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MODEL THEORETICAL INVESTIGATION OF THEOREM
PROVING METHODS

T. GERGELY and K. P. VERSHININ

1 Introduction From the literature of the logical deduction theory,
several different methods are known for theorem proving in different
calculi. Usually, these methods are purely syntactically founded, which, in
our opinion, often leads to the mystification of syntax. In the present paper
we have tried to discuss these methods from a model-theoretical point of
view. The basic facts serving as foundation for our treatment are also
discussed.

1.1 The general concept of language A language is represented by a
triple L =(F, M, E), where F is the syntax of the language, i.e., a certain
set of words in a denumerably infinite alphabet and (M, ) is the semantics
with M being the class of models and k the validity relation (FC M x F).
Let X be a finite alphabet and X* the set of all possible words described by
the alphabet X. Then the syntax F of the language . = (F, M, F) is usually
given as follows:

(1) Some elements of X* are defined as elements of F;

(2) New elements of F are constructed from the existing ones by using a
number of generator rules;

(3) F contains no further element different from those obtained according
to (1) and (2).

If o Fand U e M, then U= ¢ denotes that ¢ is valid in A. In other words,
A @ denotes that U is a model of ¢. If the case U F ¢ is not satisfied, this
will symbolically be denoted by % I ¢.

1.2 Basic notations The notations = and << stand for ‘‘it follows’’ and
‘“if and only if’’, respectively. It is to be noted that, in proofs, the notations
=> and < will also be used to indicate in which direction a statement
containing <> is being proved. The letter ‘‘d’’ above the notations = or
<> is used to indicate that a new concept is defined. Functions will some-
times be considered as sets of pairs. Rgfand Dof denote the range and the
domain of a function f, respectively. = denotes the graphical equality, w
denotes the first transfinite ordinal. |A| denotes the cardinal number of the
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set A. Any further necessary notation will be defined in the relevant
paragraph.

2 t-type models In our approach it will be assumed that every language
has a fixed type £. Type ¢ is defined as a pair of functions (¢, #') such that

(1) Rg#' Cw - {0}

(2) Rg#' Cw

(8) Dot' N Dot =@, for Dot | < w and | Dot | < w,
(4) there exists a symbol c, for which {c,, 0) € "',

Dot' is the set of relation symbols and Do?" the set of functional
symbols. The function fdefines the arity of each symbol in Do#' U Do#".

Definition 1 A ¢-type model is such a function ¥ for which

(1) A(o) = A is a set
(2) for all pe Dot', U(p) P A
(3) for all f e Do#", U(f):""P A — A and if #"(f) = 0, then U(f) € A

Remark: 0O-ary functional symbols are the constant symbols and the
corresponding elements in A are called constants. According to the above
definition, A is never empty since one element is provided by 2(c,).

The class of l-type models will be denoted by M’. For convenience we
introduce the following notations:

Ao) L, = A
A(p) g Ap
u(f) £ u

A f-type model will always be denoted by a German capital and the set %,
by the corresponding Roman capital. This set is often called the universe
of the model.

Definition 2 Let %, B e M’. 8 is a submodel of the model % (symbolically:
B S A) < for all such p that {p, ) e’ or {p, n - 1) e " it is true

B, =, N "B and B, C A,

Definition 3 Let C = {c|{c, o) e #'"} be a set of ¢-type constant symbols. It is
said that the model B is generated by constants if 8, = B is the smallest set
for which

(1) if ceC, thenB.e¢ B
(2) if (f, et and by, . . ., bye B, thenB;(d,, . . ., b)) e B

In other words the universe B is generated by the constants. In the
following such models will be called {-type C models or simply C-models.

Theorem 1 For an arbitrary t-type model W, the set of its subsets is
partially ordeved by the velation S and has a smallest element.

Proof: 1t follows from Definition 2 that the relation & partially orders the
set of all f-type submodels of W. The intersection of an arbitrary set of
submodels of U is again a submodel of A. This submodel is not empty,
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since all submodels contain constants. Let us now consider the intersection
of all submodels of the model A. This submodel is one of the submodels
and it is the smallest one. Q.E.D.

3 Zero-, first-, and second-ovder languages In the following, it will be
assumed that the class of models M £ M’ , i.e., only Z-type or {-languages
will be investigated. The zero, first, and second order #-type languages
will be denoted by L, L, ,L’, respectively. For each of their M’ is the
class of models. ,.£’ is introduced as an auxiliary language which will
enable some of the results to be expressed in a simpler way. First, the
language »£L* will be defined and the other languages will be obtained using
it.

3.1 The t-type second ovder language (,L’) The language ,.L’ is a triple
(F ’, M, .F'). Let us define each of the elements in the above triple.

3.1.1 Definition of the syntax oF? Let us fix the following disjoint sets
which are also disjoint from Do#' U Do U {7, A, 3}, where symbols 1, a, 3
stand for negation, conjunction, and existential quantifier respectively.

V is an infinite set of symbols called individual variables.
VE set of n-ary function variables for each n < w.
VR set of n-ary relation variables for each z < w.

Definition 4 (a) ,T‘ (the set of the terms of the language ,.’) is the
smallest set for which

(i) vc,1!
(ii) if feVE or #'(f) =mand 7, . . ., T,€,T", then f(r,, . .., 7,) €,T"
(b) Put
P oy, .. Ty, ..., T,€,T and #(p) = n or peVR n<wh

The elements of ,P’ are called second order prime formulas;
(c) .F* (the set of second order formulas) is a smallest set for which

(i) oP'C,F!

(ii) if @ € ,F?, then T@e ,F*

(iii) if @, ¥ € ,F?, then @ Ay € ,F*

(iv) if pe,F' and ze U (VEU VB) U v, then 3z @ € ,F".
n<w

The formula ¢ €,F’ will be called the subformula of the formula ¢ € ,F’ if
the latter is represented in the form ¢ = ayB, where a and B are some
sequences of symbols.

