that g"Ji = J ;

(2) For each i and for all a, beJi9a<b=Φ>g(a) <g{b).

Again / is normal with respect to Φ, and so we arrive at a permutation
model 91. We claim that 9lh"O(A) is a maximal ideal in P(A)", that is,
911= VX(X QA==> (Xe θC4)<=#> A - Xfίθ(A)).

Within 9W, put Kn = J_n ύ . . . ύ Jn for each n ^ 0. The above claim will
be established if we show that

(i) For Xe N, 9l\=Xeθ(A) if and only if 9W \=X c ϋΓw for some w;
(ii) For X e iV with X Q A, 9W1= 3w s* O(AΓ c /ς<N>A - X £ /&).

Take XeiV with i c A Then for some £ e J we must have fix(£) c
sym (X). Since E is a finite subset of A, it follows that (within 3W) E c Kn for
some w ̂  0. Suppose that we do not have 9WNXC Kn. Thus there exists
xe X such that #e J f for some f with U| > ». Take any y e A - JFΓW and let k
be the unique integer such that y e Jk; of course \k\ > n. There exists ge G
such that g"Ji = Jk, g"Jk = Ji, g(x) = y, and g(a) = α for all ae A - (J, U Jk).
Then we have y = £*(#) e^ (X). But ge fixUU c fix(E) c sym (X), and so £ (X) =
X. Thus y e X We have therefore shown that within m", if X g Kn, then
X D yl - ϋCw, that is, A - X c ϋίw. The converse, X c Kn=Φ A -X g Kn, is
obvious. This proves (ii).

Take Xe N with X Q A, and suppose that 9W NX c Kn for some w. For
each i with U'| ^ n, choose c{ e J{ and put C = {ct ; U#| < w}. It is easily seen
that fiχ(C) c sym (Kn), and since Kn c iV, we must have ϋCw e AT. Now define in
m the set R QKnχKn by R = {(a, b)eKnx Kn; a < b}. We have R e N, and
from the definition of & we see that fίx(C) c sym(.R). Hence ReN, from
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which we deduce dl^KneO(A). But as 9WI=X c Kn it must be the case that
m\=XcKn, and so 9lϊXeO(A).

Now suppose that there is no n for which Wl\=X Q Kn. From (ii) we
obtain 9W )FA - X c Km for some ra, that is, Wl N A - Km c X Suppose that
there is ReN such that 9H="# orders X", and let Eel be such that
fiχ(£) c sym(#), and choose p > 0 such that £, Km c Kp. Now choose
*e 4 + 1 ' ^ e JP+2> t n e r e exists ^e G such that g(x) = y, g(y) = x, and g(z) = z
for all zeKp.

Since A - Km Q X and Km QKp, it follows that x, yeX. Therefore we
must have either (x, y)eR or (y, x) eR: we may assume the former. But
then {y, x) = g((x, y))eg(R), and^e fix(ify) c fix(£) c sym(R), when g(R) = R.
This contradiction tells us that 8th-XYθ(A).

Thus (i) and (ii) have been demonstrated, when it follows at once that
9lh"O(A) is a maximal ideal in P(A)". It can be shown that 9th"P(A) is
Dedekind-finite", and so we cannot use the same trick employed in the
previous proof to show that 9H="A has no qm subsets", and must resort to
"first principles".

Take Xe N with X c A: we wish to show that X is not quasi-minimal.
We have seen that there exists n ̂  0 such that (within 9W) either X c Kn or
X D A - Kn. In the first case we have also seen that ^INXeO(A), and so
Lemma 2 tells us at once that 9lh"X is not qm". Hence we may assume
that A - KnQ X. Take cλ e Jn+1, c2 eJn+2, and put C = {cl9 c2}. Then we have
fίχ(C) c sym(jn+i) for i = 1, 2, when Jn+ieN. Furthermore, from 9WNA -
Knc X we obtain 30ί 1= Jn+i c X, and thus dl^Jn+i Q X, ί = 1, 2. But clearly
91 N Jw + 1 Π Jn+2 = φ and 9tN"e7"»+i, Jn+2 are infinite". Thus SIN^Z is not
qm".

We have therefore shown that 91N "A has no qm subsets", and now a
straightforward application of the Embedding Theorem completes the proof
of our result.

From one point of view the proof of Theorem 3 is less satisfactory
than that of Theorem 2. Although the set A in the former proof has no qm
subsets, it can be shown that there exists De N such that 81 hA = \jD and
91 \τ "D is qm". Specifically, D = {j t ; i is an integer}. We have not been
able to rid ourselves of this connection with quasi-minimality; but neither
have we been able to show that some such connection is necessary.

By combining the constructions used in the proofs of Theorems 2 and
3, we can obtain an FM model containing a set A with no qm subsets but in
which O(A) attains neither of the two extremes. To obtain this model we
follow the construction in the proof of Theorem 3, but in the two defining
conditions of the group © we replace condition (1) by (l f). For each i,
g"Ji = J{. When this change is made and the resulting permutation 91'
obtained, the statement (i) still holds, but (ii) does not. Specifically, if we
take Xe Nr with X Q A, and if we suppose that 9W NX c Kn for no n, then all
we can prove is that there exists m such that for every k with I k | > m,
m\=Xnjkφβ==>JkQX. We omit the details.
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