
414

Notre Dame Journal of Formal Logic
Volume 36, Number 3, Summer 1995

Expansions of Ultrahomogeneous Graphs

J. E. HELMREICH

Abstract Lachlan and Woodrow have completly classified the countable
ultrahomogeneous graphs. We expand the language of graphs to include a
new unary predicate. In this expanded language, ultrahomogeneous vertex 2-
colorings of ultrahomogeneous graphs are classified.

1 Introduction A countable structure M for a first order, purely relational language
L is ultrahomogeneous provided any isomorphism between finite substructures of M
extends to an automorphism of the entire structure. Since a countable ultrahomo-
geneous structure is determined up to isomorphism (among the countable ultrahomo-
geneous structures) by its finite substructures, many questions about a countable ul-
trahomogeneous structure can be reduced to questions about its finite substructures.
The particular ultrahomogeneous structures we will be concerned with are countable
(undirected) graphs. Lachlan and Woodrow [4] have completely classified the count-
ably infinite ultrahomogeneous graphs.

We address the question of how the vertex set of ultrahomogeneous graphs may
be two colored so that the colored graph (in the expanded language formed by adding
a unary predicate U) remains ultrahomogeneous. It is not difficult to see what each
colored portion of the graph must be isomorphic to. In fact, with one minor exception,
the type of each color together with the underlying graph type uniquely determines
the entire ultrahomogeneous structure.

There is a one-one correspondence between countably infinite ultrahomogen-
eous structures and coherent classes of finite models. The following definition fol-
lows (cf. Kueker and Laskowski [3]).

Definition 1 A class K of finite structures is coherent provided it is (i) closed un-
der substructures and isomorphisms; (ii) has countably many isomorphism types; (iii)
contains arbitrarily large finite structures, and (iv) satisfies the amalgamation and joint
embedding properties.
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Fact 2 A coherent class K has a unique countably infinite ultrahomogeneous struc-
ture associated with it that embeds every element of K and may be written as a count-
able increasing union of elements of K . Such a structure is said to be K generic.
Conversely, the class of all finite structures that embed into a given ultrahomogen-
eous structure is coherent (cf. Fraı̈ssé [1], Kueker and Laskowski [3]).

Definition 3 Let A, B be graphs with vertex sets {aα : α < δ} and {bβ : β < γ}. The
wreath product A(B) is the graph with vertex set A × B and edge relation E such that
((aα1 , bβ1 ), (aα2 , bβ2 )) ∈ E if and only if aα1 �= aα2 and (aα1 , aα2 ) ∈ EA, or aα1 = aα2

and (bβ1 , bβ2 ) ∈ EB.

If Nα and Kα are null and complete graphs on α vertices respectively, then it is easy to
see that Nα(Kβ) and Kα(Nβ) where α, β ≤ ω are ultrahomogeneous graphs. There
are also two additional finite ultrahomogeneous graphs, K3 × K3 and the pentagon
(cf. Gardner [2], Sheehan [5]).

The countable ultrahomogeneous graphs that remain may best be described
through the coherent classes that produce them as generics.

Definition 4 Fix 1 ≤ n < ω. Then �n is the class of all finite graphs A (for the
language L = {E}) in which Kn+1, the complete graph on n + 1 vertices, does not
embed. Similarly, we have the dual class �̃n of finite graphs which do not embed
Nn+1, the null graph on n + 1 vertices.

It is easy to see that �n (�̃n) is coherent (as will generally be the case in this paper
free amalgamation will suffice) and so has the associated ultrahomogeneous generic
structure Gn(G̃n). When n = 2, G2 is the ultrahomogeneous graph which embeds
all triangle free graphs. In the case where n = 1, G1 is an infinite null graph, G̃1

an infinite complete graph. Finally, the class of all finite graphs �ω is easily seen
to be coherent, and has ultrahomogeneous generic Gω, the random graph. Lachlan
and Woodrow [4] have shown that the above list is a complete classification of all
countable ultrahomogeneous graphs.

In the following, graphs are structures for the language L = {E}; the two colored
graphs we consider are structures for L ′ = L ∪ {U}. A nontrivial structure M for
the language L ′ is one where the interpretations of U and ¬U are both nonempty.
Throughout, in an abuse of notation, UM and ¬UM will refer to the graph structure (ie
〈UM, E〉) inherited from M on these subsets of its universe.

The situation with respect to the structured case is straightforward; we present
the following without proof.

