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NEGATION AS A SIGN OF NEGATIVE JUDGMENT

KENT BENDALL

1 Introduction We need to form negative as well as affirmative state-
ments because we need to mark falsity as well as truth, to register
rejection as false as well as acceptance as true, and to deny as well as to
assert. But we do not need an embeddable negation operator any more than
we need an embeddable affirmation operator, provided operators are
available for forming conjunctions, disjunctions, conditionals, and universal
and existential generalizations. This thesis, which is examined and
defended in what follows, is of purely theoretical significance. Its sig-
nificance is at most theoretical because there is nothing wrong, and much
that is convenient, in having an embeddable negation operator. But it seems
to me to be of some philosophical importance in relation to the question of
the meaning of negation. In particular, it opens the way for an attempt to
construe the meaning of negation as deriving from the mental or behavioral
phenomena of negative judgment, disbelief, and denial.

These notions can be made more precise as follows. Let L be a first-
order language with primitive operators A, v, D, ~, V, and 3, employed
and understood as usual. Let [, be just like ., semantically as well as
syntactically, except for lacking the negation operator. L, is thus the
negationless sublanguage of L. Now [, is expressively weaker than [(;
that is, there are sentences of .L to which no sentence of ., is logically
equivalent. Moreover, it is hard to see how the logic of ., could be
completely formalized in an ‘‘intrinsic’’ manner—i.e., without allowing
in formal proofs or derivations excursions through sentences of [ that
involve negation, or using at least external signs representing falsity or
denial. Both of these deficiencies, however, can be made up by extending
L, just so as to permit formation of a sentence ~A for each negation-free
sentence A, with ~ understood just as in L. Let us call the resulting
language [L*. It is easy to characterize .[*, syntactically and semantically,
as a self-contained language. At the same time, L* is a sublanguage of (.

Now JL* is like L except that negations, sentences of the form ~A4,
never occur as proper constituents of sentences of L*. This is what is
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meant by calling ~ nonembeddable in .L*. (Hence, of course, it is also
noniterable.) Let us say, therefore, that in .£* negation is external,
whereas [ permits internal negations as well.

This feature of .L* is of philosophical interest because it makes it
possible to construe the external negation operator of .L* as representing
negative judgment and disbelief, or as a sign of denial, where denial is
viewed as a form of speech act opposite to assertion, rather than as
assertion of a negation. It is hard to construe in these ways the internal
occurrences of negation permitted in J[; for judgments cannot be con-
stituents of the objects of judgment (as pointed out by Frege in [1]), nor can
speech acts be constituents of the vehicles of speech acts. In L*, however,
where it is always external, the negation operator can be construed
pragmatically as a sign of negative judgment, disbelief, and denial, con-
trasting with the null sign of affirmative judgment, belief, and assertion.
(This contrast could be heightened by considering, in place of .L*, the
language L% of positively or negatively signed negation-free sentences of
£L,; but metatheoretic comparison of L* with L is simpler because L* is
a sublanguage of .L.) For a speaker of L*, therefore, the objects of
judgment, of belief and disbelief, and of assertion and denial, would all be
negation-free. And thus a considerable range of perplexing puzzles about
negation would seem to be significantly reduced. For example, contra-
diction can then be construed in terms of conflicting judgment or belief
rather than in terms of inconsistent ‘‘propositional content,”’ and such
notions as ‘‘negative facts’’ are thereby decisively banished. For these
reasons, it seems to be worth demonstrating that—and clarifying the sense
in which—L* would be no less adequate in principle as a language for
inquiry, for developing a representation of reality, than L. To this end the
following propositions are made precise and demonstrated below:

(1.1) For any sentence of L there is a logically equivalent sentence of L*.
(1.2) For any theory T in L, there is a theory T* in L* such that, for each
thesis of T, there is a logically equivalent thesis of T*, and such that T* is
axiomatizable if T is.

