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RECURSIVE EQUIVALENCE TYPES ON RECURSIVE MANIFOLDS

LEON W. HARKLEROAD

Preliminaries* Standard recursive theory is worked on N={0,1,2,.. }
In this paper the theory is worked on recursive manifolds. An enumeration
of a set A is a map from N onto A. If the enumeration is injective, it is
said to be an indexing. The ordered pair (A, A) is said to be a recursively
enumerable manifold (REM, for short) if A is the union of enumerated sets
(i.e., for some index set P, there is a collection of enumerations {ap}p(p
with A = p(PAp, where A, = ay(N)), with the enumerations satisfying certain

conditions. U = {a,},pis called the atlas. Each A, is called a patch. For a
set SC A each a,}l(S) is called a pullback (into N) of S. To make (A,A) an
REM, we require that each a; 1(Ap) must be recursively enumerable (r.e.,
for short) and the domain of a partial recursive function (p.r. function, for
short) f into a, '(4,) satisfying a, = @50 f. If each a;'(4,) is recursive (rec.,
for short), the manifold is a 7vecursive manifold (RM). If each @, is an
indexing, (4, ) is an injective REM (IREM). A manifold which is both an
RM and an IREM is an injective recursive manifold (IRM). A manifold such
that each patch nontrivially intersects at most finitely many other patches
is said to be finitary. For reasons that will appear in the proofs of the
first two theorems, all manifolds considered in this paper will be assumed
to be finitary IRM’s unless otherwise specified. (N, ) is defined to be the
finitary IRM with | = {a}, a(n) = .

If (A, %) is an REM and (B, ®8) is another REM with enumerations
Bg, g€ @, the cartesian product A x B can be given a manifold structure as
follows: for each (p, ¢) in P x @, let Ap x B, be a patch of A x B enumerated
by vp,4 Where yp,q(o(n, m)) = (ap(n), B4(m)), o being the standard rec. bijec-
tion from N? onto N. This manifold on A x B is called the divect product of
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mitted to the Graduate School of the University of Notre Dame in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy with Mathematics as the major subject in
August 1976. The author is indebted to his director, Professor Vladeta Vuckovié, for his patient
and constant assistance.
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(A, %) and (B, B). If two manifolds are finitary IRM’s, so is their direct
product.

A subset of A is A-r.e. iff each pullback of the subset is r.e. in N.
A subset is A-finite iff each of its pullbacks is finite, and so on. If (4, W)
and (B, B) are two REM’s, a function from X C A into B is %-B-p.r. iff X is
A-r.e. and for all pe P, qe @, there exists f,, which is a p.r. map:
Dy =a, (X Nf7(B,)) — N such that foa, = B;0fpq On Dy, An A-B-rec.
function is one which is ¥-B-p.r. and total, the latter term meaning defined
on all of A.

Two atlases on a set A are strongly compatible when a set is r.e.
(resp. rec.) for one atlas iff it is r.e. (resp. rec.) for the other and a
function is p.r. for one atlas iff it is p.r. for the other.

A function is compact iff each patch’s inverse image under the function
may be covered by finitely many patches. An %-B-p.r. compact function is
called an U-B-morphism, (This differs slightly from the terminology in
Vudkovié [7]. He requires morphisms to be total.) The composite of p.r.
maps is not necessarily p.r., but the composite of morphisms is a
morphism. Still, the inverse map of a 1-1 morphism is not necessarily a
morphism. However, if we define an embedding to be a 1-1 morphism
whose inverse is a morphism, then the set of embeddings is closed under
composition and taking inverses. Occasionally, ‘‘embedding’’ will be used
to mean a not necessarily 1-1 morphism such that the direct image of each
patch is bounded, i.e., covered by finitely many patches. When this
alternative meaning of ‘‘embedding’’ is intended, it will be explicitly
specified. If f: (A, ) — (A, W) and g: (B, B)) — (B,,B,) are embed-
dings, so is

fIXg: <A1 x Bl, ml x%]_) - <A2 X Bz, leX%z).

If B, C are two subsets of A, B 7 C means that f is an embedding such
that Bis contained in dom(f), the domain of f, and f(B) = C. If there exists
f such that B i C, then we say B ~ C. Since the embeddings from A into A
contain the identity map and are closed under composition and taking
inverses, ~ is an equivalence relation. The equivalence classes are called
recursive equivalence types (RET’s).

Two subsets of A, C and D, are sepavable iff there exist two A-r.e.
sets, E, and E,, such that C C E,, D C E,, and E, N E, = $. This is denoted
c|p.

Card(S) represents the cardinality of the set S, ord(S) its ordinal
number. We write &, for card(N), w for ord(N). A map & from the power set
of A, P(A), into P(A) is numerical iff card(S) = card(T) < implies that
card(®(S)) = card(®(T)) < . & is a combinatorial operator iff it is numeri-

cal and it has a pseudo-inverse & * (which maps U &(S) into the collection
sC

of finite subsets of A) such that x € &(S)<> & '(x) C S. Two combinatorial
operators, &, and &,, are equivalent iff card($.(S)) = card(®,(S)) for all S.
A dispersive operator is one that is numerical, maps non-identical sets to
disjoint sets, and maps infinite sets to the empty set, . The combinatorial
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operators are in 1-1 correspondence with the dispersive operators, via
&(S) = U W(T), ¥(S) = &(S) - U &(T). If & is a combinatorial operator,
TCS TCS

#)= Uamy = U am).
TCS TCS
T finite

A convention: the word classical will be used to refer to notions in
standard recursive theory on N whose analogues on manifolds we will be
considering. One classical concept we will be using is that of an isol. An
RET [B] on N is an isol iff B contains no infinite r.e. subset (also iff
[B] +[C]=[B] +[P]=>[C] = [D] for all C, D C N.) This last formulation is
that of quasi-finiteness of [B] in the groupoid of RET’s on N. If [B] is an
isol, B is said to be isolated. Another classical concept is that of limiting
recursivity. A function f: N — N is limiting vec. iff there exists rec. g
such that f(x) = lim,g(x,n) for all x (lim,g(x,n) = & if there exists M such
that » 2 M implies g(¥,7n) = &, lim,g(x,n) undefined otherwise). Gold|[4]
has shown that f is limiting rec. iff f is p.r. relative to K, the r.e. but not
rec. set {x|x € dom(¢,)}, where ¢, is the xth p.r. function under the standard
enumeration.

To dovetail is to perform Turing machine computations simultaneously.
For example, perform the first step in evaluating f(0). Then perform the
first two steps in each of the evaluations of f(0) and f(1). Then perform the
first three steps towards f(0), f(1), and f(2), etc. This example shows the
computations of £(0), f(1), f(2), . . . being dovetailed.

The set of constructive ordinals, denoted CO, is enumerated by a which
has domain denoted D,. (We make an exception for a of our convention that
enumerations have domain = all of N.) If 8 = a(k), then B + 1 = a(2%), and if
v is a Gbdel number for f such that f(0), f(1), . . . is an increasing sequence
of ordinals with limit y, then a(3:5") =y. All elements of D, are of the
form 2 i %,%x=1or 3.5 for some y, where 2 (T) x=x,2 kil x = 224" The

p.r. function ! is defined on all numbers of the form 2 Z x,x=1or 3- 5” for
some y, by V(2 ! x) = &.

B = set theoretic complement of the set B
B - C = set theoretic difference of B and C
Xg = characteristic function of B. Xg(x) = 1ifx€eB, 0 if x ¢ B.
fog = composite of functions f and g
f|B = restriction of f to B
x ~y = proper difference. x ~y=x -y ifx 2y, 0ifx = y.
*=and
“=or
/x,\ = for all x¥

Y = there exists x
dx = Y

uy(. . .) = the smallest natural number y such that (. . .).
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Section I: Finitary IRM’s In this section it is shown that addition of
RET’s may be defined if the manifold is a finitary IRM. The finitary IRM’s
are shown to be equivalent to IRM’s with disjoint patches, and a manifold
structure on N? is defined and discussed.

Theorem 1.1 Let (A, M) be a finitary IRM which is stvongly genuine

(meaning that for all p, in P, APo - ) A, is an infinite set. Note that since
p#by
A

—a union-of finitely

the IRM is finitary, A,,o - pQK,AP =4, -AWIA%#AP = AP’o

p#Pp
many Ap’s.) Then theve exist two (injectiv(;) embeddings f,, f,: (A, %) —
(A, W) such that dom(f1) = A = dom(fy) and range(f,) N range(f;) = P.

Proof: Let y be the ordinal number of the set %. (By the axiom of choice,
A can be well-ordered.) Identify the index set P with the initial segment of
ordinals [0,y). We will inductively construct maps f“* and 72 for each
B<y. Let (4® u") be the submanifold of (4, A) consisting of sy,s Ag with the

corresponding as’s. The f "B will be embeddings: (AP uPy -Qr=(A‘3, APy with
domain A? and disjoint ranges, these embeddings satisfying the ordering
property that f W f“? tor 6 = B and the two manifold properties:

(A) Each patch of A? is mapped by f*? into the finite union of patches of A"
which non-trivially intersect the given patch,

and

(B) For every x in A%, there exists 5 such that A; C A° and x, f*%(x), f>%(x)
are all in A;.

Inductive Construction

I. B=0. Then let f"%a(n) = ap(2n), f>%ap(n)) = ay(2% + 1). Since q, is
bijective, this construction is well-defined, and f"°, f*° have disjoint
ranges. These maps are certainly embeddings, and the ordering and
manifold properties hold trivially.

II. Assume inductively that the f “P have been constructed for all p < B. Let
A=U A, Take xe A% If xe A, set fP(x) = % ~(x) (wheref""= Uf""’).
p<B . . p<pg
So it remains to define f“# on Ag - A. This set is infinite by the strong

genuineness. Furthermore, S = a,}l(Aﬁ -A) =N - U agl(Ap). Since the
p<p

manifold is an IRM, each a;'(4,) is recursive, and since the manifold is
finitary, U @3'(4,) can be written as a finite union of certain az'(4p). So
p<B

agl(AB - A) = N—a finite union of recursive sets, hence is recursive. Let
&1, & have domain S and map S into S such that g,, g, are 1-1 p.r. with
disjoint ranges. For x in Az - A, set the values of the f*f(x) as
a5(g;(@;'(x))), i = 1, 2. We now verify the properties of the f*5,

Injective: 1f fP(x,) = f*#(x,), one of three cases may hold: (I) x;, x, € 4,
(I1) %, € A, x5 € AP - A (and the symmetric case), (I) x;, x,€ A® - A. In case
(1), F*P(x;) = f"~(»;). Since by induction the function f"*is 1-1, x, = x,. In
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case (I), f“P(x)) = f *(x)) €A, but fP(x,)eA® - A, so f"P(x,) can never
equal f"%(x,). In case (I), f"P(x;) = as(g:(e3'(x;))). Since @z and g, are
injective, this implies that x, = x,. Thus, in all cases where f A(x,) =
FU(x,), %, = %,, SO it is true that f*® is 1-1. Likewise for f>P,

By considering cases, it similarly follows that for any x,, x,, f LB(x,) #
f*B(x,), i.e., the vanges ave disjoint. And by induction and the fact that f ilB
restricted to A equals f* S Y “P for any p = B. So, it remains to verify
(A) and (B) and to show that the f”?are embeddings.

