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THEORY OF OBJECTS AND SET THEORY:
INTRODUCTION AND SEMANTICS

ANDRE CHAUVIN

1 Preliminary By Kleene’s Intvoduction to Metamathematics (1952),
CH. XIV, §72, Theorems 35 and 38, if consistent, a first order theory has
“Kleene’s models’’, i.e., models where the universe is the set of natural

integers 0, 1, ..., %, ... and the fundamental relations are each of the
form P(a,, . . ., an) with
Play, . .., an) <> (3x) (YY) R(ay, . . ., as, %, y) <> (Vx) (3y) S(ay, . . ., an, X, )

where R and S are primitive recursive and ‘<>’ is the biconditional.

Trying to prove the consistency of first order set theory by finding
directly such a model (which must exist if this theory is consistent), we
thought, as partial recursive functions are basic notions of Theory of
Algorithms, to which belong Kleene’s models, that it would be better to
bring set theory nearer to theory of algovithms, by taking for the first one
as primitive the notion of partial function and the relation of equality and as
devived the notion of set and the relation of membership (if we do not
impose extensionality to our partial functions we are again nearer to the
primitive basic notion of the theory of algorithms, say the notion of
algorithm itself).

We were confirmed in this idea by reading Von Neumann’s ‘‘Eine
Axiomatizierung der Mengenlehre’’. As a matter of fact, Von Neumann
takes as primitive the notion of (total) function and the relation of equality.
But he stresses that his system presents some arbitrariness. We thought
that this arvbitrvariness lay at the very beginning of Von Neumann’s system,
when he divides a priovi its objects (‘‘Ding’’) between I-objects x (argu-
ments) and II-objects f (functions), in such a way that the domain O of
Von Neumann’s objects is the union of Op, the domain of arguments, and Oy,
the domain of functions, and when he considers that the result of the
binary operation [, ] of application of a function to an argument, say [f,x],
is defined on and only on the cartesian rectangle Oy x O;. Von Neumann
admits again (implicitly) that the term [f, x] has always a meaning, f being
always taken in Oy and x in Oj, and he states that this term describes an
argument (a I-object).
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Rejecting the a priovi separation of the objects (i.e., the elements of a
given a priori domain Q) between I-objects and TIl-objects, we were
naturally induced to admit that we could put every object x, y into every
void place in [, ], but that the result [x,y]' could be undefined (i.e., could
not describe any object but could be simply a pure meaningless string of
symbols, especially because x needs not to be a function at all) and, if
defined, could be an arbitrary object. So we arrived at a more general
notion of application than the one of Von Neumann, the notion of application
[, ] of an arbitrary object x to an arbitrary object v, the eventual result of
this application, if it exists, being the object [x,y]. From the binary
fundamental operation [, ], by fixing its first argument x, we get a unary
operation [x, ], which may have an object [x,y] as value when we fill the
void place with ¥. So the operation [x, | constitutes a unary function f (of
which x is a kind of notation) and we suppose that our notion of application
is sufficiently large for getting in this way every unary partial function.

Clearly our notion of partial function is prior to every notion of set
(hence of graph),’ and is considered as a 7ule, or, better, as a process
prescribed by this rule, which gives an eventual value from a given
argument. If we take as primitive our genevral notion of application, and as
derived the notion of unary partial function, it suffices to add the
Schdnfinkel conception of the n-ary functions as sequences of z applications
of unary functions (say F(x,y) is understood as [[ f, x],y])® for falling into
the familiar ideas of Combinatory Logic. So was the stream of ideas which
led us to the present work, where we present a reconstruction of set theory
from the usual notion of application of the Combinatory Logicians.

2 The notion of function as process and the notion of application His-
torically, functions were considered first as rules (commands) prescribing
an activity (a process) aimed to get a vesult (an object) when applied to
some objects, or, so to say, as this activity or process itself. Later on, the
notion of function shifted from the primitive notion of process to the
set-theoretic notion of graph, via the ‘‘representative curves’’ which were
used for representing ‘‘graphically’’ various functions, with a remarkable
uniformity opposite the extreme diversity of the processes in a time where
no general notion of process (and especially the notion of algorithm) was in
view. Let us make some remarks.