(1.3) The logic of L* can be completely formalized in an intrinsic manner;
that is, a finitary concept of deducibility can be specified such that for any
sentences A, .. .,A,n =0)and B of L*, if A,, ..., A, logically imply B,
then (and only then) B can be formally deduced from A,, ..., A, using only
sentences of L*.

2 Exnegation A useful means for verifying (1.1)-(1.3) is provided by a
normal form result which seems to be of some interest in its own right, yet
somehow to have escaped inclusion in the traditional canon of first-order
logic. Given any formula C of [, it is easy to see that by successive
replacements in accordance with well known equivalences we can move
internal negations outward, and cancel double negations, thus obtaining
a unique formula D which is both logically equivalent to C and either
negation-free or the single external negation of a negation-free formula.
Let us call this procedure—the steps of which could evidently be uniquely
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ordered—exnegation, and the formula so obtained from a formula C, the
exnegate of C, or briefly, exC, For example, if C is (Ix)(~Fxa (Iy)(Gay A
~Rxy)), then exC is ~(Vx)(Fx v (Vy)(Gay D Rxy)); and if C is ((~{(Vx)Fx A (3x)
~Gx) D ~(Vx)(Fx D ~ ~Rxy)), then exC is ((Vx)(Fx D Rxy) D ((Vx)Fxv
(Vx)Gx)). In every case, notice, exC will contain just the same predicates,
parameters, and variables as C, and will be a sentence (i.e., a closed
formula) iff C is a sentence. This simple ‘‘normal form’’ result can be
recorded as follows:

(2.1) For any formula (sentence) C of L, exC is a formula (sentence) that
is logically equivalent to C, and for some unique negation-free formula
(sentence) A of L and of Ly, either A = exC or ~A = exC,

But for any sentence C of L, exC is a sentence of .L*. Hence (2.1)
verifies (1.1).

Assuming the most natural replacements to be built into the procedure
of exnegation (as presupposed in the preceding illustrations), the following
proposition (2.2) can easily be established. Alternatively, (2.2) could be
taken as a recursive definition of exnegation.

(2.2) (¢) For any negation-free formulas A, B of L and any variable x of 'L,

(1) exA=A (7) ex(Av~B) =(BD A)
(2) ex~A=n~A (8) ex(~AvB)=(AD B)
(3) ex~~A=A (9) ex(~Av~B)=~(AAB)
(4) ex(Ar~B) =~(AD B) (10) ex(A D ~B) = ~(AAB)
(5) ex(~AAB) =~(B> A) (11) ex(~A D> B) = (Av B)
(6) ex(~AAa~B)=~(Av B) (12) ex(~A > ~B) = (B> A)

(13) ex(vx)~B = ~(3x)B
(14) ex(3x)~ B = ~(Vx)B;

and (ii) for any formulas C, D and any variable x of L,

(1) ex exC = exC (5) ex(Cv D) = ex(exCv exD)
(2) ex ~C=ex~ exC (6) ex(C D D) = ex(exC D exD)
(3) ex ~ ~C = exC (7) ex(Vx)C = ex(Vx)exC

(4) ex(C A D) = ex(exC A exD) (8) ex(Ix)C = ex(Ix)exC

Let us call a formula simply negative if it is of the form ~A for
negation-free A. Then in view of (2.2), the following is easy to verify:

(2.3) For any formula C of L, exC is negation-free (simply negative) iff
ex ~ C is simply negative (negation-free).

A more interesting property of exnegation follows from the fact that
every negation-free sentence is true under any interpretation that has a
unit domain ® and assigns the sole element of ® to each term (i.e.,
individual constant), ® to each one-place predicate, and the set of all
ordered n-tuples of the single element of D to each n-place predicate (for
n = 2). Now suppose C is any logically true sentence of L. Then by (2.1),
exC is logically true. But in that case, if exC = ~A, then A would be
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negation-free but not satisfiable, contradicting the fact noted above. Hence
exC must be negation-free if C is logically true. Similarly if ex ~ C is
simply negative, so that by (2.3) exC is negation-free and thus satisfiable,
then by (2.1) C must be satisfiable. Thus:

(2.4) For any sentence C of L, if C is logically true, then exC is negation-
Jfree; and if ex ~ C is (simply) negative, then C is satisfiable.

