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JOHN BURIDAN ON THE LIAR: A
STUDY AND RECONSTRUCTION

PAUL VINCENT SPADE

This paper is a partial study of the position taken by the 14th century
logician and philosopher John Buridan (see [4]) on the Liar and related
paradoxes —the ‘‘insolubles’’ (insolubilia) as they were called then. Buri-
dan’s position is most extensively set out in the eighth chapter of his
Sophismata ([2], translated in [3]. There is also a discussion in [1].). Al-
though at least three brief treatments have appeared in English ([3], intro-
duction; [7], [9]), and although the Sophismata has recently been translated
into English (in [3]), no study has yet examined Buridan’s view in depth.
This paper attempts a partial rectification of that situation.

We shall begin by setting out some preliminary notions and notation.
Then we shall cite some passages from Buridan that set out his position.
On the basis of these passages, we shall extract several theses which may
be regarded as ‘‘principles’’ of his approach. Our reconstruction of Buri-
dan’s position will have to conform as much as possible to these theses. 1
said that this paper is a ‘‘partial’’ study of Buridan’s position. Our overall
policy will be to reconstruct that position within a very simple framework,
allowing only the most straightforward kinds of paradox. Accordingly, we
shall set out a very limited syntax SYN—containing only singular terms,
two predicates, and a negation operator—and a very restricted set of
models, which allow only the simplest and most direct kind of vicious self-
reference. Insolubility will then be defined for this context. Such a narrow
approach permits us to abstract from certain kinds of cases that Buridan
simply does not discuss, and to put off to another occasion a treatment of
some of the more complicated cases he does discuss. An initial obstacle is
the fact that the Buridanian theses to be extracted from his text will turn
out to be inconsistent even within this simple framework. Some com-
promise must be made if our study is to get off the ground. We shall dis-
cuss some possible ways of making this compromise, and choose from
among them. Our choice will involve giving up the rules of double negation
in certain cases. It will also involve adopting the principle that the
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correspondence theory of truth fails exactly in the cases of the insolubles.
Once all this has been done, we shall set up a language £; within the simple
context provided by SYN and .{,-models. ., will satisfy all the Buridanian
theses extracted from his text, except for the rules of double negation,
which we resolved to sacrifice. We shall look at .L, in some detail.

1 For simplicity, we shall not consider languages with polyadic predi-
cates. If ¢ is a primitive monadic predicate of some language £, and if Vgy
is a valuation function assigning a truth value 0, . . ., 1 to the sentences of
L with respect to a model M, and if fygy is the denotation function for I,
assigning denotations to the singular terms x of ., then we shall say by
definition that EXTegy(9) = {fau(x): Van(¢x) = 1}, and we shall call EXTgy(¢) the
‘“‘extension of ¢ with respect to M’’. This definition will be extended later
to cover predicates formed by prefixing a string of negations to a primitive
predicate ¢. The definition demands that everything contained in the exten-
sion of any predicate of ./ have a name. We accept this condition for the
purposes of our discussion. (A further consequence of the definition is that,
where T is a truth-predicate, EXTg(T) is defined not as the class of true
sentences, but rather as the class of sentences with true truth-sentences.
In virtue of Theorem 3 below, however, these two classes are identical.)

2 Buridan’s suppositional truth-rules ([3], pp. 90-93), with which the
reader is assumed to be familiar, provide a reasonably good account of the
correspondence theory of truth according to which a sentence is true iff it
corresponds to reality, to the facts (see [13], §3). We shall say that a
sentence corresponds (to reality, to the facts) iff the world is as the sen-
tence ‘‘signifies according to formal significations’’ ([3], p. 195). That is, a
sentence corresponds iff the normal suppositional truth-conditions for such
a sentence are met ([3], pp. 90-93). If the sentence is an insoluble one, then
that condition is not in fact its actual truth-condition, as we shall see. But
that is of no account here.

