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Neat Embeddings, Omitting Types,
and Interpolation: An Overview

Tarek Sayed Ahmed

Abstract We survey various results on the relationship among neat embed-

dings (a notion special to cylindric algebras), complete representations, omitting

types, and amalgamation. A hitherto unpublished application of algebraic logic

to omitting types of first-order logic is given.

1 Introduction

Henkin et al. [15] proves that a cylindric algebra is representable if and only if it

embeds neatly into another cylindric algebra in ω extra dimensions (cf. Theorem 1.2

below for a precise formulation). Such algebras are said to have the neat embed-

ding property. Thus the class of representable cylindric algebras coincides with the

class of algebras having the neat embedding property. In this paper we show that

for a class of representable algebras to have the strong amalgamation property or to

consist exclusively of completely representable algebras, each algebra in this class

should embed neatly into another algebra in ω extra dimensions in a special way.

The algebraic notion of the strong amalgamation property and that of complete rep-

resentations, to be defined below, are the algebraic counterparts of interpolation and

omitting types in the corresponding logics (cf. Pigozzi [35] and Sayed Ahmed [47]).

We start by fixing some needed notation. We follow the more or less standard termi-

nology of the monograph Henkin et al. [14]. In particular, CAβ stands for the class

of cylindric algebras of dimension β and RCAβ stands for the class of representable

CAβs. Csβ stands for the class of cylindric set algebras of dimension β and Wsβ
stands for the class of weak cylindric set algebras of dimension β. Also, it might

be useful to recall that RCAβ is a variety that coincides with the class of subdirect

products of (weak) set algebras of dimension β. The central notion that prevails in
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what follows is that of neat reducts. The notion of neat reducts, which we now recall,

is due to Henkin.

Definition 1.1

1. Let α < β be ordinals and let A ∈ CAβ . Then the neat-α reduct of A, in

symbols N rαA, is the CAα whose domain is the set of all α-dimensional

elements of A defined by

Nrα A = {a ∈ A : cA

i a = a for all i ∈ β r α}.

The operations of N rαA are those of the α-dimensional reduct

RdαA = 〈A,−A, .A , cA

i , dA

i j 〉i, j∈α

of A, restricted to Nrα A. When no confusion is likely, we omit the super-

script A. Nrα A, as easily checked, is closed under the indicated operations

and indeed is a CAα . N rαA is thus a special subreduct of A, that is, a special

subalgebra of a reduct in the universal algebraic sense.

2. Let α < β. Let L ⊆ CAβ . Then Nrα L is the class of all α neat reducts of

algebras in L, that is,

NrαL = {NrαA : A ∈ CAβ }.

For α > 1 not every CAα is representable. We now formulate Henkin’s celebrated

Neat Embedding Theorem which gives a sufficient and necessary condition for rep-

resentability of CAαs. For a class K , we let SK denote the class of all algebras

embeddable into members of K .

Theorem 1.2 (Henkin) For any ordinal α and any A ∈ CAα , the following two

conditions are equivalent:

1. A ∈ RCAα .

2. A ∈ SNrαCAα+ω.

Theorem 1.2 is proved as Theorem 3.2.10 in [15]. Infinity (appearing as ω) mani-

fests itself in (2) above, and it does so essentially in the case when α > 2, in the

sense that if A neatly embeds into an algebra in finitely many extra dimensions, then

it might not be representable, as shown by Monk [30]. Indeed in [30] Monk proves

that the class NrαCAα+k is a proper super class of RCAα , for all k ∈ ω. All ω extra

dimensions are needed for representability; one could not truncate ω to any finite

ordinal. The ω extra dimensions play the role of added constants (or witnesses) in

Henkin’s classical completeness proof. Therefore it is no coincidence that variations

on Theorem 1.2 lead to metalogical results concerning interpolation and omitting

types for the corresponding logic; for such results can be proved by Henkin’s meth-

ods of constructing models out of constants (Chang and Keisler [11]). Indeed, the

main purpose of this article is to show how far variations on the Neat Embedding

Theorem for cylindric algebras can lead as far as the algebraic counterparts of in-

terpolation and omitting types are concerned for the corresponding (algebraizable in

the sense of Blok and Pigozzi [9]) variants of first-order logic.

2 History and Background

In a paper written by Monk in 1991 but published in the Logic Journal of IGPL in

2000 (Monk [31]), Andréka writes the final survey section on the subject, to update

the article. It is clear from Andréka’s section that among the important problems
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that were still open then in algebraic logic are those in Pigozzi’s landmark paper on

amalgamation [35] and two problems, both on neat reducts. All of Pigozzi’s ques-

tions are solved in Madarász and Sayed Ahmed [27]. The two problems on neat

reducts are the consecutive problems 2.11 and 2.12 posed by Henkin, Monk, and

Tarski in [14]. Hirsch, Hodkinson, and Maddux [23] solve problem 2.12. They show

that for 2 < n < ω and k ∈ ω, SNrn CAn+k+1 is a proper subclass of SNrn CAn+k .