3 Comparison of the logics of L and L* Some abbreviating notation
becomes convenient now. Let S, S, and S* be the sets of all sentences
of L, L, and L*, respectively. Where T is any subset of S, let exI" be the
set of all exnegates of sentences in I'. Thus exS= S*, and S, C S*C S.
Next, let C7 be the sequence (or list) C,, .. .,Cp, (n = 0), and exC?, the
sequence exC,, ..., exC,. Also, let ‘® and ‘¢4’ (‘A’ and ‘B’), with or
without subscripts, henceforth range just over S*(S,). And finally, let us
use ‘E’ as usual to assert (classical) logical truth and implication, and
‘4 E’ to assert logical equivalence. Now an evident consequence of (2.1)
can be stated as follows:

(3.1) For any sentences Cy, ...,C,(n>0) and D of L, C{ E D iff exCl E
exD.

Where I' and A are any subsets of S, let us call I" and A equivalent iff
both for each C € I there is some D € A, and for each D ¢ A there is some
C e T, such that C 5§  D. Then the following is also evident in view of
(2.1):

(3.2) For any set T of sentences of L, T and the set exI' of sentences of L*
are equivalent.

Suppose we regard a subset of S(S*) as a belief system in L(L*)—i.e.,
as containing all and only the statements believed, or accepted as true, by
some speaker of JL(L*). Then (3.2) shows a sense in which whatever can
be believed about the world by a speaker of L can also be believed by a
speaker of [L*. This conclusion depends on the fact that exC and C are not
merely logically equivalent, but also contain just the same predicates and
terms and hence, on any fixed interpretation, would describe the same state
of affairs or ‘‘express the same thing about the world.”” But then, further-
more, by possessing the set of beliefs and disbeliefs which exI' can also be
thought of as representing, one whose judgments all pertain to statements
in ., can in an obvious sense ‘‘hold the same view of the world’’ as a
speaker of L whose belief system is represented by I'. That is, suppose X
is a speaker of L whose view of the world consists in his acceptance as
true of just the statements in I'; and suppose Y is a speaker of L*, whose
view of the world can be described as such that for each ® € exI, (1) if &
is negation-free then Y accepts ® as true, and (2) if ® is simply negative,
so that & = ~A for negation-free A, then Y rejects A as false. Then if we
suppose, as seems quite plausible, that there is no cognitively significant
difference between X’s accepting C and Y’s accepting A where A = exC, or
between X’s accepting C and Y’s rejecting A where ~A = exC, provided in
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both cases that X and Y interpret the common vocabulary of . and .L* in
the same way, it follows that X and Y hold the same view of the world. But
each statement regarding which Y holds a belief or disbelief is negation-
free.

Furthermore, it is now easy to establish thesis (1.2), interpreted as
follows. Let us understand a subvocabulary (of L or of L*) to be a set of
predicates and terms of . containing at least one predicate. And let us say
that a sentence C of [ is couched in a subvocabulary V iff only predicates
and terms in V occur in C. Next, let us say a subset I' of S(S*) is L-closed
(L*-closed) in V iff each sentence in T" is couched in V, and each sentence
of L(L*) that is couched in V and is logically implied by a finite (or null)
sequence of sentences in I' is also in I Then we can define a theory in
L(L*) to be a pair (V,I) such that V is a subvocabulary of .L(L*) and T is
L-closed in V. Now suppose (V,I) is an arbitrary theory in .L. Then
obviously each sentence in exI'" is couched in V. Next, let ¢ be an arbitrary
sentence of .L* couched in V, and suppose @] F ¢ for some ®,, . . .,$,¢€ exI
(n =2 0). Then for each ¢=1, .. .,n, there is a C; € I" such that exC; = ®,.
But by (2.2), exy = . Thus for some C,, ...,C,e T, exC¥k exy¥. Hence
by (3.1), C? £ ¥. But then ¢ € I, and so ¥ = exy € exI. Hence (V,exI) is a
theory in L*. This shows that:

(8.3) For any theory (V,I) in L, (V,exI) is a theory in L*.