We shall be discussing only atomic sentences and sentences formed
from atomic sentences by negation. Within this context we can say that an
atomic sentence corresponds in a model M iff its subject and predicate
“‘stand for the same’’ ([3], pp. 90-93, conclusions 9 and 10)—that is, iff the
denotation of its subject term is contained in the extension of its predicate
term in 9. The negation %(s) of a sentence s corresponds in M iff s itself
does not correspond in M. Thus, if ¢ is a primitive predicate, then by def-
inition ¢, € CORRgyy iff fou(x) € ‘EXT gu(9), and n(s) € CORRgy iff s ¢ CORRgy. The
correspondence theory of truth may now be expressed as follows: A sen-
tence is true in I iff it corresponds in M: Vgy(s) = 1 iff s € CORRgy.

3 In order to provide a framework for the discussion to follow, I want here
to set out eight ‘‘theses’’, which, I shall argue, are in one way or another
theses of Buridan’s position. I say ‘‘in one way or another’’, because they
do not all have the same status. Some of them Buridan explicitly holds;
some can be inferred from things he explicitly holds. Some, finally, seem
to be only tacitly accepted. The status of each will be discussed briefly in
turn. For a fuller discussion, see [11]. The eight are these:
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(1) ““From every proposition, together with the condition that it exists,
there follows the conclusion that it is true.”” ([3], p. 196). This is explic-
itly held by Buridan. The context is this ([3], pp. 195f.):

Thus, it is otherwise said, nearer the truth, that every proposition virtually implies
another proposition, so that of the subject standing for it, there is affirmed this predi-
cate “true”. I say it implies virtually just as an antecedent implies that which follows
from it. Thus, any proposition is not true, if in this consequent affirmation, the sub-
ject and predicate do not stand for the same.

Buridan agrees with this view, but adds the proviso that the ‘“‘proposition’’
must exist. For him, a sentence (what he calls a ‘‘propositio’’) is a sen-
tence-foken, an individual utterance or inscription. As such, its existence
is a contingent affair. Utterances die away, and inscriptions can be erased.
For Buridan, it is only existing sentences (tokens) that can be said to have
a truth-value. (See [3], p. 17.) For simplicity, we shall confine ourselves
in this paper by fiat to contexts in which the existential condition is satis-
fied for all sentences. (Compare [3], p. 57.)

Let us call (1) the ‘‘virtual implication principle’’ (VIP). It, or a ver-
sion of it, was a characteristic of a long line of mediaeval views on the
paradoxes. (See [10], items [IV], [VII], [XI], [XXIV], [XXVII], [XXXI],
[XXXVII], [XXXIX], [XLIX], [LIHI], [LVI], [LVII], [LXIV].) In the form
above, the principle says in effect that if fyy(x) = s, then if s has in 9 what-
ever properties are preserved under the consequence relation, so too does
Tx. (See thesis (7) for one choice of such a property.)

(2) Insolubles are false. This too is explicitly held by Buridan, in his
explanation of the suppositional rules of truth ([3], p. 92). We call this
thesis (IF).

(3) The normal suppositional rules of truth fail exactly in the cases of the
insolubles. This too is more or less explicitly held by Buridan. He does
explicitly say that the usual rules hold for all non-insoluble cases ([3], p.
93). He also says that the rules fail in thecase of affirmative insolubles
([3], p. 198; compare [3], pp. 90-93). It does not seem illegitimate to add to
this that they also fail for insoluble negatives, although Buridan does not
stipulate this explicitly. Since the normal suppositional rules give us an
account of correspondence, as observed above, thesis (3) amounts to saying
that the corvespondence theory of truth fails exactly in the cases of the in-
solubles: s € INSay iff it is not the case, that s € CORRgy iff Viy(s) = 1.
Hence we call it (CT-INS).

(4) Bivalence: Every (existing) sentence is eithev true ov false. Buridan
does not explicitly hold this. Nevertheless, he mentions only two values,
and we ought to follow him as closely as possible. I know of only two
mediaeval authors ([10], items [LXIII] and [X], 4th previous opinion) who
allowed for failure of bivalence in the case of insolubles. We call this
thesis (BIV).

(5) If it is true that a sentence s is tvue, then s is true. Buridan does not
explicitly hold this either. But he says nothing that indicates that he would
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reject it, and indeed maintains some things that lead directly up to it. (See
[11], pp. 41-42.) Iknow of no mediaeval who questioned it. Call this thesis
(TT).