Thus the decreasing sequence CAn ⊇ SNrn CAn+1 ⊇ SNrn CAn+2 · · · converg-

ing to RCAn is not only not eventually constant, as proved by Monk [30], but is in

fact strictly decreasing.1 The class NrαCAβ is proved to be closed under products

homomorphic images and ultraproducts in Németi [33]. Problem 2.11 in [14] asks

whether the class NrαCAβ for 1 < α < β is closed under forming subalgebras, for

if it is, it would be a variety. A closely related problem to 2.11 appears as item (v) in

the introduction of [15] among results of Tarski the proofs of which could not be re-

constructed by Henkin and Monk. This problem asks whether generating subreducts

in the sense of [14] are necessarily neat reducts. In more detail, for infinite ordinals

α < β and algebras A ∈ CAα and B ∈ CAβ , if it so happens that A ⊆ NrαB and

A is a generating set for B, does this imply that A would exhaust the set of all α

dimensional elements of B, that is, A = NrαB? This is the case, for example, when

A is locally finite or dimension complemented [14]. But Tarski conjectured in [14]

that this is not always the case. Now one might inquire at this point how are problem

2.11 (that appeared in [14]) and Tarski’s conjecture (that appeared as item (v) in [15])

related? One connection is the following. If Tarski’s conjecture were false, then the

class NrαCAβ for any pair of infinite ordinals α < β would be closed under forming

subalgebras. To see this, let ω ≤ α < β. Let A ∈ CAα and B ∈ CAβ be such that

A ⊆ N rαB . Now if one takes B
′ to be the subalgebra of B generated by (the set)

A, then the algebra A would be a generating subreduct of B
′, thus—remember we

are assuming that Tarski’s conjecture is wrong—A would exhaust the set of all α-

dimensional elements of B, that is, A = N rαB
′. This shows that a subalgebra of a

neat reduct of an algebra B is again a neat reduct of a possibly smaller algebra B
′ but

a neat reduct all the same. It follows thus that for infinite α < β, the class NrαCAβ

is closed under forming subalgebras. But Tarski was right. And indeed, Tarski’s con-

jecture is confirmed in Sayed Ahmed [49]. On the other hand, Németi proves in [33]

that for 1 < α < β, the class NrαCAβ is not closed under forming subalgebras. The

question as to whether the class NrαCAβ for 1 < α < β is perhaps closed under

elementary subalgebras—equivalently by the celebrated Keisler-Shelah ultrapower

theorem whether it is closed under ultraroots—appears as problem 4.4 in the mono-

graph [15]. This is equivalent to asking whether this class is elementary because it is

closed under ultraproducts. In [33], Németi conjectures that for 1 < α < β, the class

NrαCAβ is not closed under elementary subalgebras, hence is not elementary, that

is, cannot be axiomatized by any set of first-order axioms. In Sayed Ahmed [45] and

[43], Németi’s conjecture is confirmed, and a different (interesting model-theoretic)

proof than that presented in [45] is given in [48]. The analogous result concerning

first-order axiomatizability for certain classes that constitute other algebraizations

of first-order logic, like quasi-polyadic algebras and Pinter’s substitution algebras,

is proved in Sayed Ahmed [46] and [40]. The analogue of Tarski’s conjecture for

such algebraizations is investigated in Sayed Ahmed and Németi [53] and [49]. Now

the notion of neat reducts is an old venerable notion in algebraic logic that has been

well investigated in connection to the representation theory of cylindric algebras and
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related structures like polyadic algebras (see, e.g., [46], [40], and [48] and the refer-

ences therein). But it often happens that an unexpected viewpoint yields dividends

and new insights. Indeed, the repercussions of the very seemingly innocent fact that

the class of neat reducts is not closed under forming subalgebras turns out to be

enormous as we proceed to show next.

2.1 Neat reducts and amalgamation The form of amalgamation we address in

what follows is typically of the following form: Which classes frequently studied

in algebraic logic—like, for example, the class of representable cylindric or for that

matter the class of polyadic algebras—have the amalgamation property? Amalga-

mation is proved in algebraic logic to be the algebraic counterpart of the metalogi-

cal property of interpolation (see, for example, [53], Sayed Ahmed [42], and [27]).

Pigozzi [35] is a milestone in this respect; it gives a comprehensive picture of amal-

gamation for several classes of cylindric algebras. However, several questions con-

cerning the strong amalgamation property were posed as open questions by Pigozzi

in [35].2 It turns out, rather surprisingly in Sayed Ahmed [38], that the closure of

the class of neat reducts under forming subalgebras for certain classes of cylindric

algebras turns out to be closely related to the property of strong amalgamation for

these classes (cf. [53], [44], [49], [35], [27], [39], and [42]). To formulate the con-

nection between neat embeddings and strong amalgamation, we need the following

definition.