We introduce the following notations: Vo (for all v) will stand for 13v1,
pvy for T@ay), ¢ — ¢ for (M@vy) and @<=y for (¢ — Y)a (Y — @)
where ¢, ¢ €,F‘. In the formulas only those brackets will be kept which
are necessary for understanding.

3.1.2 Semantics of the language , L Let U be a given model. We define
a function & which gives a correspondence between variables from
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U@WFu vR UV and the concrete values from Rg¥. Such a function is

n<w
called an assignment function.

Let us introduce now the set ,K of second order assignment functions as
follows:

K 445k [Do =Uwluvhuvan

ifveV, then ,k(v)eA
if fe VE then k() €4 A
if p e VR, then ,k(p) Q"A}.

Given some assignment function % € ,K we define its extension (k) to the
set of terms ,T" as follows

o (v) &,k () for anyve V

= 4 §R(F)GR(T)), . . ., k(7)) if fe VE
ok (Frs, oo mal) 2 {suf(zﬁm), o ) i, m et

Now we define the validity relation k' % ,E’ ¢ [;k] will mean that the
formula ¢ is valid in the model U for the assignment function ,2. This will
be defined through induction according to the construction of the formula ¢.

Definition 5

(1) AW Ep(ry, ..., 7 [zk]é){

(i) A, 19 [R]<U, 0 k]
(iii) A, B! (@ ay) [R] <A, Ef @ [,k] and A, EXy [,k]
(iv) for any ze |J(ViFf U VR) U V: o1, '3z y [k]<> there exists such a ,k' € ,K

n<a,

that for all w # 2 (we UwEuvdu V)zk’(w) = ,k(w) and M, E* Y [,']

We shall say that @e .F’ is valid in the model U if for all ke ,K Ak
o k], i.e.,

GR(TY), . . ., ok(T,) € k(p) if pe VR
(R(71), « . ., R(1,)) €Up if (p, m) € 2"

W, B 0 (V,k € ,K) Uy B 0 [1R].

The formula ¢ ¢ F’is a tautology if it is valid in all the models of the
class M’. Symbolically writing,

Fods(vae M) A, E 0.

The variable v will be called bound in a formula ¢ if it is found in a
subformula ¢ of form Jvy only. The variable v will be said to be free in
the formula ¢ if it is not bound. A formula containing no free variable will
be called a sentence. We introduce the notation ,5° £ {¢ € ,F*|¢ contains no
free variable}. Note that if ¢ €,S’, then U, =’ ¢ < there exists ;% € ,K such
that W, =’ @ [L&].

Now, the definition of the second order #-type language ,.L’ = (;F’, M’,
.E") is complete.

Let ¢, Ye,F’. We shall say that ¥ is the logical consequence of ¢
(symbolically: ¢k ) if each Z-model %, in which ¢ is valid, is a model of
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Y. In other words:
P Y <L (VUEM) U F o = U FI .

Logical consequences are sometimes called semantic consequences.
Two formulas ¢, Y€ ,F’ are said to be semantically equivalent (symbol-
ically: ¢ =) if ¢ Y and ¢ E ¢. In the following, some new notations will
be necessary. Let £ C ,F* be a set of formulas = £ {0;/i < w}. Conjunction
(and disjunction) of the formulas will be denoted by the symbols /\ o;

(/\ cri>. Introduce the following notations >4 A o; and zd V o;. e
i<w i<w i<w

3.2 The t-type first ovder language (,L') The language ,{ ' is the
triple (,F’, M*, |E*). It can be defined with the help of ,.L’ as follows. The
syntax of ,.L’ is obtained from that of ,.{’ by supposing in Definition 4 that
VEUVR=0 (n<w). In other words, ,V ¢ V. Then ,T% ,P’ and ,F’ are
obtained from the corresponding definitions of ,77 ,P’ and ,F’ by taking
into account the introduced restrictions. The semantics of the language ,.L’
is defined in a similar way. For this case

kL{klDok =V, Rg,k = A}
for a given model U ¢ M*. The validity relation is defined as
EPELEIN (M x (FY)

This easily follows from Definition 5. All notions introduced for language
oL’ are valid, with the introduced restrictions, for ,.L’ as well.

3.3 The t-type zevo ovder language L’ L' is a triple (F!, M, o F"),
which is defined with the help of ,.L’ as follows. The syntax of oL is
obtained from that of ,.L‘ by assuming that U vFuvdu V=0. T P,

n<w
and ,F’ are obtained from the corresponding definitions of ,7 ,P‘, and ,F‘
by assuming that the language does not contain any variable symbols.

Remark: Remember that ,7‘ is constructed of constant symbols only, in
the following way (according to the Definition 4a): 77’ is a smallest set
sdch that

(i) if (c, Oy e ", then ce,T*
(ii) if(f, et and 1), ..., To€,T then flr,, ..., To) €T

The semantics of the language ,.L* is defined from that of the language
»L’ by omitting all the variable symbols. In this case (K = {. At the same

time, there exists extended assignment functions applicable for 7.
They can be defined as follows:

Let us suppose that (c, o) e?", (f,mpe?' and 1), ..., T,€,T"and con-
sider a model e M*. Then:
OE(C) ¢ U, _ _
R(f (T, o v oy ) = Up(ok(TY), « . ., oR(TH))

Since it is easy to see that for any model % there exists only one function
ok so in the following we shall write U instead of ;2. This means that the
language oL * = ((Ff, M*, (E’) is completely defined.
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Remark: 1t follows from the definition of languages that L’ C ,.L* C . L.
While (F/ € ,F/ C ,Ff and ;F‘= ' N (M’ x ;F’), for i = 0, 1.

Consequently, the validity relation is practically the same for any
order language. In the following, therefore, we shall omit indices and
simply write F to denote validity relation.