(6) If x does not stand for a sentence, then "x is true” is false. This prin-
ciple is the basis for Buridan’s solution of a sophism in [3], p. 189f. Call
this thesis (NS).

(7) Between sentences that exist, the valid consequences arve just the
truth-preserving transformations. Buridan explicitly holds one half of this:
““It is true that of every valid consequence, it is impossible for the anteced-
ent to be true without the truth of the consequent formed at the same time
as it.”” ([3], p. 183) On the other hand, in the same place he holds that

it is not sufficient for a consequence to be valid that it is impossible for the antecedent
to be true without the consequent formed at the same time as it. . . . So more is re-
quired, namely, that it could not be as the antecedent signifies unless it were as is
signified by the consequent.

The point of this revision is to accomodate certain problems raised by his
view that only existing sentence-tokens have truth-values. If valid conse-
quences were just the truth-preserving transformations, then consequences
such as ‘Every proposition is affirmative, so none is negative’ ([3], p. 183)
would not be valid. Whenever the antecedent is true, the consequent cannot
exist, and so cannot be true.

Buridan resolves this problem by observing that the world may be as a
certain sentence-token would signify it to be, even though that sentence-
token might not in fact exist. Thus, if Socrates is running, then the world is
as would be signified by a sentence-token of the type ‘Socrates is running’,
even if that sentence-token did not in fact exist. We shall say that the sen-
tence-token is ‘‘secure’’ in this case. If in addition, the sentence-token
happens to exist, then it is true. A sentence-token is true iff it is secure
and exists (see [6] and [9]. The term ‘secure’ is taken from [6]). Buridan’s
revised notion of consequence, then, amounts to saying that the valid con-
sequences are just the transformations that always preserve security. As
long as we confine ourselves to contexts in which all sentence-tokens exist,
truth and security collapse, and principle (7) holds. We call the principle
(TC).

(8) The valid consequences are just the traditional ones. Buridan nowhere
explicitly say this. But if we look closely at his text ([3], pp. 180-185), it
appears that the problem which led him to base consequence on security
rather than on truth was just that certain traditionally valid argument-
forms would have to be given up, and certain traditionally invalid forms
would have to be admitted—once the bearer of a truth-value was made the
existing sentence-token—if the usual notion of consequence as truth-pre-
serving were retained. Thus, Buridan’s goal seems to have been to revise
the notion of consequence in such a way that just the traditionally valid
argument-forms could be retained. Since the traditional consequences
which will concern us will be the double-negation rules, we call this thesis
(DN).
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4 The eight theses above must be kept in mind as we attempt to recon-
struct Buridan’s position. As we shall see, they are mutually incompatible.
Let us begin with the simple syntax SYN of [12], with a primitive vocabulary
consisting of denumerable singular terms, two primitive predicates P and
T, and a negation operator. If a sentence s has an atomic constituent of the
form Tx, then we shall call s a semantic sentence. Let n(s) be the negation
of s. This allows us to write ‘n’(s)’ for the i -fold negation of s. If i is odd
and s is of the form Tx, we call #‘(s) an odd semantic sentence. A model
for SYN will be a triple M = (X, fon, £m), Where Xay includes the set of all
sentences of SYN, fa is a one-one function whose domain is the set of sin-
gular terms of SYN and whose range is Xgy, and ggy assigns a subset of Xgy
to P. These restrictions allow us to define for each model M a function fgy
assigning to each sentence s its unique {ruth sentence, the sentence Tx such
that fegy(x) = s. (Compare [12].) Finally, for any set Y of sentences of SYN,
form the smallest set Y* including ¥ and such that if n(s) is in Y'*, so is s.
(Y* is thus the smallest set containing every constituent sentence of every
member of Y.) Then a naive valuation over a set Y of sentences with re-
spect to a model M for SYN is a function Vg; with domain Y* and range
{0, 1}, such that: (a) Vyu(Px) = 1 iff fag{x) € ggu(P); (b) Van(n(s)) = 1 - Van(s);
(c) Vau(tan(s)) = Vyu(s). Observe that (a) and (b) follow from the Buridanian
thesis of bivalence (BIV) and the correspondence theory of truth. On the
other hand, (c) follows from the theses (VIP), (BIV), (TT), and (TC).