Definition 2.1 Let α be an ordinal. Let L ⊆ RCAα . We say that L has the NS

property, short for neat reducts commuting with forming subalgebras, if the follow-

ing condition holds:

(∀A ∈ L)(∃B ∈ CAα+ω)[A ⊆ NrαB∧(∀X)(X ⊆ A) H⇒ SgA X = N rαSgB X].

Here for an algebra C and X ⊆ C , SgC X denotes the subalgebra of C generated

by X . Definition 2.1 singles out certain classes of algebras whose members embed

neatly into algebras in ω extra dimensions in a special way. Let us dwell a little bit

more on the property expressed in the NS property. Let A ⊆ N rαB, with A ∈ CAα
and B ∈ CAα+ω. Let X ⊆ A ⊆ N rαB. Then we can form the subalgebra of

N rαB generated by X , which is the same as the subalgebra of A generated by X .

Or alternatively, we can form the subalgebra of B generated by X (here we are using

ω extra operations, so that in principle we can get new α-dimensional elements) and

then form the neat-α reduct of the resulting algebra. Then the NS says that taking

any of these two paths we will arrive at the same algebra (up to isomorphism), that

is, we do not get new α-dimensional elements. In short, the operation of taking α-

neat reducts commutes with that of forming subalgebras.3 Examples of subclasses

of RCAα that have the NS abound. These classes include Mnα , the class of minimal

cylindric algebras (cf. [14], p. 254), more generally, the class of monadic-generated

CAs of dimension α ([14], p. 257), and CAαs of positive characteristic k < α ∩ ω

([15], p. 68). A minimal cylindric algebra is an algebra with no proper subalgebras,

equivalently one that is generated by the diagonal element, while a monadic cylindric

algebra is one that is generated by a set X such that |1x | ≤ 1 for all x ∈ X . Proofs of

the results quoted above can be found in [53]. Other classes that have the NS include

the class L fω and Dcω of locally finite and dimension complemented algebras of

dimension ω, respectively. While every RCA1 has the strong NS, this is not the

case for higher dimensions. Indeed, the A ∈ Wsα constructed in Theorem 1 of [53]



Neat Embeddings 161

shows that any L such that Wsα ⊆ L ⊆ RCAα fails to have even the NS when

α > 1. A slight modification of this algebra A is used in [49] to show that there

are generating subreducts in the sense of [14] that are not neat reducts. As indicated

above, this confirms a conjecture of Tarski formulated as item (v) in the introduction

of [15]. Madárasz [27] proves that any L such that Wsα ⊆ L ⊆ RCAα, when α is

infinite, fails to have the the strong amalgamation property in the sense of the coming

definition. The analogous result for the finite dimensional case is proved in Andréka

et al. [2]. The link between NS and SUPAP is given in Theorem 2.3(3) below. Before

formulating our theorem we recall from [53] the notions of amalgamation, strong

amalgamation, and super amalgamation. The latter notion is due to Maksimova [29].

We slightly modify the conventional definition so that the amalgam, be it strong or

super, may be found in a possibly bigger class.

Definition 2.2

1. Let V be a class of algebras (usually but not always assumed to be a variety)

and L1 ⊆ L2 ⊆ V . L2 is said to have the amalgamation property, or AP for

short, over L1, with respect to V , if for all A0 ∈ L1, all A1 and A2 ∈ L2,

and all monomorphisms i1 and i2 of A0 into A1, A2, respectively, there

exists A ∈ V , a monomorphism m1 from A1 into A, and a monomorphism

m2 from A2 into A such that m1 ◦ i1 = m2 ◦ i2. In this case we say that

A is an amalgam of A1 and A2 over A0 via m1 and m2 or even simply an

amalgam.

2. Let everything be as in (1). If, in addition, (m1 ◦ i1)A0 = m1(A1)∩ m2(A2),

then we say that L2 has the strong amalgamation property, or SAP for short,

over L1 with respect to V . In this case, we say that A is a strong amalgam of

A1 and A2 over A0 via m1 and m2 or even simply a strong amalgam.

3. Let everything be as in (1). We say that L2 has SUPAP over L1 with respect

to V , if, for all A0 ∈ L1, A1 and A2 ∈ L2, and all monomorphisms i0 and

i1 of A0 into A1, A2, respectively, there exists A ∈ V , a monomorphism

m1 from A1 into A, and a monomorphism m2 from A2 into A such that

m1 ◦ i1 = m2 ◦ i2, and

(∀x ∈ A j )(∀y ∈ Ak)(m j (x) ≤ mk(y) H⇒

(∃z ∈ A0)(x ≤ i j (z) ∧ ik(z) ≤ y)),

where { j, k} = {1, 2}. In this case we say that A is a super amalgam of A1

and A2 over A0, via m1 and m2, or even simply a super amalgam.