4 Some properties of the language ,JL* In this section, F always
means oF%

Theorem 2 IfUe M and B € N, then for any formula ¢ € ,F*
AEP<=>BEq

Proof: Tt goes by induction on the length of the formula ¢. For prime
formulas the statement follows from the definition of the relations € and E
and from that of the function 2. Suppose that the statement holds for the
formulas  and X from F‘. Then it also holds for the formula i A X
according to the definition of the relation kE (see Definition 5 (iii)). The
statement’s validity for 1y follows from point (ii) of the same definition.

Q.E.D.

Corollary Let U e M and let 8 € U be C-model. Then B = Rg¥.

In other words, the C-submodel of the model W consists of exactly those
elements which have corresponding terms.

Proof: Rg¥q C C is true for any submodel € S %u. At the same time, Rg¥
is closed under the functions of the model . This follows from the defini-
tion of the set of terms ,T‘. Consequently B is the smallest model and
B, = B contains those elements only, which have corresponding terms. Q.E.D.

Let us now formulate the compactness theorem in dual form. As they
are well-known, their proof will not be detailed here.

Theorem 3 (Compactness Theorem) Let {¢;|i<w}C  F’. Then E _\</<pi if
and only if there exists an n < w for which l=1_\</n<p,-. o

See proof, e.g., in [1].

Theorem 3' (Compactness Theorem) Let {¢;|i <w}C F’. '{\w% is wvalid
if and only if i/<\” @; is valid for all n < w. l

See proof, e.g., in [2].

A prime formula or its negation is called literal. The complement (7) of
the literal 7 is defined as follows:

—x An if 7 is a prime formula
n'if 7 =I7', where 7’ is prime formula:

The pair of literals (m, ') is called contrvary. If Il is a set of literals then
7 will denote the set consisting of the complementer elements of I1. A set



MODEL THEORETICAL INVESTIGATION 529

of literals Il is called consistent if II contains no contrary pairs. Let
Il C ,F’ be a set of literals.

Theorem 4 If Il is consistent, then 11 is valid.

Proof: Let us construct a model §e M’ such that W =1I. Let A, = A 4 oT?,
W(Ty, o v oy Th) $f(ry, ..., o) forall n<w, Ty, ..., T,€,T* and such f, that
P'(f)=n, Wo={r1, . .., Tw): O(T1, . . ., Tw) €I} for all m <w and such p
that #(p) = m. U satisfies 11 since, if A7 then WFT. L k7' and W 7"
then A =7 A 7" and it follows from 7, # T, that %, # ., Q.E.D.

Theorem 5 If Il contains at least one contrary pairv then 1l is tautologic.

Proof: Let n,mell and 7 = p(7y, . . ., T,) Where 7, ..., T,€,T% Then it
follows from the definition of the #-type model and of the relation k that
either W=7 or AT is valid in any model A e M, Q.E.D.

A set of formulas will often be represented by a sequence of its
elements. Then, if ¢ is a formula then =, ¢ £ SU{p}. Let ¢, ¢,, ¢, be
formulas of the language ,.{‘. Let us formulate the well-known properties
of the logical consequence relation F in the form of a theorem. For
convenience, we shall assume that I'kZ denotes the same as Ik
(T, T CoFY).

Theorem 6

(i) L, 000, EZ T, ¢y, 9, FZ;

i TEQ, v, 2SS TEQ,, ¢,, Z;

(i) T,¢o,ve,EZ<>T,0,FZ and T, ¢, EZ;
(ii") TFE@,AQy,, T<Tke,,Zand T EQ,, Z;
(ili) I,l9kEZ<TkEe,Z;

(iii") TE1p, <71, ¢ET;

ivy T,0,— @0, F2<>TE¢,,ZandT, 9, FEZ;
(v) TEQ — ¢, 2T, ¢, E@,, .

Proof: We prove one of the above statements, e.g., (ii).

=>. Let us suppose that, if WETA (¢, ve,), then A =T for any model A.
Let BT ®,. Then, according to the definition of the relation k&, B k= ¢,.
Consequently 8 k¢, v¢,, and hence B F A (¢, v ¢,) which means that 8 k& z.
It can be proved in a similar way that, if 8 ET'A@,, then BEZ.

<. Let us suppose that

(1) f ET A, then A FZ
(2) ifUAETAQ,, thenAEZ

for any model . Let BEI'A(¢,ve,). Then BEIT and BF¢, vy, The
latter statement is equivalent with 8 F ¢, or B F @,.

Case 1: Let®B E @,. Then, according to (1), 8 l=2:3
Case 2: Let Bk ¢,. Then, according to (2),BEZ. Q.E.D.
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Theorem 7

(i) T.FZ andT, C T, then T, EZ;
(ii) f TEZ, andZ, C Z,, then TEZ,.

Proof is evident, therefore it is omitted.

The following properties of the relation F follow also simply from the
definition:

Theorem 8 Let I', T be consistent sets of litevals. Then:

i) TEZfezTcry

(i) TEZe TN +Q;

(i) TEZeTCT;

(iv) TEZ<TnT + 0

(v) T¥Z<=Ecr.

(N.B.: ¢, ¢, means that no model of ¢, is a model of ¢,).

We also refer to a theorem which, although trivial in its proof, plays
an important role in some later considerations.

Theorem 9 Let T', © C (F*, we F’. Then:

i) T,¢EZ adT,19pEZT<>TEZ
(ii) TEZ, o and TES, l9p<=TEZ.

Proof: (i) <=. It follows immediately from Theorem 7. =>. Suppose that,
if WETAQ, then WEZ, and, if BETATg, then BEE. Let 8 EL. It is
obvious that always either @ F ¢ or  E1¢. In both cases, L FZ.

(ii) <=. It is trivial from Theorem 7. =>. Suppose the contrary. Let
AET and UK Z. Since @€ oF?, then either () Wk or (xx) AET@. In the
(*) case MFZ vie, and in the (**) case WK S v what contradicts our
initial assumption. Q.E.D.