5 We introduce the auxiliary notion of the syntactic relation G which a
semantic sentence bears to its grammatical subject. Then, with respect to
a model M, we define the relation Rgy of ‘‘semantic descent’’ to be the
proper ancestral of the relative product of G into fay. Now an [,-model
will be a model M for SYN such that: (1) if s is Ryy-ungrounded (see [5]),
then for some s’ (possibly s = s'), Ryy(s, s') and Ryqy(s’, s'). That is, there
are no non-cyclic infinite chains of semantic descent in M. (2) Ry is anti-
symmetric. There are no Rgy-cycles of length greater than one. If a sen-
tence is a semantic descendant of itself, it is an immediate semantic
descendant of itself. (3) Only odd semantic sentences are semantic de-
scendants of themselves. Cases such as s = tgy(s) are ruled out. Thus in
L ,-models a sentence is Rgp-ungrounded iff it either is or leads by an Ry -
path to a directly self-referential odd semantic sentence. Self-reference of
this kind is paradoxical. The paradigm is: s = n(tgz(s)), but we also have in
general s = n’(tg(s)) for odd i. Condition (2) above is imposed in order to
allow us to study this simple kind of paradox in isolation, without worrying
about more complicated cases in which reference is passed from hand to
hand, as it were, around a cycle with several members. They are a topic
for another paper. Conditions (1) and (3), on the other hand, are imposed in
order to rule out cases that Buridan simply does not treat.

6 For a language whose syntax is SYN and whose admissible models are
L ,-models, we define: A sentence s is an insoluble in an admissible model
M (i.e., s € INSyy) iff Ryy(s, s). This definition appears to capture just the
sentences that Buridan would want to call insoluble within our restricted
framework. He several times mentions an insoluble’s ‘‘reflection on
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itself’’ ([3], p. 180 and passim). Yet, he makes it clear that not all such
‘“‘reflection”’ or self-reference generates paradox ([3], pp. 192f.). The
“reflection’’ in question appears to be the kind in which a sentence is its
own semantic descendant. That Buridan would want to call all such cases
within our context insoluble follows from Lemma 2, below. Where Rgy(s, s),
there is no naive valuation over {s}. Hence s requires an exception to
(VIP), (BIV), (TT), (TC) or the correspondence theory of truth. But since
Buridan holds the first four theses, it is the correspondence theory that is
violated. Hence, by (CT-INS), s is insoluble. Within the context provided
by SYN and .(; -models, we can prove the following preliminary results.

Lemma 1 The insolubles are just the odd semantic sentences that vefer
directly to themselves: s € INSgy iff for some odd i, s = n*(ta(s)).

The proof follows by the definition of INSg¢y and conditions (2) and (3) on
{L,-models.

Lemma 2 Is s is insoluble in a model M, then there is no naive valuation
Van over {s}

For suppose s € INSgy. Then for some odd i, s = n'(tq(s)), by Lemma 1.
Suppose further that there is a naive valuation Vg over {s}. Then Vg(s) =
Van(n*(tm(s))). Hence, by condition (b) on naive valuations, Ve(s)#
Van (tam(s)), since i is odd by hypothesis. Thus by condition (c¢) on naive
valuations, Vg (s) # Vay(s). The Lemma follows by reductio.

Notice that for models (not .£,-models) in which s = n'(ta(s)) for i not
odd, there are naive valuations over {s} L,-models thus rule out all but
‘‘vicious’’ kinds of direct self-reference, in which cases the naive rules of
valuation break down.

Where s is atomic, let us call the sequence: (s, n(s), n%(s), n3(s), . . .)
a negation sequence. Then:

Lemma 3 A negation sequence contains at most one insoluble in a given
model: if n'(s) and n'(s) are both insoluble in M, then i = j.

The proof is straightforward, from Lemma 1.

7 It turns out that even within the simple context of SYN and ., -models,
the Buridanian theses extracted above are mutually inconsistent. In fact,
we need only three of the theses to derive a contradiction:

Theorem 1 The theses (CT-INS), (TC), and (DN) are mutually inconsistent.