4. When L1 = L2 = L in (1), (2), and (3) above we say that L has AP, SAP,

and SUPAP, respectively, with respect to V . If, furthermore, L = V , we say

that V simply has AP, SAP, and SUPAP, respectively.

It is easy to see that for cylindric algebras SUPAP implies SAP. Now the following

theorem relating NS to SUPAP is proved in [38] and [27]. It is a generalization of a

result of Pigozzi in [35] (cf. 2.12 therein).

Theorem 2.3 Let α be an ordinal ≤ ω. Let L1 ⊆ L2 ⊆ RCAα . Assume there exists

a “lifting” function F from L1 ∪ L2 to CAα+ω such that A ⊆ N rαF(A) (here the

neat embedding theorem is used) and such that the following two conditions hold:
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1. Forming subalgebras of A is the same as forming subalgebras of N rαF(A);

formally,

(∀A ∈ L1 ∪ L2)(∀X ⊆ A)(SgAX = SgN rαF(A)X);

2. Lifting and forming subalgebras commute with forming subalgebras and lift-

ing; formally,

(∀A ∈ L1 ∪ L2)(∀X)(X ⊆ A)(F(SgAX) = SgF(A)X).

Then L2 has AP over L1 with respect to RCAα . Assume in addition to (1)

and (2) that the following condition is satisfied.

3. L1 has NS (with F(A) playing the role of B in Definition 2.1), that is,

(∀A ∈ L1)(∀X)(X ⊆ A)(SgAX = N rαSgF(A)X).

Then L2 has SUPAP over L1 with respect to RCAα.

Proof See [27]. �

As an application of Theorem 2.3, it is proved in [27] that the classes of monadic

generated CAs and CAs of positive characteristic have SUPAP. In [53] it is proved

that the classes of semi-simple ω-dimensional cylindric algebras, or Scω for short,

and the class of ω-dimensional diagonal cylindric algebras, or Diω for short, in

the sense of [35], do not have NS. Emphasizing the link between NS and SUPAP,

Madárasz [27] proves that Scω and Diω do not have SAP. In fact, these classes do

not have SAP even with respect to the strictly bigger class RCAω. In [38] and [53] it

is proved that the so-called strong amalgam base of RCAα in the sense of Andréka

et al. [4] coincides with the class of algebras having NS. In particular L fω and Dcω
lie in the strong amalgam base of RCAω. Determining the strong amalgam base of

RCAα settles a question raised by Monk (cf. [4], p. 739). In contrast, it is shown in

[39] that Diω, Scω, and RCAω have the strong embedding property in the sense of

Pigozzi [35]. Roughly the strong embedding property is the restriction of the strong

amalgamation property when the base algebra is a minimal one, that is, has no proper

subalgebras. In [39], Theorem 4 is generalized to the very general context of sys-

tems of varieties definable by schemes in the sense of [15]. The notion of systems

of varieties definable by schemes is a very broad one that covers almost all algebraic

logics in the literature (cf. [15] and Andréka and Németi [5]). It is known that if V

is a quasi variety that has the amalgamation property, then V has SAP if and only

if in V epimorphisms (in the categorial sense) are surjective or, V has ES for short.

When dealing with systems of varieties definable by schemes, ES can be, and indeed

is, replaced by the NS property as illustrated in Theorem 4(iii). Loosely speaking,

the NS can be paraphrased as follows: “Term functions that are definable with extra

variables are already term definable without extra variables.”4 Also in [39], Theo-

rem 4 is compared and likened to Németi’s techniques on amalgamation adopted in

Németi [32]. Presenting Theorem 4 and Németi’s technique formulated as Lemma 3

in [32] in a functorial context as adjoint situations, it is shown in [39] that both can

be seen as instances of the use of the Keisler-Shelah ultrapower theorem in proving

Robinson’s Joint Consistency Theorem. Another aspect of this unification consists

of presenting Theorem 4 and Németi’s Lemma 3 in [32] as transforming a diagram

of algebras to be strongly amalgamated into certain saturated representations of these
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algebras that can be strongly amalgamated and then returning to the original diagram

using an inverse operator. The categorial formulation makes the notion of inverse op-

erator precise. In the case of Theorem 4 it is the neat reduct functor5 (an inverse to

a neat embedding functor—denoted by F taking an algebra into ω extra dimensions,

that is, to a classical representation), whereas in Németi’s Lemma 3 it is basically

the operation of forming atom structures that is an inverse of taking an algebra to its

canonical extension (which can be seen as a modal representation). This can be seen

as an instance of the triple duality existing between Boolean algebras with operators

Kripke frames and modal logic (Goldblatt [12]). A purely modal approach to proving

Németi’s results in [32] was found independently by Weaver and Welaish in [56]. In

