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Forking in Modules

STEVEN GARAVAGLIA

In this paper I am going to establish a connection between algebraic
properties of modules and forking for types over theories of modules. Forking
was invented by Shelah [13]. The notion "does not fork" is a generalization of
natural notions of independence such as algebraic independence in fields and
linear independence in vector spaces. In modules it is reasonable to consider
two nonzero elements to be independent if they lie in complementary direct
summands.

I would like to prove that if 61/ is a module, a e 61/, and B C 61/ then
tp(a;B) does not fork over </> if and only if a and B are contained in comple-
mentary direct summands of 61/. Unfortunately, this statement is false. There
are two things which go wrong. First, the module 61/ may not have many
direct summands. This can be remedied by considering summands of 61/, the
pure-injective envelope of 6i/, which is an elementary extension of fl/. The
second problem is that algebraic elements are not distinguished by forking. For
example, suppose O/ ^ Z(p°°), 13 ** Z(p°°), a e CZ/, c e 61/, b e iff, a =£ 0, c =£ 0,
b =£ 0, and pa = pc = pb = 0. Then in 61/ © iff, {a, 0) and (0, b) should clearly be
considered independent whereas (a, 0) and (c, 0) should not, but nevertheless
neither tp((c, 0); (a, 0)) nor tp((0, b); (a, 0)) forks over </>.

To avoid the complications arising from the presence of algebraic ele-
ments, I will embed the original module in a pure extension in which there are
no nonzero algebraic elements, and then I will consider forking in that exten-
sion. Let & be a module. 6^^ is the direct product of GO copies of 61/, and
A: 61/-* 6Z/"* is the diagonal embedding defined by A(a) = (a, a, ay . . .). It is
easy to see that A is a pure embedding. Then the theorem I will prove is that if
a e 6?/ and B C 60 then a and B lie in complementary direct summands of 61/ if
and only if tp(A(a); A(B)) does not fork over 0.

Several different presentations of forking have been given ([ 1 ], [9], [13]).
I will follow Baldwin's version, which is based on Lascar and Poizat's treatment.

Received February 7, 1980; revised April 23, 1980



15 6 STEVEN GARAVAGLIA

The definitions and results needed are as follows: Types will always be com-
plete. If d/ is an L-structure, a e d/9 and B C d/ then tp(a\B) denotes the type
realized by a over B. Now let T be a complete L-theory and consider types over
subsets of models of T. If p is a type over B C d/ 1= T then the L-formula
0(x,j>i,.. .9yn) is represented inp if 0(x, & l5.. .,bn) e p for some bu . . ., bne B.
If p, g are types over subsets of models of T, then p > q if every L-formula
represented in p is also represented in q, and p is equivalent to q if p> q and
q>p. Equivalence classes of types are partially ordered by <. The bound b(p)
of a type p over B C ^ t= 71 is the maximal element in the partial order <
among the equivalence classes of extensions of p to types over models & ~D B
such that (£>, i?) = ( ^ , £) . If T is stable then bounds always exist and are
unique; furthermore, for every model & such that &D B and (£>, B) = (d/, B)
there is some type q over £> which extends p and g e £(/?). Finally, if p is a type
over BC & IRT andB' CB then p forks over Bf if Z?(pl£') =£ b(p)9 where p l£ '
is the restriction of p to the set of formulas with parameters from B'.

Now let R be a fixed ring with an identity. All modules will be unital left
/^-modules. The language we will deal with is the language LR of unital left
/^-modules. It contains symbols +, - , 0, and one unary function symbol fr for
each r e R to represent left multiplication by r. Parameters will always be
displayed if they occur. A positive primitive formula (pp formula) is of the

form lxx . . , 3xJ/\ ocA where each a,- is atomic. If d/ is a module, 0(x1? . . .,

*m y\> • • •> ym) is a pp formula, and bu . . ., bm e O> then 0(xl9 . . ., xn,
bu.. .,Z?m)^ denotes the set {(*i, • • .,fl«)e ^ w l ^ t=0(al5 . . .,an,bl9. . .,6w)l
which is either empty or a coset of the subgroup 0(xl5 . . ., xn, 0, . . ., 0 )^
of^w.