For (1), suppose that s € INSg,. Then (2), #*(s) ¢ INSgy by Lemma 3. Now (3),
suppose further that s ¢ CORRgy. Then (4), n%(s) € CORRgy. Moreover (5),
Van(s) £ 1, by (1), (3) and (CT-INS). Thus (6), Vg (1*(s)) # 1, by (5), (TC) and
(DN). But nevertheless (7), Vg (#*(s)) = 1, by (2), (4) and (CT-INS). Hence
(8), s ¢ CORRgqy, from (3)-(7) by reductio. Therefore (9), n°(s) ¢ CORRqy.
Now (10), Va(s) = 1, by (1), (8) and (CT-INS). And so (11), Ve (n3(s)) = 1,
from (10), (TC) and (DN). But (12), Vgy (#*(s)) # 1, by (2), (9) and (CT-INS).
Steps (11) and (12) are of course contradictory.
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What Theorem 1 shows is that Buridan’s position is incoherent. The
tension can be resolved only by departing from one or more of the three
theses involved in Theorem 1. Several modern approaches make the com-
promise at (CT-INS). For instance, any solution in which the Liar sentence
fails of bivalence and in which negation is choice-negation (see [6], p. 27) is
of this kind. Such an approach departs from the correspondence theory not
only in the case of insolubles, but also in the case of their double negations,
which are not insoluble, by Lemma 3. However much such approaches have
to offer, we shall not follow them in sacrificing (CT-INS). For it seems
that Buridan himself would have chosen to make the compromise elsewhere,
as I shall argue presently. Accordingly,we can give up either (TC) or (DN).
If we give up (TC), we must ask whether any interesting property will re-
place truth as being preserved under valid consequence. The most plaus-
ible candidate is perhaps correspondence. Thesis (TC) would then be
replaced by (CC): Between sentences that exist, the valid consequences are
just the corvrespondence-presevving transformations. But it is easy to show
that this maneuver forces us to give up at least one more of our Buridanian
theses. For suppose that s € INSgy. Then Vgy(s) = 0 by (IF). Hence
s € CORRgy by (CT-INS). From this two things follow. First,feny(s) € CORRgy,
using (VIP) and (CC). But also #gq(s) ¢ CORRg,, using Lemma 1 and the fact
that s € INSgy, together with the definition of CORRgy. Hence we would have
to give up either (IF) or (VIP). For the sake of keeping as close as possible
to Buridan, we shall not adopt this policy. Instead, we shall make our
compromise at (DN)-—negation is going to behave in a peculiar way.

There is some indication that Buridan himself would make the com-
promise here. For despite his wanting to retain the traditionally valid
argument-forms, he appears also to have recognized thathis negation did
peculiar things. In [3], ch. 8, sophism 8, Buridan has Socrates say only
‘Plato speaks falsely’ and Plato say only ‘Socrates speaks falsely’. This is
not a situation that can be represented in the limited context of SYN and
{,-models, and indeed we should not normally think of the case as gener-
ating a paradox. But Buridan does; he holds that both Socrates and Plato
utter insolubles. For our purposes, the interesting point in this discussion
is that Buridan allows that an insoluble and its negation are both false
(3], p. 199).

8 In the remaining sections of this paper, we shall study the language .(,
whose syntax is SYN and whose admissible models are just the ., -models.
The rules of valuation for .£; are these: (A) Vg (Px) = 1 iff fou(x) € gau(P),
and Vg (Px) = 0 otherwise. (B) Vay(ta(s)) = Van(s). (C) If fgy(x) is not a sen-
tence of SYN, then Vg (Tx) = 0. (D) If s € INSgp or n(s) € INSg,, then
Van(n(s)) =0. (E) If s ¢ INSgqy and n(s) ¢ INSgy, then Vy(n(s)) = 1 - Vap(s).
It can be shown that for each admissible model M for .L,, these rules as-
sign exactly one of 0, 1 to each sentence of SYN. For the proof, which is
straightforward but rather lengthy, see [11]. (The definition of insolubility
is slightly different there, but equivalent.)