Theorem 5 Fix n, m, 1 ≤ n ≤ ω, 1 ≤ m ≤ ω. Then:

1. For any n′, 1 ≤ n′ < n, there exists a unique (up to isomorphism) ultrahomo-
geneous L ′ structure M such that M|L ∼= Kn(Nm) and UM ∼= Kn′ (Nm), ¬UM ∼=
Kn−n′ (Nm). In the case n = ω and m < ω, then possibly n′ = ω and ¬UM ∼=
Kω(Nm).

2. For any m′, 1 ≤ m′ < m, there is a unique (up to isomorphism) ultrahomogen-
eous L ′ structure M such that M|L ∼= Kn(Nm) and UM ∼= Kn(Nm′ ), ¬UM ∼=
Kn(Nm−m′ ). In the case m = ω and n < ω, then possibly m′ = ω and ¬UM ∼=
Kn(Nω).
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3. If n = m = ω, there are ultrahomogeneous L ′ structures M1 �∼= M2 such that
Mi|L ∼= UMi ∼= ¬UMi ∼= Kω(Nω), i = 1, 2, where M1 is the limiting case of
(1) above, M2 is the limiting case of (2) above. That is, for every a ∈ UM1 and
every b ∈ ¬UM1 , M1 |= E(a, b) while for every a ∈ UM2 , there is a b ∈ ¬UM2

such that M2 |= ¬E(a, b).

4. Given any nontrivial ultrahomogeneous L ′ structure N expanding Kn(Nm)

there is an M such that (up to interchanging UM and ¬UM) N ∼= M, where M
is as in (1), (2), or (3) above.

We have a similar statement for the dual of Kn(Nm), Nm(Kn).

The main theorem concerns the situation in the unstructured case.

Theorem 6 Fix n, 2 ≤ n < ω. Then:

1. For any m, 1 ≤ m ≤ n, there exists a unique (up to isomorphism) ultrahomo-
geneous L ′ structure M such that M|L ∼= Gn, UM ∼= Gm, and ¬UM ∼= Gn.

2. For any nontrivial ultrahomogeneous L ′ structure N expanding Gn there is an
m such that (up to interchanging the interpretations of U and ¬U) N ∼= M,
where M is as described in (1) above.

A similar statement applies for the dual, G̃n.

Theorem 6 can be extended to the cases n = 1 and n = ω, where the underlying struc-
ture is respectively an infinite null or random graph. If n = 1 we have G1, an infinite
null graph. Since there really is no graph structure, UM could be any subset of M. If
n = ω, then to the possibilities described in Theorem 6, there are the additional cases:
UM ∼= Nl(Kω), (symmetrically, Kl(Nω) ) for 2 ≤ l ≤ ω.

Theorem 7

1. For any m, 1 ≤ m ≤ ω, there exists a unique ultrahomogeneous L ′ structure M
such that M|L ∼= Gω, ¬UM ∼= Gω and exactly one of the following four cases
holds: (i) UM ∼= Gm, or (ii) UM ∼= G̃m, or (iii) UM ∼= Nm(Kω), or (iv) UM ∼=
Km(Nω).

2. For any nontrivial ultrahomogeneous L ′ structure N expanding Gn there is an
m such that (up to interchanging the interpretations of U and ¬U) N ∼= M,
where M is as described in (1) above.

We devote the remainder of the paper to a proof of Theorem 6, followed by a brief
indication of how Theorem 7 may be proven using similar techniques.

The proof of Theorem 6 is comprised of three parts.

(A) The ultrahomogeneous L ′ structures as described in Theorem 6 exist.

(B) No other interpretations of UM are possible.

(C) The uniqueness of such expansions.

Begin with Gn and divide it into two pieces, one of which looks like Gn again and the
other of which looks like Gm. A priori, it would seem possible to do this in several
ways, differing in the edge structure between the two distinguished subgraphs. In fact
it is not; every graph that “should” occur across the boundary does occur. In the case
where m < n, this is relatively easy to show. The difficulty lies in the m = n case.
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For part (A) it is easy to see M as described exists. Fix n and m, and let K n,m be
the class of all finite L ′ structures C such that C|{E} ∈ �n and UC ∈ �m. Recall that
�n and �m are the coherent classes generating Gn and Gm respectively. Then K n,m

is coherent, noting in particular that free amalgamation holds.