2.1 Something is lost of the primitive notion of a function F (as process),

1. Frequently abbreviated as xy.
2. Asis Frege’s notion of Predicate.

3. At the beginning of §2 in Van Heijenoort and others translation of Schonfinkel in “From
Frege to Godel,” we find that a function is defined as a correspondence giving, for every
argument, at most a value. So Schonfinkel, contrary to Von Neumann, considers the func-
tions as partial. Von Neumann seems to have ignored Schonfinkel’s work and especially his
reduction of functions to unary ones.
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if we identify this function with its graph f, forgetting the uniform process
which restitutes a function from its graph, say the process prescribed by
the following command:

‘““For the object x, search if an ordered pair, with x as first element, is a
point of the graph f. If it is the case, take the second element of the point
as the value Fx of the function F for x’’ (I')*

The extreme simplicity of this uniform process may give rise to such
an oversight, above all if we write fx instead of Fx for the value of F for x.
But the ‘‘inert’’ object f is, by itself, unable to act on something. Taking in
such a way the part f for the whole (f,T) or F, an object (a graph) which
characterizes but is not a function for this function itself, would be more
difficult in the case where the function is a partial recursive function F, the
object which characterizes it is its Godel number f, because the uniform
process which restitutes the process F from its characterization, the
“‘inert’> Gbdel number f, is more intricate than the preceding: it goes from
f, through a decoding, to another ‘‘inert’’ object, the scheme f' of the
algorithmic process F, the passage from every scheme f' to the process F
it commands, being, as remarked Shanin, an essential part of the under-
standing of the notion of algorithm: so the algorithmists are accustomed to
represent a partial recursive function F by some symbol like {f}, distinct
of the Gddel number f. It is more difficult, through our deep-rooted habits,
to see a graph f as something like a Gddel number of F, i.e., a simple
characterization of F, but not as F itself.

This simple remark throws some light upon the so called ‘‘self-
application’’, i.e., the application of a function to itself. Clearly it is not
the graph f that applies itself to something, and especially to itself: an
‘“‘inert’’ object f cannot act on something, but can only be acted. So, it is
the process F which applies itself to something. Therefore, we may
consider self-application

either as the application of the activity F to its characterization, the graph
f or as the application of the activity F to the activity F.

The latter application is not a priori absurd, as some activities like
“go from a thing to this thing itself’’ or ‘‘go from a thing to a fixed thing’
a’, where things may be activities, apply themselves to any activity, and
especially to themselves (they can be considered as interpretations of | and
Ka, where | and K are the identificator and the cancellator of combinatory
logic). Neither is the former, which is not a ‘‘self-application’’ in the
litteral sense of the word ‘‘self’’ (in theory of algorithms usually we apply
a partial recursive function F to its notation, e.g., to its Godel number f).
This ‘‘self’’-application is only forbidden for the activity prescribed by
(T'), by one of the (rion evident) axioms of Set Theory, say the axiom of

4. The graph is such that there is at most a second element of a point of the graph. F is un-
defined for x if the search does not succeed.
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foundation which makes it unfulfillable when the object x of (T') is the graph
fof F.

2.2 The notion of function as process does not ask for having previously
the notion of the objects (arguments) to which it applies itself and of the
objects (values) to which it possibly leads, opposed to the set theoretic
notion of function as graph (the notion of graph presupposes the notion of
the ordered pairs of which it is the set). A simple instance of function as
process is the identificator | which, when applied to an arbitrary object,
leads to this object itself. This identificator, as a process, is clear
“per se’’. If we take for ‘‘objects’’ the sets, | cannot be a set, hence cannot
be a graph (if we extend the notion of graph by taking classes of ordered
pairs for graphs, | may be a class in this extended sense, but if we take for
‘‘objects’’ the classes, again | cannot be a graph in this extended sense of
objects). We have in Set Theory only ‘‘approximations’’ of I: for instance,
if ¥ is a set and I, is such that for every ye x we have I,y = y, then I, is
such an approximation of I. We have a similar situation for Ka.

These remarks throw some light upon the notion of application to which
we return in order to compare the point of view of Von Neumann and the
one of the combinatory logicians (which is our own). In the first place, the
‘‘active’”” one, of its operation of application [, ], Von Neumann puts a
notation, say f, for a function F (thought as a process), and in the second
place, the ‘‘passive’’ one, he puts a notation for an argument (possibly a
function, i.e., a I-II object). So, in the expression [ f, x] (which has the same
meaning as Fx), f designates the acting object (more exactly process) F,
and x the acted one.