[56] the argument used is a back and forth construction to establish a modal analogue

of Robinson’s joint consistency theorem. Also it is shown in [39] and Sayed Ahmed

[41] that both techniques take the representation problem expressed by a two-sorted

defining theory, as shown by Hirsch and Hodkinson in [21], a step further, asking

that the second sort be a saturated representation.6 This is not surprising since (in

extensions of first-order logic and multimodal logics) interpolation is stronger than

completeness (see, e.g., Henkin’s proof of Craig interpolation in [11] and its alge-

braization to wider contexts in [35] and Sayed Ahmed [50]). Indeed this is illustrated

in Theorem 4 because of the following reasoning. Completeness corresponds to rep-

resentability. A class of algebras consists of representable algebras, if each of its

members embed neatly into ω extra dimensions. On the other hand, for this class

to have SUPAP, its members should embed in ω extra dimensions in a special way;

this class should have the NS. From a model-theoretic point of view, this is ex-

pected. Let us explain why. Henkin’s neat embedding theorem is an algebraization

of his celebrated completeness proof, which is an instance of Robinson’s finite forc-

ing in model theory. As Hodges says,“if the forcing conditions are chosen cleverly,

this yields interpolation results” [24]. Pigozzi did exactly that in his proof that the

dimension-restricted free algebras that happen to be dimension complemented have

the interpolation property ([35], Theorem 2.2.6). Theorem 2.2.6 is the central theo-

rem in [35], §2.2. Indeed, from this single theorem (together with one or two others

of a nontrivial but still auxiliary character) there follows via the general results sum-

marized in [35], §2, all positive results in Pigozzi’s paper, including the SAP version

of our Theorem 2.3 (cf. Corollary 2.2.12 in [35]). In [42] a similar argument is used

to show that the class of algebras studied in Sain [36] has the strong amalgamation

property. Another instance of Robinson’s finite forcing is that of omitting types as

we proceed to show. But before that we make a short detour into the (very much

related) notion of complete representation.

2.2 Neat embeddings, complete representations, and omitting types. Using neat

embeddings the following new characterization of countable algebras in the class of

the so-called completely representable algebras finite dimensional cylindric algebras

is given in [47]. Such algebras are investigated in, for example, Lyndon [26], Hirsch

and Hodkinson [19], and Hirsch and Hodkinson [18]. We first define the notion of

complete representations. For this we need to fix some notation. For an algebra A

with a Boolean reduct and X ⊆ A,
∑

X and
∏

X denote the supremum and infimum

of X whenever these exist, respectively. For algebras A and B, Hom(A,B) denotes

the set of all homomorphisms from A to B. We recall that Csn denotes the class of

cylindric set algebras of dimension n. A complete representation of a CAn is one
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that preserves infinite meets (and joins) carrying it to set theoretic intersections (and

unions), more precisely, as in the following definition.

Definition 2.4 Let n < ω. Let A ∈ CAn . A is completely representable if for all

nonzero a ∈ A, there exists B ∈ Csn and f ∈ Hom(A,B) such that f (a) 6= 0 and

such that

f (
∑

X) = ∪x∈X f (x)

for all X ⊆ A whenever
∑

X exists.

Before formulating the connection between neat embedding and complete represen-

tations, we also need the following definition.

Definition 2.5 For K a class with a Boolean reduct we define

Sc K = {A : ∃B ∈ K : A ⊆ B, and whenever
∑

X = 1 in A,

then
∑

X = 1 in B for all X ⊆ A}.

Roughly Sc K denotes the operation of forming complete subalgebras of algebras in

K . Now the following theorem is proved in [47]. It says that for finite n and for

a countable atomic n-dimensional algebra to be completely representable, it has to

embed neatly and completely into another algebra in ω extra dimensions, that is, an

algebra in Sc Nrn CAω. We refer to algebras in the latter class as algebras having the

strong neat embedding property. (In [47] it is shown that the strong neat embedding

property is indeed stronger than the neat embedding property. An example of a

representable algebra that does not have the strong neat embedding property is given

below in the proof of Theorem 2.10. However, the two notions coincide in other

contexts, for example, with the algebras studied in [36]). We recall that an atom is

a minimal nonzero element and that an algebra is atomic if every nonzero element

contains an atom.

Theorem 2.6 Assume that n < ω. Let A ∈ CAn be countable. Then A is com-

pletely representable if and only if A is atomic and A ∈ Sc Nrn CAω.

Theorem 2.6 follows from the stronger following theorem proved in [47]. But first

we recall from [15] that Wsn denotes the class of weak set algebras of dimension n.

Theorem 2.7 If A ∈ Sc Nrn CAn+ω is countable, n ≤ ω (note that here n is allowed

to be infinite) and {X i : i < ω} is a family of subsets of A such that
∏

X i = 0 for all

i < ω, then for every nonzero a ∈ A there exists B ∈ Wsn , with countable base, and

f ∈ H om(A,B) such that f (a) 6= 0 and for all i ∈ ω we have ∩x∈X i f (x) = ∅.

