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Expansions of Ultrahomogeneous Graphs

J. E. HELMREICH

Abstract  Lachlan and Woodrow have completly classified the countable
ultrahomogeneous graphs. We expand the language of graphs to include a
new unary predicate. In this expanded language, ultrahomogeneous vertex 2-
colorings of ultrahomogeneous graphs are classified.

1 Introduction A countablestructure M for afirst order, purely relational language
L isultrahomogeneous provided any isomorphism between finite substructures of M
extends to an automorphism of the entire structure. Since a countable ultrahomo-
geneous structure is determined up to isomorphism (among the countabl e ultrahomo-
geneous structures) by its finite substructures, many questions about a countable ul-
trahomogeneous structure can be reduced to questions about its finite substructures.
The particular ultrahomogeneous structures we will be concerned with are countable
(undirected) graphs. Lachlan and Woodrow [[] have completely classified the count-
ably infinite ultrahomogeneous graphs.

We address the question of how the vertex set of ultrahomogeneous graphs may
be two colored so that the colored graph (in the expanded language formed by adding
aunary predicate U) remains ultrahomogeneous. It is not difficult to see what each
colored portion of the graph must beisomorphicto. Infact, with one minor exception,
the type of each color together with the underlying graph type uniquely determines
the entire ultrahomogeneous structure.

There is a one-one correspondence between countably infinite ultrahomogen-
eous structures and coherent classes of finite models. The following definition fol-
lows (cf. Kueker and Laskowski [B3]).

Definition 1 A class X of finite structuresis coherent provided it is (i) closed un-
der substructures and isomorphisms; (ii) has countably many isomorphismtypes; (iii)
containsarbitrarily largefinite structures, and (iv) satisfiesthe amalgamation and joint
embedding properties.
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Fact 2 A coherent class X hasaunique countably infinite ultrahomogeneous struc-
ture associated with it that embeds every element of K and may be written asacount-
able increasing union of elements of K. Such a structure is said to be X generic.
Conversely, the class of al finite structures that embed into a given ultrahomogen-
eous structure is coherent (cf. Fraissé [[I], Kueker and Laskowski []).

Definition 3 Let A, Bbegraphswithvertex sets{a,, : o < 6} and {bg : 8 < y}. The
wreath product A(B) isthe graph with vertex set A x B and edgerelation E such that
((Bay, bg,), (Bny, bg,)) € Eif andonly if &y, # &y, and (ay,, 8,) € E*, or ay, = ay,
and (bﬂl’ bﬂz) € EB.

If N, and K,, arenull and complete graphs on « verticesrespectively, thenitiseasy to
see that N, (Kp) and K, (Ng) where «, B < w are ultrahomogeneous graphs. There
are aso two additional finite ultrahomogeneous graphs, K3 x Kz and the pentagon
(cf. Gardner [[2], Sheehan [5]).

The countable ultrahomogeneous graphs that remain may best be described
through the coherent classes that produce them as generics.

Definition 4 Fix 1 < n < w. Then X, isthe class of al finite graphs A (for the
language £ = {E}) in which K, 1, the complete graph on n + 1 vertices, does not
embed. Similarly, we have the dual class ¥, of finite graphs which do not embed
Nn+1, the null graph on n+ 1 vertices.

Itis easy to see that X, (f?n) is coherent (as will generally be the case in this paper
free amalgamation will suffice) and so has the associated ultrahomogeneous generic
structure Gn((~3n). When n = 2, G5 is the ultrahomogeneous graph which embeds
all triangle free graphs. In the case where n = 1, G; is an infinite null graph, Gy
an infinite complete graph. Finally, the class of al finite graphs =, is easily seen
to be coherent, and has ultrahomogeneous generic G,,, the random graph. Lachlan
and Woodrow [(4] have shown that the above list is a complete classification of all
countabl e ultrahomogeneous graphs.