Take x ¢ AP, Either xe A or x¢ Ag - A. In the former case, there exists
p with A, C A C AP such that x, f*P(x) = f*~(x) € A, by induction. In the
latter case, by construction we have that f*f(x)e Ag - 4, so x, f*P(x) € Ap.
So (B) is satisfied. But now, if xeAg, either xe Ag - /1, which implies that
F“P(x) € Ag, or else xe Ag N A. In that case, by (B) there exists p such that
x, f7?(x) € Ap. Since xe A, A,N A+ ®. So in either case, f*#(x) e a patch
of A® which intersects Ag. For the other patches, this property holds by
induction. So the f*® satisfy (A).

Now (A) implies that the (f*?)™" ave compact. Furthermore, consider
(F*#) 7" 4p). If xe (f*#)""(4,), then F*P(x) e Ap. But by (B), there exists p'
such that x, f*#(x)e Ay. Thus x€A, where A, N Ap# @ (since the inter-
section contains f*?(x)). So we have ( fi"s)'l(Ap) C U A, a finite union
of patches, thus the f “B are compact. AprNAp+¢

Hence, everything has been proved except that the f “8 are A-U-p.r.,
i.e., for all ordered pairs {p;, ps) in P x P, the function ;' *# a,, has r.e.
domain and is p.r. for ¢ = 1, 2. Since by induction the f**are A-U-p.r., we
need only check the behavior of f*# with respect to ordered pairs in P x P
of the form (B, p) or {p, B).

() (8, p), p#B. In this case, we have oz '((f"F)™"(4y)) = a5 '((f**)7"(4y)) =
27 (Ap N (f77)7HA,). But, az'(Ap N (f**)7HA) = a5  apr ' (Ap N

ApiNAg#d

p'#p

(f**)""(A4)). Inductively, 2, (Ap N (F**)7}(4,)) is anr.e. subset of N. But,

agap is a p.r. function on N. Thus agl(Ap,ﬁ(fi")'l(Ap)) is r.e., and

3" ((fP)™(4)), being a finite union of such sets, is also r.e. Furthermore,

;' P ag when restricted to az'(A, N (F"%)7'(4,)) equals ap'f*Pay, ay'ag

which equals (a3'f"#ay)o(a;'ag), the composite of two p.r. functions,

hence p.r. Then a;lf"'ﬁaﬁ, being a finite union of these p.r. functions, is

p.r., as desired.

(I) (o, B, p #B. In this case note that f*P4, =inof"", , where in is the
inclusion: A — AP, Inductively, the f i~ are morphisms, and, in addition, in
is a morphism. Hence, the ino f** are p.r. and thus the s '(ino fi'AIA,p) are
p.r. with r.e. domains a;'(ino f**)™'(45). Since f*Pla,= (inofi")lAp, this
implies that a3'f*fa, is p.r. with r.e. domain (a;'(f*#)™")(4p), as desired.

() (8, B). a5 f“Pag = tU where ¢ = aélfi'ﬂaﬁfwﬁ-l(,g,&_ﬁ) and £, =
aélfz,ﬁaﬁlagl(,‘,ﬁpg), First, note that t is simply the p.r. map (with rec.
domain) g;. Also, £ = a3' oino f*~oin"'o@. Not only is in a morphism,



6 LEON W. HARKLEROAD

but so is in', so that # is a composite of morphisms, hence p.r. Thus the
overall a;'f*F a5 is p.r., as desired.

So the functions f “# are shown to be A-A-p.r., completing the proof of
the theorem.

Theorem 1.2 Same as previous theovem, except we vemove the hypothesis
of a strongly genuine manifold.

Proof: The same inductive structure as in the previous theorem is used.
Modifications must be made to allow for Ag - U Ap to be (possibly) finite.
P#B

To this end, we associate with each B a number c(B). Initially, all c(B) are
set equal to 0.

1. Comnstruction of f 4o There exist at most finitely many p # 0 such that
ApN Ay, #®. Thus there are at most finitely many p such that A, - 4, is
finite and nonempty. If no such p exist, construct the f %9 as in the previous
theorem. If such p exist, let them be p,, . .. p,. Since each Api -4, is
finite, each A,,N A, is infinite. Thus for each i= 1, , k, there exists a
set S;, S; C Ap, N Ao, such that card(S;) = 2 x card (Ap - Ao) and such that the
sets S, o Sk are pairwise disjoint. Let the set T be defined to be

;‘(Ao - U1 S,~>. Then T = N—a finite set, so T is infinite rec. Hence there
i

exist g, and g, mapping N into T such that dom(g:) = N = dom(g), range(g:) N
range(g,) = ©, and the g; 1-1 rec. Set the value of f*°(x) to be a,(g;(ag (x))).
Setc(p;)=1,i=1, ..., k.

II. Assume f*” constructed for all p<PB. Ifxe /i, setfi’ﬁ(x) = fh(x).
Case A. c(B) = 1. Then inductively there exists p < 8 such that A, - U A‘

is finite and such that (range(f'’") U range(f*'*)) NS = @ where S C A,; n A,

has cardinality 2 x card (AB -U AF). Thus define f“? on Az - A such that
psp

FiB(Ag- A) C S, the functions f**are 1-1, andf”B(Aﬁ -A) NP4, - A) = 0.

In this case, the f”? are now defined on all A°.

Case B. c(B) =0. Then A; - A is infinite with recursive image under aj'.
There are at most finitely many p such that p > 8, c(p) = 0, and A4, - AP is
finite. If no such p exist, use the construction of the previous theorem. If
such a p exists, c(p) = 0 implies A, - A is infinite, thus so is (45N 4,) - A
Let py, . . ., pp be all such p. As before, there exist S, . . ., S;, pairwise
disjoint sets such that S; C (45N Ap) - 4, card(S;) = 2 x card(Ap - A%,

T, defined to be ag (AB A- U S; ), is infinite rec., so let g, &, be 1-1 p.r.

with domain aﬂ Y(Ag - A) and disjoint ranges C T. Set f’ ’B(x) = ag(gi(ag'(x)))
for xe Ag- A, and set c(p,) =1, i=1,... k In this case, the f"# are
defined on all A®’. The f*f have propertles as in the previous theorem and
yield the desired fi, fz. Q.E.D.

By this last theorem, any two RET’s [B] and [C] have separable
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representatives, fi(B) and f,(C), where by the RET [B] we mean the set of
all D such that there exists an embedding f with B C dom(f) and f(B) = D
Now addition of RET’s may be defined—the sum of two RET’s is the RET of
the union of separable representatives of the two given RET’s. As in the
classical case, addition of RET’s is well-defined and satisfies the usual
properties of commutativity, associativity, etc. To obtain the separating
embeddings which allow addition of RET’s, the assumption of a finitary IRM
was made. These properties assumed for the manifold figured prominently
in the construction, and it is not clear that separating embeddings exist for
even simple manifolds that violate one of the assumed properties. In
particular, if A has two patches A, and A, such that a[l(Az) and o 1(Al) are
r.e. but not rec., the existence of separating embeddings for A is open. On
the other hand, the requirement of finitary IRM is somewhat strict. Using
another inductive proof, we characterize the finitary IRM’s.

Definition 1.3: Two atlases U and B on a set A are matched iff they are
strongly compatible and for every REM (M, M), f is an M - A morphism
(resp. A - M morphism)<>f is an M - B (resp. B - M) morphism.

Theorem 1.4 Let (A, U) be a finitary IRM. Then theve exists B, an atlas
for A, such that (1) W and B ave matched, (2) p, # p, implies that B, N By,=
@, and (3) By is 1-1 for each p. (Thus, in particular, (A, ®B) is also a
finitary IRM )

Proof: We prove the result here for the case where (4, A) is strongly

genuine. A modification as before will handle the general case. Set 3, = a

For an ordinal p > 0, define B, as follows: a,‘,‘(AP g Ag) is an infinite
<p

rec. set, hence the range of an injective rec. function g,. Let By = a0g,.

As the composite of two injective functions, 8y is 1-1. Since Bpy= A, - As,
8<1P
each patch of B is disjoint from all the others. So we have properties

(2) and (3) satisfied. We also have that UA5 = UBS and that B, C A,.
<p <

Given p, there exist at most finitely many 6 such that AsNA,# ®, so there

are at most finitely many 6 such that BsN A4, # ?. L1kew1se there are at

most finitely many & such that B, N A; # @ for a given p.

Let C be A-r.e. Then for each p, @,'(C) is r.e., so B;'(C) = g;,' (2 '(C))
is r.e. Hence C is B-r.e. Conversely, let C be B-r. e Then

@, '(C) = ap'(C N Ap) = a;‘(c N (BBOEJP#(BB N Ap))>
= U gcn@nan= U g6
BBF‘IAP## B&”“‘p*d’
= a finite union of r.e. sets, hence r.e. So C is U-r.e. iff C is B-r.e.
Similarly, fis ¥ - M (resp. M - A) p.r. iff fis B - M (resp. M - B) p.r.

Let f be an YU - M morphism. Then each f~'(M,) is covered by finitely
many A,. But each A, is covered by finitely many Bs. Since f is also 8 - M
p.r., f is a B - M morphism. Likewise, if f is a B - M morphism, fis an
9 - M morphism. Let f be an M - A morphism. Then each f~'(B,) C f~'(4,)
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is covered by finitely many M,, and f is an 9 - 8 morphism. Conversely,
if f is an M - B morphism,
-1 -1 -1
A,) = U @4ns > c U B
e =r(, Y @ m) et
a finite union of sets, each of which can be covered by a finite number of
M;. So again f is an 3 - W morphism, and the proof is completed.

As previously mentioned, in this paper we restrict our considerations
to finitary IRM’s. In view of the above theorem, we hereafter assume that
the finitary IRM has an atlas whose patches are pairwise disjoint. In
Vuékovié [1974] is proved the fact that any IRM with finitely many patches
is strongly compatible with an indexing. Since the morphisms under the
two structures coincide, a finite-patch IRM is, in fact, matched with an
indexing. A finitary IRM with a countably infinite number of patches is, by
the construction in the previous theorem, matched with an atlas consisting
of a countably infinite number of disjoint patches. By renaming the points,
this is nothing more than the manifold (N°, %) with a,(n) = (m,n). Thus
(N?, %) merits a closer look. First of all, as Dekker and Myhill pointed out,
all infinite r.e. subsets of N belong to the same RET. However, infinite r.e.
subsets of (N?, %) belong to four different RET’s:

(1) Infinite r.e. sets contained in finitely many patches,
(2) Infinite r.e. sets C contained in infinitely many patches:

(a) Each C N A, finite,
(b) C N A, infinite for at least one, but finitely many p,
(c) C N A, infinite for infinitely many p.

A much more significant difference between N and (N® ¥) is that for
(N? ), Theorem 23 in Dekker and Myhill [3] fails. This theorem, crucial
in showing that the RET’s on N are partially ordered, states that for each
D, there exists B such that [C] + [D] = [C] iff [C] = [B], where [X] z (Y] iff
there exists Z such that [X] = [Y] + [Z]. This theorem fails in (N, %) when
D = {(0,0)}, for if C, = {(m, 0)|m e N} and C, = {0, #) |n € N}, then [C,] + [D] =
[ci] and [C,] + [D] = [C.). If Theorem 23 held, then there would exist B
such that [C,], [C.] 2 [B] and [B] +[D] = [B]. But [C.], [C:] 2[B] implies
that B is a finite set, which implies that [B] + [D] # [B].

Section II: Isols In this section the usual characterizations of isolated
sets are seen to remain equivalent in any finitary IRM {4, A). Further-
more, a set satisfies these characterizations iff all of its pullbacks are
isolated and only finitely many are nonempty. The collection of RET’s of
subsets of A with only finitely many nonempty pullbacks is additively
isomorphic to the collection of RET’s on N. A weaker form of isolation is
also noted.