Combinatory logicians get their own notion of application by dropping
the notion of process from the notation f, which now becomes a notation for
an inert object, this object characterizing the process F in the above case,’
but being, in the general case, completely arbitrary, and letting the notion
of process to lie now entirely in the operation [, ] itself: this is this
operation (thought as a process) which acts on two arbitrary objects x, y
(thought as inert objects) and products possibly the object [x, ].°

3 Partial operations and extension of languages by creation of abstract
objects At the very beginning of mathematics, we use operations for
producing terms describing the objects under consideration and equalities
between terms as elementary relations between these objects: terms and
equalities between them form the technical formal part . of the natural
language used heavily at this stage for speaking of our objects.

As a very simple example, let . be the formal part of the arithmetic
of positive integers 1, 2, 3,...,n, ..., before the introduction of the
rational (positive) numbers. The alphabet of [ contains symbols (or
“elementary’’ terms) for designating positive integers, a symbol . for

5. Think of graphs or Godel numbers.

6. The process F is [f, ] where fis, for instance, a graph, a Godel number, . . .
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designating the fundamental operation of multiplication, parentheses for
preventing collision of terms, = for the relation of equality. Terms of .,
describing positive integers, are a.B where a and B are already con-
structed terms. Formulas of .[ are a = 3, where @ and 3 are terms.

Faced to the problem of inversion of the operation ., mathematicians
introduced new terms in .£ (so extended in .(,), the ‘‘fractions’’ a/B, first
as a mere auxiliary shorthand for describing the positive integer 3 such
that a = 8.y, where @ and 3 describe positive integers. At its beginnings a
language is created and used for speaking of objects (here the positive
integers), the form of its terms and relations (to which not much attention
is paid) seems inseparable from their interpretations. So more general and
meaningless terms such that 7/3, if considered, would be rejected at once
as useless, had not the old Greeks found a new (geometrical) interpretation
of fractions, available too for the primitively meaningless ones; they were
considered as ‘‘operators of measurement’’ and named, with this interpre-
tation, ‘““rational numbers’’. Such a geometrical interpretation was not so
immediate when the problem of inversion of addition induced to consider
meaningless expressions such as 3-7, which perplexed for a moment
medieval mathematicians as discloses to us the strange qualifyings
(‘‘deaf”’, ‘‘false’’) they gave to our ‘‘negative’’ numbers. Worse was the
situation for ‘‘imaginary numbers’’, used with reluctance three centuries
before a geometrical interpretation was found for them, for finding
ordinary solutions of third degree equations, through ‘‘absurd’’ equalities
containing such ‘‘absurd’’ expressions.

Returning to the case of rational numbers let us give to the fractions a
‘“‘syntactic’® interpretation (without any geometrical consideration) as
rational numbers.

First we extend .(; to .,, simply by removing all the restrictions set
on J[,-terms so that they describe integers: so ., contains meaningless
terms such as 7/3. Second we will give a meaning to these meaningless
terms by extending ., to .’ through an adjunction to ., of a formal part of
its metalanguage, MJL;, in such a way that L' become able fo speak of
L,-terms, and not only to use (some of) them as tools for speaking of
positive integers. It will be expedient to introduce in ' the #.L,-formula
O(a) meaning ‘‘the .l,-term a describes a positive integer’’ with its nega-
tion O(a). Next we introduce in L' the relation =7’ between J[,-terms,
defined by induction on the number of / as follows:

a/B=a'/B'=p;a.p'=a'.B

It is easy to prove that this relation is a relation of equivalence, and even a
congruence with respect to . and /. Then we define the ‘‘positive rational
numbers’’ as the classes of equivalence of this relation. So a fraction, like
7/3, describes the class of equivalence in which it lies i.e., the cor-
responding ‘‘positive rational number’’. We could proceed the same way
for defining algebraic integers (here O(a) would mean ‘‘the term «a
describes a natural number’’) or for defining complex numbers (O(a) would
mean ‘‘the term a describes a real number?”’).
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The partial function (from integers to integers) expressed by / in ., is
a very simple example of partial recursive functions, one of the most
important objects of the Theory of Algorithms. In this theory we are
frequently induced to contemplate meaningless terms such as fz, where # is
an integer and f a partial unary recursive function, undefined for the
integer n. As we cannot decide effectively for every pair f, # if f is defined
for n, it is not so easy as in the simple preceding case, to give in an
analogous way a meaning to meaningless expressions of the type fx’: so
they remain usually meaningless and there is some reluctance to use them
(and some hesitation about how to do). About the reluctance to use mean-
ingless expressions we will study in the next paragraph the Hilbert’s
programm. About the difficulties which we may encounter in trying to give
them a sense, we defer to the section 6, on diagonalization process.