A significant fact about the model theory of modules is that the first-
order properties of modules are determined by the behavior of the pp formulas.
Although the most general result along these lines has been mentioned in print
before, a full proof has never appeared. In order to sketch one, I first need
some notation: If d/ is a module and 0(x), x(*) are pp formulas then
ind(d/, 0, x) = cardi^l^ H x^O if that number is finite, and ind{d/, 0, x) = °°
otherwise. If al9 . . ., an e d/ and bu . . ., bn e j& then {d/, ah . . ., an) =pp

( # , & ! , . . .,bn) means that for every pp formula 0 ( x l 5 . . .,xn), d/ 1= 0(a l 5 . . .,an)
if and only if -& 1= 0(Z?1? . . ., bn).

Lemma 1 (a) / / d/ and 19 are R-modules then d/ = -G if and only if
ind(d/, 0, x) = ind(-ff, 0, x) for all pp formulas 0 0 ) , x(*)- (b) If & is an
R-module then for every formula (p(x1, . . .,xn) there is a Boolean combination
y(xu . . ., xn) of pp formulas such that d/ \= Vxx . . . Vxw(0(xl5 . . ., xn) *—+
y(xu . . .,*„)).

Proof: It is sufficient to show that if ind(d/,<j>, x) = ind(i89 0, x) for all pp <t>(x),
X(x) and (O/9 al9 . . ., an) =pp ( # , bl9 . . ., bn) then ( ^ , flls . . ., an) =
(^, bl9 . . ., bn). (a) is an immediate consequence of this statement and (b)
follows from it by a standard argument used often in preservation theorems
(see [4], Ch. 5.2). By absoluteness considerations, d/ and iff can be assumed to
be saturated and of the same cardinality. Under these conditions it is sufficient
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to prove that for every a e ^ there is some b e 13 such that {00,ax,.. .,an,a) =pp

{13, bu . . ., bnt b). Because 00 and 13 are saturated, this reduces to showing that
if 0(x, x l s . . . , x w ) , 0j(x, Xj, . . . , x w ) , . . ., 0w (x , x l 9 . . .,;<;„) are pp formulas and

m m

0(x, al9 . . ., aw)^ Ct U 6/(x, au . . ., flw)^ then 0(x, 6l9 . . ., M * £ U »/(*,

&l5 . . ., bn)^. Suppose on the contrary that 0(x, 61? . . ., bn)® C | J 0z-(x, 6 l 5 . . .,
bnf. It can be assumed that 0,-(x, 6l5 . . ., &„)** C 0(x, bu . . ., *„)* and
0/(x, al5 . . ., a,*)^ C 0(x, a1? . . ., flw)^for each /. Otherwise just replace 0/ by
0 A0/. By a lemma of B. H. Neumann ([11], p. 105) it can also be assumed that
indW, 0(x, 0,. . ., 0), 0f.(x, 0,. . ., 0)) = //id(^, 0(x, 0, . . ., 0), 0,.(x, 0, . . ., 0)) <

m

00 for each i. Consequently, indifi, 0(x, 0, . . ., 0), A ^i(^> 0, . . ., 0)) =

ind(fl/, 0(x, 0, . . ., 0), / \ 0/(x, 0, . . ., 0)) < °°. Our assumption then tells us

that we have writ ten a coset of the finite group 0(x, 0, . . ., 0) /( A ^/(^»

0, . . ., 0)1 as a finite union of cosets of the subgroups 0/(x, 0, . . ., 0 ) * /
/ A \ ^
1 A Oi(x> 0, . . ., 0)1 . It is an elementary combinatorial fact that the question
of whether a finite set C/ is equal to the union of a finite collection of subsets
Dx, . . ., Dm is determined entirely by card & and the cardinalities cardf ( | DA

W /
where A C {1, . . ., mi. In our situation the cardinalities of these intersections

are either 0 if B \= n3x( A 8fa, bl9 . . ., bnyi or indlff, A 6fa, 0, . . ., 0),
m v V e A / /A