5 Set of litevals as a model-theoretical tool Let T be a finite consistent
set of literals. The formula I' (f‘) is called a conjunct (disjunct). A conjunct
(or disjunct) containing no literal will be said to be empty and denoted by the
symbol A (V).

If no ambiguity may occur, a conjunct (disjunct) will often be identified
with the corresponding set of literals and the notations and terminology of
set theory will be treated freely. We shall say that ¢ ¢ OF' is represented

in conjunctive (d1s;unct1ve) normal form if ¢ has the form A ®; where each
@; is disjunct (and V ¢; where each ¢; is conjunct, respectively).
Theorem 10 For any formula ¢ € \F*, there exist formulas ¢' and @' in ,F*

such that ¢' =@ and ¢'" = ¢ and @' is represented in conjunctive normal
form and ¢" in disjunctive normal form.
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Proof: It will be presented for the first statement of the theorem only. The
proof goes by induction on the length of ¢. For ¢ we can construct a
formula ¢' being semantically equivalent to ¢ and whose subformulas
beginning with the symbol 7 do not contain the symbols A, v, and 1. This
formula can be obtained by repeated application of the following equalities:

1Me=6
OAY) =10vIY
WOvy) =10AY

where 6, Y€ oF‘. These equalities follows easily from Theorem 6. Now,
the wanted representation of ¢ can be obtained by using the equality
ov( A 6) = (@vy)a(evb) (where @, Y, 8¢ oF*), which is readily seen from
Theorem 6, and by taking into consideration that the symbols v and A are
commutative. Since the proof was carried out by using semantic equalities
only, then ¢ = ¢'. The second statement of the theorem can be proved in a
similar way. Q.E.D.

The formula ¢' will be called conjunctive normal form (CNF) of the
formula ¢ and ¢'' the disjunctive normal form (DNF) of the formula ¢. Let
T CoFf. Py denotes the set of prime formulas occurring in Z.

Theorem 11 Let P C (P'. Then, for any model We M’, there exists a set of
literals T such that Py C P and for any ¢ € oF*, for which P {o} € P it holds
that

Nep=Tkoe

Proof: Given a model U, the set P can linearly be ordered. Let P 4
(P1» « + +s Dny . . ). Each element p;(i > 1) has the form of p;(¢y, . . ., &)
Let us add the literal p; to II, if (9!,1, - 62!,: )e*up and the literal 1p; in
the opposite case. The obtained set II will obv1ously be consistent.

=, LetUEF¢@ and BE [I. Then it is obvious that B satisfies each element
of 11 and thus the value of the assignment function B for the prime sub-
formulas ¢ agrees with that of . Consequently, B ¢. <. It is evident,
since A =11 according to the construction. Q.E.D.

Thus, a ‘‘restriction’’ of any model to a fixed set of prime formulas P can
be given by a conjunct. The validity of any formula, the prime subformulas
of which are contained in P, is equivalent to the logical consequences of
this conjunct. On the other hand, any conjunct defines a class of models
coinciding (as functions, see section 2.3) in the prime formulas contained in
this conjunct. Evidently the fewer elements a conjunct contains, the
more ‘‘extended’’ the corresponding class of models is. The empty
conjunct A ‘‘defines’’ the class M’ of all models.

Theorem 12 Let P C (P'. Then for any model Ue M’ there exists a set of
litevals 11 such that Py C P and for any formula Qe Ft, P € P it holds
that

AP @< EI.
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Proof: Let AU be a given model. Let us construct a set of literals II' which
satisfies the preceding theorem and suppose that I =1T'. =>. Let UK ¢
and B ¢. Then, obviously, there exists p(ry, . . ., T,) € Py, such that

<§irly oo ey ﬁr,,) Eﬂp@<§”, .. uy %Tr‘)ﬁ/”p.

Then the corresponding literal from II is valid in 8 and BN, <. Itis
evident, since W =1I. Q.E.D.

Theorem 12 is apparently the dual pair of the preceding one and
it states that the non-validity of a formula in a given model is equiva-
lent to the existence of a disjunct semantic consequence of it. Con-
sequently, we can say that each disjunct Il also defines a class of
models, namely, the complementer of the class determined by the conjunct
fl. That is, the fewer elements the disjunct contains, the ¢‘‘poorer’’ the
corresponding class is. The empty disjunct V ‘‘defines’’ an empty class of
models.

6 The semantical basis of resolution-like proof proceedures Now we
have shown that a consideration on the validity (or non-validity) of a
formula @ €e,F’ may be substituted by a consideration on the logical
consequence of ¢ from a conjunct (or on the logical consequence of a
disjunct from ¢) while the range of such a conjunct (disjunct) enables us to
conclude on the range of the class of models in which ¢ is valid (non-valid).
It also has to be noted that any conjunct (disjunct) CNF (DNF) of the
formula ¢ logically follows from (is the logical consequence of) ¢ and, in
addition Theorems 8 and 9 permit the construction of new conjuncts
(disjuncts) having such property. Later we shall show that they exhaust all
the conjuncts (disjuncts) possessing this property.

Two sets of literals I', and T', will be said to be compatible if T'; U T,
is consistent. We also shall speak of compatible pairs of conjuncts (dis-
juncts) by regarding them as a set of literals.

Definition 6 Two conjuncts (disjuncts) I', and I', form a conirary pair if
there exists a literal p such that T, =T{U{g}, I, =Tju{p} and I
is compatible with T'j. If these conjuncts (disjuncts) form a contrary
pair then conjunct (disjunct) I‘l'vl"z’ is called their 7esolvent and denoted
by R(T,, T).

Theorem 13 Let @€ (F* and let T, T, form a contrary pasr. Then:

(i) T\FpandT,Fe = R(I, T)kg;
(i) ¢ET and o =T, = @ ER(T,, T,).