2 The possibilities for U M In this section we address part (B) of the proof of The-
orem 6. The possibilities for the interpretation of UM that are consistent with Gn and
must be eliminated are (1) UM finite, (2) UM ∼= Nω(Kl ), l ≤ n, and (3) UM ∼= Kl(Nω),
l ≤ n.

Case 1: UM is finite. Then it is possible to find a �∈ UM such that ¬E(a, u) all u ∈
UM, and to find a′ �∈ UM such that E(a′, u0) some u0 ∈ UM. But a ∼= a′ (as finite L ′

structures) yet this isomorphism does not extend to an automorphism of M.

Case 2: UM ∼= Nω(Kl ). As in the first case, find a ∈ ¬UM such that there is Kl ∈
UM with no edges to a, and another copy of Kl ∈ UM with exactly one edge to a.
As elements of any coherent class that would have such an M (with UM ∼= Nω(Kl ))
as generic, these two versions of aKl should satisfy the amalgamation property. But
amalgamation fails of the two over aKl−1, leaving on one hand a vertex of Kl with
no edge to a outside of the base, and on the other hand the vertex with the edge to a
outside (see Figure 1).

��
��

a

� �
Kl−1

¬UM

UM ��� �
�

����
�

�����

Figure 1: Nω(Kl )

Case 3: UM ∼= Kl(Nω). Let a0a1b1 Kn−1 be the graph with edges E(a0, a1),
E(a0, b1), and E(b1, c) all c ∈ Kn−1. We can embed this into M|L with a0, a1

and b1 ∈ UM (hence a1 and b1 are in the same copy of Nω) forcing necessarily
Kn−1 ∈ ¬UM. Similarly, find a0b0a1 Kn−1 where E(a1, a0), E(a1, b0), and E(b0, c)

all c ∈ Kn−1. Embed again so that a0, a1 and b0 ∈ UM and Kn−1 ∈ ¬UM. Thus we
should be able to amalgamate these two structures over a0a1 Kn−1. We obtain a con-
tradiction as there must be an edge between b0 and b1, yielding a copy of Kn+1 (see
Figure 2).

This exhausts the possibilities for UM other than as allowed by Theorem 6.

3 Uniqueness In this section we address part (C) of the proof of Theorem 6, the
uniqueness of these expansions.

Fix n, 2 ≤ n < ω. Assume M is an ultrahomogeneous L ′ structure such that M|L
is isomorphic to Gn, UM ∼= Gm, and ¬UM ∼= Gn. In the following, AB, A, and B are
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Figure 2: Kl(Nω)

finite graphs. Here AB is a graph comprised of the subgraphs A and B, possibly with
edges between the two parts.

First, suppose m < n. Let M be as described above. It suffices to show for any
finite graph AB, where B ↪→ Gm and AB ↪→ Gn, that A ↪→ ¬UM, B ↪→ UM, as this
uniquely describes the coherent class generating M. To each vertex of A, attach a
disjoint copy of Km (so that with the vertex of A we have a copy of Km+1), making
sure any two of the |A| copies of Km are completely unconnected. Then the entire
new graph is still compatible with Gn, so embeds into M|L , and we may assume B
and all new copies of Km embed into UM. This forces all of A to be in ¬UM as desired;
we have Theorem 6 for m < n.

Hence for the remainder of the proof we may assume m = n. Then we have
M|L ∼= UM ∼= ¬UM ∼= Gn. Again we must show for an arbitrary graph AB where
AB ↪→ Gn, that AB ↪→ M, with A ↪→ ¬UM and B ↪→ UM. Whenever some graph
CD embeds into M in this manner (with C ↪→ ¬UM and D ↪→ UM) we say CD em-
beds properly. The proof is a double induction on the cardinalities of A and B.

Fix a graph AB such that AB ↪→ Gn. Assume:

(I) For any finite graph CB∗ with |B∗| < |B|, such that the graph CB∗ ↪→ Gn, we
have CB∗ embeds properly.

(II) For any graph A∗ B, with |A∗| < |A| such that A∗ B ↪→ Gn, A∗ B embeds prop-
erly.

We wish to show that AB embeds properly.
If either A or B is empty we are done. Suppose then that AB is simply ab, and

that ¬E(a, b). Choose any a ∈ ¬UM, b ∈ UM and we may suppose E(a, b). Now
tp(x/ab) determined by ¬E(x, a)∧¬E(x, b) is consistent with Gn, hence is realized
in M|L by some c. If c ∈ ¬UM, then cb ∼= ab and is properly embedded. If c ∈ UM,
then ac ∼= ab and is properly embedded. In the alternative where E(a, b) holds, a
similar argument will suffice.