A 0/(̂ r, 0, . . ., 0)) otherwise. By our assumptions, -ff l=:n3x( A 0/(x, bu . . .,
1 = 1 V / / A \ \ l e A / A

6W)J if and only \i 01/ V1 ~i3x(A 0,-(x, fll5 . . ., an)l, and indyOts, l\ 6fa,
I m v VeA

/ A / m \ 'eA v
0, . . ., 0), A 0/Ot, 0, . . ., 0)) = indliB, A 0z(x, 0, . . ., 0), A 0/(*, 0, . . ., 0)).

i=l / \ leA rn /=i /

Therefore, the assumption that 0(x, bu .. .,bn)^ C | J 0z(x, Z?1? . . ., bn)® implies
m i=i

(f){x,ax,. . ., a^^C | J 0z-(x, ai, . . .,arrf*'\ a contradiction. The reader who would
/=i

like to see this proof spelled out in more detail may consult the proofs of
Lemma 5 and Theorem 1 in Section 4 of [7] where an analogous result for
topological modules is proved.1

I will also require some basic facts about pure-injective modules which I
will summarize here. (More details can be found in [5], Ch. 5.) A module C2/ is
a pure submodule of # if 00 C 13 and for every pp formula 0(xl9 . . ., xn) and
all au . . ., an e 01/, 01/ 1= <t>(au . . ., an) if and only if tf 1= (j)(au . . ., an). (2/ is
pure injective if it is a direct summand of every module which contains it as a
pure submodule. An R-module 01/ is pure-injective if and only if it is equa-
tionally compact, i.e., every set of linear equations with coefficients in R and
parameters from 01/ which is finitely solvable in 01/ is solvable in 00. If 01/ is
equationally compact then every set of pp formulas with parameters from 01/
which is finitely satisfiable in 00 is simultaneously satisfiable by an element of
^ . Every module 00 is a pure submodule of a minimal pure-injective module
00 called the pure-injective envelope of 00. 00 is unique up to an isomorphism
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over Cl/. Sabbagh [12] has proved that ~Cl/ is an elementary extension of O>. It
is easy to prove, using the characterization in terms of equational compactness,
that if ^ and 13 are pure-injective then d/ e 18 is also pure-injective. It is also
easy to show that A: 0/-* fl/" defined by A(a) = (a, a, a, . . .) is a pure embed-
ding of d/ into d/^\ i.e., the image of d/ under A is a pure submodule of d/^'.
I need one fact about pure-injective modules, due to Fisher [6] , which has not
been published so I will include a proof here.

Lemma 2 Suppose 77/ is pure-injective, E C 71/, F C 72/, and (**) for all
el9 . . ., en eE and all fl9 . . . , / m e F and every pp formula 0(xl9 . . .,xn,yu . . .,
ym\ ifTU^ <t>(eu . . ., ent fu . . ., fm) then 71/ t= tfel9 . . ., en, 0, . . ., 0). Then
there is a pure-injective pure submodule Th/ of 71/ such that E C 9%/ and (**)
holds with E replaced by Th/r

Proof: 7?i/ is constructed by transfinite induction. Let Mo = E and suppose My

has been constructed for each 7 < a so that (**) holds with U My in place of

E. Suppose there is some set / of L/?(?Z/)-formulas of the form 0(JC, mu . . . , mn),

where ml9 . . ., mn e U My and 0(x, yl9 . . ., yn) is a pp formula, which is

finitely satisfiable in 71/ but not simultaneously satisfiable by any element of

U My. Extend 7 to a maximal such set / * . Since 71/ is pure-injective, / * is

simultaneously satisfied by some element m e 71/. Let Ma = U My U \m\. It

must be shown that (**) holds with Ma in place of E. Let d(xu . . ., xn, x,

yi,..-, yk) be a pp formula, ml9 . . ., mn e \J^ My, ft, . . ., fk e F, and suppose

71/ 1= 0(ml9 . . ., mnt m, fu . . ., fk). Then for all i//i(mn, . . ., mln x), . . .,