(The converse of (3.3) does not hold. For note that no theory in * is
a theory in J[—since, for example, for each ® ¢ S* it is clear that
bk ~~d, ~~PeS, but ~~&¢S* And note also that exI = ex exT.
Hence where (V,I) is a theory in ., (V,exI) is a theory in .L* by (3.3), and
therefore by the same token so is (V,ex exI). But (V,exI) is not a theory
in .L. Thus there are theories (V,exA) in L* such that (V,A) is not a theory
in L.)

Next, where (V,I) is a theory in L(L*), let us call a subset = of S(S*)
an L-axiom (L*-axiom) set for (V,I) iff = is a decidable subset of I' and
each sentence of I' is logically implied by none or more sentences in Z.
Now suppose T is an JL-axiom set for a theory (V,I) in L. By (3.3),
(V,exI) is a theory in [L*. It is natural then to suspect that exZ is an
L*-axiom set for (V,exZ). Clearly exZ C exI’, since & c I'. Now suppose
Y €.exI'. Then for some D € T, ¢ = exD. But then by (2.1), D F y; and since
Y is couched in V and T' is [L-closed in V, therefore ¢ ¢ I'. Thus for some
Cy,...,ChbeZ m=20), C{ F ¢. Hence,by (3.1), exC? k exy; and since, by
(2.2), exy = ¢, then exC! F . But exCy, ... exC,e exZ. Hence, each
sentence in exI' is logically implied by none or more sentences in exZ.
Therefore, in order to show exZ to be an L*-axiom set for (V,exI), it
suffices to show that exZ is decidable. For the sake of simplicity, now, let
us suppose that Z is either finite or specified by a finite list of axiom
schemata. In the first case, exZ is obviously decidable; and in the second
case, we can obtain an effective specification of exZ by forming the
exnegates of the axiom schemata used to specify Z. Hence, we can conclude:
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(3.4) If (V,I) is a theory in L for which T is an L-axiom set which is
either finite or specified by a finite list of schemata, then exZ is an L*-
axiom set for the theory (V,exT) in L*.

In view of (3.2)-(3.4), thesis (1.2) is evident. Moreover, if we again
think of a subset I' of S as a belief system in J, but now as one that can be
axiomatized relative to the logic of L by specification of finitely many
axioms or axiom schemata, then in view of (3.2)-(3.4) exI" can be regarded
as a belief system in * which is not only equivalent to I'—in a way that
we have seen to be epistemologically strong—but which also can be
axiomatized, relative to the logic of L*, likewise by specification of finitely
many axioms or axiom schemata. (Slight modifications of the arguments
given here would establish verbally identical results even if L lacked a
disjunction operator. This is due to the fact that (CvD) 4 k ((C > D) > D);
for given any formula of such a language, exnegation could proceed as
above except that parts of the forms (~Ca~D) or (~C D D) would be
replaced by ~((C D D) D D) or ((C D D) D D), respectively; and of course
there would be no disjunctions to replace. (This possibility was pointed out
to me by Peter Harvey.) The important point is that the exnegate would be
a formula of the same language.)