4 Hilbertian ‘“ideals” Hilbert was the first to shake off the old repul-
sion with regard to meaningless terms and to make them an important tool
of his theory of foundations (Hilbert’s programm). The processes of
abstraction we used for introducing rational numbers are quite simple, and
the new abstract objects quite clear. It may be proved easily that the new
language (.L') obtained by the introduction of these new terms is a con-
servative extension of the old one (.). But, as Shanin remarked in his
¢Critic of classical mathematics’’, such ‘‘abstractions’’ are not the only
way through which new objects enter into mathematics. They enter too by
way of ‘‘idealizations’’, as the ‘‘idealization of actual infinite’’ which
produces the Cantorian notion of set. Abstractions (which generally appear
when we extend a supposed sound language [ into a new one L', as we did
in section 3), when alone, never produced difficulties. But Frege’s
‘principle of abstraction’’, which must be held for evident if we admit the
unrestricted idealization of actual infinite, has for consequence Russell’s
paradox, a contradiction.

So Hilbert was confronted to a first order completely formalized
language ' (say the language of set theory), the soundness of which was
primitively based on the accepted (as evident) meaning of its terms, and
this meaning itself was based on the acceptation (as evident) of the actual
infinite. Due to well known contradictions, he was forced to contemplate
the eventuality of a vanishing of meaning of some terms in .£', entailing the
vanishing of meaning of complex terms constructed from these one, then
the vanishing of meaning of formulas constructed from those now meaning-
less terms, and finally the vanishing of meaning of deductions (as we name
arguments in completely formalized languages) which contain such mean-
ingless formulas. Through these vanishings, primitively meaningful terms
and formulas become pure meaningless strings of symbols of ', and
primitively ‘‘convincing’’ deductions of L' become purely formal deriva-
tions (i.e., pure sequences of strings of symbols of L', constructed

7. We could do so in looking at fn as describing the process of calculus of fn itself, not its
result, and considering on a par the fact it terminates or the fact it does not terminate.
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according to some rules), devoid of any convincing power. Nevertheless,
as Hilbert wanted to keep untouched the language L', he did not banish, as
useless ballast, these formal entities. On the contrary, he accepted them
without even trying to give them a new meaning by themselves, say a
‘“local’’” meaning. They become only characters of a certain game, their
‘‘global’’ meaning consisting only (as for pawns, queen, bishop, and king in
Chess) of their role in the whole game.

More exactly, Hilbert separated the terms of L' between real and ideal
objects (for meaningful and meaningless terms), formulas of L' between
real and ideal propositions (for meaningful and meaningless formulas),
formulas), derivations of L' between 7eal and ideal deductions (for con-
vincing deductions and purely formal derivations). The ‘“‘veal language’’ L
is the collection of the real propositions, which speak about real objects
only, and its deductions are the real deductions of .L'. Hilbert choiced what
he named ‘‘real’”’ in such a severe way that nobody may doubt of the perfect
soundness of the real language and of the convincing power of its deductions
(L was seen later to be the Skolem-Goodstein language of primitive
recursive arithmetic). And he said that we will be compelled to accept L’
as a correct and useful language after having given a rule replacing effec-
tively each (real or ideal) deduction in ', terminating at a real
proposition, by a real deduction (in ) with the same end-formula. The
impossibility to deduce in L’ any real proposition, without having simul-
taneously a real deduction of it in £, secures the correctness of L'. Its
usefulness comes from the fact that ideal deductions are generally shorter
than real ones. He laid down the programm to find such a rule, programm
which was not fulfillable, as Gddel showed us, due to the excessive severity
of the choice of ‘‘real’’ entities.