Theorem 1 showed that Buridan’s position cannot be consistently
represented as a whole. But making the necessary sacrifices, ., is a good
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reconstruction within the limits of its own syntax and models. The
Buridanian theses (IF), (BIV) and (NS) are satisfied directly by the rules
(A)-(E) above. Thesis (TT) follows at once from (B). (CT-INS) will be
proven below as Theorem 4. Since we agreed that valid consequences were
to be truth-preserving, thus satisfying (TC), we also thereby satisfy (VIP),
in view of (B). But the double negation rules (DN) fail whenever they lead to
or from an insoluble, in virtue of Theorem 8 below. Conversely, given a
language with the syntax and models of .(,, and given the definition of INSgy,
rule (A) follows from (CT-INS) and (BIV). One half of (B), namely, Vg (s) <
Van (t(s)), follows from (VIP), (TC) and (BIV). The other half follows from
(TT) and (BIV). Rule (C) is just (NS). Rule (D) follows from (IF), (CT-INS)
and (BIV). Rule (E) follows from (CT-INS) and (BIV). Thus, given the syn-
tax and models of .£,, and given the definition of an insoluble, Buridan’s own
principles entail (A)-(E). (DN) is of course suspended.

Buridan does not discuss infinite non-cyclic chains, nor cycles of length
one that are not vicious (e.g., s = tg(s)). His silence on these matters is
honored by the fact that ., -models do not admit such cases. He does dis-
cuss cycles of length greater than one, and sentences formed with binary
connectives, but these are beyond the resources of .(,, which takes no stand
on them. They are matters for another study.

9 Theorem 2 The extension of Pis given by gaq: EXTq(P) = ga(P).

For EXTgq(P) = {fm(*): fam(x) € gm(P)}, by rule (A) and the definition of
EXTgqy. The theorem follows by the conditions on models.

Theorem 3 The extension of T in a model is the class of sentences trvue in
that model: EXTgy(T) = {s: Van(s) = 1}_

This follows from rules (B) and (C) and the definition of EXTg.

We shall say that ¢ is a predicate of L, iff ¢ is either a primitive
predicate of .,, i.e., either P or T, or else formed from a primitive pred-
icate of [, by prefixing a string of ¢ negations (i = 0). We let N ‘(¢) be the
result of prefixing i negation operators to ¢. We now extend the definition
of EXTen to all predicates of .£,. If ¢ is a primitive predicate of ,, then
EXT gq (N(9)) = EXTqn(9) for i not odd, and EXTg(N¥(9)) = Xgy - EXTeqn(9) for
odd i. (It might have seemed more natural to allow EXTg(9) to be defined
at the outset as {fg(x): Vg(9x) = 1} for all predicates ¢, primitive or not.
But this would have had the effect of excluding insolubles from the extension
of the non-truth predicate N(T), even though they are non-truths. In
terms of personal supposition theory—where a predicate stands for
(supponit pro) the members of its extension—this would mean that in the
insoluble s = n(tg(s)), N(T) would not stand for the whole sentence of
which it is a part. Buridan unequivocally rejects that approach. (See [3],
pp. 192f.)

Lemma 4 The correspondence theory of truth holds for non-insolubles:
if s ¢ INSgy, then s € CORRgy iff Vap(s) = 1.



JOHN BURIDAN ON THE LIAR 587

For suppose s ¢ INSgn. Then if s is a non-semantic sentence ni(Px),
Px € CORRgp iff foy(x) € EXTgn(P). Hence, by Theorem 2 and rule (A),
Px € CORRgy iff Vgy(Px) = 1. Thus the Lemma follows by ¢ applications of
rule (E) and the definition of CORRgy. If, on the other hand, s is a semantic
sentence n’(Tx), then

Case 1: faq(x) is not a semantic sentence. Then faq(x) ¢ EXTgq(T) by Theo-
rem 3. Hence Tx ¢ CORRygy, iff Vgy(Tx) = 1 by rule (C) and the definition of
CORRgy. Thus again,the Lemma follows by 7 applications of rule (E) and the
definition of CORRgy.

Case 2: fq(x) is a sentence s’, and s is Raqy-grounded. Then s = n’(tgq(s")).
Now tgy(s') € CORRgy iff s’ € EXTgq(T), by the definition of CORRgy. By Theo-
rem 3 and rule (B), it follows that tgy(s') € CORRyy iff Vyy (f9y(s’)) = 1. Hence
the Lemma follows by ¢ applications of rule (E) and the definition of CORRyy.