( s

d(mu . . .,mn, x,f!,..., f k ) * /\ ^/(w/!,. . .,

w/«/, ^))- Since (**) holds for \J My, TV t= 3JC((?(/«!, . . ., mw, x, 0, . . ., 0) A
s 1 \ y<ot \

A &i(mii> • - •' m/«i» •x))- Therefore, s ince/* is maximal, 0(mu . . ., mn> x,

0, . . ., 0) e / * and so 71/ 1= 0(ml5 . . ., mn, m, 0, . . ., 0).
If no such set / exists, then set Thy = U AL,. Such a stage must eventually

7<a '

be reached. Now it must be shown that 7h/ is pure in 71/ and 7h/ is pure-
injective. To show 7h/ is pure in 71/ suppose 3xj . . . ̂ xnd(xu .. ,,xn, yx,. . . , ^ )
is a pp formula where 6 is quantifier-free, mu . . ., mk e Thy, and 71/ f= 3x t . . .
3*/i0(xi, • • ., xn, ml5 . . ., mk). Letting / = \3x2 . . . 3xnd(x, x2, • • •, xn,
Wi, - - ., ̂ A:)! w e obtain immediately from our construction that there is some
m\ e Th/ such that 71/ 1= 3x2 . . . lxn6(mf

lf x2, • • ., xn, ml9 . . ., mk). Repeating
the process with / = {3x3. . . 3xn6(mf

h x, x3, . . ., xn, ml9 . . ., mk)\, etc., we
eventually obtain m\9 . . ., mn e Th/ such that 71/ 1= 0(m\9 . . ., mn, mu . . ., mk)
so 9?i/ \= 3xx . . . 3xn6(xlf . . ., xn, mu . . ., mk). This shows Th/ is a pure sub-
module of % ;̂. (To show Th/ is a submodule consider formulas such as
3^1(^1 + yi = ^1) and 3Xi(ry! = Xj).)

Now to show that %/ is pure-injective let I b e a set of linear equations
with parameters from Th/ which is finitely satisfiable in Th/. Let / = [3x\ . . .
3x^f A d(x, x\, . . ., x^ m\, . . ., m | ) j IZ C X, Z finite) where xz

u . . .,x
z
n are
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the variables other than xx which occur in Z and x replaces xv By construction
there is some m1e7?i/ which satisfies all of the formulas in / . Replace xx every-
where in I by mj and repeat to find m2 for x2, and continue repeating until a
full solution for X has been found in 7h/. This shows Ths is equationally com-
pact and therefore it is pure-injective. This completes the proof of Fisher's
theorem.

Finally, it is essential to know that every module is stable, so the results I
mentioned earlier about forking are applicable. A simple proof that modules
are stable has been given by Baur ([2], Theorem 1).

Lemma 3 Suppose CO is a module such that CO X & = CO. Let a e CO and
B C CO. Then tp(a\B) does not fork over <f> if and only if (*) for every pp
formula 0(x, yu . . ., yn) and all bl9 . . ., bn e B, CO l=0(a, bh . . ., bn) implies
CO t=0(a,O, . . . ,O).

Proof: First, I will describe the bound for tp{a\B). Let q be a type over CO
which extends tp{a\B) such that q e b{tp(a\B)). I claim there is a unique type
q over CO which:

(1) contains \jj(x, cu . . ., cm) for every pp formula \jj(x, yu . . ., ym) and
all cu . . ., cm e CO such that (2/ 1= Vx(0(x, bu . . ., bn) -> i//(x, cl5 . . .,
cm)) for some pp formula 0(x, yu ..., yn) such that 0(x, bu . . ., bn) e
tp(a;B)

(2) contains i\p(x, cu . . ., cm) for every pp formula \p(x, yu . . ., ym)
and all cl5 ..., cm in CO such that \jj(x, cu . . ., cm) does not satisfy
the condition in (1).