Remark 1: Hilbert’s point of view is, in some way, opposite to the point of
view of section 3: the latter is the one of mathematicians of ‘‘constructive’’
tendancy, which try to progress by larger and larger extensions (as the
extension from . to L' in section 3). The former is the one of mathemati-
cians of ‘‘speculative’’ tendancy, which describe in a language .' ‘‘onto-
logical’’ concepts analogous to those of physicists (e.g., the ‘‘idealization of
actual infinite’’ in the language .L' of set theory): even most of these
mathematicians are not busy with foundations problems and look at their—
possibly inconsistent—.’ as a process of trial and error analogous (yet
more abstract) to the theories of physicists. For them, an inconsistency in
L' would be an inadequacy and would appeal to a correction of L' exactly
as the eventual inadequacies of a physical theory appeal to an eventual
correction of it. Hilbert thinks that an already given (no matter its origin)
mathematical theory L', qua wmathematical, must be submitted to a
preliminary test, say must be proved to be ‘‘reductible’’ to a sound
language . (by proving that £’ is a conservative extension of .).

Remark 2: Hilbert showed us that we need not to give a meaning to every
term: we may perfectly, as he did, cope with meaningless terms, and
hence with meaningless formulas and deductions, and let them remain in
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this state. When we take the resolve to let them so, we will use the
Hilbert’s word ‘‘ideal’’ instead of ‘‘meaningless’’: meaninglessness will be
considered as a provisional state, idealness as a definitive one.“_W_e_ will
use from now on (except otherwise specified) O(a) and its negative O(a) for,
respectively, ‘‘the term a is a real object’’, ‘‘the term a is an ideal
object”’.

Remark 3: The failure of Hilbert’s programm shows us that it is dangerous
to divide a priovi the terms between real and ideal objects. So we will do
this separation a posteriori, by taking O as a primilive of our system, to be
defined (and with it the notion of real and ideal) only on the basis of the
whole system.

5 Objective, syntactic, and idealized languages In section 3, meaningless
terms such as 7/3 were banished from .,, present but not used® in .,
present, and after being given a meaning, used® in L'. We will name
“‘objective’’ such languages as ., L;, L», L', where every used® term
describes an object (is ‘“‘meaningful’’).'’ In the sequel, we limit ourselves
to languages where terms are constructed from the elementary ones
through the operation of application [, ], and formulas are constructed from
equalities'’ as elementary formulas.

For objective languages, we are induced naturally to accept the

Frege-Church principle If a subterm o or 8 of a term |a,B) is meaning-
less,'? it is the case too for the whole term [a, 8].

This principle may be extended to formulas by considering as mean-
ingless an equality between terms not both meaningful, and as meaningless
a formula, a subformula of which is meaningless (for formulas we may use
the term ‘‘fictive’’ instead of ‘‘meaningless’’). We may extend it again to
the sequences of formulas which are deductions, by considering them as
‘“‘meaningless’’ or ‘fictive’’, when one of their members—a formula—is
fictive. In an objective language, after having recognized that a term is
meaningless (which is of interest and sometimes not easy), this term is no
more used' and is let aside (or it could be erased as well).

8. “Meaningless” is a simple lack of information, “idealness’ is the decision to do not bring
information.

9. As tools of discourse.

10. Clearly it is in order to get an objective language that Von Neumann separates his objects
between I- and II-objects and adopts his conventions for [,].

11. We consider here “declarative” equality, putting aside for the time being ‘“definitional”
equality o« =ps which can be interpreted as a command “‘replace the definiendum « by the
definiens §".

12. Le., describes no object.

13. As tool(s) of discourse.
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The equality a = B (‘‘objective’’ equality) of an objective language is the
following relation between objects (defined simultaneously with its negation

a# B):

a = 8 means: the object described by a is the same as (or: is undiscernible
from) the object described by S.

a # B means: the object described by a is not the same as (or: is dis-
cernible from) the object described by B.

If it is not the case that both @ and B describe objects (i.e., if one of the
terms a, B is meaningless), as it may happen e.g., in £, of section 3, then
under this interpretation a=p3 and a# 3 are meaningless strings of
symbols, and after being recognized such (which can be of interest), being
no more used'® may be let aside or could be erased as well. But we may
look at the objective equality, no move as a velation between the objects
described by the terms a, B, but as a relation between these teyms them-
selves (as such, this relation no more belongs to our objective language,
but to its syntax). In this new interpretation, we get a partial predicate on
terms, a = B, defined only when both of them describe objects and in this
case having the same meaning as the objective equality. We get so the
“partial equality’’ (Kleene’s ““weak’’ equality, IMM, 1952, p. 328)."*