Proof: It follows immediately from Theorems 8 and 9. Q.E.D.

Let S be a set of conjuncts (disjuncts). Assume that R%(S) £ S, and that
R™*!(s) £ R™(S) U{r'| there exist I';, '€ R*(S), which form a contrary pair,
and T = R(T', T,)}. Let R(s) £ U R(s).

n<w
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If S is finite, then R(S) is finite too, since Pg is finite. More exactly:

R(5)| < X 2
ACPg

Let ¢ € oF’ be valid, and 7,v. . .v7, a DNF formula of ¢. The symbol
¥ stands for a set of conjuncts {m,, . . ., 7,}.

Theorem 14 Let T be a consistent set of litevals. Then: T E@<> there
exists T € R(IT%) such that 1 C T.

Proof: <. Let MeR(II¥) and M CTI. Let UET. Then, according to
Theorem 8, U EII. Obviously, if WER(T,, T},), then either AT, or A 1.
Thus, one of the ‘‘initial’’ conjuncts 7;( =1, ..., ) is valid in . Con-
sequently, U = 11¥ and A E ¢.

=, Let 'k=¢. Assume that P = Py - Pp. If P = then the statement of
the theorem is obvious. Let P ={p,, ..., p,}: Put that R, = {l1(Il ¢ R(11¥)}
and II is compatible with T}; R;,, = {ll/lleR; and p;4; €11 and Tp;,, £1I};
wherei =0, ...,n - 1. We shall show by induction with respect to i

that for any i(: =0, . . ., )T R; and R; # ©
which means that the statement of the theorem is true.

Basis of the induction: Let i =0. R, # @ since I' kil¢, which means that
T'E=R(11Y), but it IR, then I'¥II. Consequently, there exist IleR,. It is
also obvious that if WE I then A FR,.

Induction step: Let the statement be valid for R;(j=0,...,7). Let us
consider R;;,. Let Mk I'’. The symbol A+ stands for a model which
differs from ¥ only in that ¥ Ep,, <> Wp,,,. Obviously, if Y e F’ and
pis1 £ Piy}, then A =y<>W T Ey. In particular, Y kT, therefore '™ k .

Let:

Rin = {1 eR; and p;4, € I}

Ri; = {ll/lle R; and 1p;,, e I}
Then: R; = Rfﬂ URj4 UR;4 . Let us consider the following cases:
Case 1. Rf,, = Rj,, - ©. Then R,,, = R; and the theorem is proved.

Case 2. Rf, =9, R, #®. Let AL, If Akp,,,, then A¥R;,,. But,
AE=R; (according to the assumption of the induction), hence A =R;;; and
R, #®. If AETp;4;, then let us take it and, by analogous considera-
tions, we can see that '™ = R;,, but, because of p;;, £ PRi41, U FR;4+,. The
theorem has been proved for Case 2.

Case 3. Rf,, #®, R;;, = @. This case is the symmetric equivalent of the
former one.

Case 4. R;trl #®, R;y, # 0. Suppose the contrary. Let A =T and AH¥R,,,.
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As from the assumption of the induction it follows that WFR;, then
ﬂkﬁfﬂvﬁ;ﬂ. Consequently, there exists a conjunct IIeR}:L1 vR;,; such
that kI, Let ITe RLI be such a conjunct (the considerations are
symmetrical for IleRjy,). It is seen that I* =1} v {p;;,} and Y =11} and
Q‘ FP:+1

Let us investigate 21"“ W ET and A KR, since p;4. € PRis.
Consequently, '*'kR},vR7,,. But W*'k7p,,, hence W* ER;,,. Let
II” e R}, be such a conjunct that W' ENI", ™ = II; U {1p;+,} and W T =1},
Since p;4:€ Pri;, then AKFII;. Consequently, Hfr and II; are compatible and
there exists R(II*, II") such that R(II*, I1”) € R;4, and, according to Theorem
13, WER(IY, II7). That is, W FR;4,. The investigation of Case 4 leads to a
contradiction, which means that the proof of the theorem has been
completed. Q.E.D.

Corollary Let ¢ e F'. Then:
Eo<>AeR(TY)

Now let @€ F’ be non-tautologic. Let g,A...A0s be a CNF of the
formula ¢. Let us suppose that =¥ £ {o,, . . ., o;}. It will be shown that the
dual equivalent of the statement of Theorem 14 is also true.

Theorem 15 Let T be a finite consistent set of litevals. Then:
@ ET'<> there exists T ¢ R(E¢) such that T C T.

Proof Since ¢ is not-tautologic, so 1¢ is vahd Let us consider the disjunct
T. It is obvious that T is consistent and ¢ 1"(=)I‘ Fl¢. It is also evident
that 1Y = T%. According to Theorem 14, there exists Il ¢ R(II¥) such that
I1 C T. Then itis evident that = =T e¢R(Z¥) and = C T. Q.E.D.

Corollary Let @€ oF*. Then:
¥ o< veR(ZY)
Let e M. The pair of conjuncts (disjuncts) II,, II, is called -
resolvable, if

(i) m,, II2 are resolvable in the usual sense;
(ii) A E1I, v [T, (correspondingly, 9 II1 v Hz)

If I1,, II, are A-resolvable, then R(II,;, II,) is called the U-resolvent of
II,, I, and is denoted by Ry(II,, II;). LetSbea set of conjuncts (disjuncts).
Let A S, (correspondingly, AES). Let RY(S) £ s and RY(S) = {T'| there
exist T, T e Ry(S) such that I',, T, are A- resolvable and T' = Ry(T,, T,)}.
Let us suppose, furthermore, that Ry(S) = U Ry(S).
i<w

Definition 7. An ¥-clash is a set of conjuncts (disjuncts) {T', I, . .., T}
such that

i) r=r'u{m,... m,} is non-valid (valid) in ¥ while I'' is valid
(non-valid) in U;
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(i) T; =Tju{m;}@=1,...,n) is valid (non-valid) in ¥;
n
(iii) (LJI I‘,-') N{my ... mpu{m, ..., 7.} =02. (clash condition)

Here I' is called the nucleus of the clash, Ty, .. ., I', the satellites of the
clash and T'UT!U...UT; the 7vesolvent of the clash (symbolically:
Ry(T''; Ty, ..., I). The literals 7, ..., T, 7,,..., T, are said to be
resolvable by the literals of the clash.