Proposition 2.1 For B C A, let P(B) mean that B contains no W-r.e. subset
C such that card(C) 2 R,, and let Q(B) mean that BN Apy=9 for all but
finitely many p and a;'(B) is isolated (i.e., containing no infinite r.e.
subset) for all p. Then P(B)<>Q(B).
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Proof: <= Assume ~ P(B). Then let C be as in the definition of P(B).

Case 1. C NA,is infinite for some p. Then C A-r.e. implies that a,'(C) is
an infinite r.e. set, so ~Q(B).

Case 1I. C N A, is finite for every p. Then, since card(C) 2 R,, C N A, must
be nonempty for infinitely many p, so again ~Q(B).

=> Assume ~Q(B). Then either:

Case 1. BN A,+ ¢ for infinitely many p. Then there exists {c;};, such that
if i#j, ciedAp, and cj €Ay, then p, #p,. Letting C = {¢;};°, shows that
~ P(B).

Case 11. There exists p such that a;l(B) is not isolated, hence it contains an
infinite r.e. subset S. Then a,(S) shows that ~ P(B).

Proposition 2.2 For B C A, let R(B) mean that theve exists no f such that f
is an embedding on A, B C dom(f), f(B) € B, and f has the property that
{f™(%6) 1ot is an r.e. set for all x,. Then P(B)<>IR(B).

Proof: <= Assume ~P(B). Let C be as in the definition of P(B).

Case 1. C N A, is infinite for some p. @,'(C) is an infinite r.e. subset of N,
so contains an infinite rec. subset S. Let S = range(g), g a total rec.
function. Set flay(g(n))) = ay(g(n + 1)), otherwise f(x) = x. The function f
shows that ~ R(B).

CaseII. CNA, is finite for all p. Then CNA,+ @ for infinitely many p
and, as in the previous Proposition, there exists {ci}:fl C C with the
property described there. Let f(c;) = ¢;41, f(x) = x otherwise. This f shows
that ~ R (B).

=> Assume ~R(B). Let f be as in the definition of R(B). Let x,¢ B - f(B).
By the standard reasoning, {f"(x,)}, is infinite. By assumption on f, that
set is r.e. So ~ P(B).

Definition 2.3: B is vegularly isolated (r.i., for short) iff P(B) (iff Q(B))
(iff R(B)).

Definition 2.4: B is strongly isolated (s.i.) iff there exists no embedding f
mapping A into A such that B C dom(f) and f(B) C B.

Since r.i. iff R(B), s.i. implies r.i.
Definition 2.5: B is weakly isolated (w.i.) iff each a,'(B) is isolated.
Since r.i. iff Q(B), r.i. implies w.i.

W.i. and r.i. do not coincide, for consider N® with its usual atlas. If
B = {(n, 1)},2,, then a;'(B) = {1} for each p, so B is w.i. But since B inter-
sects infinitely many patches, B is not r.i. Note that a set B is w.i. iff any
A-r.e. subset of B must be -finite.

Proposition 2.6 Let [1] be the RET of any (and hence all) one-element
subsets of A. Then B s.i.=>[B] # [B] + [1].
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Proof: Assume [B] = [B] + [1]. Then B% CU{x), where C & B, f, g
embeddings with B C dom(g), C U{%o} C dom(f), % ¢ C. Thus fog is an
embedding, B C dom(fog), (fog)(B) C B. Furthermore, f(x,) ¢ (fog)(B), so
(fog)(B) C B. Hence fog shows that B is not s.i.

Proposition 2.7 [B] # [B] +[1]=B r.i.

Proof: Let B be not r.i. Then ~ P(B). The constructions used in showing
that P(B) iff R(B) yield that [B] = [B - {x,}] for some x,€ B. Then [B] +[1] =
[B - {x,}] + (1] =[B].

Proposition 2.8 B r.i.=>B s.i.

Proof: Assume B is not s.i.

Case 1. BN A,# @ for infinitely many p. Then ~Q(B), so B not r.i.

Case 1I. BNA,=@ for all but finitely many p. Consider the manifold
(A", %", where A' =Bﬁy ;sAP’ and ¥ is given by the a, with BN A, # 9.
£

This is a finite atlas,mso there exists an indexing a such that {a} and
{ap| BN A, # @} are matched. Now B not s.i. implies that there exists an
embedding f such that B C dom(f) and f(B) C B. By restricting f if
necessary, we may assume that dom(f) C A'. We have f embedding =
fu-A-p.r.=> f W -A'-p.r. = (by matchedness) f p.r. on the enumerated set
A' (i.e., f a-a-p.r.). By the classical result, the enumerated set B contains
an infinite r.e. subset. By matchedness, B contains an infinite %’'-r.e.
subset, thus B contains an infinite %-r.e. subset, so ~ P(B), i.e., B not r.i.

Q.E.D.

Theorem 2.9 Br.i.<>[B] #[B] +[1]<>Bs.i.
Proof: The three previous propositions.

In light of this, we call B isolated iff it satisfies any (hence all) of
these equivalent properties.

Notice that a set B is contained in a finite union of patches iff it
non-trivially intersects only finitely many patches. Also note that since
members of the same RET are related by embeddings (in particular,
compact maps), if [B] =[C] and B intersects (non-trivially) only finitely
many patches, then so does C. Let CL = {[B]IB is contained in a finite
union of patches of W}, (Notice that the dependence on the manifold is
suppressed in the notation CL.) If [B]eCL, then B is contained in a
submanifold of (A, ) whose set of patches is finite, each patch, of course,
indexed by the same map as it was indexed by in (4, A). We call such a
submanifold a finite-patch submanifold. This submanifold structure is
matched with an indexing a. Set ¢([B]) = [a”*(B)]. Thus ¢ maps CL into the
collection of RET’s on N.

Theorem 2.10 ¢ is well-defined, i.e., independent of representative B and
independent of choice of indexing a wmatched with some finite-patch
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submanifold of A which contains B. Fuvthermovre, ¢ is bijective and an
additive homomovphism.

Before proving this, we note an immediate
Corollary 2.11 [B], [c]ecL, [B] =([c], [c]=[B]=[B]=[C].

Proof of Corollary: [B] =[C], so[C] =[B] +[D]. Note that [D] also belongs
to CL. Hence ¢([C]) = ¢([B]) + ¢([D]), so ¢([B]) = ¢((C]). Likewise, ¢([C]) =
@([B]). Since = is a partial ordering on the RET’s on N, ¢([B]) = ¢([C]).
Since ¢ is 1-1, [B] = [C]. Q.E.D.

Proof of Theorem 2.10: For convenience, we introduce the following
definition: @ is an enumeration appropriate for B ([BleCL) iff a is an
indexing matched with a finite-patch submanifold of (4, %) which contains B.

Well-defined: Let [B,] = [B,], a,, @, enumerations appropriate for B,, B,
respectively. [B;] = [B,], so there exists an embedding f with B, C dom ()
and f(B,) = B,. We may restrict f so that B, C dom(f) C a;(N), B, C
range (f) C a,(N). By matchedness, f is p.r. on the enumerated sets, hence
g=a;'ofouq, is p.r. in the classical sense. But g is also a 1-1 map, and
2(ai'(By) = a;'(B,). Thus [a;'(By)] = [@;'(B,)], and thus ¢ is well-defined.

Homomorphism: Let [B,], [B,]e CL. We may assume B,, B, separable, so
[B)] +[B:] = [B, U B,]. Let a be an enumeration appropriate for B, U B,.
Then a is also appropriate for B, and for B,. @([B, UB,)) = [a™(B, UB,)] =
[a™'(B) Ua™'(B,)]. Since B,, B, are separable and a is appropriate, a”'(B,),
a~(B,) are separable, so it follows that

[a™'(B,) Ua™'(B,)] = [a”'(B)] + [a™(B,)] = ([B.)) + ¢([B.)).
Thus ¢ is a homomorphism.

Injective: Let [B,], [B.]e CL such that ¢([B,]) = ¢([B.]), and let a,, a, be
enumerations appropriate for B,, B,. So there exists g, a 1-1 p.r.
function, dom(g), range (g) C N with g satisfying g(a;'(B,)) = a; '(B,). Hence
(azga;")B, = B,. The composite map a,ga;" is 1-1 p.r. on the enumerated
sets, so by matchedness, it is an embedding on (4, A) thus [B,] = [B,].
This proves that ¢ is 1-1.

Surjective: Let [B] be a RET on N. Let B* be the image in A of B under
any of the enumerations comprising the atlas. Then ¢([B*]) = [B], so ¢ is
onto, and the theorem is proved.

In view of the above theorem, we refer to elements of CL as classical
types. Note that if B is isolated, then [B] is classical. Furthermore, B is
isolated iff P(B) iff ¢([B]) is an isol. Also, if B and C are separable, so
are o '(B) and a”'(C), these two sets being representatives for ¢([B]) and
¢([C)), respectively, a being an enumeration appropriate for BU C.

Definition 2.12: A RET is an isol iff it is quasi-finite in the groupoid of
RET’s on the manifold.

Theorem 2.13 B is isolated <>(B) is an isol.
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Proof: <= Assume B is not isolated. Then [B]=[B] +[1]. So[B]+[®]=
[B] +[1]. 1f [B] were an isol, then [@] would equal [1]. Hence [B] is not
an isol.

=> Let B be isolated and [B] +[C'] = [B] + [D']. Thus there exist B,, B,,
C, DCA with Bj~B~B, C'~C, D'~D, B,|C, B,|D, and (B, U 6)7
(B, UD) for some f. Because B, and B, are contained in finitely many
patches and f is an embedding, B, Uf '(B,) is contained in finitely many
patches. Let S = the finite union of these patches. Notice that Sand A - S
are rec. subsets of A and, of course, disjoint. Let a, be appropriate for S,
a, for f(S). Via a;'fa,, we see that ¢([B, U (C NS)]) = ¢(B. U (DNAS)D,
thus @([B,)) + o([C N S]) = ¢([B:]) + o([D N f(5)]), i.e., ¢(B]) +e(CNnS])=
o([B)) + o([D N £(S)]). As remarked above, ¢([B]) is an isol among RET’s
on N, so ¢([C nS]) = ¢([D N £(S)] . So there exists g, an embedding satisfy-
ing CNS C dom(g) and g(CNS)=Dn f(S). By restricting g, we may
assume dom(g) C S. Let f* be defined to equal g on dom(g) C S and to equal
f on dom(f) N (A -S). Then f* shows that [C]=[D]. So[C']=[C]=[D]=
[D'], hence [B] is an isol. Q.E.D.
One last remark on weak isolation:
Definition 2.14: A map f is patch-preserving iff f(A;) C Ap for all p,
patchwise bounded iff U f "(Ap) is bounded for all p, and pointwise bounded
n
iff {f"(xo)} is bounded for all x,. (A set is bounded iff it is contained in a
finite union of patches.)
Patch-preserving = patchwise bounded => pointwise bounded, with the

converse implications false.
These four statements are equivalent:
(1) B is weakly isolated,
(2) there exists no pointwise bounded embedding

f: A — A with B C dom(f) and f(B) C B,
(3) there exists no patchwise bounded embedding

f:A — A with B C dom(f) and f(B) C B,
(4) there exists no patch-preserving embedding

f: A — A with B C dom(f) and f(B) C B.

Section III: Multiplication In this section we briefly note that multiplica-
tion of RET’s may be defined and will possess the usual properties.