When we will formalize our languages in Predicate Logic, partial
equality makes difficulties as Predicate Logic, considers only fofal predi-
cates on the universe of its objects (the common range of its variables, the
so-called ‘‘Universe of Discourse’’) and especially a fofal predicate of
equality. It is not fitted to the treatment of partial (possibly meaningless)
predicates such as partial equality. We do not try to adapt logic to this new
situation, but, keeping logic untouched, we must redefine equality a = 8
between possibly meaningless terms a, 8 in such a way that it keeps always
a meaning: but, apart this last property, the equality we have in view is
again, as partial equality, a ‘‘syntactic’’ extension of the objective equality,
a relation between the ferms of the objective language, belonging to its
syntax. We set

a = B =p; either both a and B describe objects, and these objects are just the
same (are undiscernible)
or it is not the case and E (a, B)

where E (a, B8) is a relation of equivalence between terms a, 8.

If only one of the terms a, 8 describe an object, then a, 3 are discerned
on the basis of this fact: so we have ‘‘not E(a, 8)’’, then @ # 3. But if both
a, B do not describe objects, many possibilities remain open for defining

14. We keep the name ‘“‘objective language”, when objective equality is looked at as partial
equality.
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E(a,B). As the terms a, B are undiscernible on the basis of their contents
(they have no contents), if we want to discern between them, it can be only
on the basis of their form and any relation of equivalence E (a,8) between
the (pure) terms a, 8 will do the job. The simplest and strongest of these
relations a@ = 8 means that the terms @ and B are exactly the same sequence
of symbols; generally the classes of equivalence of the other E(a,j) have
many terms.

But to discern between meaningless tevms, is, in a way, to give them a
meaning, through the following process, already used in section 3. We will
name ‘‘syntactic’’ equalities the equalities a = between terms, just
defined; an extension of the primitive objective language . through
syntactic equalities (say, a ‘‘syntactic extension’’ of this language) will be
named a syntactic language L' based on L. A syntactic language L' may
be made objective by giving a meaning to primitively meaningless (in ()
terms, say by considering them as describing their class of equivalence.
But, in the new objective language so obtained, it may subsist (provi-
sionally) meaningless terms. If we renounce to introduce by the preceding
process new objects giving a meaning to these terms, they will be
““definitively’’ meaningless: then they may be considered as ideal objects,
i.e., used as mere pieces of a game (with no need of interpretation). We
name ‘‘/dealized’’ languages those languages with ideals. As we have no
more to pay attention to the differences of form of these ideal objects, we
make abstraction of these differences, by setting all the ideal objects to be
undiscernible: so we choose for E(a,pB) the weakest equivalence relation
between pure terms, setting E(a, ) to be the case when neither a nor B
describe objects. It will be convenient to use O(a) and O(a) for expressing
respectively that a describes an object or that it is ‘‘definitively’’ not the
case (i.e., that a is ideal). Using this notation we may rewrite Frege-
Church- principle and write the definition of the ‘‘ideal’’ ov ‘“total’’ equality
described above (Kleene’s ‘‘complete’’ equality, IMM, 1952, p. 328).

Frege-Church principle If O(a) or O(B) thern O(la, B)). I

Ideal equality (total equality) a = 8 =), either O(a) and O(8) and a and B
describe the same object
or O(a) and O(B) (1)

From now on we will use the symbol = for the ideal equality (and weak
for weak equality, except it is otherwise specified in the context).

Remark 1: The formula
O(a) & O(B) —a=8 (1)

(where & and — are the usual conjunction and conditional) is always
meaningful and says the same thing as

a =B (2)

weak
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when (2) is meaningful. When (2) disappears as meaningless, (1) disappears
as trivially true: we say that (1) “‘simulates’’ (2).

Remark 2: We may extend an idealized language to an objective one, by
considering that all the ‘‘definitively’’ meaningless a designate the class of
equivalence of the ideal equality formed by these a: so we give globally a
“‘singular’ meaning to these a (here lies the motivation of the quotation
marks surrounding the word ‘‘definitively’’). This class is the ‘‘ideal
object’’ (or the ‘“‘undefined’’). This singular object plays a very special
role (specified by (I) and (II)) with respect to the other ‘‘regular’’ objects.