Let us consider the proof of Theorem 14 again. Let Me M’ and " a
consistent set of literals such that M EI'. Let us observe that, while
investigating Case 4 in the proof of Theorem 14, we established the exis-
tence of an element in R;;,. This element is a resolvent of two conjuncts,
one of which is valid in a fixed model Y. Let us consider the model M in
the place of U, then the following statement can easily be proved:

Theorem 16 Let @ € (F’ be valid. Then:

I' = @< theve exists 11 € Ryy(I1¥) such that T C T.
The dual equivalent of this theorem is also true:
Theorem 17 Let ¢ € ,F* be non-tautologic. Thén:

¢ ET' <> there exists T e Ryy(Z¥) such that T C T.

Remark: It is easy to see that each element of R,,,(H‘p)(R,,,(E"’)) which is
valid (non-valid, respectively) in 9 can be obtained not only by sequential
binary resolutions but as a resolvent of an M-clash. The nucleus and
satellites of the M-clash are easy to construct, by considering the deriva-
tion of the above-mentioned element of R,,,(H‘p)(R,,,(Z)‘”)), while the nucleus
always is the ‘‘initial’’ conjunct (disjunct).

Now, let us generalize the concepts of conjunct and disjunct introduced

n
above. Let K, ..., K, be mconjuncts and A,, . .., A, disjuncts. Theni\/_1 K;
is called K-disjunct, and /=\1 A; D-conjunct. It is obvious that a K-disjunct

(a D-conjunct) is a formula in DNF (CNF). Let ¢, Y e F’. ¢ and ¢ are
compatible if the formula ¢ A Y is valid.

Definition 8. Let I'; and I', be K-disjuncts (D-conjuncts). I'; and I, form a
contrary paiv if

(1) they can be represented in the forms

r,=ru{ku{r}}

and

"

r, =rju{ku{}}

i.e., if I', contains a conjunct (disjunct) for which there exists a conjunct
(disjunct) from I', such that the pair formed by them is a contrary pair;

(2) T{ and I'} are compatible.
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And, if the K-disjuncts (D-conjuncts) I, and I', form a contrary pair
then the K-disjunct (D-conjunct) I'j U I'j will be called their resolvent and
denoted by R*(T";, T,).

We introduce the definition of all resolvents of a set S of K-disjuncts
(D-conjuncts). Let
RS) S
R"*Y(S) £ R*(S) U {T'| there exist T',, T, ¢ R"(S) forming a contrary pair and
r=R(T, Iy}
Let furthermore R(S) 4 L<J R”(S). If S is finite then R(S) is finite too.
. n<w

Definition 9. Let I', and T, be K-disjuncts (D-conjuncts) such that
7y my n2 ma

= \/1 Ki1<r11 Al Aix) and I'; = V1 Kiz <Fz = A1 Aiz) .
1= 1= 1= i=

We shall say that I'; absovbs T', (symbolically: I', <. I',) iff for all i(¢= 1,
..., n;) there exists such a j(j=1, ..., m;) that K, 2 K;, (for all je{l,
. ., m,} there exists such anie{l, ..., m,} that A;, D A;,).
It is easy to show that any formula ¢ € ,F’ can be represented using
D-conjuncts (K-disjuncts). For this it is enough to represent ¢ in the form
of a disjunction (conjunction) of its subformulas and then all the sub-

formulas in CNF (DNF). ”
Let @ € F’ be valid and representable in the form ¢ = ,V=1 II;, where

I;(i=1, ... n) are D-conjuncts. The set of D-conjuncts {Il,, . . ., II,} is
denoted by I1¥. For this case Theorem 14 can be rewritten in the following
way:

Theorem 18 Let T be a finite consistent set of litevals. Then:
T E <> there exists Tl e R(IT¥) such that 11 » T.

Proof: 1t is carried out simultaneously to the proof of Theorem 14 with the
difference that for each i(i=1, ..., n) the set of resolvents R; can be
written in the form:

+ -
R; =R;% UR;+, UR;4,
where in this case

Rt ={llMeR; and I
Riy. = {lIlIleR; and 1

I’ UA{K’ U{p;nl}}
n' u{k' u{ip;+. 11 Q.E.D.

n

I\’Inow, let ¢ € oF’ be non-tautologic and let it be represented in the form
o= A %; where Z;(i= 1, . . ., m) are K-disjuncts. Letz¥ £{Z, ..., Z,}
From Theorem 15 it follows
Theorem 19 Let I" be a finite consistent set of literals. Then:
¢ ET'< there exists T ¢ R(S¥) such that s » T.

Proof is analogous with that of Theorem 15.
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It has to be noted that the above introduced concepts of the -clash and
of the resolvent of the A-clash (see Definition 7) can easily be extended to
K-disjuncts (D-conjuncts) (see [3]) and the corresponding theorems will be
true in this case as well.

Now, let us consider Gentzen classical propositional calculus (see,
e.g., [4]) and let us denote it by ;G. The most important fact related to ,G
is the Gentzen’s theorem about the elimination of cut rule. Using this fact,
we shall show that a sequence I' = T (where I', T C ,F’) can be regarded as
the statement I' =Z. More exactly, the following theorem holds:

Theorem 20 'GEF'* ST ED.