We have seen that the atlas of a finitary IRM is matched with an atlas
which is injective and has disjoint patches. Thus the recursive structure is
that of the set | x N, for | some index set, where the enumerations are
a;(n) =(i,n), neN, iel. If | is finite, then the atlas is matched with an
indexing, i.e., its recursive structure is that of N. Hence we only need to
define multiplication of RET’s when | is infinite. In this case, we take
advantage of the fact that (card(l))? = card(l), in other words, there exists a
bijection between | x | and |I.
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Our first step towards defining multiplication of RET’s on A, which is
identified with | x N, is the definition of a map Z: (4 xA) — A by

Z(a;,(ny), @;,(n,)) = @oriy,i,)(0(ny, 1)),

where o is the standard effective bijection between N x N and N, and o* is
any bijection between | x | and |. T is thus a bijection. I claim that it is, in
fact, an embedding (using the direct product atlas on A x A with enumera-
tions y(;,,i,).) T maps each patch A4; x A;, of A x A onto exactly one patch,
namely, Ay«;,, i,), of A, and vice versa for =~'. Furthermore, the map that
Z induces between the pullbacks of these two patches, a;r‘-(,-h,-z)z Y(iyig)s 18
just the identity. Hence T is an embedding, as claimed.

Now we are in a position to define multiplication of sets—BC =
Z(Bx C), B, C C A. To define multiplication of RET’s, we must show that
if [By] = [B,] and [C,] = [C.], then [B,C,] = [B,C,]. Let[B]=[B.]byf, [C\] =
[C.] by g. Then [B,C,] = [B,C.] by Z(fx g) T~'. Thus if we define [B][C] to
be [BC], multiplication of RET’s is well-defined.

Let E;: (AxA)xA— Ax(AxA) be given by E,({a,b), c) ={a,(b,c))
for a, b, ¢ in A. Then the embedding E, = To(id x T)o E,0(Z" ' x id)o =™}
shows that multiplication of RET’s is associative (where id is the identity
map). The embedding E; given by Es(ao*G,j).(o(m,n))) = Aox(j,5) (0(n, m))
allows us to see that multiplication of RET’s is also commutative.
Distributivity holds just as in the classical case. So do Theorems 68-70 in
Dekker and Myhill [3], which say that [1] is the unique multiplicative
identity for the RET’s, that a product of RET’s is [@] iff one of the RET’s
is [@], and that multiplying a RET by the RET containing all sets of
cardinality » yields the same RET as adding the original RET to itself »
times. Also we have that if there exists D with [B][D] = [C] and C # @, then
[c] z[B]. Note also that if [B], [C]eCL, so is [BC], and ¢([BC]) =
o([B)@([C]). If we define exponentiation as in Dekker and Myhill—[B]°=[1],
[B]*** = [B]"[B]—then their Theorems 79 (usual laws of exponents) and 80
(1 snsm and [B] = [C] implies that [B] = [B]" = [B]" and [B]" = [C]") hold
for RET’s on finitary IRM’s.

Section IV: Combinatorial Functions and Quasivecuvsivity In this sec-
tion the notion of recursive combinatorial operator is extended to a general
finitary IRM (A, ¥). To accomplish this, a manifold structure is given to
the collection of finite subsets of A. By considering functions induced by
combinatorial operators, we are led to two subrecursive classes of
functions: the partial quasirecursive (pqr) functions and the incremental
par- functions. Minimalization of pqr functions leads us to define another
class of functions, which is then shown to be the class of limiting recursive
functions.

We continue to assume that (4, A) is a finitary IRM with an atlas whose
patches are, in fact, disjoint. In order to consider recursive combinatorial
operators and functions, we define FIN to be the collection of finite subsets
of A. (Notice that the dependence of FIN on A is suppressed in the
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notation.) FIN may be provided with a manifold structure in the following
way:

As before, we identify P, the index set of W, with an appropriate initial
segment of the ordinals. The index set for the atlas on FIN is @*, the
collection of all finite nonempty subsets of the initial segment P, i.e.,

= {QIQ Cc P and 0< card(Q) <®,}. Let Qe @*. Then there exist y, <

. <, such that @ = {y,, . . ., 'yk} The patch By of (FIN, 8) will be the

collectlon of all finite subsets of U Ay;. We enumerate the elements of
UA,, by ag, where aQ(mk+n— 1)—ay(m) for m 20, 1=n<k We then

enumerate By by the usual method: Bg(n) = {ag(m,), . . ., ag(m;)}, where
my < ...<my suchthatn = 2" + ...+ 2"} Bo(0) = . Notice that each B¢
is injective. If @, and @, are disjoint, then so are Bg, and By, except for
Bg,(0) = @ = Bp,(0). If @, and @, are not disjoint, Bg N By, = Bg,ng,. In the
latter case, let @, = {y,, . . ., v}, @2 ={p1, . . -, 01}, the elements of @, and
@, listed in increasing order. Let @ N @z ={yi;, .- vy = {0j1s - - s o s
k'=1", and again the elements of each set listed in increasing order. Then

Bas(Be) = rlsem e e, = fou falV | V.

e m<...<msan=2"+
3y ®sy

+ 2™ A t/=\1(u\—/1 m, = i,(mod k))]} is a rec. set. Furthermore, Bg, Bo, has

Bg,(Bg,) as domain, maps 0 to 0, and maps 2" + . .. + 2" (m, <. ..<my)
to 2" + . ..+ 2" where if ms = xk + 14, - 1, ns = %1 + j, - 1. So each Bg, Bo,
is p.r. and (FIN, B) is an IRM. The atlas will be finitary iff P is a finite set
(also iff @* is a finite set).

Fix Qe @*. For each Se By, {T|T C S} C Bg. The enumeration on By
is just like the standard enumeration of finite subsets of N, so many
classical results carry over to By. For example, if S = Bg(n), n=2" +

c+ 2", my <. ..<ms, then T CS iff T =g(0) or T = By(n*) for some

n* of the form 27! + ...+ 2™ for some subset {m;, ..., m;j} of
{m,, . .., ms} with m;; <...<m;j. Thus given n, from n may be effec-
tively obtained all n* such that Bp(n*) C Bo(n). Simi%arly, fromn,, ..., n

may be effectively obtained the Bg-index of U= Ul Bo(n;), since if n; =
L!' '3 =
1225”, spn<...<sp;, U= BQ(;? 2""), m, < ...< mj, where there exists

n such that x = m, iff there exist ¢ and [ such that x = s;;. Likewise, there
exists rec. f such that Bo(f(m,n)) = Bo(m) - Bg(n). Also, if TC Nisr.e.,

U Bo(n) is an A-bounded A-r.e. subset of A, where ‘‘U-bounded’’ means
n€T
‘“‘contained in a finite union of patches of W.’” Notice furthermore that
S C FIN is B-bounded iff TUs T is U-bounded. In addition, because of the

€

construction of 8, SC FIN is B-bounded iff S is contained in some one By.

Proposition 4.1 Let & be a combinatorial operator on A (i.e., ® is numeri-
cal and possesses a pseudo-inverse—see the Preliminaries) such that &|gy
is a B-B-rec. map and such that each &Bg) is B-bounded. Then ¥, &s
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associated dispersive opervator (\IJ(S) = &(S) - U tI>(T)) is B-B-rec., and
each U(Bg) is B-bounded.

Proof: We must show that for each @,, @,¢ @*, the restriction ¥|By, is
(classically) p.r. as a map from the enumerated set By to the enumerated
set Bg,. By assumption, &(Bg,) is B-bounded, hence contained in one Bg,
as remarked above. Since & is B-B-rec., ®|py, is rec. as a map between
the enumerated sets By and Bg. Thus, for any #, we can effectively find
the m such that Br(m) = \I/(BQl(n)) as in the classical case (by effectively
finding the BQl-indices of all T C BQl(”)’ then finding Bg-indices of the

images of those T under &, then obtaining the Br-index of U = U o &7),
ﬂCﬂan

and finally getting the Bg-index of &(Bg,(n)) - U, i.e., the Br-index of
¥(Bo,(n))). In other words, there exists rec. f such that Br(f (%)) = ¥(Bg,(n)).
Then, since (FIN, B) is an IRM, there exists an effective test if ¥(Bg,(n)) €
Bg, and, if so, an effective transition from W¥(Bg,(n))’s index in Bg to its
index in Bg,. More precisely, letting ¥(8g,(n)) = Br(f (7)), By 2(BR) is a rec.
set and the domain of g such that if f(n)e Bg;(Br), then Bo,(g(f(n))) =
Br(f(n)) = W(Bg,(n)). So Voo, = Bg,0(gof) for p.r. gof, proving that ¥
properly restricted is a p.r. map from Bg, to Bg,, as desired. Further,

if ®(By) is B-bounded, then &(T) is U-bounded. Since ¥(S) C &(S)
TeBQ

for all S, U WT) C U &(T), so U ¥(T) is U-bounded, implying that
€BQ
¥(Bg) is B- bounded, provmg the rest of the proposition.

Proposition 4.2 Let ¥ be a dispersive opevator which is 8-B-rec. If & is
the combinatorial opevator associated with ¥ (®(S) = U ¥(T)), then &|;\
TCS

is also B-B-rec. Furthermore, if each W(By) is B-bounded, so is each
&(By).

Proof: Again, let @,, @, be given. As remarked above, from 7 can be
effectively determined the finite set of By -indices of all T C By ().
<I>(BQ1(”)) € By, iff ¥(T') € By, for all T C S, so since there is an effective test
of whether the ¥(T), T C Bg,(n), are in By, there is an effective test of
whether ®(Bg,(n)) € Bg,. More precisely, if ¥g, o, is the p.r. map such that
¥ Bg, = Bg, ¥g,.10, and Dy, o, its domain, &(Bg,(n))e By, iff /\ meDg,, 0,

meT
where T is the set of all m such that 8o (m) C Bg,(n). Furthermore, m =

B2,(8(Bg,(n)) can be effectively obtained from n for those n such that
é(BQl(n)) € By, for from the Bg -indices of the T C BQl(n) may be effectively
obtained the By,-indices of the ¥(T) for those T and from these the

TCBg, (n) W(T) = &(Bg,(n)). So |, is B-B-rec. If each ¥(By)
is B-bounded, then U ¥(S) is W-bounded. But U W(S) = U 3(S), so

SeB

SL‘J; &(S) is Y-bounded, 1mp1y1ng that &(B) is 8- bounded for all Q
€Bg

Definition 4.3: & is a C-operator iff it is a combinatorial operator such
that (a) its restriction to FIN is 8-8-rec., and (b) $(By) is bounded for all Q.

By,-index of
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¥ is a D-operator iff it is a dispersive operator satisfying (a) and (b).

In the two preceding propositions, we have just established a 1-1
correspondence between the C-operators and the D-operators. Notice that
& a C-operator, ¥ a D-operator, S W-bounded =>&(S) and ¥(S) are both
A-bounded.

Proposition 4.4 If & is a C-operator, then &', its pseudo-inverse, is
A-B-rec.

Proof: Let pe P and Qe @* be given. Consider &'|4,. Since & is a
C-operator, its associated ¥ is a D-operator, so there exists a patch By
such that By contains ‘I/(BQ). Because \IJ[BQ is rec. between the enumerated
sets By and Bg, we can effectively generate the Bg-indices of all w(S),
Se Bg. Each of those Br-indices can be effectively tested to see whether or
not a given xe A, is in ¥(S). Since xe ¥(S) iff & '(x) = S, we thus have an
effective way of obtaining the Bg-index of & '(x) if ™ '(x) happens to be in
Bgy. More precisely, if R = {p,, ..., p} with p = p,(pFR=8""(4,) N
Bg =®) and ¥y g is the rec. map such that g ¥y g = ¥Bg, then ™' (ay(n)) =
Bo(f(n)), where fin) = py[32(z =kn +w - 1 and the 2*-place in the binary
expansion of Vo, r(v) is filled by a 1)]. Since f is p.r., &' is A-B-rec., as
desired.