If the set of formulas determined by (1) and (2) is consistent with
Th(CO, \C0\) then it determines q' as a complete type over CO because of the
theorem of Baur and Monk (Lemma l(b)). So we need to show that this set of
formulas is consistent with Th{CO, \C0\). If it were not, then there would be
\j/(x, cl9 . . ., cm) satisfying (1) and Bx{xy cl9 . . ., cm), . . ., 0k(x, cu . . ., cm)

k
satisfying (2) such that CO 1= \/x(\j/(x, cu . . ., cm) -> V 0t(x, cu . . ., cm));in

other words, \p(x, cu . . ., cm)^ = (J (\jj A 0/)(X, CU . . ., cm)^. But for each /,

(\jj A 0/)(x, Cj, . . ., cmr + ty(*> cu . . ., Cm)"'since otherwise 0/U, c l5 . . ., cm)
would satisfy (1). So either {\jj A 0/)(X, CU . . ., c m ) ^ = >̂ in which case it can be
omitted from the union, or else (i// A 0/)(X, cl5 . . ., c m ) ^ is a coset of the sub-
group (xjj A (9/)(x, 0, . . ., 0 ) ^ which is a proper subgroup of i//(x, 0, . . ., 0)^ .
Since C0^C0= COW would follow in this latter case that (i// A df&x, 0, . . ., 0 ) ^
has infinite index in \p(x, 0, . . ., 0)^. Consequently, we have written \jj(x,
cu . . ., Cm)^ as a finite union of cosets of subgroups with infinite index in
i//(x, 0, . . ., 0)^ . By a theorem of B. H. Neumann ([ 11], p. 105) this is im-
possible. This contradiction shows the consistency of the set of formulas
given by (1) and (2). Consequently, there is a unique type q over CO containing
these formulas.

Clearly q extends tp(a;B). I want to show that q = q. Let i//(x,
yu • • •» ym) be a pp formula and let cu . . ., cm e fl/. Suppose \jj(x9 cl9 . . ., cm) e
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q . Then by (1) \p(x, cu . . ., cm) must be in every extension of tp(a;B) to a
type over d/\ in particular, i//(x, cu . . ., cm) e q. Conversely, suppose \jj(x,
cl9 . . ., cm) e q. By definition of bound, q > q\ so \Jj(x, yi9 . . .,ym) must be
represented in q\ say \j/(x, di9 . . ., dm) e q where dh . . ., dm e fl/. Let
0(x, J i , . . ., >>„) be a pp formula and bl9 . . ., bn elements of B such that
(P(x, bl9 . . ., bn)etp(a;B) and O/ \=Vx(<Kx, bu . . .,bn)-+ Mx, dl9 . . .,dm)).
Since q is consistent, ^ t11 3x(0(x, 6 l9 . . ., £„) A J/(X, cl5 . . ., cm)), and there-
fore 01/ \= 3x(\p(x, cl9 . . ., cm) A $(x, c?!, . . ., dm)). But i//(x, cl9 . . ., c m ) ^ and
\p(x, dl9 . . ., dm)^ are both cosets of the same subgroup \p(x, 0, . . ., 0 ) ^ so
they are equal or disjoint. Therefore \J/(x, cl9 . . ., c m ) ^ = \j/(x, dl9 . . ., ^ m ) ^
and consequently i//(x, cl9 . . ., cm) e ^7'. Now it follows from the Baur-Monk
theorem that q = q\

Now suppose (*) is true and let #j be a type over fl/ extending tp(a;B)
such that qx e b{tp(a\B))9 and let q2 be a type over fl/ extending tp(a; </>) such
that q2 e b(tp(a; </>)). I will show that qx = q2. Let \jj(x, yi9 . . ., ym) be a pp
formula and cl5 . . ., cm e (%/. Suppose first that \jj(x, cl9 . . ., cm) e qv By the
characterization of bounds which has been obtained, there is some pp formula
0(x, yl9 . . ., yn) and bl9 . . ., bn e B such that 0(JC, Z?l5 . . ., bn) e tp(a;B) and
O/ tVx(<Kx,bu . . ., bn)-+ Wx,cl9...,cm)).By(*) & l=0(a, 0, . . ., 0). But
0(x, 0, . . ., 0) is just an Z^-formula, so 0(x, 0, . . ., 0) e tp(a;<f>) and conse-
quently 0 0 , 0, . . ., 0) e q2. 0 0 , b'u . . ., frw)^ is a coset of 0(x, 0, . . ., 0 ) ^ and
they both contain a, so 0(x, & ! , . . . , 6W)^ = 0(x, 0, . . ., 0)^ . Therefore, ^ t=
Vx(0(x, 0, . . ., 0) -> i//(x, Ci, . . ., cm)) which implies i//(x, cl5 . . ., cm) e q2.
Conversely, suppose \p(x, cl9 . . ., cm) e q2. By (1) there is app formula 0(x) e
tp(a;<j>) such that ^ t111 VX(0(JC) -* ^(x, cl5 . . ., cm)). Since 0(x) e tp(a;B) it
follows that 0(x) e #! and therefore i//(x, cu . . ., cm) e ^x. By the Baur-Monk
theorem qx- q2 which implies that tp(a\ B) does not fork over <f>.