Inthefollowing, graphsare structuresfor the language £ = { E}; thetwo colored
graphs we consider are structures for L' = £ U {U}. A nontrivia structure M for
the language L’ is one where the interpretations of U and —U are both nonempty.
Throughout, in an abuse of notation, UM and —U™ will refer to the graph structure (ie
(UM, E)) inherited from M on these subsets of its universe.

The situation with respect to the structured case is straightforward; we present
the following without proof.

Theorem5 Fixnml<n<w,1l<m<w. Then:

1. Foranyn',1<n' < n, there exists a unique (up to isomorphism) ultrahomo-
geneous £’ structureM suchthat M| = Kn(Npy) and UM = Ky (Ny), —UM =
Kn_rw(Nm). Inthe case n = w and m < w, then possibly " = @ and —=U"
K, (Nm).

2. ForanynY, 1 <m < m, thereisa unique (up to isomorphism) ultrahomogen-
eous £ structure M such that M|, = K, (N and UM = K (Npyy), —UM =
Kn(Nm_m). Inthecase m= w and n < w, then possibly m" = w and -U" =
Kn(Ny).
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3. If n = m = w, there are ultrahomogeneous £’ structures M, 2 M such that
Mil, = UM = UM = K, (N,), | = 1, 2, where M4 is the limiting case of
(1) above, M, isthe limiting case of (2) above. That is, for every a € UM and
every b € =UM1, M7 = E(a, b) whilefor every a € UMz, thereisab € —UM2
such that M, = —E(a, b).

4. Given any nontrivial ultrahomogeneous £’ structure N expanding Kn(Nm)
thereisan M such that (up to interchanging U™ and —U) N = M, where M
isasin (1), (2), or (3) above.

We have a similar statement for the dual of K,(Nm), Nm(Kp).
The main theorem concerns the situation in the unstructured case.
Theorem6 Fixn,2<n < w. Then;

1. For any m, 1 < m < n, there exists a unique (up to isomorphism) ultrahomo-
geneous L’ structure M suchthat M|, = G, UM = G, and —UM = G,,.

2. For any nontrivial ultrahomogeneous £’ structure N expanding G, thereisan
m such that (up to interchanging the interpretations of U and —U) N = M,
where M is as described in (1) above.

A similar statement applies for the dual, Gn.

Theoreml6lcan be extended to the casesn = 1 and n = w, where the underlying struc-
tureisrespectively an infinite null or random graph. If n = 1 we have G4, an infinite
null graph. Since there readly is no graph structure, UM could be any subset of M. If
n = w, then to the possibilities described in Theorem[G] there are the additional cases:
UM = N, (Ky), (symmetricaly, K| (N,) )for2 < | < w.

Theorem 7

1. Foranym, 1 < m < w, thereexistsa unique ultrahomogeneous L’ structure M
suchthat M|, = G, -UM = G, an exactly one of the following four cases
holds: (i) UM = G, or (ii) UM = Gy, or (iii) UM = Np(K,,), or (iv) UM =
Km(Ng)-

2. For any nontrivial ultrahomogeneous £’ structure N expanding G, thereisan
m such that (up to interchanging the interpretations of U and —-U) N = M,
where M isas described in (1) above.

We devote the remainder of the paper to a proof of Theorem[8] followed by a brief
indication of how Theorem[Zlmay be proven using similar techniques.
The proof of Theorem Blis comprised of three parts.

(A) The ultrahomogeneous £’ structures as described in Theorem Elexist.
(B) No other interpretations of U™ are possible.
(C) The uniqueness of such expansions.

Beginwith G,, and divideit into two pieces, one of which lookslike G, again and the
other of which looks like Gp,. A priori, it would seem possible to do thisin severa
ways, differing in the edge structure between the two distinguished subgraphs. In fact
itisnot; every graph that “should” occur across the boundary does occur. In the case
wherem < n, thisisrelatively easy to show. The difficulty liesin the m = n case.
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For part (A) itiseasy to see M asdescribed exists. Fix nand m, and let &, m be
the class of al finite L structures C such that C|(g) € X, and U® € Xp,. Recall that
¥, and Xy, are the coherent classes generating G, and Gy, respectively. Then K m
is coherent, noting in particular that free amalgamation holds.