Remembering that the patches of % are indexed by an initial segment of
the ordinals, we now identify A with an initial segment of the ordinals by
identifying ay(k) with wy + 2. This correspondence is well-defined since the
patches of A are disjoint. This device of regarding A as an initial segment
of ordinals will be used in generalizing combinatorial functions. Before
doing so, however, we relate this ‘‘ordinal manifold’’ concept toCO, the set
of constructive ordinals with recursive structure induced by the enumera-
tion @ as outlined in the Preliminaries. Let w, = ww| be the first noncon-
structive ordinal. CO may be given a manifold structure by taking [0, w!) as
the index set for ¥ and using the enumerations ay(n) = wy + n. There are
only countably many a-r.e. subsets of CO and a-a-p.r. functions: CO —CO,
but uncountably many %-r.e. subsets and A-A-p.r. functions. So U-r.e.
does not imply a-r.e., nor does A-WY-p.r. imply a-a-p.r. Assume B is
a-r.e. and let pe[0,w]) be given. Let y be any number such that a(3.5) =
a,(0). B is a-r.e., so {k|a(k) e B} = Do N T for some r.e. T. But then a,'(B) =
{nl2 1 3.5%¢ T}, so a;'(B) is r.e. for all p. Let F: CO— CO be a-a-p.r.
Thus there exists p.r. f, Dy C dom(f) with aof =Foa. Letp, ke[0,w!) be
given, and let y and z be such that a,(0) = a(3- 5"), ax(0) = a(3+5%). Then for
n in dom(a;'Fa,), a;'(F(ap()) = + (F(2 ! 3-5)), so each a;'F o has a p.r.
extension.

We now return to the general situation of any finitary IRM identified
with an initial segment of the ordinals as indicated above. For any p in 4,

let L, be the initial segment of A, [0,p]. Three ways of using combinatorial
operators to define functions suggest themselves:

I. fis a combinatorial function: N — N iff f(n) = card(®(L,)).
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II. fis a combinatorial function: A — N iff f(y) = card(® (7).
III. fis a combinatorial function: A — A iff f(y) = ord(é(py)).

We examine each of these generalizations in turn.

I. Let f be of the form f(#) = card(®(L,)). Then f(n) = card.(TgL \If(T)) =
n41 n
T;L“in card(¥(1)) = 2 (k)(n+1), where c(k) = card(¥(T)) for any T of

cardinality Z%. Further, if & is a C-operator, f is rec. Thus, if f is a
combinatorial function under approach I, f is of the form go%, where g is a:
classical combinatorial function and k(n) =7 + 1; if f is induced by a
C-operator, g is rec. The function % is a ‘‘correction function’’ needed
because L,, in our scheme, has cardinality » + 1. The need for % could be
avoided by letting L, = [1,%], but this would negate the influence on f of all
¥(T) with 0 (= ap(0)) e T. So we leave the definitions as they are and obtain
functions of the form go % as described above.

Assume that there exists an embedding with domain FIN §N and range
n+1

contained in A. Call it G. Under this assumption, let f(r) = Z) c(®) (n + 1)

We wish to construct & which induces f and to show that if ¢ is rec., & may
be chosen to be a C-operator. Let ¥(T) = {G(T,n)|n < F(T)}, where F(T) =
c(card(T)). Then cord(¥(T)) = F(T) = c(card(7T)). In particular, ¥ is numeri-
cal. Furthermore, ¥ is dispersive since G is injective. Thus f is induced
by &, where &(S) = TLCJS ¥(T). If ¢ is rec., F is B-l-rec., where | ={a},

a(n) = n. Along with the fact that G is an embedding, this implies that ¥ is
a D-operator, and hence & is a C-operator. Thus, if we can construct G,
we have that f is of the form go#%, g a classical combinatorial function,
h(r) =n + 1, iff f is a combinatorial function under approach I. Further,
f=goh, g a classical rec. combinatorial function iff f is induced by a
C-operator.

Let P be the initial segment of ordinals which serves as index set for
A. Let G* be an injection from the collection of finite subsets of P to P
(P is assumed infinite. If P is finite, the existence of the desired G is
trivial). Now a typical Ue FIN is of the form U = {apl(mu), ey O (magy),
ap, (M), . . ., @ (msky)}, where p, < ... <psand m;; <...<m for alli.
Define G(U, n) to be

aG“({pl, ,Ps})(z 3mn 5l 7”‘12 111
L2k, + 1))™2 . (L(2k, + 2))%- .

) Zkf)) ’

where L(k) = the kth odd prime. Set G(®,7n) = ap(2"). I claim that G is as
desired. First of all, G(U, n) completely encodes U and %, so G is injective.
Each G™'(4,) is covered by the patch B;«- -15) X N, and each G(Bg x N) is
covered by the finite union A, U e AG‘(T), so G and G™' are compact.

Given pe P, Qe Q*, = (Bg x id)” 1(G'I(Al,,)) is a rec. subset of (Bg x
id)” 1(B(G,).l(p)xN) Say (G*) Yp) = {p}=1 For each x¢ T, the corresponding
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m;; and n such that (Bg x id)(%) = ({ay,(mij)}, ) may be recovered and
2".3™1. . the A,-index of G((Bg x id)(¥)), computed, so G is an em-
bedding as claimed.

II. Let f(y) = card (&~ '(y)). It is obvious that this generalization stands a
good chance of not being very promising. First of all, the composite of two
such functions will not necessarily be total. Secondly, the use of &',
rather than &, allows too much leeway. However, we plunge ahead, anyway.
We start by characterizing the combinatorial functions. Let f be a
combinatorial function in this generalized sense. Suppose m € range(f) - {0}.
So there exists y with m = card(®7'(7)). If x€ ¥(S), where card(S) =
card (7 '(y)) = m, then & '(x) =S, so f(x) = m. Since ye ¥(& '(y)), card(S) =
card (&7'(y)) implies that card(¥(S)) = card (¥(®7'(y))) > 0. Hence card(A)
equals card({x|x € ¥(S) for some S with card(S) = m}). Thus we have proved
that f a combinatorial function implies that card(f '(m)) = card(4) for
all m € rangel(f) - {0}. Further, card(f7'(0)) = card({y|®'(y) =@} =
card (¥(D)) < .

Conversely, let f: A — N be such that card(f ~'()) = card(A) for all m
in rangel(f) - {0} and card(f7}(0)) <. Set W(P)=7"'(0), ¥(S) =@ if 0<
card (S) ¢ range(f). If me range(f) - {0}, card({S|card(S) = m}) = card(4) =
card (f"'(m)). Let g, map {Slcard(S) = m} 1-1 onto f~'(m). Set ¥(S) =
{gcard(s)(S)}. (Equivalently, if f(x) = 0, set & '(x) = @. Otherwise, set
&'(x) = g/(x)(x).) ¥ is a dispersive operator with ™' the pseudo-inverse of
its associated combinatorial operator.

Thus combinatorial functions under approach II are those for which
f~'(m) is either empty or of maximum cardinality for all non-zero m and
is finite when m = 0. This obviously provides little restriction on a
function. If &' is % -B-rec. and bounded (a function is bounded iff it maps
each bounded subset of the domain to a bounded subset of the range), then f
is A-i-rec. The converse does not hold: on N?, set f(anm(n)) = m + 1. This
f is certainly f-l-rec. and is combinatorial by the above characterization.
But if f is induced by &, then neither ® nor & ' nor ¥ is bounded. However,
on the other hand, the U-W-recursivity of & ' in itself is not sufficient to
insure that f is W-l-rec. For let f* be any total nonrec. function which
maps N onto N - {O} Set f(an(n)) = f*(n). Then f is not A-l-rec., but is
combinatorial. I claim there exists a & inducing f with & and ¥ B8-8-rec.
and &' Y-B-rec. We take ¥(®) = . By a back-and-forth construction, we
may establish a 1-1 correspondence (denoted by 1) between A and {S € FIN/
S C A and card(S) > 0} satisfying (1) if an(n) 1S, card (S) = f*(n), (2) if n, # n,

and S; 41 au(n,), S, 41 a,(n,), then there exist A,y, . . ., Ay, Ay, - .+, Ay, Such
5%

o ty o
il [ ' [
that S, C }JA“"’ S, C ,/l=J1 A,j, and (LJ1 Au-> N (,/91 Az].) =p0. We set & ‘(am(n)) =

S, where S 1 a,(n) under the above correspondence. ¥(S) = {as(n)}. &7 is
A-B-rec, since each (<I>’1)'1(BQ/) N A, is finite. Also, each \II'I(BQ;I) N By, is
finite and ¥ is B-B-rec. Likewise, & is also B-B-rec.

III. f: A — A is combinatorial iff there exists & such that f(y) = ord‘(é(Lx)).
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This is the most fruitful of the three definitions and the one that we will use
for the rest of this paper. Note that if f is combinatorial in this sense, f
maps A, (=N) to itself, and the restriction of f to A, is of the form
f(m) = g(m + 1), g a classical combinatorial function. If we augment 4, to
Af =A,U{-1} and set f(-1) = ord(&(®)), then f(m) = g(m + 1) holds for all
m 2 -1. Furthermore, if & is a C-operator, g is rec. The function f
induced by a C-operator is called a C-function for short. Contrary to the
classical state of affairs, a C-function is not necessarily A-U-rec.
However, the C-functions may be characterized in terms of notions related
to recursivity, as we shall see.

Let us deal with the manifold N? with the usual atlas structure—a,(n) =
(m,ny. Under this structure we identify N? with ordinals of the form
w-m +n. For the rest of this paper we restrict our consideration to
submanifolds A of N* which are of the form N? itself or A, U . ..U A4, for
some k. If larger manifolds are considered, the situation becomes more
messy than worthwhile.

Proposition 4.5 Let & be a C-operator. Then (1) &L,) is U-r.e. for each
veA, and (2) for each m, there exists an effective algovithm such that
given input n, that algovithm yields the elements of ®(L,min).

Proof: (1) Let y =wm +n = a,(n). Then all subsets of Ly are contained in
AyU...UA,, hence all finite subsets of Ly belong to one Bg, (@, =
{0, . . ., m}), hence all their images under & lie in one By,. Let &g, g, be
the rec. map By, ®Bo,, and let S,={T|Te FIN and 7 C Ly}. Then Bg,(S,)
{O}U[k,v v m1<...<mSAk=2ml+...+2msAA [(m,

sSk+L myyeeeymsSk i=

A

m-1
m(mod m + 1)am; - m = n(m + 1))V'\/(: m; = j(mod m + 1)] }, S0 B'Qi(S,,) is
j=

rec. Hence V, defined to be @Ql,Qz(Béi(S,,)) is r.e., so &(L)) = U ﬁQz(n)
is A-r.e. neV

(2) For each m, there exist @, and @, as in (1). From 7 we can effectively

generate the Bp -indices of all the finite subsets of L., hence we can

effectively generate the By,-indices of their images under ¢. But from the

Bg,-index of a finite set, we can effectively recover the identities of its

elements. More precisely, Béi(s,,) is r.e. uniformly in n [see (1)], and

Ly ) = {ayi(z)l 'V, ®,0,(») has a 1 in the 2¢7%** place of its
yEBQy (Sn)

binary expansion |, where @, = {y,, . . ., .}

Theorem A (4.8) Let A = {0, 1} x N with atlas {ay, a,}, @;(n) = (i, n), which is
identified with w-i + n. Then theve exists a C-operator on A whose induced
Sfunction is not -A-rec.