The statement expressed in Theorem 2.7 is an algebraic version of an Omitting Types

Theorem. Indeed, bearing in mind the correspondence established in [15], §4.3,

between theories and algebras on the one hand and models and set algebras on the

other, the X i s are nothing more than nonprincipal types and B is nothing more than

a representation omitting these types. Such analogies are worked out in more detail

in [47] and [50]. Note that for n < ω we have Wsn = Csn , so that a unit of a Wsn

is simply of the form nU . We show how the “only if” part of Theorem 2.6 follows

from Theorem 2.7. The other implication is direct.

Proof of Theorem 8 modulo Theorem 9 Assume Theorem 2.7 and let n < ω. Let

A ∈ Sc Nrn CAω be countable and atomic. We can assume, without loss of generality,

that A is simple, for if not then we could replace it by its simple components. Then
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taking for all i ∈ ω, X i = Y = {−b : b is an atom of A}, and applying (∗) for any

nonzero a in A, upon noting that
∏

Y = 0 since A is atomic, we get an atomic

representation in the sense of [18], hence a complete representation of A. �

Theorem 2.7 was used to prove an Omitting Types Theorem for certain infinitary ex-

tensions of first-order logic studied in Andréka et al. [3] (cf. [47]). A variation thereof

is used to prove an Omitting Types Theorem for other extensions of first-order logic

(without equality) introduced as one possible solution to the finitization problem in

Sain and Gyuris [37] and [36] (cf. [50]). The proof of Theorem 9 in [47] is a typical

omitting types construction; it is a variation on a theme occurring in Casanovas and

Farré [10] and Newelski [34]. In fact a slight modification of this proof gives the

results in the latter two papers as shown in [47]. An instance of Robinson’s finite

forcing in model theory, the proof of Theorem 9 is indeed a Baire Category argu-

ment at heart as illustrated in [47]. When one asks for the omission of < ω2 types

one is led to an instance of the famous independent Martin’s axiom, establishing an

interesting connection with set theory (cf. [53]). Indeed the resulting statement turns

out to be equivalent in Zermelo-Fraenkel set theory (ZF) to Martin’s axiom restricted

to countable Boolean algebras. Also countability of the algebras involved cannot be

omitted from the above characterization.7 However, in the absence of the continuum

hypothesis and for that matter Martin’s axiom, ω1 many types can be omitted. In ZF

one can omit covK many types, where covK is the least cardinal κ such that the real

line can be covered by κ many closed nowhere dense sets (cf. [47]). Martin’s axiom

implies that covK = ω2 but it is consistent that covK = ω1 <
ω2. For more on

these descriptive set-theoretic notions in connection to omitting types the reader is

referred to [10], [34], and [47].

2.3 Omitting types for the finite variable fragments of first-order logic We now

give yet another novel application of algebraic logic to first-order logic. We show

how the construction of certain relation algebras can be used to show that the clas-

sical Henkin-Orey Omitting Types Theorem fails for the finite variable fragments of

first-order logic, in a rather strong sense (to be made precise shortly). These algebras

were originally constructed to serve an entirely different purpose, namely, to show

that the classes of representable relation algebras and representable cylindric alge-

bras of finite dimension > 2 are neither atom-canonical nor single-persistent nor

Sahlqvist nor closed under minimal completions. We refer the reader to Goldblatt

[13] for the definition of these notions. The author used cylindric algebras con-

structed by Hirsch and Hodkinson in [18] and Hodkinson in [25] to prove a result

weaker than Theorem 2.10 concerning the failure of Omitting Types (cf. [53], Theo-

rem 4). In Theorem 2.10, the construction of the relation algebra (with n-dimensional

cylindric bases) is due to Andréka [1], whereas the connection with omitting types is

due to the present author. However we will not give the Andréka construction since

it will be published elsewhere. To formulate our joint result with Andréka, we need

to fix some notation and recall some terminology.

Notation 2.8 Let Ln denote first-order logic restricted to the first n variables. Let

T be a countable consistent Ln theory. Let Ŵ be a countable set of Ln formulas that

is consistent over T , that is, no contradiction is derivable from T ∪ Ŵ. For a formula

ϕ and a model M , we recall that ϕM denotes the set of all assignments that satisfy ϕ
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in M , that is,

ϕM = {s ∈ ωM : M |H ϕ[s]}.

Definition 2.9 We say that Ŵ is implicitly principal over T , if for all M |H T ,

∩ϕ∈Ŵϕ
M 6= ∅. We say that Ŵ is explicitly k-principal over T , if there exists a

formula ϕ built up of at most k variables and consistent with Ŵ that isolates Ŵ, that

is, T |H ϕ H⇒ ψ for all ψ ∈ Ŵ.