Case 3: s is Rgy-ungrounded. Again, for some s’, s = ni(ty(s’). If for no
0 <j <iis n/(ty(s") € INSy, the argument is just as for Case 2. If the
contrary, j is odd by Lemma 1. Thus zn’*! (tgq(s")) € CORRgp iff Vgy(s') = 1,
by the definition of CORRg and rule (B). Now since n'(fg(s’)) € INSgy,
Lemma 1 yields n'(tg(s") = s'. Thus Vg(s") = 0 and Van(n' (ty(s")) = 0
by rule (D). From (BIV) and the above, we have n/*(tgq(s')) € CORRgy iff
Van 7+ (tq(s”)) = 1. Now j # i, since by the hypothesis of the Lemma
s ¢ INSq. Hence by Lemma 3, there will be no insolubles from z/*'(¢g(s"))
to n'(tm(s"). So from the above, by i - (j + 1) applications of rule (E) and
the definition of CORRgy, the Lemma follows. This completes the proof.

Lemma 5 Every insoluble corresponds: s € INSyy only if s € CORRgy.

For suppose s € INSg. Then for some odd i, s = #n'(tg(s)), by Lemma 1.
Now the definition of CORRgy and Theorem 3 yield t4y(s) € CORRgy iff Vg (s)
=1. Hence by rule (D), tq(s) ¢ CORRgy. So s € CORRgy; by the definition of
CORRgy, since ¢ is odd.

Theorem 4 The correspondence theovy of truth fails exactly for insol-
ubles: (CT-INS).

This follows from Lemmata 4 and 5 and rule (D).

If ¢ is a primitive predicate of .,, we shall say that N i(¢) is safe just
in case for all admissible models M, EXTgu(N*(9)) = {fom(x): Vau(n'(¢x)) = 1}
Then:

Lemma 6 If ¢ is a primitive predicate and i is not odd, then N i(¢) is safe.

For in that case n’(¢x) ¢ INSgy, by Lemma 1, and so Van(n'(¢x)) = 1 iff Fan(x)

€ EXTyy(9) by Theorem 4. Now EXTg,(N*($)) = EXTan(9) = {fan(x): fu(x)€ EXTan(9)},
from the (extended) definition of EXTg,;. The Lemma follows by substitution.

Lemma 7 If i is odd, then N'(P) is safe.

For in that case n'(Px) ¢ INSy; by Lemma 1, and so Ve (n'(Px)) = 1 iff Fam(%)
¢ EXTygy(P) by Theorem 4 and the definition of CORRgy, since ¢ is odd. Now
EXT g (N*(P)) = X - EXTyq(P) = {fum(x): fan(x) ¢ EXT g (P)}, by the (extended)
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definition of EXTgy,, since the range of fgy is Xgy. The Lemma follows by
substitution.

Theorem 5 The unsafe predicates of L, are just the predicates N*(T) for
odd i.

That the other predicates are safe follows from Lemmata 6 and 7. Let
s = ni(t,,,(s)) for odd 7. Then s e INSg; by Lemma 1, and so s € Xgp - EXTgy(T)
by rule (D) and Theorem 3. Thus s € EXTg (N*(T)), by the (extended) defini-
tion of EXTyg. Now Vgy(n' '(tan(s))) = 0, by rule (D), and so s ¢ {fgm(x
Van (' (Tx)) = 1}. Thus by extensionality, the model 9 shows that N¥(T) is
unsafe.

An unsafe predicate N’(T) will be said to fail in those models 3 and for
those sentences s such that s € EXTy(N'(T)) - {fm(x): V(' (Tx)) = 1}.
Then:

Theorem 6 No two unsafe predicates of L, fail in exactly the same models
for exactly the same sqntences: If i and j are odd, and i # j, then there is
and s and M such that N*(T) fails in M for s and N'(T) does not.