Proof: Let K be the standard r.e., but not rec., set. Let ¢g: K — {2n|ne N}
be 1-1, onto, and p.r. Let E, = {q(k)}if ke K, @ if k¢ K. Let O = {20(k,n) +
1|ne N}, where o is the usual rec. bijection between N and N. Let
Sp = Op U Ep.
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Claim: There exists p, a rec. permutation on N, such that p(o({k} x N)) = S;.

Construction of p: Since q is p.r., by Kleene’s normal-form theorem 3z€¢ N
and rec. v, ¢ such that g(x) = v(uy(#(z, x,y) = 1)). Set

q(m) if t(z,m,n) = 1 and {2, m, k) #+ 1 forall k< n
plo(m,n)) = {20(m,n) + 1if {z,k,n) + 1 for all & = m
20(m,n - 1) + 1 otherwise.

Keeping in mind that ¢/ may be characterized in terms of outputs from
Turing machines, we give an allernate construction of a p satisfying the
claim. For any given x € N, compute p(x) as follows:

(1) Find m, n such that x = o(m, ).

(2) Start generating outputs 20(m,j) +1,j=0,1,2, ...

(3) Dovetail in with (2) an attempt to evaluate g(m), yielding g() as output
if and when this g(m) computation terminates.

(4) Set p(x) to equal the nth output to result from (2) and (3).

As A =Ao UAl, FIN = Cl UCgUCSUC4, where

C,={TeFIN|T C A},

C.={TeFIN|p + T C A},

Cs; ={T e FIN|card(T N Ap) 2 1 and card(T N A4,) > 1},
Cy= {Te FIN|card(T N Ag) 2 1 and card(T N A,) = 1}.

Note that each C; is a B-rec. subset of FIN. For a given Te¢ FIN, let ¢ be
its B4 ua,-index. [Note the abuse of notation. The proper terminology
should be By, ,;-index. However, the notation used more clearly indicates
what is happening in the construction.]

If TeC;, set ¥(T) = {ay(4t +4)}, i =1, 2, 3. We must still define ¥(T)
for Tin C,. If TeC,, we can effectively determine from its B4 u4,-index,
¢, the numbers m, n such that T ={a;(m)}u Ba,(n). More precisely, if

t=2" g 42", m <...<myg, then m = ‘2 , where m; is the one
and only odd m;, and
m;_ my,
n=2M2 4 a2 g hE L oms,

Let HT) = p(o(m,n)). So f is B-1-p.r. Define v: N— FIN by v(2k + 1) =
{ay(4(2% + 1))}, v(2k) = {a,(k)}. Clearly, v is | -B-p.r., hence vofis B B-p.r.
For T e C,, set ¥(T) = v({T)).

Since ¥ is ¥-B-p.r. on each of the B-rec. sets C,, C,, Cg, and C,, ¥ is
B-B-rec. ¥ is numerical, mapping every set to a one-element set. Since ¥
is injective, it maps different sets to different one-element sets, in
particular, to disjoint sets, hence V¥ is also dispersive. Since B is a finite
atlas, ¥ is, in fact, a D-operator, so its associated ¢ is a C-operator.

Thus it remains to show that the induced function f is not W-A-rec.
First, note that &(4,) is an infinite subset of A,, hence is of order type w.
So for xe N, f(a,(%)) = ai(card (W(x))), where W(x) is defined as {y|ye A, and
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{y} = W(T) for some T C Ly (»}. Let F(x)= card(W(x)). For x 21, F(x) -
F(x - 1) = card({yly€eA, and {p} = ¥(T) for some T C Lq(x such that
a,(x) € T}). But such y’s are in 1-1 correspondence with the #’s such that
H{a(x)} U Ba,(n)) is even, viz., the n’s such that p(o(x,n)) is even. But the
number of such #’s is simply Xk(x), i.e., F(x) - F(x - 1) = Xk(x) for x = 1.
If f were A-A-rec., then, since fla,(x)) = a,(F(x)), F would also be rec.
Thus the function G(x) = F(x) - F(x =~ 1) would be rec., hence Xx would be
rec., implying that K is a rec. set. Since K is nof rec., it follows that f is
not A-U-rec., and Theorem A (4.6) is proved.

If the f induced by a C-operator is not necessarily A-U-rec., what
properties does it have? Let us consider again the general situation where
A = N? or a submanifold of N? of the form 4, U. . .U A;. We have already
observed that f maps A, into A4, and that fla,(m)) = ao(g(m + 1)) for some
rec. combinatorial function g. We also know that f is non-decreasing on the
ordinals since y, Sy, =>Ly, C Ly, => ®(Ly,) C &(Ly,)=> f(y,) = ord(&(Ly,)) =
ord(®(Ly,)) = f(yz). Since & is bounded, for each n there exists s (dependent
on #n) such that A4, U...UA4,) CA,U...UA;, hence flw-n + k) <w(s + 2)
for all k. In conjunction with f nondecreasing, this implies that for each =,
there exist integers g and M such that f(a,(k)) e A; for all 2 2 M. Letv be
the largest integer such that &(La,m)) NA, is infinite, and let A¥ =A4,,, U
.. UAG If x 2M + 1 and flaux - 1)) = ag(y), then fla,(x)) = a,(y +g(x)),
where g(x) = card({z€ A*| there exists Te FIN such that ze ¥(T) and
a,(x)e T C L%(x)}). The previous theorem constructed a & whose associated
g was Xk, so g will not, in general, be p.r. However, & a C-operator implies
that g will be nearly computable in some sense. For, givenx 2 M + 1, we
may do the following:

(A) Set ¢, j=0. Yield 0 as output.

(B) Test T = Bagu...usfi) to see if a,(x)e T C Lo, x. If so, go to (C). If not,
go to (F).

(C) Find c, the Ba,u...uas-index of ¥(T).

(D) Determine how many elements of B4,u...uA{c) are in A*, If 0, go to (F).
If nonzero, go to (E).

(E) Increment j by the nonzero number from (D). Give the new value of j
as output.

(F) Increment ¢ by 1 and go to (B).

For each x, stage (E) is reached only finitely many times. Further-
more, the last output yielded by this procedure is g(x). Note that this
algorithm has an infinite loop. In general, there is no effective way to tell
which output is the last so that the loop may be terminated—if there were, g
would be p.r.

In light of the above, the following definition is introduced:

Definition 4.7: A function f: N — N is partial quasirecursive (pgr, for short)
iff there exists an algorithm with the following properties:

(1) If x¢ dom(f), then no output results from the algorithm when x is input.
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(2) If xe dom(f), then, if x is input, a finite sequence of outputs will result
(however, the algorithm will not necessarily terminate after the last
output). The last output in this sequence will be f(x).

[This notion may be phrased in terms of Turing machines. Davis’ definition
of a simple Turing machine is a consistent set of quadruples of the form
q:S;Seq1, or q;S;Rq;, or q;S;Lq;, i, 121, j, k20. We expand the alphabet
with a distinguished character S_, and add an internal configuration g,.
Allowable machines for pqgr functions will consist of quadruples of the above
form with 4,721, j, 2 2 -1 plus quadruples of the form ¢;S;qoq: subject to
the restriction that for each input x, quadruples of the final type are used
only finitely many times during the computation, and, in addition, such a
quadruple is used only when there are exactly two S_,’s on the tape. This
machine is to be thought of as providing output when one of these ¢,S;qq:
occur, the output being the number of 1’s on the tape between the two S_,’s.]

For example, consider the following algorithm: For any input x,
immediately output 0. Then start testing if xe K. If and when it is
determined that xe K, give output 1 and then terminate. This procedure
shows that X is a total pqr (also called quasivecursive or gr) function.

Minimalization: By use of the standard codings of N”by N, we may speak
of pgr functions on N”. Let f be a pgr function on N”, m > 1. Let g(x) be the
smallest y such that f(x,y) = 0 (xe N"°%).

Algorithm: Given x, start the procedure by dovetailing pqr' computations
for f(x,0), flx,1), .... Construct two lists—an output list (which will
contain either (a) nothing or (b) the most recent output for g) and a wait
list. If and when during the dovetail a 0 results as output for some f(x, &),
give output 2 and put 2 on the output list. Thereafter, if during the dovetail
some f(x,m) yields 0, either:

(a) put m in the wait list if m > k&,
or

(b) give m as output for g, put m in the output list, remove %k from the
output list, and put % on the wait list—these steps to be taken if m < k.

(In both (a) and (b), % is the number in the output list. If nothing is in the
output list at the time, output » and add it to the output list.)

If for some m in one of the two lists, a nonzero output for f(x,m)
results, either:

(a) remove m from the wait list if it is there,
or

(b) if m is in the output list, remove it from the output list, replacing it
with the smallest 2 in the wait list, give that 2 as output for g, and remove
k from the wait list. If the wait list is empty when m is removed from the
output list, dovetail in with this whole procedure a routine which outputs
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0, 1,2, ... leaving the output list empty. As soon as something is added
to the output list, stop these outputs of 0, 1, 2, . . . towards g.

What will the above algorithm do? If anx for which g(x) is defined is
given as input, the algorithm will yield a finite sequence of outputs, the last
member of which is g(¥). However, if x ¢ dom(g), the algorithm will either
yield no output or an infinite sequence of outputs. A function with such an
algorithm is called semipartialquasivecursive (spqr).

Composition: Let g, hy, hyy . . ., hm be |pgr. Given x, start the algorithms
for the %;’s with input x. If and when all the %; yield outputs, use the latest
output from each as input for g. Start computing the outputs for g, mean-
while continuing the algorithms for the %;’s. I any %; yields a new output,
restart the procedure for g with this new value as input in the 7th argument,
and continue. This procedure will be a pgr algorithm for the composite f,
Ax) =g(h(x), . . ., ha(x)). Similarly, the composite of spqr functions is spqr.

Other Remavks: P.r. implies pgr, and pqr implies spqr. The function Xg
shows that .pgr does not imply p.r. By the usual argument counting the
number of Turing machines of the type described above, there are only
countably many pqr functions. Likewise, using the appropriate modification
of the Turing machine definition, there are only countably many spqr
functions. Other characterizations of pgr and spqr functions will appear
later.

A subclass of pgr functions is now introduced: The pqgr function g
induced by a C-operator algorithmized as described above has a special
property—each output is the previous output incremented by a certain
amount. Thus the sequence of outputs is increasing.

Definition 4.8: A pqgr function f is incrvemental iff there exists a pqr-type
algorithm for f such that for each x in dom( f), the finite sequence of outputs
is an increasing sequence.

For our next result, we use a helpful device. For a pqr-algorithm, D,
is defined to be the set of all x such that the output sequence for input x has
o0

n outputs. D} is defined to be U D;. The D; are not, in general, r.e. For
i1=n

example, in the above algorithm for Xk, D, = K. However, the D} are r.e.
For, given x in N, start the pgr-algorithm with input x. If and when n
outputs result, set #(x) = 0, then terminate. Thus we have a p.r. function,
h, whose domain is D}. Hence D% is r.e.

Result 4.9 There is a qr function which is not incvemental.

Proof: Let Sbe a simple set, i.e., Sis r.e. and its complement in N, §, is
immune, immune meaning isolated and infinite. Consider Xy, where T = S.
X7 is gr (for any input x, immediately give output 1, then test x for
membership in S. If and when x is determined to belong to S, give output 0).
Now assume that X is incremental. Consider an algorithm which satisfies
the definition of incremental for the function. This algorithm must yield 0
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as the final output whenever the input is in S. If Xy is incremental there
must be no output before that 0. Hence S C D,. This implies that D, C S,
i.e.,, D¥CT. Df r.e.,, T immune imply that Df is finite. Thus the
algorithm yields only one output for almost every input. By altering the
algorithm to terminate after the first output, we see that Xr restricted to
N—the finite set D¥ is p.r. Hence Xt is rec. Since Xt is known not to be
rec., the assumption of incremental must be false. Q.E.D.