Proof: Hereinafter we shall exclude the cut rule, when speaking of the
derivation rules. =>. If I' — T is an axiom, then I" and  contain the same
formula and the statement is obviously true. It is easy to show that the
derivation rules of G preserve the relation k.

<=. Remember that the calculus ,G does not contain the cut rule. Let us
investigate the sequence I'— Z and build the derivation tree using by
counter-application to it the derivation rules as long as it is possible. Since
each counter-application reduces the logical length of a formula in this
sequence, it is a finite process. Let It — Z,, ..., I, — Z; and let them
all be ‘‘final’”’ sequences. It is obvious that, I'; and Z; consist of prime
formulas only for any i€ {1, . .., k). According to Theorem 6, I'; FZ; holds
for any 4. According to Theorem 8, this is possible only if £; N T'; # @, i.e.,
if there exists a m; belonging to I'; N Z;. Consequently, I'; — Z; is an axiom
and the constructed tree is a derivation one. Q.E.D.

7 Some properties of the languages L' and ,L' Now we introduce the
following notation: Letwve ,V, ¢ e ,F’and 7€ ,T¢. ¢[v/7] denotes the formula
obtained from ¢ by replacing each free occurrence of v in ¢ by 7.

¢[v/7] can be defined in the following way:

@) plryy ..oy ) w/Tl=p(rlv/7], . . ., T,[v/7]) and in 7;[v/7] there is no
collision

(i) Wlv/T] £ 1Wlv/T)

(iii) WX [o/7] € Ylo/r)aX[v /7]

(iv) 3w)y[v/r] = Bw)(Y[v/r] if w does not occur in T; otherwise, let ze V
be a new variable not occurring in the formula and

Gwvlv/r]E E2)Wlw/z)) [v/7]

[v/7] is called a substitution. The substitution [v,/7,, . . ., v,/Tx] can
be defined in a similar way.

Definition 10. The formula ¢ is called prenex formula if ¢ =@, ...
Qnxny, where @;(i=1, ..., n) is either 3 or V, and ¥ is a formula which
contains no quantifier.

Theorem 21 For any formula ¢ ¢ ,F’ theve exists a prenex formula ¢' such
that @' = @.
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Proof: 1t can be carried out by induction on the length of the formula ¢
with the help of

(i) the following equalities:

Ay =Yag
13x¢ = Vxlg@
AVxe = Jdx@

3Axy) ax = Jz2(Y[x/2]aX)
(Vxy)a X = vz({[x/2] A X) where z ¢ V does not occur in ¢ A X;

and
(ii) the following fact: for any ¢ e ,Ff and xe V:

AEe<UE VI Q.E.D.
We introduce the following notations:
3%, . . .Elx,,g 3%, ...%,and Vx, . . .Vx,,g‘v’xl. .. Xne
Theorem 22 (Skolem’s Existential Normal Form Theorem for ,.?)

EPA 2= 2R TVE=R 7 A A= PR R 1/ EYRV4 A €7 I ) A O ]|
where Y e ,F’ and for any ie{l,...,n}x;, y;€V, f.e VF and f; does not
occur in Y.

Proof: 1t is enough to prove the statement for the formula 3xVyX, where X
still may contain quantifiers. We shall make use of the definition of the
relation . If W F3xVyX, then there exists an element ,k(x) € A for which
X is valid for any element ,k(y) € A. Thus, X is valid for ,2(f(x)) € A as well,
i.e.,

W, BV A y/f (%)),

Otherwise, if U ¥ IxVyX, then there is no ,k(x) e A for which any k(y) is
‘““good’’. This defines a function which renders the corresponding ‘‘bad”’
2R(y) to each k,(x). Let us note that here we made use of the axiom of
choice in an intuitive manner. Thus

A, #'V fIxX[ y/f(%)].
To complete the proof, the statement has to be shown for the formulas
X1, o« .y X,VyX and Ixy, . .., XYYy, - . . Y. This can easily be done by
induction. Q.E.D.

The following theorem is the dual pair of the preceding one.

Theorem 23 (Skolem’s Universal Normal Form Theorem for ,.£‘) Let
Ve Fand x;, v,€ V, f: e VE for any ie {1, . . ., n} while f; does not occur in
Y. Then:

VHI Y1 e VEIY =V L 5,3 0 BV, e v, e, %) ]

Proof: Without restricting generalities, we investigate the formula Vx3yX.
In the proof, we make use of the definition of . Let %, F'Vx3yX. Then,
for any ,k(x) € A, there exists such an element ,2(y) € A that X is valid. The
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axiom of choice permits the determination of such a function Ay, for which
A;(k(x)) = k(y). Therefore:

U, = Va3 fX y/f (x)].

Now, let ¥, = vx3fX[ y/f(x)]. This means that for any ,k(x) ¢ A there exists
a functional variable f such that X is valid for the element ,k(f(x)) e A. Con-
sequently, there exists an element ,%k(y) € A, determined by f, for which
X is valid. Hence, A, F'Vx3yX. Q.E.D.

Definition 11. We say that a type f has enough function symbols if and only
if ¢ contains infinitely many function symbols of each arity, i.e., for any
n<w, there are infinitely many symbols f,, fz, ...€ Dot" such that
() = n (i <w).

Corollary 22.1 If the type t has enough function symbols then, for any such
formula @e F' that ¢ = 3x,Vy, ... 3I%Vy Y, there exist terms T, .. .,
Tp€,T* such that

Faxlvyl o o E\anynw@Exl o o anl/[yl/Tl, .« oey y,,/T,,].