2 Thepossibilitiesfor UM In this section we address part (B) of the proof of The-
orem[&] The possibilities for the interpretation of U™ that are consistent with G, and
must be eliminated are (1) U™ finite, (2) UM = N, (K), | <n,and (3) U™ = K, (N,),

| <n.

Casel: UMisfinite. Thenitispossibleto find a ¢ UM suchthat —E(a,u) al u e
UM andtofind @’ ¢ U™ such that E(a’, ug) someug € UM. But a = & (asfinite £
structures) yet thisisomorphism does not extend to an automorphism of M.

Case2: UM =N, (K)). Asinthefirst case, find a € =UM™ such that thereis K| €
UM with no edges to a, and another copy of K, € UM with exactly one edge to a.
As elements of any coherent class that would have such an M (with UM = N, (K)))
as generic, these two versions of aK; should satisfy the amalgamation property. But
amalgamation fails of the two over aK,_4, leaving on one hand a vertex of K; with
no edge to a outside of the base, and on the other hand the vertex with the edge to a
outside (see Figure[l].

/

Figure 1: N, (K})

Case3: UM = K (N,). Let aga;b1K,_; be the graph with edges E(ag, a1),
E(ag, by), and E(by, ¢) al ¢ € K,_1. We can embed this into M|, with ag, a1
and b; € UM (hence a; and b; are in the same copy of N,) forcing necessarily
Kn_1 € =UM. Similarly, find aghpa; K,,_1 where E(ay, ap), E(ay, bg), and E(bg, ¢)
al c € K,_;. Embed again so that ag, a; and bg € U™ and K,_; € =UM. Thuswe
should be able to amalgamate these two structures over aga; K,,_1. We obtain a con-
tradiction as there must be an edge between by and by, yielding a copy of K, 1 (see

Figurel).
This exhausts the possibilities for UM other than as allowed by Theorem([E]

3 Uniqueness In this section we address part (C) of the proof of Theorem[6] the
uniqueness of these expansions.

Fixn,2 <n < w. AssumeM isan ultrahomogeneous £’ structuresuchthat M| .
isisomorphic to G, UM = G, and —U™ = G,,. Inthefollowing, AB, A, and B are
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Figure 2: K| (N,)

finite graphs. Here AB isagraph comprised of the subgraphs A and B, possibly with
edges between the two parts.

First, suppose m < n. Let M be as described above. It suffices to show for any
finite graph AB, where B — G, and AB — Gy, that A — —=U", B — UM, asthis
uniquely describes the coherent class generating M. To each vertex of A, attach a
digoint copy of Ky, (so that with the vertex of A we have a copy of Ky, 1), making
sure any two of the | A| copies of K, are completely unconnected. Then the entire
new graph is still compatible with G,,, so embeds into M|, and we may assume B
and all new copiesof K, embedinto U™. Thisforcesall of Atobein—-U" asdesired;
we have Theorem[Glfor m < n.

Hence for the remainder of the proof we may assume m = n. Then we have
M|, = UM = -UM = Gp. Again we must show for an arbitrary graph AB where
AB — G, that AB — M, with A — —=U" and B — U". Whenever some graph
CD embedsinto M in this manner (with C < —U" and D < U") wesay CD em-
beds properly. The proof is a double induction on the cardinalities of A and B.

Fix agraph AB such that AB — Gp. Assume:

(1) For any finite graph CB* with |B*| < |B|, such that the graph CB* — G, we
have CB* embeds properly.

(I1) For any graph A*B, with | A*| < |A| suchthat A*B — G, A* B embeds prop-
erly.