Let f be a function with an incremental pgr algorithm. The algorithm
may be modified to ‘‘remember’’ the most recent output x. Then, when the
next output x + 2 is about to be given, the modified algorithm will instead
yield x +1, ¥ + 2, . . ., ¥ + k (in that order) as outputs.' Further, for any
input, if the first output of the original algorithm is 2z, the modified
algorithm will yield 0, 1, . . ., z as the first z + 1 outputs. For example, if,
in evaluating f(0), the original algorithm gives as outputs the numbers
3, 5, 8, the modified algorithm will first yield the four outputs 0, 1, 2, 3 in
place of the original output 3, then yield 4, 5 in place of 5, and then 6, 7, 8
in place of 8. This modified algorithm is still an incremental pqgr algorithm
for f, but it has the property that for each input z in dom(f), the outputs
towards f(#) form an initial segment of N. Such an algorithm is called a
canonical algorithm for the incremental pqgr function f.

Proposition 4.10 A function f is incremental pqr iff {(x, y)| f(x) exists and
vy s flx)}is r.e.

Proof: =>Let f be incremental pgr. Apply a canonical pgr algorithm for f
to inputs 0, 1, 2, . . . simultaneously by dovetailing. If an output y is about
to result from input x, yield the ordered pair ¢x,y) as output instead.? This
procedure then yields all {x,y) such that f(x) exists and ¥ = f(x). So if f is
incremental pqr, {(x, )| f(x) exists and y = f(x)} is r.e.

< For f: N— N such that S={(x,9)|f(x) exists and y = f(x)} is r.e.,
consider the following algorithm: for input x, test if (x,0) e S. If so, yield 0
as output and continue by testing if (¥, 1)eS. If {(x,1) is in S, yield 1 as
output and test {(x,2) for membership in S, etc. The sequence of outputs
from input x € dom(f) will have as last member the largest % such that
(x,R) €S, i.e., flx). If flx) does not exist, this procedure will yield no
output. Thus f is pqr. Further, f is incremental since for each x in dom(f)
this algorithm yields outputs 0, 1, ..., flx) in that order. (Thus, this
procedure is, in fact, a canonical incremental pqgr algorithm for f.)

1. This heuristic statement means ‘“‘at each output stage, if x + k were to be given as output, yield
outputs x + 1,...,x + k in its place.” In terms of quadruples, this may be accomplished by
replacing each ¢;S;q0q: with a ;5;S;qm (gm not a state of the original machine) and inserting
a subroutine (1) whose first quadruple begins ¢,,S;, (2) whose second quadruple ends g;, and
(3) which will yield x + 1, . . ., x + k as outputs and then restore the Turing machine tape to its
pre-subroutine condition.

2. Cf. footnote 1.
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Let f be any pgr function and ALG a pgr algorithm for f. The reasoning
of the preceding paragraphs may be used to show that S = {(x, y) | f(x) exists
and ALG yields vy as one of the outputs towards f(x)} is r.e. But then dom (f)
(= the projection of S onto its first coordinate) is r.e. Thus if fis pqr, fis
spqr  with r.e. domain. Conversely, let f be spgr with r.e. domain S.
Consider the following procedure: given input x, test if xe S. If and when it
is determined that x ¢ S, apply the spgr algorithm for f to x. This procedure
is a pgr algorithm for f, as no output will result if x¢S = dom(f), while if
xe dom(f), a sequence of outputs whose last member is f(x) will result.
Hence:

(4.11) fis par iff f is spqr with r.e. domain.

The pgr functions may also be characterized in terms of the incre-
mental pgr functions. Let g be pgr. For each n, we generate the sequences
of outputs for two functions, g, and g, as follows: start the pgr algorithm
for g. As soon as an output results, give this output for the first output of
g1, and give 0 for the first output of g,. Thereafter, if the algorithm for g
yields output v (and the previous output for g was x, the most recent output
for g, was y, and the most recent output for g, was z), then yield y + v - x
as output for g, in case v > x, yield z + x - v as output for g, in case v < x.
So if the sequence of outputs for g(n) is %, %1, . . ., %, the final output for

gi(n) will be x, + 2 (xj - x;-,), and the final output for g(n) will be
x‘i>‘x]'—1

-z (%j - xj-1). Along with 0 = 2 (%; - x,-_l), this implies that g,(n) -
x]'<xj-1 i x]'=x,‘-1

2(n) = x5 + El (%j - xj-1) = x¢ = g(n) for all # in dom(f). If g(#) is undefined,
i=

then g, and g, will yield no outputs when given input z. So g = g, - g, all
three functions having the same domain. Thus if g is pqr, & =g, - g, for
two incremental pqr functions g, g£,. Conversely, if g¢t N— N can be
expressed as the difference of two pgr functions, then g is pgr by our
remarks on composition of pgr functions. Hence

(4.12), for g: N— N, g is par iff g =g, - &, wheve g, and g, ave incre-
mental par.

Our quasirecursive notions are similar to concepts developed in
Gold [4] and Putnam [5]. We now characterize spgqr functions in terms of
limiting recursive functions.

Theorem 4.13 A function is spqr iff it is limiting rec.

Proof: < Let f be limiting rec. Then there exists rec. g such that for all
%, limyg(x,n) = f(x). Consider the following procedure: given input x,
compute g(x,0) and yield it as output. Then compute g(x,1). If g(x,1) #
g(x,0), yield g(x,1) as output. Then compute g(x, 2), yielding it as output if
it does not equal g(x, 1), etc. If x¢ dom(f), lim,g(x,n) does not exist, so
there are infinitely many » with f(x, n) # f(x,n - 1). Hence, if x¢ dom(f), the
procedure will yield an infinite sequence of outputs. If xe dom(f), f(x) =
lim,g(x,n), i.e., there exists % such that g(x,k- 1) #g(x,k) =g(x,k+ 1) =
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.. .=f(x). Hence if x€ dom(f), the procedure will yield a finite sequence of
outputs, the last of which is g(x, k) = f(x). So this procedure provides an
spqr algorithm for f.

= Let f be spgr. We may assume that if x¢ dom(f), the algorithm, when
given input x, yields infinitely many outputs. This may be done by altering
the algorithm, if need be, as follows: given input », perform the original
spqr algorithm on %, but also simultaneously yield outputs 0, 1, 2, . . . until
the first output from the original algorithm results. Then discontinue the
0, 1, 2, . .. outputs. But if, under the original algorithm, no output results,
by this new procedure all of N will be output. Next, modify the algorithm
so that whenever output m is about to be yielded, the algorithm instead
yields m + 1, then m.* For example, if the original output sequence for f(0)
were 5, 3, 10, the modified algorithm would yield 6, 5, 4, 3, 11, 10. If the
original output sequence were 0, 1, 2, . . ., the modified algorithm would
yield 1,0, 2, 1, 3, 2, . . ..

The modifications in the preceding paragraph result in an spgr
algorithm, ALG/', such that if x is given as input to ALG’, then (1) xe dom(f)
implies that a finite sequence of outputs, the last of which is f(x), results,
and (2) x¢ dom(f) implies that an infinite sequence which has no limit
results. We now modify ALG' so that at each step of ALG’, if no new
output results from ALG’, the most recent output is output again. As
Putnam wrote in referring to a similar technique, we ‘‘program the
Turing machine so that at any stage y it repeats the last number it put
down, if no new . . . answer is forthcoming at that stage.”” For example, if,
during the computation of f(0), ALG’ yields output 1 and then, after the
application of three quadruples, yields output 5, the modified ALG' will
yield output 1, then repeat output 1 three more times before yielding
output 5. This final modification produces an algorithm ALG such that if x
is given as input to ALG, then (1) xe dom(f) implies that an infinite
sequence of outputs with limit f(x) results, and (2) x ¢ dom(f) implies that an
infinite sequence of outputs without a limit results. Take g(x,n) to be the
nth output to result from applying ALG to input x. Then g is a rec. function
such that f(x) = lim,g(x, n) for all x. In other words, f is limiting rec. Q.E.D.

Section V: C'-functions In this section the C-functions are characterized.
Extension of C-functions to functions on RET’s is also considered.

By techniques we have been using, we will now characterize the
C-functions on (A, A), a submanifold of N® of the form N? itself or
AgU...U A for some s. Again, we identify a,(n) with w m + n, so that, in
particular, A, is identified with N. A} is the augmented 4, U{-1}. If fis a
C-function induced by &, then, as we have remarked in the paragraphs
preceding Proposition 4.5, f maps AF to A, with f(m) = g(m + 1) for some
rec. combinatorial function g. There are basically three types of C-
functions, described in terms of the action of ¥. We now consider and
characterize each type.

3. Cf. footnote 1.
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Case I. ¥(S) = @ if card(S) > 0.

Then, letting y, = card (¥(D)), (A): f is of the form f(x) = ay(y,) for all x.
Conversely, if f defined on A satisfies (A) for some 9y, fis a C-function
induced by &, where &(S) = {a,(1), . . ., a(y,)} for all S.

Case II. ¥(S) = @ if card(S) > 1, but ¥({x}) # @ for xe A.

Let ¥, = card (¥(D)), 2 = card (¥({2o(0)})). Then I claim that (B): (i) f| At
satisfies f(m) = m + 1)z + y, for all m,
(ii) for each k2 > 0, there exists s(k) such that f(4;) C Ay and &, < k=
s(k,) = s(ky). In addition, g(m) defined to be a  f ay(m + 1) - agy f ap(m)
is a rec. function with range contained in {0, 1, . . ., z},
(iii) either: (a) there exists M such that f(A) CA,U...UAy, or (b) for
each n, there exists M > n such that there is no K with

AAy) S {asw(0), asm (1), . . ., asan(K)},
(iv) if flauK)) = flap(K + 1)) =...=wa +b, and f(a,+,(0)) =wa' +d', then
b+zzb'zb.
m+1 1
Proof: (i) For m 20, flap(m)) = kZ)o c(k) (”‘k* 1) = kZ)O c(k) (”‘kj 1) = c(0) +
(m + 1)c(l) =90+ (m + Vz. If m=-1, f(-1) = ord(¥(D)) = yo = (-1 + 1)z + y,.

(i) Aag(m + 1))

ord (®(Lay(m+1)))
Ord(@(Lak(m)) U ‘P({ak(m + 1)})),

so flag(m)) = flap(m + 1)) = flag(m)) + 2. Thus fla(¥)), ¥=10, 1,2, ... are
all in the same A, and g, has range C {0, 1, .. ., 2}. Furthermore, g is
recursive by techniques previously used (let T = ¥({ax(m + 1)}) and use
steps (B) through (E) of the algorithm following Theorem A (4.6). The
implication %, = k,=> s(k,) = s(k,) follows from the fact that f is non-
decreasing.