The classical Henkin-Orey Omitting Types Theorem ([11], Theorem 2.2.9), or rather

the contrapositive thereof, implies that if Ŵ is implicitly principal (over T ) then Ŵ is

explicity k principal (over T ) for some k ∈ ω. The question is, Do we guarantee

that k ≤ n, that is, the formula isolating Ŵ stays inside Ln , or do we have to “step

outside” Ln , resorting to extra variables? The following result was announced in

Andréka and Sayed Ahmed [6]. It contrasts positive results on omitting types proved

in [47] and [50].

Theorem 2.10 For all 3 ≤ n < k there exists a countable Ln theory T , a type

Ŵ consistent over T such that Ŵ is implicitly principal but not k-explicitly principal

over T .

Sketch of proof For undefined notions the reader is referred to Maddux [28]. Now

let 3 ≤ n < ω. Andréka constructs a countable symmetric integral (hence simple)

representable atomic relation algebra Rn such that its completion, that is, the com-

plex algebra of its atom structure, is not representable. This means that Rn is not

completely representable, for if it were then this complete representation will give

a representation of the complex algebra of its atom structure. Also Rn has the ad-

ditional property that the (countable) set Bn Rn of all n by n basic matrices over Rn

constitutes an n-dimensional cylindric basis in the sense of Maddux [28] (Defini-

tion 4, p. 953). Thus Bn Rn is a cylindric atom structure. This means that the full

complex algebra Ca(Bn Rn) with universe the power set of Bn Rn can be turned into

an n-dimensional cylindric basis in a natural way. Since Rn is not completely repre-

sentable, then Ca(Bn Rn), sure enough a CAn , is not a representable one. However

the term algebra over the atom structure Bn Rn , which is the subalgebra of Ca(Bn Rn)

generated by the countable set of n by n basic matrices, Tm(Bn Rn) for short, is a

countable representable CAn , and further it is simple so that it is in fact (isomorphic

to) a Csn . Tm(Bn Rn) is representable, but it does not have a complete representa-

tion. If it did, then Rn will also have a complete representation, which is not the

case. Now let 3 ≤ n < k. Then Tm(Bn Rn) embeds neatly in Tm(Bk Rk). In fact, it

turns out that Tm(Bn Rn) ∼= Nrn(Tk Rk). Thus Tm(Bn Rn) is an example of a count-

able atomic algebra in NrnRCAk with no complete representation. For brevity, let

A = Tm(Bn Rn), and let B = Tm(Bk Rk). Then by [14], Theorem 4.3.28(ii), there is

a countable first-order language L, such that B ∼= (FmLk /T ) for some (countable)

Lk theory T ⊆ FmLk . Here Lk is the restriction of the language L to the first k

variables and FmLk/T is the Lindenbaum-Tarski representable k-dimensional rep-

resentable cylindric algebra corresponding to T . We can assume that T consists of

sentences only, that is, that no free variables occur in formulas in T . It follows that

A ∼= FmLn/T . Fix θ an isomorphism from FmLn/T to A and let At A denote the

set of atoms of A. Put

Ŵ = ∪{¬ϕ/T : θ(ϕ/T ) ∈ At A}.
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Here ϕ/T denotes the equivalence class of ϕ, consisting of all formulas equivalent

to ϕ modulo T . Since A is atomic we have
∑

At A A = 1. Since A = Nrn B , we

have A is a complete subalgebra of B. It then follows that
∑

At B A = 1, thus (+)

∏
{θ(ψ/T ) : ψ ∈ Ŵ} = 0.

Now we check that Ŵ is implicitly principal but not k-explicitly principal. To see

that Ŵ is not explicitly k-principal, assume to the contrary that there exists ϕ ∈ FmLk

such that ϕ is consistent with T and ϕ isolates Ŵ. We can assume without loss of

generality that the free variables occurring in ϕ are among the first n. But then we

get that for all ψ ∈ Ŵ

0 < θ(ϕ/T ) ≤ θ(ψ/T ).

This contradicts (+). To see that Ŵ is implicitly principal we assume to the contrary

that there exists a model M that omits Ŵ, that is, M |H T is such that ∩ϕ∈Ŵϕ
M = ∅.

Then ∪ϕ∈Ŵ(¬ϕ
M ) = n M . But then {ϕM : ϕ ∈ FmLn } would be (the domain of) an

atomic representation of A in the sense of [18], Definition 4, thus by Theorem 5 of

[18], it is a complete representation of A, contradiction. �

We note that the algebra constructed by Andréka is binary generated, that is, gen-

erated by its two-dimensional elements. It follows from [15] that the diagonal free

reduct of this algebra is not completely representable. This gives the following the-

orem.