For, given the conditions, suppose that s = n’(fg(s)) and s’ = #’(t4g(s)). Then
s € EXTqq(N¥(T)) and s ¢ {fan(x): Var(n'(Tx)) = 1}, as in the proof of Theo-
rem 5. Thus N*(T) fails in M for s. Now s’¢ INSg; by Lemmata 1 and 3.
Thus Vgp(s') =1 iff s' e CORRgy by Theorem 4. Hence Vyy(s') = 1 iff Vgy(s)
= 0 by the definition of CORRyy, Theorem 3 and (BIV), since j is odd. Then
since Vgy(s) = 0 by Lemma 1 and rule (D), Vgy(s') = 1. Hence s € {fgy(x):
Van(n(Tx)) = 1}, and so NY(T) does not fail in M for s.

On the other hand, there are admissible models in which every unsafe
predicate fails for some sentence. Let s, = n(tg(s,)), s2 = #°(¢am(s,)), and in
general s; = 7% (tgm(s;)). Nevertheless, in a given model and for a given
sentence, at most one predicate fails:

Theorem 7 Ifi and j arve odd and i # j, then if s ¢ EXTqq(T) and s ¢ {fa(x):
Ve (n'(Tx)) = 1}, then s € {fa(x): Vgu(n'(Tx)) = 1}.

For given the conditions, Vg(tym(s)) = 0 by Theorem 3, and also
Van(n’(tg(s))) = 0. Suppose n’(tg(s)) ¢ INSgp. Then n(tgy(s)) ¢ CORRgy by
Theorem 4, and fgy(s) € CORRgy, since ¢ is odd. But since Vgy(tgy(s)) = 0
Theorem 4 requires by reductio that n'(tam(s)) € INSgy after all. Hence
n/(tgn(s)) ¢ INSqy by Lemma 3, and so Vg (n/(tgy(s))) = 1 iff s ¢ EXTey(T), by
Theorem 4 and the definition of CORRgyy, since j is odd. This and the given
conditions yield Vg (n/(tgn(s))) = 1, and so the Theorem holds.

Theorems 5-7 indicate some of the peculiar behavior of negation in .(,.
The following Theorem shows the basis of this peculiarity. Let s be an
atomic sentence. If for some i >0, Vagy(n’(s)) = Vay(s) iff ¢ is not odd, then
we say that negation bekhaves classically in M for n’(s)). Then:

Theorem 8 Negation behaves classically in M except just for the insolu-
bles in M.
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First, if s is atomic and for no ¢ >0 is ni(s) € INSgn, then negation behaves
classically for i = 0, trivially. For i > 0, Vg (1n(s)) is calculated on the
basis of Vg (s) by ¢ applications of rule (E), and so behaves classically. On
the other hand, if s is atomic and for some j =0, n/(s) ¢ INSgy, then Voy(s)
=0 and for all ¢ =0, negation behaves classmally in M for n'(s), except
where i =j, as we shall now show. Vg (n’(s)) = 0 by rule (D). Also, n! (s) =

n/(tg (n(s))) and j is odd by Lemma 1. Thus Vy(s) = Van (tan(n7(s))) = 0, by
rule (B). So Vgy(s) = Van(n'(s)). But since j is odd, this means that negation
does not behave classically in M for the insoluble n’(s). On the other hand,
it does behave classically for the atomic s, trivially. By Lemma 3, there
are no insolubles between s and n/(s). So for 0 <i <j, n'(s) is evaluated by
rule (E), guaranteeing that negation behave classically in these cases. By
rule (D), Vi (n™*'(s)) = 0, and since j + 1is even, negation behaves classi-
cally for n/*!(s). By Lemma 3 again, for no i >j is #’(s) € INSgy. Thus z’(s)
for i >j + 1 is evaluated on the basis of Vg (n/*'(s)) by rule (E), and so
negation behaves classically in these cases too.

From Theorem 8, we see that in the ‘‘normal’’ case, negation marches
through the sequence (s, n(s), n(s), . . .) by alternating between the values
0 and 1 or 1 and 0. But in the case of such a sequence that contains an
insoluble, the insoluble forces negation out of step, as it were, so that a 0
is followed by a 0. Recovery occurs at once, and the next step is a 0, as it
should be. From here on, the march is back ‘‘in step’’, and proceeds as if
nothing had happened.

In future papers, I shall examine some of the complications that arise
when Buridan considers situations in which two or more sentences are ar-
ranged in an Rgy-cycle, and in which sentences with binary connectives are
taken into account.
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