Proof: From Theorem 22 we have

F3IxVy, ... 3,V Y<EVSf ... f,3%, ... xnlp[yl/fl(xl)9 R W4 X C xn)]

Now, let us choose, for each functional variable f;(i=1,...,n) a cor-
responding functional symbol f/ from Do#' such that #'(f}) = ¢ and f! does
not occur in Y. This can be done because { has enough function symbols.
From the definition of M’ and from that of E we have

2Ftvf1 3%, xn}l/[yl/fl(xl), 4 X C 7P %) ]
@1'-_"3%1 LR xnw[yl/fl(xl), LRI yn/fn'(xu Y xn)]-

=>, In fact, we assumed, without restricting generalities, that ,=*V f3xy[ y/
f(x)] where fe VF and xe V. This means that, for any model % ¢ M, there
exists an element ,%(x) ¢ A such that X is valid for any 273( f(x)). Let f be an
arbitrary fixed function variable and f' the function symbol correspond-
ing to it. Then there exists a model Be M’ such that 8, E!3xy[y/f "(x)].
Since this is true for any f then we can conclude that

B 3xy[v/f(x)].

<. Let ,/#¥'Vf3xy[y/f(x)]. This means that there exists a model U such
that

W'V fIxY[ y/f(x)],

which, in turn, means that for any ,k(x) there exists such a ,4(f) which ¢
is not valid. Let us consider now the functional symbol f'e Dot cor-
responding to this f. Then there exists a model 8 such that

B, ¥ 3xyl y/f'(x)]
Consequently,
3y 9/f (%)) Q.E.D.
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Remark: The above corollary says that for any formula ¢ € ;F’ there exists
its existential representation while ¢ is tautological if and only if its
existential representation is tautologic. The latter statement is weaker
than that of Theorem 22. This is connected with the fact that the interpre-
tation of functional variables differs from that of functional symbols (see
Definition 5). Accordingly, the statement that, if % is a model of ¢, then U
also provides a model for the existential representation of ¢, is not true.
We can only say that there exists a model B¢ M’ in which the existential
representation of the formula ¢ is valid.

Corollary 23.1 (Skolem’s Normal Form for Validity for ,.L*) Let the type
t have enough function symbols. Then for any formula ¢ e F* of the form
@ = Vx,3y, ... V%3 there exist such terms 1., ..., T,€,T that ¢ is
valid if and only if the formula Vx,, . . ., %[ /71, . . ., ¥,/7,] is valid.

Proof: Without restricting generality, we suppose that
@ T Vx3yX

=>, From Theorem 23 it follows that Vx3yx is valid if and only if
vx3rX[ v/f(x)] is valid. Let Vx3fX[y/f(x)] be valid. This means that there
exists a model A ¢ M’ such that for any element ,%(x) ¢ A there is sucha
function variable f that X is valid for ,k(f(x)). Let f'e Dot correspond to
the function variable f. As the type ¢ has enough function symbols, it
follows from the axiom of choice that there exists a model 8 in which the
interpretations B;r and ,k(f) are equivalent. Consequently,

B, |=tvxx[ y/f"(x)].

<. Let A, E'vxX[ y/f'(x)] and let us choose a functional variable f cor-
responding to the functional symbol f'. Then we can find a model 8 in
which the formula X is valid by ,k(f) any element ,k(x) ¢ B, i.e.,

8, Eivaarxly f (%)]. Q.E.D.

When establishing the semantic properties of formulas from ,F*, it
would be convenient to use the methods available for the language ,.L‘. This
is possible according to Herbrand’s Theorem (see, e.g., [1]). Two
theorems semantically analogous with Herbrand’s Theorem will be formu-
lated: the first one relates to tautology and the other one to validity.
Remember that ,5! denotes the set of first order closed formulas.

Theorem 24 Let t have enough functional symbols. Then for any formula
@€ ,St there exists a finite set of formulas T C (F* such that ¢ is tautologi-
cal if and only if £ is tautological.

Proof: For any formula ¢ ¢ ,F’, according to Corollary 22.1, there exists
an existential representation. We assume, without restricting generality,
that it has the form 3x¢. Then F¢<>3Ixy.

=>., As it is known from Theorem 1, any model Y e M’ has a smallest
C-submodel 8. Since F3xy/, then

BEIxyY.
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Hence, according to the corollary of Theorem 2 and to Definition 5, there
exists a term 7€ ,T’ such that BEy[x/7]. Asy[x/7]eF’ and B € A, then
= Y[x/7] (see Theorem 2). Consequently,

AR

From the Compactness Theorem (Theorem 3) it follows that there exists a
finite subset of terms T C ,T‘ such that

EV ylx/r]
7eT
<. From k \/Tw[x/r] it is obvious that E3xy. Q.E.D.
TE

Theorem 25 Let t have enough functional symbols. Then, for any formula
@€ ,S, theve exists a set of formulas T C (F' such that ¢ is valid if and
only if the formula T is valid for any finite subset T C T,

Proof: =>. Let ¢e€,S' be valid. Then, according to Corollary 23.1, its
universal representation is also true. Let us assume that the latter has the
form Vxy where Y is a quantifier free formula. Let U FVxy and let B be
the C-submodel of . Then B FVxy (see Theorem 2). Hence, according to
the corollary of Theorem 2 and to Definition 5 8 Fy[x/7T] for any term

T¢,T. Consequently, ‘21|=“/\Tt’¢/[x/‘r]. From the Compactness Theorem
0

(Theorem 3') it follows that A E AT ¢|x/7] for any finite subset of terms
T C,T. T

<. Let UE /\z,l/[x/T] for any finite subset of terms T C ,T‘. Then,
€T

according to Theorem 3’, Q(FTEATtIP[x/T]. Consequently, ¥ Fvxy. Then,
[}
according to Corollary 23.1 it can be concluded that ¢ is valid. Q.E.D.

With the help of Theorems 24 and 25 any formula of the language ,.L*
can be reduced to a set of formulas of ,.L’. Thus, all the theorem proving
methods developed for formulas from F’ are also applicable to the
language ,L‘. However, it has to be noted that there exist syntactical
methods which, in order to increase the effectivity of establishing the
properties of the formulas of ,.L’, transform the formulas into those of o’
after performing all the possible simplifications.
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