4 Formal proof in L and L£* In a semantic approach to logic it is easy
to beg philosophical questions. This observation is pertinent to the assess-
ment of the arguments in section 3, inasmuch as these arguments employ
many sorts of embedded negations. It is reasonable therefore to ask
whether deductive reasoning from premisses stated in L* to consequences
stated in L* can always be carried through within L*, i.e., without
employing sentences with negative proper constituents. The model-
theoretic arguments of section 3 do not on their face ensure an affirmative
answer to this question; and a negative answer would indicate that L* is
not, even in principle, an adequate language for inquiry. It is possible,
however, to establish the affirmative answer, and thus thesis (1.3),
by specifying a logical calculus for L* in which, for any sentences
®,..., %, of L* ¢ can be formally derived from &, .. ., ®,, without
use of sentences containing embedded negations, just in case ®7 E y.
Consider for example how ~(AvB) can be derived from ~A and ~B.
According to the systems of many introductory textbooks, the most natural
derivation would be to infer (~A A ~B) from ~A and ~B and then ~(A v B)
by DeMorgan’s law; but (~AA~B) is not a sentence of L*. Similarly,
consider the problem of constructing a formal proof of Peirce’s law,
(((A> B) D> A) D A). In order to do this in any of various familiar systems
which permit indirect derivation only by inferring a double negative by a
rveductio step and then eliminating the outer pair of negation operators, an
excursion through sentences of .L which are not sentences of L* would be
necessary. Thus everything depends on details, and the only elementary
way of establishing an affirmative answer to the indicated question is to
specify a definite system of formal proof and demonstrate that it has the
desired property. In fact, this can be done easily and in various ways.
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The most elegant method for this purpose is that of analytic tableaux,
as presented e.g. by Smullyan [2]. Since in constructing tableaux negations
are added only for proper constituents of a compound, and these are always
negation-free in L*, we only need to stipulate that A(~A) is shown to be
deducible from &, ..., ®, by the closure of the tableau generated by
®,... 9,6 ~A(P, ..., P, A)—or that such a closed tableau constitutes the
formal deduction in question. Natural deduction methods can also be
adapted for this purpose. This can be shown most concisely by regarding
such a system as a calculus of sequents of the form C?— D (n =0). If each
of CT and D is a sentence of L(.L*), then C{ — D will be called an 'L-sequent
(L*-sequent). A calculus of sequents is determined by an effective
specification, e.g. by schemata, of a set of primitive rules of the form
0y . . ;0 =>0 (k =0), where o, .. .,0;, and o are sequents. A derivation
(in the calculus) of a sequent ¢ from sequents &4, .. ., &, (m =0) is defined
to be a finite sequence 6 of sequents such that the last member of 6 is £,
and for each member o of 6, either o is one of &,, .. .,&, or there is a
primitive rule oy, ...,0p=>0 such that o,,...,0p are members of 0
preceding o in 6. A proof (in the calculus) of ¢ is a derivation of ¢ from the
empty list of sequents. We say ¢ is derivable from &, . . ., &, iff there can
be constructed a derivation of ¢ from £,, . . .,£,; or provable iff there can
be constructed a proof of £&. The proof of a sequent C7— D is taken as
constituting a formal deduction of D from C,, . . .,C,.

Now consider the calculus IN of £-sequents determined by the following
primitive rule schemata:

(N1) =C{—C; providedzn=1landi=1,...n

(N2) CiP— C=>D? — C provided each of C{ is one of D}

(N3) C?'— D; Cl'— E=>C"— (DAE)

(N4a) C*— (DAE)=>C"— D

(N4b) C*— (DAE)=>Cl'— E

(N52) C?— D=>C"— (DvE)

(N5b) C?— E=>C?— (DvE)

(N6) CI'— (DVE); CL, D—C; ClLE—C=C!—C

(N7) CI,D—E=>Cr'— (D>E)

(N8) C'"— (D> E);C'—=D=>C'—E

(N9) C7, D — E; C", D — ~E=>C"— ~D

(N10) C?, ~D — E; C?, ~D — ~E =>C?— D

(N11) C} — Ht/x = C}{ — (Vx)H provided ¢ is foreign to each of C} and to H
(N12) C?— (Vx)H = C}? — Ht/x

(N13) C” — Ht/x => C? — (Ix)H

(N14) C} — (3x)H; C?, Ht/x — C =>C? — C provided ¢ is foreign to each of
Cland toH and C