Remark 3: Some variances between combinatory logicians (e.g., Church
and Curry) may be explained as the result of different linguistic conven-
tions, on the basis of our syntactic and idealized languages. Let us, for
instance, consider Ka where K is the cancellator and a is a combinator in
normal form. We may consider that the combinators which have a normal
form are the objects of an objective language ., the other combinators
being lerms of its syntax. So Ka is a ‘‘syntactic’’ function, as it gives, for
objects a of a syntactic extension L' of . (not necessarily objects of .() as
arguments, an object a of L as value, by Kaa = a, which is true even if a
has no normal form. So Curry language of pure combinatory logic may be
considered as a syntactic language L' (based on .£). Church assimilates
ideal objects and terms without normal form'®: so, he cannot accept without
caution an object like K, because if @ has no normal form, the left member
of Kaa = a is an ideal object by Frege-Church principle and the right one is
the real object a; this is impossible, as Church accepts the rule of our
ideal equality by which an ideal object is distinct from a real one. Church
uses, instead of K, combinators |, J and the combinatory logic CL-I using
these combinators do not give rise to such difficulties.'® For analogous
reasons, we take, instead of K, the combinator k such that kaa is Kaa for a
real and is a for a ideal.

6 Diagonalization When a language is sufficiently strong for expressing
diagonalization, an uncautious assimilation of ideal object to ordinary one,
without due attention paid to its very special role, may produce incon-
sistency.

Let F be a family of partial functions on F (i.e., their value, for an
argument taken from F, may be undefined). Lower case Latin letters
denote the elements of F, the eventual result of the application of a partial
function ¥ (not necessarily in F) to its argument x is denoted by mere
juxtaposition as fx. Let us define, from F, a partial function ¥, named a

15. For us this assimilation gives only one, among other possible, meaning of idealness O, a
primitive of our system.

16. Bahrendregt (“Some extensional term models for combinatory logics and A-calculi™)
proves that it is possible to equate in CL-I without introducing inconsistencies, terms
without normal form.
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““diagonal for F’’, by the following conditional command (D)7
O(xx) - take O(fx) and {x # xx (1)

As usual, when the condition O(xx) of the command is not fulfilled, i.e.,
when O(xx), nothing is said and everything compatible with ¢‘§ is a partial
function on F’’ is permitted. Clearly every F has diagonals §. Let us now
set the hypothesis

f is an element f of F (H)

(H) means that F has a ‘‘inner’’ diagonal f. As all the f of F are supposed
given before the definition of f, it is possible that (1), which becomes
under (H):

O(xx) » take O(fx) and fx = xx (2)

is no more fulfillable. Taking f for x in (2), we get

O(ff) » take O(ff) and ff # ff (3)
then, by simplification
O(ff) - take ff # ff (4)

Clearly (4) is not fulfillable, except if its condition fails, i.e., if O(ff): so
we get a necessary condition for the fulfillability of (2), the

Diagonalization theorem Fov F having an innev diagonal f, it is necessary
that O(ff).

If Fis a family of total functions on F, for every fe F, we have O(ff).
So

Corollary Every diagonal of a family of total functions on F is outside F;
we say that F has only ‘‘outer diagonals’’.

This gives us a general construction of a function f, total on F, which
lies surely outside a family F of total functions on F. If, for every fe F, we
have O(ff) (and especially if F is a trivial family of nowhere defined
functions), every function of F is an inner diagonal for F.

The necessary condition furnished by the diagonalization theorem is
not sufficient for F having an inner diagonal: we have families F such that
their elements f, such that O(ff), are not, nevertheless, inner diagonals of
F.'®* The preceding language of “conditional commands’’, we used in order

17. We use, as abbreviations, the predicate O on terms «, such as xy, defined by:
O(xy) =py the term xy is defined

(i.e. describes some object, the result of the application of the function x to the argument y),
its negation O, and > for symbol of (conditional or not) command, instead of the over-
worked Post’s simple arrow.