(iii) Assume (b) of (iii) does not hold. We wish to prove that (a) then
must hold. If (b) is not satisfied, then there exists » such that for all
M > n, there exists Ky with f(Ay) C {asw)(0), . . ., asu(Ey)}. Let ¢ be such
that ®(4,U...UA4,) CA,U...UA, Since

w s + 1) = f(@,41(0)) = ord(®(Ao U . . . UA,) U ‘I’({an+1(0)})),

ws(m+1) = ord(®(Ap U...UA,)). Along with (A4, U...UA,) CA,U...UA,,
this implies that there exists B,y, with card(B,+;) = K,+, + 1 such that
Ay U. .. UApy) CAgU. .. UA, UB,;. Likewise, ®A,U...UA,,) C
AoU...UA;UByy; UBy,,, for some B, with card(By4s) = Kpte + 1, and so

7
on. Thus for all j, there exists a finite set B;." (: U B,,+‘,-) such that
i=1

B(AgU. .. UAp) CAU.. . UA U B;". But this means that f(4) C A, U
...UA,., so (a) holds.
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(iv) Let %, K, a, a’, b, b' be as in the hypothesis of (iv). Let v be the
largest v such that A4,N &Lg,x)) is infinite. Then card (®(Le,k)) N (A-
(Ao U...UA,) =b. For each m 2k, since fla,(m)) equals wa + b,
¥({a(m)}) € AgU...UA, But then &A4,U...UA,) has order type
w a* + b for some a*. In fact, since

wa' + " =f(ep+1(0)) = ord (®(Ao U . . . U A,) U ¥({a,+:(0)}),

a* = a'. Further, wa' + b' = ord(S U ¥({,+,(0)})), where ord(S) =w a’ + b,
implies that b + 2 2 b' 2 b.

Conversely, if f satisfies (B), f is a C-function induced by & whose
associated ¥ satisfies card(¥(D)) = ¥,, card (¥({ao(0)})) = 2, and ¥(S) = @ if
card(S) > 1. The proof for this converse is similar to, but less instructive
than and about as complicated as, the proof of the theorem in Case III.

Case III. There exists d > 1 such that ¥(S) # @ for those S of cardinality d.

In this case, (C): (1) f |a} satisfies f(m) = g(m + 1) where g is induced
by a classical rec. combinatorial operator &* with associated dispersive
operator ¥* such that ¥*(S) # @ for those S of cardinality d, (2) for each
A, C A, there exists A; C A and M such that ¥ = M implies f(a,(x)) € A4, and
gn defined on {M,M + 1, .. .} by gi(x) = a7'f as(x + 1) - a7'f ax(x) is incre-
mental pqgr, (3) f is nondecreasing.

Theorem 5.1 If f satisfies (C), f is a C-function.

Proof: If S C Ay, say S = ay(S*), set ¥(S) = ao(0({0} x ¥*(S%)). &(S) will
equal a,(o({0} x ®*(S*))). Now inductively assume that for £=0, 1, .. .,
m - 1, & and ¥ have been extended to £ (A, U . . . U A,) so that:

(1) @|p(agu...ua, induces fl u...uars
kr
() 84U ) €U (Uaiotfnl <),

(iii) Ax) = wa + b implies that &(L,) N A, is infinite for £ <a and
card (®(L,) N A,) = b,

(iv) @|p(aqu...uap 2nd ¥|p400...u4p are a C-operator and a D-operator,
respectively.

m m=-1
We now extend ¥, & to l’(,.Uo A,:). If Sc Uo Aj;, then ¥(S) has already
i= i=

been defined. So it remains to define ¥(S) for those finite sets intersecting
A,. If such a set S has cardinality other than d, do the following: Let s be
the Bsu...ua,-index of S. Let S* be the subset of N whose index under the
usual enumeration of finite subsets of N is s, and let T = ¥*(S*). Set
T* = o({m} x T). Take ¥(S) C N (= A,) to be &({card (S)} x T*), where &(a(n,),
a(n,)) = a(o(ny, n,)), @ being a rec. bijection from N onto o({m} x N).

[We will use more constructions similar to that in the preceding paragraph
throughout this proof, so some notation will be introduced. If R is an
M-rec. M-bounded set in some manifold (M, M), then there is an |-M-rec.
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bijection from N onto R, say k. The image in R (under %) of o({z} x N) is
called the (2,-) cross-section of R (cross-section will be abbreviated cs).
In the above paragraph, we would abuse notation by identifying S with S*
and would say that we ‘‘pushed ¥*(S) into the (card(S), -) cs of the (m, -) cs
of Ay.”"]

Note that by the above construction, those sets intersecting A, that
have cardinality other than d will contribute nothing to f, as &®(4,) is
already an infinite subset of A,. Likewise, if S intersecting A, has
cardinality d but is not of the form {x}uU {y,, . . ., y4.,} for some xe A4, and
y; in Ay, we push ¥*(S) into the (0, ) cs of the (d,*) cs of thgﬂ (m, -) cs of Ay to

obtain ¥(S). Thus we only need to define ¥(S) for S C Uo Aj of the form
]f=

{x}U{ys, ..., vs.} as above. Such a set we write as [x,y*] for short. We
will now indicate how to define the ¥([x, ¥*]) so as to induce f. To see how
this should be done, we first note that by properties (2) and (3) of (C), we
have:

Slan(0)) =wao + by

flan(1)) =wa, + b

f(am(;)) =wa; + b;
fan(t +1)) =wa, +b,4,

f(am(% +R) =wa, +b,4p

where ¢y =a,=...=4.,<a,; and if @; =a; for i <j =t -1, thend; b,
and finally b, = b,4; S . . ..

‘m-1
We take wa-, + b-, to be the ordinal of <I>( U A). By induction, we

m=1 a_-1 j=0 m=1
have that if b_, = 0, then <1><U A) c U 4, whileits_, #0, @(UOA,) c
-1 = j=0 m=1 J=

m-l
U A; with all <I>< U A> N A; infinite except for <I>( U A,-) NA,.,, which has

i:ardmahty b..

One of two cases must hold: either g, =a-, or g, > a_,.

In case ay=a.,, then b, 2 b_,. Let the collection of [0, y*] be effectively
enumerated by a. Obtain ¥(a(k)) by pushing ¥*(a(k)) into the (0, *) cs of the
(1,) cs of the (d, ) cs of the (m,-) cs of Ay, if k20, - b_,. If B<Dby-b_,,
we take ¥(a(k)) to be

{aa 1(o(m, (0, £)))} U the push of ¥*(a(k)) into the (1,-) cs of the (1, -) cs of

the (d, ) cs of the (m, ") cs of Ay, where ¥*(S) = T*(S) - {the least member
of ¥*(S)}.

In case @, > a.;, then push ¥*(S) for S in the (7, -) cs of the collection of
[0, y*] into the (0,:) cs of the (m,-) cs of A;, i=a-y, ..., @ - 1. This will
insure that wa, = f(@,(0)) <w (a, + 1). (Note: A slight alteration in this



30 LEON W. HARKLEROAD

m=1

step may be necessary to avoid ¥(S) intersecting A,_, N <I>< ,'l=Jo A.i). But

since that set is finite, this can be managed./] Then map the rest of the
[0, ¥*] by a procedure as in Case I to insure that f(a,(0)) = w a, + b,.

To define ¥(S) for S of the form [1,y*], use a similar construction,
pushing into the (2 -) and (3,:) (rather than the (0, -) and (1,:)) cross-
sections of the (1, :) cs of the (d, ) cs of the (m, *) cs of A, when necessary.
Continue until ¥(S) has been defined for all S of the form [z,y*] where
z = t. This technique may not be used to define ¥ on all the [z, y*] since
by - b,-,, in general, will not be a rec. function of z. However, by assump- -
tion, it is a pgr function of z, so we will be able to use the techniques of
Theorem A (4.6) to define ¥ appropriately.

For k zt, set Ex=2-0({k}x{0, 1, ... g.(k)}). Let O be as in
Theorem A (9.6). I claim there is a 1-1 p.r. map defined on o({t, ¢ +
1, . . .} x N) such that p(o({k} x N)) = S = E} U O.

Proof of Claim: (1) For given %, find a, b such that x = o(a, b).
(2) start generating the 2-0(a,j) +1,7=10, 1, . . . as outputs for p.
(3) Dovetail in a canonical incremental pgr algorithm evaluation of g,(a).

For each output z to result from the pqr algorithm, yield 2-o(a, 2) as
output towards p.

(4) Take p(x) to be the bth output towards p that results from (2), (3).

Let B index the collection of finite subsets of N which contain d
elements. Set v(2k + 1) equal to the push of ¥*(3(2k + 1)) into the (2, -) cs of
the (d, ) cs of the (m, ) cs of Ay. Set v(2k) = {a,(o(m, o(1, k)))} U the push of
T*(B(2k)) into the (2,°) cs of the (d,-) cs of the (m,*) cs of A,. As in the
proof of Theorem A (4.6), this construction will now work if we take
¥([%, y*]) to be v(p(o(k - 1, 1)), where i is the By ,...ua,index of [k - 1, y*].
This completes the inductive definition of ¥. Its associated & will induce f,
proving Theorem 5.1.

Summarizing the three Cases I, II, and III, we obtain:
(5.2) fis a C|-function iff it satisfies (A), (B), o7 (C).

Now that the C-functions on A have been characterized, we consider
extending Cl-functions to RET’s. Classically, if f is a rec. combinatorial
function induced by a rec. combinatorial operator ¢, f is extended to fy
defined on RET's by fo([B) = [&(B)]. Now let f be a C-function on (4,9).

Case 1. is finite, so that A = A, U . ..U Agfor some integer %.

Let f, and f, be two Cl-functions (induced by C-operators &, and &,,
respectively) which have the same restriction to Ad =AU {- 1}. Index A
by a, a(n(k + 1) + m) = an(n), 0 =m = k. A and {a} are matched atlases on
A. Consider &} and &F, rec. combinatorial operators on N, given by
®¥(S) = a~'(®;(a(S))). Since Ji|ag = f2|af, ®F and &F are, in fact, equivalent
rec. combinatorial operators and hence yield the same action on RET’s of
N. In other words, &f([B]) = &5([B) for all [B] which are RET’s on N. But



RECURSIVE EQUIVALENCE TYPES 31

then, since [&;(S)] = [a(®F(a(9)))] = ¢~ (2} (2([S]))), & and &, yield the same
action on RET’s of A. Thus the action of a C-operator on the RET’s of A
depends only on the action of its induced function on A, the function f(#) =
g + 1), g rec. combinatorial. Furthermore, this action is exactly the
action on the RET’s of N by a classical combinatorial operator inducing g,
if we identify, via ¢, the RET’s on A with the RET’s on N.

Case II. A= N°.

Consider f defined on A by f(a,(n)) = ap((z + 1)?) and flax(n)) = ,(0) for
B 21. Under the identification of N® with the initial segment [0,w?), this
definition becomes f(x) = (x + 1)® for ¥ < w and f(x¥) = w for ¥ 2w. By our
characterization of C-functions, f is induced by a C-operator. Let & be any
C-operator inducing f. ®(A4,) is contained in Ay, U . ..U A; for some k2 and
has order type w. But then, since &(L,) has order type w for all y = w, all
&(L,) are contained in A, U...UA;. Let T be the collection of all sets of
the form {a,(n,), (1), ay(n,), . ..}, #,, By, My, . . .€ N. All members of T
belong to the same RET of N2 But if S; and S,e 7 and S, # S,, then &(S,) #
&(S;). So since there are uncountably many members of T, there are
uncountably many &(S), Se 7. Index AoU...UA; by a, a(n(k + 1) +m) =
an(n), 0 = m < k. If all the &(S), Se T, belonged to the same RET of N?, say
[So], all the a™*(&(S)) would belong to the same RET of N, ¢([S,]). But there
are uncountably many a”'(&(S)), Se T, whereas each RET of N contains only
countably many members. So not all the &(S), Se T, belong to the same
RET of N?, hence & does not preserve RET’s.

Summarizing, if A has only finitely many patches, extending C-
functions to RET’s by fo([B]) = [#(B)] yields just the classical extensions,
using the 1-1 correspondence ¢. If A = N?, then such an extension would
not be well-defined, as even very simple C-functions may be such that for
any & inducing the C-function, there exist B, and B, such that [B,] = [B,],
but [‘I’(Bl)] Ea [‘i’(Bz)]-
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