Here C? D%, C, D, and E are arbitrary sentences of ., x is any variable,
H is any formula in which no variable other than x has a free occurrence,
¢t is any term, and H?¢/x is the result of replacing each free occurrence of x
in H by £. I shall use ‘+’ in the usual manner to assert derivability and
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provability in N. The calculus N is classically sound and complete: that
is, for any sentences C}, D of L, - C}— D iff C} F D. In checking this
claim by reference to more familiar systems, it is useful to note that
C}— ~~D+C}— D, as the following derivation (schema) shows:

1. C'— ~~D

2. C? ~D— ~D (N1)
3. C ~D— ~~D 1 (N2)
4. Cr'— D 2,3 (N10)

Now consider the system N* of .L*-sequents determined by the same
schemata, (N1)-(N14). In derivations in N*, of course, only .*-sequents
may occur. Hence in (N1)-(N14) regarded as postulates of N*, D and E
must be negation-free sentences of L*, and H must be a negation-free
formula of .L*. In connection with N*, I shall use ‘¥’ to assert derivability
and provability.

From this characterization of N* as a subcalculus of N, it is evident
that any proof in N* of an L*-sequent ¢? — y is likewise a proof of ¢7 — ¥
in N. Hence by the soundness of N, if ¥¢? — ¢, then ¢? F . Conversely,
suppose ¢ F Y. Now supposing ¢ = ~A(A) for negation-free A, then the
tableau generated by the method of Smullyan [2] for ¢7,A (¢7,~A) will be
closed. But it is easy to specify an effective procedure by which from such
a tableau a proof in N* of ¢7 — ¥ can be retrieved. (Verification of this
claim is left to the reader.) Hence :‘N* is both complete and sound in
relation to J£* in the following sense:

(4.1) For any sentences ¢y, . . .,¢n (n = 0) and ¥ of L*, *o?— Y iff o7 E ¢.

The significance of (4.1) depends on the fact that only L*-sequents can
occuy in devivations and proofs in N*. Hence by (4.1), if ¢7 E y, then there
is a proof in N* which represents a formal deduction of ¢ from ¢,, . . ., ¢,
in which only sentences of .L* occur. And this established thesis (1.3). In
view of (4.1), (3.1), and the completeness and soundness of N, the following
proof-theoretic analogue of (3.1) is also evident:

(4.2) For any sentences C, .. .,C (n=0) and D of L,+C}— D iff #exC]—
exD.

(It is also possible, though a bit tedious, to prove (4.2) by a purely proof-
theoretic argument, without assuming the completeness or soundness of N.)

It is clear from (4.1) that the internal logic of .L* can be completely
formalized in a quite natural way. And (4.2) makes it clear that proof-
theoretic analogues of (3.3) and (3.4) can be proved in relation to N and N*.
It thus becomes evident that for any belief system T in [ that can be
deductively organized on the basis of the system N, there is an equivalent
belief system in L*, namely exI', which can be deductively organized on the
basis of the system N*. This conclusion explicates and sums up (1.2) and
(1.3). Hence [L* is as adequate a language for inquiry as [, at least as far
as deductive, and thus purely hypothetico-deductive methods are concerned.
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Recall now the relationship of L* to .[,, the negationless language
corresponding to [ and to .L*. The sole feature distinguishing .L* from .
is that the negation operator, common to both, is held external and non-
embeddable in .L*. And the philosophical motive for considering L* and its
logic is that each sentence of .L* can be regarded as representing either
the acceptance as true or the rejection as false of some negation-free
statement in .L—that is to say, some statement in .L,. We have thus shown
that for any system of affirmative judgments, or beliefs, regarding state-
ments in [, there is an equivalent system of affirmative and negative
judgments, or beliefs and disbeliefs, regarding statements in L,. However,
if sentences of .L* are thus construed as representing judgments regarding
negation-free statements, then deductive reasoning on the part of a speaker
of .L* must be construed as involving, as its immediate constituents, so to
speak, not the statements he judges but rather judgments regarding them.
Construing negation as a sign of negative judgment, disbelief, or denial thus
calls for a revision of the traditional concepts of deductive reasoning and
deducibility.
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