Now suppose that tp(a;B) does not fork over <j>. Let 0(x, ^ l 9 . . ., yn) be a
pp formula and fe1? . . ., bn e B be such that CO t= 0(a, 6^ . . ., 6W). Let ^ j , ̂ 2 be
types over ^ which extend tp{a\B) and tp(a\</>) respectively and qx e
b(tp(a;B)), q2 e b(tp(a; <f>). Then 0(x, bh . . ., Z?«) e ^j and by our assumption qx

is equivalent to q2 so 0(x, j l 5 . . ., yn) is represented in q2, say 0(x, rfl9 . . ., dn) e
q2 where dl9 . . .9dne d/. By (1) there is some pp formula \jj(x) in tp(a; <f>) such
that 01/ \= VJC(^(JC) -* 0(x, d1? . . ., dn)). But i//(x)^ is a subgroup and 0(x,
rft, . . ., dn)^ is a coset of the subgroup 0(x, 0, . . ., 0 ) ^ so it follows that
I//(JC)^ C 0(x, 0 , . . ., 0)^ . Therefore, 0(JC, 0, . . ., 0) e rp(a; ^) which means that
01/ 1= 0(a, 0, . . ., 0). (0 is a primitive constant of LR SO 0(X, 0, . . ., 0) is a
formula over 0.) This proves (*).

The condition (*) will now be proved equivalent to a decomposition
property of pure-injective modules.

Lemma 4 Let 01/ be a pure-injective module, B C Ol/\, and a e 01/. Then the
following are equivalent:

(1) for every pp formula 0(x, yh . . ., yn) and all bl9 . . ., bn e B,
01/ 1= 00, bl9 . . ., bn) implies 01/ 1= 0 0 , 0, . . ., 0)

(2) there are submodules &, £f of 01/ such that B C &, a e J¥, and
01/ = O © JOT.
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Proof: (2) =* (1): It is a simple fact that pp formulas split over direct sums; i.e.,
if d1? . . ., dm e jy and cu . . ., cm e & and \l/(xl5 . . ., xm) is app formula then
O> * & ^ W(clf dj), . . ., (cm, dm)) if and only if & 1= ̂ /(c1? . . ., cOT) and
^ t= \//(dl5 . . ., dm). Applying this fact to the elements (0, a), (bu 0), . . .,
(bn, 0) in £>© /^yields (1) immediately when (2) holds.