We wish to show that AB embeds properly.

If either A or B isempty we are done. Suppose then that AB issimply ab, and
that —=E(a, b). Choose any a € =U", b € U™ and we may suppose E(a, b). Now
tp(x/ab) determined by —E(X, a) A = E(X, b) isconsistent with G, henceisrealized
inM| . by somec. If c € =U", then cb = ab and is properly embedded. If c € U",
then ac = ab and is properly embedded. In the aternative where E(a, b) holds, a
similar argument will suffice.

Now assume |A| > 1 and that B has but one vertex b. Choose avertex a e A
arbitrarily. Let A;cA, beagraph suchthat: Ay = A= Ay, for all verticesd € Ay and
ee Ap, —E(d, e) halds; E(d, ¢) holdsif and only if E(d’, a) holdsin A (d’ theimage
of din A); E(e, ¢) holdsif and only if E(€/, b) holdsin AB (¢ theimage of ein A).
Then AjcAy — Gp and by (1), AacAp, — —U"Y. Let Atb = A\{a}B. By (lI) then
Aib — M, with A} — —=U" and b — U". Furthermore we may assume A} embeds
into the copy of A in the obvious way. Note that we now have AjbcA, embedded
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in M, but we do not know the edge rel ation between b and cA,. Now tp(x/ AibcAp)
where x “lookslike” bto Ay, likeato Ajb, and hasno edgeto cisconsistent with Gy,
hencerealizedin M| by f, say. If f € =U" then A} fb = AB, properly embedded,
andif f € UM then A, f = AB, properly embedded again ( f playing theroleof ain
thefirst case, b in the second). Hence AB embedsinto M properly.

We may now assumethat |A| > 1, |B| > 1, and (I) and (1) hold for the graph
AB. The strategy to befollowed is similar to that used above in the last case: choose
avertex a € A and remove it, calling the remainder A*. Then by (II) A*B embeds
properly into M, to a copy of A*B we will call A;B,;. Chooseab € B and remove
it, calling the remainder B*. Then by (I), AB* embeds properly into M, without loss
of generdity to a copy ApBf digoint from A;B, chosen earlier. So now there are
“nearly” two copies of AB embedded properly: (A;Ba)(A,Bj). Suppose the L-
type p(x) = tp(x/ A;3BaAyBy}) is consistent with G, where plag, = tp(a/A*B)
and Pla,B; = tp(b/ AB*). Then asthe underlying structureis G, p(x) isredizedin
M| .. If therealization cisin —=U", then (A%c) Ba isacopy of AB properly embedded
inM. If therealization cisin U, then A, (B;c) isacopy of AB properly embedded.

All that remains, then, isto find an embedding of (A;Ba) (A, By) so that thetype
p(x) isconsistent (with Gp). Theproblem of courseisthat thereisno reasonthat p(x)
necessarily should be consistent. That is, there could be a copy of K, inside A;B;,
say, and p(x) might demand that x be attached to it, forming a K,,1. Thetrick is
to embed (A} Ba) (A, B}) very carefully, maintaining control over the edges between
(A3 Ap) and (A, Byy) insuchamanner that the consistency of p(x) with G, isassured.

Claim 8 Itispossibletoembed (A;B,) (A, Bj) intoM sothat thetype p(x) iscon-
sistent.
Proof of Claim:  The proof splitsinto three cases.
Casel: Theeareae A by € Bsuchthat —E(a,b;) and BZ Kj,any | <n.
Fixae A, b, by, by, € Bsuchthat —E(a, by), —E(b, by). Inthe following, as
described above, there will be two copies of AB: an‘a’ copy and a‘b’ copy. The
individual parts of each copy will be distinguished by Ay, Bs, and Ay, By. When the
vertex ‘@’ isreferred to it will be implicitly understood to refer to the copy of this
vertex in A;. Similarly the vertex ‘b’ will refer to the copy of b in By (though there
are copies of aand b in A, and B, respectively, it will never be necessary to make
use of them). In the same vein, ‘b;’ will be considered to bein B; and ‘b’ will be
considered to bein By. Let

Al ={ce Ay: E(a )} A; ={ce A;: —E(a,0)},
and then A; = A\ {a} = A} A;. Similarly,
Bi ={ce By: E(a,c)} B, ={ce Bsy: —E(a 0)}.