Theorem 2.11 Let n > 2 be finite. Then the Omitting Types Theorem fails for the

equality free version of Ln , and the multimodal logic S5
n .

The multimodal logic S5
n is studied in, for example, Venema [55], Venema [54], and

Hirsch et al. [16]. Theorems 14 and 15 say that, though there are always formulas

isolating or witnessing realizable types, we cannot control the number of variables

occurring in such formulas. They grow without bound. This adds to the list of

deep (negative) results known for Ln (and its equality free reduct) concerning the

complexity of its proof theory for n > 2 (cf. [30], Andréka [7], Hirsch et al. [22],

and Hirsch and Hodkinson [20]; (failure of) interpolation for n > 1, [2] and [53];

and undecidability of the validities for n > 2, [15], Theorem 4.2.18). Also this adds

to our knowledge of omitting types for usual first-order logic, since it says that there

is no bound on the number of variables needed to isolate nonomissible types. What

this entails in general terms is that in isolating types, all ω variables are needed. This

is indeed analogous to the situation with provability and interpolation. We point out

that from Theorem 2.11, one can easily prove that the Omitting Types Theorem fails

for any first-order definable expansion of Ln for 2 < n < ω as defined in Biró [8].

In contrast, we have the following theorem.

Theorem 2.12 The Omitting Types Theorem holds for L1, and more generally for

countable Ln theories, n ≤ ω, with only (countably) many unary relation symbols.

Proof See [47]. �

While every atomic RCA2 is completely representable (this follows easily from [15],

Theorem 3.2.65), we do not know whether the Omitting Types Theorem holds for

L2. We pose this as an open question.
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Question 2.13 Does the Omitting Types Theorem hold for first-order logic re-

stricted to the first two variables?

As we mentioned earlier, the algebra Rn for 2 < n < ω constructed by Andréka and

used above was originally designed to show that RRA and RCAn are not Sahlqvist

varieties, that is, cannot be characterized by Sahlqvist equations. Thus they are not

atom-canonical nor closed under completions [13]. That RCAω is not Sahlqvist

is proved in Sayed Ahmed [51]. Also it is shown therein that the Omitting Types

Theorem in the sense of Henkin-Orey fails for the corresponding logic Lω. Lω is

an algebraizable extension of first-order logic introduced in [15], §4.3. In contrast,

it is proved in [50] that other algebraizable extensions of first-order logic enjoy an

Omitting Types Theorem. The algebraic counterparts of these logics are studied in

[42], [37], and [36]. These turn out to be atom-canonical reducts of polyadic algebras

(Sayed Ahmed [52]). We conclude this article by the following theorem addressing

the closure of the class of neat reducts under forming subalgebras.

Theorem 2.14 Let 2 < n < ω. Then we have

1. the class Sc Nrn CAω is not elementary;

2. the following inclusions are proper:

NrnCAω ⊂ Sc Nrn CAω ⊂ SNrn CAω.

Proof For a class K we let ElK stand for the least elementary class containing K .

Let 2 < n < ω. Let Cn be the countable cylindric algebra used in [19], Theo-

rem 34. By [19], Theorem 34, Cn is elementary equivalent to a completely repre-

sentable algebra. It follows from the characterization established in the theorem that

Cn ∈ ElSc NrnCAω r Sc NrnCAω. This proves (1) and takes care of the second in-

clusion of (2), since Cn is representable. The first inclusion of (2) follows from [48]

where two representable CAns, A and B, are constructed such that A ∈ Nrn CAω,

B is a complete elementary subalgebra of A, and B /∈ NrnCAn+1. �

Notes

1. This shows that for any Hilbert-style axiomatization of first-order logic and for every

3 ≤ n < m there is a formula built up of n variables that can be proved using m + 1

variables but cannot be proved using m variables.

2. We recall that a class has the strong amalgamation property if, whenever two algebras

in this class have a given common subalgebra, they can be embedded in a third algebra

in this class in such a way that the intersection of the images of the two algebras is the

image of the given common subalgebra.

3. Below we shall show that the NS is, in essence, a definability condition.

4. Very roughly in quasi varieties we have AP + ES = SAP, whereas for systems of

varieties we have AP + NS = SAP.
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5. Let α < β. Then the neat reduct operator, Nrα for short, can be viewed as a functor from

the category CAβ to CAα . Its action on objects is obvious. Its action on morphisms is

their (natural) restriction.

6. It turns out, as discovered by Hirsch and Hodkinson ([21], ch. 9), that many natural kinds

of representations of an algebra can be described in a first-order 2-sorted language. The

first sort of a model of this defining theory is the algebra itself, while the second sort

is a representation of it. The defining theory specifies the relation between the two,

and its axioms depend on what kind of representation we are considering. Thus the

representable algebras are those models of the first sort of the defining theory with the

second sort providing the representation.

7. Personal communications, and see Hirsch and Sayed Ahmed [17].
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