Now assume |A| > 1 and that B has but one vertex b. Choose a vertex a ∈ A
arbitrarily. Let AacAb be a graph such that: Aa

∼= A ∼= Ab; for all vertices d ∈ Aa and
e ∈ Ab, ¬E(d, e) holds; E(d, c) holds if and only if E(d′, a) holds in A (d′ the image
of d in A); E(e, c) holds if and only if E(e′, b) holds in AB (e′ the image of e in A).
Then AacAb ↪→ Gn and by (I), AacAb ↪→ ¬UM. Let A∗

ab ∼= A\{a}B. By (II) then
A∗

ab ↪→ M, with A∗
a ↪→ ¬UM and b ↪→ UM. Furthermore we may assume A∗

a embeds
into the copy of Aa in the obvious way. Note that we now have A∗

abcAb embedded
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in M, but we do not know the edge relation between b and cAb. Now tp(x/A∗
abcAb)

where x “looks like” b to Ab, like a to A∗
ab, and has no edge to c is consistent with Gn,

hence realized in M|L by f , say. If f ∈ ¬UM then A∗
a f b ∼= AB, properly embedded,

and if f ∈ UM then Aa f ∼= AB, properly embedded again ( f playing the role of a in
the first case, b in the second). Hence AB embeds into M properly.

We may now assume that |A| > 1, |B| > 1, and (I) and (II) hold for the graph
AB. The strategy to be followed is similar to that used above in the last case: choose
a vertex a ∈ A and remove it, calling the remainder A∗. Then by (II) A∗ B embeds
properly into M, to a copy of A∗ B we will call A∗

a Ba. Choose a b ∈ B and remove
it, calling the remainder B∗. Then by (I), AB∗ embeds properly into M, without loss
of generality to a copy Ab B∗

b disjoint from A∗
a Ba chosen earlier. So now there are

“nearly” two copies of AB embedded properly: (A∗
a Ba)(Ab B∗

b ). Suppose the L-
type p(x) = tp(x/A∗

a Ba Ab B∗
b ) is consistent with Gn, where p|A∗

a Ba = tp(a/A∗ B)

and p|Ab B∗
b
= tp(b/AB∗). Then as the underlying structure is Gn, p(x) is realized in

M|L . If the realization c is in ¬UM, then (A∗
ac)Ba is a copy of AB properly embedded

in M. If the realization c is in UM, then Ab(B∗
bc) is a copy of AB properly embedded.

All that remains, then, is to find an embedding of (A∗
a Ba)(Ab B∗

b ) so that the type
p(x) is consistent (with Gn). The problem of course is that there is no reason that p(x)

necessarily should be consistent. That is, there could be a copy of Kn inside A∗
a B∗

b ,
say, and p(x) might demand that x be attached to it, forming a Kn+1. The trick is
to embed (A∗

a Ba)(Ab B∗
b ) very carefully, maintaining control over the edges between

(A∗
a Ab) and (Ab B∗

b ) in such a manner that the consistency of p(x) with Gn is assured.

Claim 8 It is possible to embed (A∗
a Ba)(Ab B∗

b ) into M so that the type p(x) is con-
sistent.

Proof of Claim: The proof splits into three cases.

Case 1: There are a ∈ A, b1 ∈ B such that ¬E(a, b1) and B �∼= Kl , any l ≤ n.
Fix a ∈ A, b, b1, b2 ∈ B such that ¬E(a, b1), ¬E(b, b2). In the following, as

described above, there will be two copies of AB: an ‘a’ copy and a ‘b’ copy. The
individual parts of each copy will be distinguished by Aa, Ba, and Ab, Bb. When the
vertex ‘a’ is referred to it will be implicitly understood to refer to the copy of this
vertex in Aa. Similarly the vertex ‘b’ will refer to the copy of b in Bb (though there
are copies of a and b in Ab and Ba respectively, it will never be necessary to make
use of them). In the same vein, ‘b1’ will be considered to be in Ba and ‘b2’ will be
considered to be in Bb. Let

A+
a = {c ∈ Aa : E(a, c)} A−

a = {c ∈ Aa : ¬E(a, c)},
and then A∗

a = Aa \ {a} = A+
a A−

a . Similarly,

B+
a = {c ∈ Ba : E(a, c)} B−

a = {c ∈ Ba : ¬E(a, c)}.
Since b1 ∈ Ba, let B−∗

a = B−
a \ {b1}.