18. Let, for instance, F’' be a family of total functions on F' and let f be a function, not in
F’, such that O(ff), but otherwise choiced arbitrarily on F'. Let, for x’,y’ € F', x, y denote
extensions of the functions x’,y' to F = F' U { f}, such that: xy =ps x'y', xf arbitrarily de-
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to define f, permitted us to use equality only between objects (objective
equality). We may use to the partial equality (written = in the present con-
test) between (possibly meaningless) terms, writing so (2) under the uncon-
ditional form:

take O(fx) and fx + xx 21
If O(xx), (2') means just the same as (2). If O(xx), (2') is meaningless, by
Frege-Church principle extended to formulas, as it is the case for fx + xx:

s0 (2') may be erased and disappears. With partial equality, the diagonali-
zation argument runs like that:

take O(fx) and fx + xx 2"
and substituting f for x in (2), if the result is meaningful,

take O(ff) and ff # ff (39

Clearly, the last command is unfulfillable if O(ff); it disappears with the
whole argument (2'), (3") if O(ff), as ff # ff is meaningless, hence too (3’),
(by extension of Frege-Church’s principle to arguments). So, if the
command (2') is (vacuously for x = f) fulfillable, we have O(ff).

Let us now use total equality for rewriting our first diagonalization
argument. As this equality is a usual (total) predicate on terms, the
predicate calculus is now available, and after replacing the command
symbol -» by the conditional —, in order to transform commands in
declarative sentences of predicate logic, we get at once the following
formalization in first order predicate calculus of our first diagonalization
argument:

(Vx)(O(xx) — O(fx) & (fx # xx)) (2"
O(ff) — O(ff) & (ff # ff) (3")
by specializing x to f, then
O(ff) — ff + ff (4")
by simplification, then
o(f7) (5")

as ff + ff is false.

Let us remark that the cancelling of equalities, as meaningless in
derivation (2'), (3') above, or under the effect of an unfulfilled condition in
derivation (2), (3), (4) above, or under the effect of a false premise in the
derivation (2'), (3"), (4"), (5") above, is essential. If we replace in (2'),
(3') the partial equality by the total one, or if we suppress the condition in
(2), (3), (4), or if we suppress the premise in (2'), (3"), (4"), (5"), we get a
contradiction.

fined, fx =ps fx'. So, the only possible inner diagonal for F would be f (as O(xx)). But, if
using our liberty of choice for f, we took, for some g’ € F', fg' = g'g’, then f cannot even be an
inner diagonal for F, as we have not fg' #g'g".
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But on what basis could be made this replacement, or these suppres-
sions? Clearly, on the basis of a complete assimilation of the ideal object
to the ordinary ones, an assimilation evidently motivated by the habits
contracted and deeply ingrained since the long and remote period where
languages, as the practical activities they were, were purely objective.
Hence comes the tendancy to ‘‘objectivation’’—or, as we say, using the
Latin word ‘‘res’, to “reification’’—of every new object, even quite
abstract, which comes under our attention, i.e., the tendancy to treat it as a
material object, following this tendancy we may argue like that: the ideal
object is, after all, an object ‘‘like the others’’. So, there is no reason to
treat it apart. Then admitting implicitly that every term has a meaning
(describes an object) i.e , admitting implicitly O(fx) for every f, x—every
Sfunction is total—and especially O(xx), we are induced to set at once, using
the total equality, fx # xx, as definition of a diagonal f for the family F of
functions x (all the functions are total). More: if we use the Cantor’s
process of reification consisting, firsf, of an assimilation of (total)
functions to their graphs, second, of the consideration of all the sets (hence
of all the graphs) as ‘‘present’’ in the Plato-Cantor’s Universe (resem-
bling to the material Universe), then we may consider that F is the family
of all the (total) functions. So f is in F, hence f is an inner diagonal of the
family of total functions F: Hence a contradiction known as ‘‘Russell’s
paradox’’. So, in order to escape from this contradiction, we are induced
to make the ideal object play its very special, linguistic, role: through the
method of simulation (to be described in section 7) its presence in a term
makes this term ideal, the presence of an ideal term in a formula makes
this formula ¢‘virtual’’, idealness and virtualness simulating meaningless-
ness of terms and formulas which are actually meaningful.

7| Reification and simulation Intuitively, we may conceive an ‘‘object’’
as ‘‘what of which we speak in language’’. But we cannot content ourselves
with the vague, empirically (in a way partially impossible to foresee)
extensible, notion of language as ‘‘colloquial activity’’, and we must precise
that an object is ‘‘what of which we speak in a language’’. For some
families of languages, not necessarily formal, this definition may be made
utterly precise: it is for instance the case for a (finite) fext, completely
understood: this asks only for finitely many ‘‘acts of understanding’’, i.e.,
finitely many (hence performable) mental experiences'®. Even for a
completely formalized language, or a text of it, if we want to apply it (for
saying something), and not