Sinceb; € By, let B;* = B3 \ {b1}.
Continuing in the same fashion with respect to A, and By, define

Al ={ce Ay: E(c b)) A, ={ce Ay: —E(c, b))

By ={ce By: E(c,b)} B, ={ce By:—E(c,b)}
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‘a’ copy of AB

‘b’ copy of AB

—ym Ay | A AR A

Figure 3: Basic Setup

andthen Bj = By \ {b} = Bg B, . Finally, remembering that b, € B, define B}* =
Bj \ {b2} = By \ {b,bo} and B, * = B \ {by} (see Figure[3).

The embedding is made in 5 steps.

Sep 1: InUY, find acopy of B and acopy of B* with no edges between them.
Find anew vertex ¢ with edges to every vertex of B that has no edges to B}* (see
Figure[).

Figure4: Step 1

Sep 2: Then |B*c| < |BJ, hence by inductive hypothesis (1) it is possible to
find the following in —U™: acopy of Ay, chosen so that Ay is connected to B;* as
appropriate, (i.e., S0 A,Bj* = AB\({b, b,}) and such that ¢ has edges to all vertices
of Alyet has no edgesto any vertex of A;. Resolving B}* into the two components
B, " and B;;, find in —U™ avertex d whichis not connected to Ay, to ¢, or to B, * but
isconnected to all of B;r. Thislatter isconsistent (with respect to G,), asin theworst
cased isconnected to all of B, but thentp(d/B7) = tp(a/BZ) (see Figure[R). The
edges between d and B and between A, and B are unknown.

Sep 3: Itisnow possibleto find B;* in UM so that B;*Bf = B, \ {by} = B3,
In=U" find A sothat A;B} = AB\ {b1}, with Ay not connected to Ay, in any way.
Recall that A, is composed of three parts, Ay, A, and aitself. In addition, require
the choice of A, to be made so that thereareno edgesfrom A; andatod, while Af is
connected initsentirety tod. Finally, itispossibleto insist that B; * not be connected
tod or to Ay (see FigureB). Again, the edges between A, and B};*c are unknown.
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Figure 5: Step 2
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Figure 6: Step 3

Sep 4: InUM find acopy of by to complete B, * B to form B,, connected to A%
asappropriate. Presumably E(b,, a), asotherwise A;B; = AB showing AB embeds
properly and the proof is complete. Inwhat manner by isconnectedto d, Ay, Bj*, or
cisirrelevant.

Step 5: In U™ find a copy of b, to complete Bf* to Bf, connected to A, as ap-
propriate and not connected to A, or to d. Here the edge relations between b, and c,
B, are unknown (see Figure[Z).

The basic embedding is now complete.

Clam9 p(x) = tp(x/ A;BaAyBjdc) is consistent with G, where
tp(x/ A3Ba) = tp(a/AB\{a}) tp(X/ ApBY) = tp(b/ AB\{b})

and —E(x, a), =E(x, d), —=E(X, ¢).

It sufficesto show Kn > AL B Af B/ Noticethat K, > Af B} and Kn /> AP B/,
asotherwise AB &> Gp. Also by choiceof Bf and B}, K, > BZ B} By construc-
tion, Kn > AL AM. If Ky — AZ B/, then d together with this K, must aready form
a Kny1, acontradiction. If Kp < B A; , then ¢ together with this K,, must form a
Kns1, again acontradiction. Since Af and Af; have no edges between them, and B}
and B} also have no edges between them, no K, can embed into any three (or all four)
pieces of AL B A/ B. So Claim 9isshown.
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A, | AF d AL A
B;*| Bf B [B;"(b)

Figure7: Step 5

Thetype p(X) is consistent with G, hencerealized by e say. If eisin UM, then
A, (Bje) = AB, andif eisin —U" then (Aje) By = AB. Ineither case, AB embeds
properly into M, completing Case 1.