Continuing in the same fashion with respect to Ab and Bb, define

A+
b = {c ∈ Ab : E(c, b)} A−

b = {c ∈ Ab : ¬E(c, b)}
B+

b = {c ∈ Bb : E(c, b)} B−
b = {c ∈ Bb : ¬E(c, b)}
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Figure 3: Basic Setup

and then B∗
b = Bb \ {b} = B+

b B−
b . Finally, remembering that b2 ∈ B−

b , define B∗∗
b =

B∗
b \ {b2} = Bb \ {b,b2} and B−∗

b = B−
b \ {b2} (see Figure 3).

The embedding is made in 5 steps.
Step 1: In UM, find a copy of B+

a and a copy of B∗∗
b with no edges between them.

Find a new vertex c with edges to every vertex of B+
a that has no edges to B∗∗

b (see
Figure 4).

�
�B+

a

�
�

�
�

�
�

�
�B∗∗

b
c

���

Figure 4: Step 1

Step 2: Then |B∗∗
b c| < |B|, hence by inductive hypothesis (I) it is possible to

find the following in ¬UM: a copy of Ab, chosen so that Ab is connected to B∗∗
b as

appropriate, (i.e., so Ab B∗∗
b

∼= AB\{b, b2}) and such that c has edges to all vertices
of A+

b yet has no edges to any vertex of A−
b . Resolving B∗∗

b into the two components
B−∗

b and B+
b , find in ¬UM a vertex d which is not connected to Ab, to c, or to B−∗

b but
is connected to all of B+

b . This latter is consistent (with respect to Gn), as in the worst
case d is connected to all of B+

a , but then tp(d/B+
a ) = tp(a/B+

a ) (see Figure 5). The
edges between d and B+

a and between Ab and B+
a are unknown.

Step 3: It is now possible to find B−∗
a in UM so that B−∗

a B+
a

∼= Ba \ {b1} = B∗
a .

In ¬UM find Aa so that Aa B∗
a

∼= AB \ {b1}, with Aa not connected to Ab in any way.
Recall that Aa is composed of three parts, A−

a , A+
a , and a itself. In addition, require

the choice of Aa to be made so that there are no edges from A−
a and a to d, while A+

a is
connected in its entirety to d. Finally, it is possible to insist that B−∗

a not be connected
to d or to Ab (see Figure 6). Again, the edges between Aa and B∗∗

b c are unknown.
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Figure 5: Step 2
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Figure 6: Step 3

Step 4: In UM find a copy of b1 to complete B−∗
a B+

a to form Ba, connected to A∗
a

as appropriate. Presumably E(b1, a), as otherwise Aa Ba
∼= AB showing AB embeds

properly and the proof is complete. In what manner b1 is connected to d, Ab, B∗∗
b , or

c is irrelevant.
Step 5: In UM find a copy of b2 to complete B∗∗

b to B∗
b , connected to Ab as ap-

propriate and not connected to Aa or to d. Here the edge relations between b2 and c,
Ba are unknown (see Figure 7).

The basic embedding is now complete.

Claim 9 p(x) = tp(x/A∗
a Ba Ab B∗

bdc) is consistent with Gn, where

tp(x/A∗
a Ba) = tp(a/AB\{a}) tp(x/Ab B∗

b ) = tp(b/AB\{b})
and ¬E(x, a), ¬E(x, d), ¬E(x, c).

It suffices to show Kn �↪→ A+
a B+

a A+
b B+

b . Notice that Kn �↪→ A+
a B+

a and Kn �↪→ A+
b B+

b ,
as otherwise AB �↪→ Gn. Also by choice of B+

a and B+
b , Kn �↪→ B+

a B+
b . By construc-

tion, Kn �↪→ A+
a A+

b . If Kn ↪→ A+
a B+

b , then d together with this Kn must already form
a Kn+1, a contradiction. If Kn ↪→ B+

a A+
b , then c together with this Kn must form a

Kn+1, again a contradiction. Since A+
a and A+

b have no edges between them, and B+
a

and B+
b also have no edges between them, no Kn can embed into any three (or all four)

pieces of A+
a B+

a A+
b B+

b . So Claim 9 is shown.
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Figure 7: Step 5

The type p(x) is consistent with Gn, hence realized by e say. If e is in UM, then
Ab(B∗

be) ∼= AB, and if e is in ¬UM then (A∗
ae)Ba

∼= AB. In either case, AB embeds
properly into M, completing Case 1.