(1) =* (2): By Lemma 2 one can find a pure submodule £> of 00 such that
B C C> and for all /?£> formulas 0(xl5 . . ., xw, y) and all c1? . . ., cn e &, if
00 t= 0(cl5 . . ., cn, a) then fl/ ^ 0(c1? . . ., cWJ 0) (and so, of course, 00 1=
0(0, . . ., 0, a) also). Now use Lemma 2 again to find a pure-injective pure
submodule %> of ^ such that a e W and for all pp formulas 0(x1? . . ., xn,
J>i, - • •> ym)> all cl5 . . ., cn e O9 and all hl9 . . .9hmeV9if fr \= 0(c1? . . ., cn,
hu . . ., hm) then ^ 1= 0(0, . . ., 0, hu . . ., hm). The sum £>+ /^is direct since
if c e (^ H M and c ^ 0 then O/ 1= c = c but ^ fet c = 0, contradicting the
property we have just established for & and /^, where 0(xi, >*i) is Xx = j ^ . So
& © ̂  is a pure-injective submodule of ^ since direct sums of pure-injectives
are pure-injective. Now let 0(x1? . . ., xn) be a pp formula, cl5 . . ., cn e C',
/z1? . . ., Aw e ^ , and suppose CO t= 0(cx + hu . . ., cw + Aw). Let i//(x1? . . ., xn,
yu . . ., yn) be <j>{xx +yu . . ., xw + ^ ) . Then ^ t= i//(cl5 . . ., cw, Al9 . . .9hn) so
^ t= \p(cu . . ., crt, 0, . . ., 0) and O/ t= i//(0, . . ., 0, Al9 . . ., hn). But <̂  and %
are pure in ^ , so & t= ^(Cj,. . ., cn, 0, . . ., 0) and ^ 1= i//(0, . . ., 0, hu . . ., hn).
Therefore & © /^ 1= *Kcl5. . ., cw, /i l s . . ., /z«) which means £> © /^ is pure in &/.
Therefore it is a direct summand of 01/, say O/ = & © ̂  © ̂ . Let ^ = ^ © &.

Now the main theorem is easy.

Theorem 1 Let 01/ be a module, CO the pure-injective envelope of'01/, and
A: 01/ ~* Ol/^ the diagonal embedding A(a) = (a, a, a, . . .). If a e 01/ and B C 01/
then tp(A(a); A(B)) does not fork over <f> if_and only if there are submodules C/
and tfofci/ such that a e &, B C #, and O> = O © XT.

Proof: Suppose tp(A(a); A(B)) does not fork over </>. Ol/" = 01/" X ^ ^ so by
Lemma 3, for every pp formula 0(x, yu . . ., yn) and all Z?l5 . . ., bn e B,
01/" 1= 0(A(fl), ACfej), . . ., A(6w)) implies ^ ^ 1= 0(A(a), 0, . . .,_0). But A is a
pure embedding of 01/ into ^ ^ and ^ is a pure submodule of 01/, so fl/" \=-
0(A(fl), A(6i),. . ., A ( M ) iff j ^ 1= 0fe *i, • • ., bn) iff ^ t= 0(a, bl9 . . ., 6w) and
^ w _ ^ 0 ( A ( a ) , 0, . . ., 0) iff 01/ 1= 0fe 0, . .^_0). Therefore, applying Lemma 4
t £ ^ , we obtain submodules £>, £f oi 01/ such that a e &, B C &, and
0t/ = &® &. _

Conversely, if such submodules & and 0 of 01/ exist, then using the other
direction of Lemma 4 and the facts that 00 is pure in 00 and A is a pure
embedding, we can conclude that for all pp formulas 0(x, yu . . ., yn) and all
bu . . .9bn e B, 00" |= 0(A(a), A ^ ) , . . ., A(^ ) ) implies ^ 1= 0(A(a),
0, . . ., 0). Therefore, by Lemma 3, tp(A(a)\ A(B)) does not fork over </>.

In conclusion I would like to remark that if CO is pure-injective then the
decomposition exists in 00 since O0-O0. Pure-injective modules are plentiful;
e.g., every totally transcendental module is pure-injective, and every max(co,
card(.R))+-saturated module is pure-injective. Also, if OO)t tf/= 00 then it is
unnecessary to use A since Lemma 3 will apply directly to ^ . Finally, the use
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of A was somewhat arbitrary. All that was needed was a pure embedding of CV
into some module %> such that ^ X % = %. For example, the embedding
a -> (a, 0 , 0 , . . .) of ft/ into ^ ( u j ) would have served just as well.

NOTE

1. In [8] I stated this result without proof and gave an account of its history which was so
condensed as to be misleading. Lemma 1 was proved by Monk in his dissertation [10]. He
stated it only for Abelian groups but his proof works just as well for modules over an
arbitrary ring. Simultaneously and independently, Baur [3] proved (b) only. (Monk's
results unfortunately remained unpublished.) Several years later I realized that Baur's
proof could be modified to yield both (a) and (b), thus reproducing Monk's work.
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