Case2: Thereisac A, by € Bsuchthat —E(a, by),and B= K|, | <n.

Subcase 1: Bj = K;j, some j < n— 2. Then the preceding construction will con-
tinue to go through, with the exception of requiring the b, chosen in Step 5 to be con-
nectedto d. All of B may be connected to by, but thiswill formonly aK,_; at worst
(when j =n-—2).

Subcase2: B = K;_;. Then AB\{b;} can be embedded properly, following
which AB\{a} can be embedded over it. The only possible problem would be if
E(by, a). But then Bf bja = K, 1, acontradiction. Hence —E(by, a) and AB em-
beds properly (see Figure[5).

First Second

(9] ¢
DRIN D

Figure 8. Case 2.2

Case3: Foreveryac A andevery b € B, E(a, b).
Subcasel: AZ K anyl <n. Leta, a in A be such that —E(a, a'). Embed

A3 A, B properly (that is, Bf in UM and Ay A, in —UM) so that A, B} has edges as
appropriate, with @’ having edgesto al of At‘)* and Bg. Otherwise, enforce no edges.
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Then embed A} B, properly, overlapping A} with the copy of A; chosen earlier. The
concern is among BZ B A/ now, but if a K, embeds then & with the K, forms a
Knt1. Hence K, does not embed in Bf B A/} (see Figure[d).

First (a’ @ A

Figure9: Case 3.1

Subcase2: A=K, | <n-—1(so Ai=A).

Subsubcasel: B Z Kj,anyl < n. Fix b, by € Bsuchthat —E(b, b,). Find B, and
By in U™ with no edges between them, except that b, has edgesto all of Bf (= B,
now). Attach A} to B, then A, to Bf, enforcing no edges between A and Ap,. Then
no K, embedsin A} B} (asthese together are not large enough), and if K, embedsin
B Ab+ , then as by is connected to all of Ay, Kb, forms K1 (see Figure[10).

Figure 10: Case 3.2.1

Subsubcase 2: B = Kj. Thus AB = K|, wherel <n. Fixae A, b e B. Embed AB*
properly, then overlap A*B. If E(a, b) then the proof is complete. If —=E(a, b), then
the tp(x/ A*aB*b), where x has edgesto all of A*aB*b, is consistent hence realized
by c, say. If cisin UM, then A*aB*c = AB and if cisin —U", then A*cB*b = AB
(see Figure[11).

This concludes the proof of Claim[8]and thus the proof of TheoremEl
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9
]

Figure 11: Case 3.2.2

Theorem[7] the extension of Theorem[6] is easy to see. Existence follows for these
new cases by appropriately redefining the coherent class X, m given in Section 2
above, and redefining amalgamation on the N, (K ) portion of the coherent classes
in the obvious manner. Since the basic structure is the random graph, thisis never a
problem.

The question of the consistency of tp(x/A;BaA,Bf) is moot; the underlying
structure being the random graph and so embedding all finite graphs. Uniguenessin
the new casesis easily seen. Let AB be an arbitrary finite graph where AB — G,,,
and without loss of generality suppose B <— Ny (K,). Then B consists of at most
| complete components. Fix one component of cardinality n say, and add two more
verticesand edgestoit so astoform K, . Add edgesfrom one of these new vertices
to al of A, none from the other to A. Then the entire graph embeds into G,,, and
without loss of generality we may assume the enlarged B embeds inside N(K ),
forcing A to embed in —U"Y.
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