Case 2: There is a ∈ A, b1 ∈ B such that ¬E(a, b1), and B ∼= Kl , l ≤ n.

Subcase 1: B+
a

∼= K j, some j ≤ n − 2. Then the preceding construction will con-
tinue to go through, with the exception of requiring the b2 chosen in Step 5 to be con-
nected to d. All of B+

a may be connected to b2, but this will form only a Kn−1 at worst
(when j = n − 2).

Subcase 2: B+
a

∼= Kn−1. Then AB\{b1} can be embedded properly, following
which AB\{a} can be embedded over it. The only possible problem would be if
E(b1, a). But then B+

a b1a ∼= Kn+1, a contradiction. Hence ¬E(b1, a) and AB em-
beds properly (see Figure 8).
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�
�A a

�
�

�
�

�
�a

�
�

�
�

�
� B

�
�

�
�

�
�b1

First Second

Figure 8: Case 2.2

Case 3: For every a ∈ A, and every b ∈ B, E(a, b).

Subcase 1: A �∼= Kl any l ≤ n. Let a, a′ in A be such that ¬E(a, a′). Embed
Aa Ab B∗

b properly (that is, B∗
b in UM and Aa Ab in ¬UM) so that Ab B∗

b has edges as
appropriate, with a′ having edges to all of A+

b and B+
b . Otherwise, enforce no edges.
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Then embed A∗
a Ba properly, overlapping A∗

a with the copy of Aa chosen earlier. The
concern is among B+

a B+
b A+

b now, but if a Kn embeds then a′ with the Kn forms a
Kn+1. Hence Kn does not embed in B+

a B+
b A+

b (see Figure 9).
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�B+

b B−
b

First

Second

��� ���

�����

Figure 9: Case 3.1

Subcase 2: A ∼= Kl , l ≤ n − 1 (so A∗
a=A+

a ).

Subsubcase 1: B �∼= Kl , any l ≤ n. Fix b, b2 ∈ B such that ¬E(b, b2). Find Ba and
B∗

b in UM with no edges between them, except that b2 has edges to all of B+
a (= Ba

now). Attach A+
a to Ba, then Ab to B∗

b , enforcing no edges between A+
a and Ab. Then

no Kn embeds in A+
a B∗

b (as these together are not large enough), and if Kn embeds in
B+

a A+
b , then as b2 is connected to all of Ab, Knb2 forms Kn+1 (see Figure 10).
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�B∗

b b2
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Figure 10: Case 3.2.1

Subsubcase 2: B ∼= K j. Thus AB ∼= Kl , where l ≤ n. Fix a ∈ A, b ∈ B. Embed AB∗

properly, then overlap A∗ B. If E(a, b) then the proof is complete. If ¬E(a, b), then
the tp(x/A∗aB∗b), where x has edges to all of A∗aB∗b, is consistent hence realized
by c, say. If c is in UM, then A∗aB∗c ∼= AB and if c is in ¬UM, then A∗cB∗b ∼= AB
(see Figure 11).

This concludes the proof of Claim 8, and thus the proof of Theorem 6.

�
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Figure 11: Case 3.2.2

Theorem 7, the extension of Theorem 6, is easy to see. Existence follows for these
new cases by appropriately redefining the coherent class K n,m given in Section 2
above, and redefining amalgamation on the Nl(Kω) portion of the coherent classes
in the obvious manner. Since the basic structure is the random graph, this is never a
problem.

The question of the consistency of tp(x/A∗
a Ba Ab B∗

b ) is moot; the underlying
structure being the random graph and so embedding all finite graphs. Uniqueness in
the new cases is easily seen. Let AB be an arbitrary finite graph where AB ↪→ Gω,
and without loss of generality suppose B ↪→ Nm(Kω). Then B consists of at most
l complete components. Fix one component of cardinality n say, and add two more
vertices and edges to it so as to form Kn+2. Add edges from one of these new vertices
to all of A, none from the other to A. Then the entire graph embeds into Gω, and
without loss of generality we may assume the enlarged B embeds inside Nm(Kω),
forcing A to embed in ¬UM.
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