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Classification of Weak DeMorgan Algebras

MICHIRO KONDO

Abstract  Inthis paper we shall first show that for every weak DeMorgan al-
gebra L(n) of order n (WDM-n agebra), there is a quotient weak DeMorgan
algebra L(n)/~ which is embeddable in the finite WDM-n algebra 2(n). We
then demonstratethat thefinite WDM-n algebra2(n) isfunctionally freefor the
class CL(n) of WDM-n algebras. That is, we show that any formulas f and g
areidentically equal in each algebrain CL(n) if and only if they areidentically
equal in Q(n). Finally we establish that there is no weak DeMorgan algebra
whose quotient algebra by a maximal filter has exactly seven elements.

1 Introduction It iswell known that there are algebras X whose quotient algebras
are embeddablein finite algebras of the same structure as X. Examples of these alge-
bras include Boolean algebras, Kleene algebras, and DeMorgan algebras. More pre-
cisaly, aquotient algebraof aBoolean agebra, which can be described by the WDM-2
algebra of this paper, is isomorphic to the 2-valued Boolean algebra 2(2) = {0, 1}.
A guotient algebra of a Kleene algebra (WDM-3 agebra) is embeddable in the 3-
valued Kleene algebra 2(3) = {0, 1/2, 1}. And a quotient algebra of a DeMorgan
algebra (WDM-4 algebra) is embeddable in the 4-valued DeMorgan algebra 2(4) =
{0, a, b, 1} defined below. All of these algebras satisfy DeMorgan’'s law (or DML):
N(XAY) = NxVv Nyand N(xV y) = Nx A Ny, where N is a unary operation in
those algebras. Now the following questions naturally arise.

1. Arethere 5-valued (or 6-valued, 7-valued, ...etc.) algebras satisfying DeMor-
gan'slaw?
2. What algebras are embeddable in those finite algebrasif they exist?

In this paper we will answer these questions. The three algebras 2(2), 2(3), and
Q(4) satisfy the condition N?x = x aswell as DML. In general, DML and the con-
dition that x < y implies Ny < Nx are equivalent to each other under the condition
N?x = x. However the question arises as to whether the converse holds, that is, asto
whether the equivalency of these conditions yields N2x = x.
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Itisafamiliar result that thefinitealgebra ©2(2) = {0, 1} (or 2(3) = {0, 1/2, 1},
Q(4) = {0,a, b, 1}) is functionally free for the class of Boolean (or, respectively,
Kleene or DeMorgan) algebras. For example, any formulas f and g are identically
equal in Boolean algebrasiff they areidentically equal in 2(2). Wemay expect that if
there are algebras embedded in afinite algebrathen that finite algebrais functionally
free for the class of those algebras.

Regarding N as a negation operator, the condition N2x = x does not hold in
Heyting algebras (or intuitionistic propositional logic), but rather aweaker condition
N3x = Nx holds. Of course, DML (N(xV y) = Nx A Ny) does not hold in Heyt-
ing algebras either. Hence, from alogical point of view, it is an interesting question
whether there are al gebras satisfying both the condition N3x = Nx and DML. In this
paper we shall show the following.

e Thereareweak DeMorgan agebras L (n) of order n (smply called WDM-n a-
gebras) whose quotient algebras are embeddabl e in the n-valued algebras 2 (n)
(wheren=15, 6, 8);

e foranyformulas f(Xq, ..., X)) andg(Xy, ..., Xx), f and gareidentically equal
(denoted by f = g) in each WDM-n algebraiff f = gin Q(n). Thusthe prob-
lem of functional freeness for WDM-n algebrasis solved affimatively.

2 WDM-n algebras Before defining WDM-n algebras, we consider Kleene alge-
bras and DeMorgan algebras which are specia cases of weak DeMorgan algebras.
By aKleene algebra K, we mean an algebraic structure X = (K, A, v, N, 0, 1) such
that:
1. (K, A,V,0,1)isabounded distributive lattice;
2. N: K — K isamap satisfying the following conditions:
(CO) NO=1,N1=0;
(C1l) x<yimplies Ny < Nx;
(C2) N2x = x, where N2x = N(NXx);
(C3) xA Nx <yVv Ny (Kleene'slaw).

Asafinitemodel of Kleene algebras, we havethe set Q(3) = {0, 1/2, 1} defined by:

XAY=min{x, y} 1
XVy = max{X, y} Q) 1/2
Nx=1-—x forany x,ye Q(3). 0

If we delete the condition (C3), we obtain the definition of DeMorgan algebras (or
simply DM-algebras). That is, aDM-algebra M = (M, A, v, N, 0, 1) is defined as
follows
1. (M, A,V,0,1) isabounded distributive lattice;
2. N: M — M isthe map satisfying the conditions:
(CO) NO=1,N1=0;
(C1) x<yimplies Ny < Nx;
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(C2) N?x = x.

As for DM-algebras, we have the following finite model of DM-algebras. The set
Q(4) = {0, a, b, 1} with the structure below is the model of the DM-algebras.

1

Q(4) a b Na=a, Nb=h.

0

Now we define WDM-n algebras (where n = 5, 6, 8). By a ground weak DeMor-
gan agebra(GWDM algebra), wemean an algebraic structure L = (L, A, v, N, 0, 1)
where:

1. (L, A,V,0,1) isabounded distributive lattice;
2. N: L — L isamap satisfying the conditions:

(AO) NO=1and N1=0;
(A1) N(xAY)=Nxv Nyand N(xVv y) = NxA Ny (DML).
If themap N sati sfies some of the conditions bel ow besidesthose of GWDM algebras,

then the algebra with the extra conditions is called a WDM-n agebra. We now list
the additional conditions applying to N.

(A2) XA Nx=0;

(A3) N?x=Xx;

(A4) xA Nx=<yv Ny (Kleeng'slaw);

(A5) x A NxA N2x < yv Nyv N?y (weak Kleene's law);

(AB) N?x < X;

(A8) N3x = Nx.

Note that there is a particular reason why we do not list a condition named (A7) to
which we will return |ater.

If themap N satisfies (A5) and (A6), then we call the GWDM algebraaWDM-5
algebra. If N satisfies (A6), itiscalledaWDM-6 algebra. Finaly, the GWDM alge-
brawith the additional condition (A8) iscaled aWDM-8 (or ssmply WDM) agebra.
Summing up:

(1) WDM-2: (A0), (A1), (A2), (A3) (Boolean algebras);
(2) WDM-3: (A0), (A1), (A3), (A4) (Kleeneagebras);
(3) WDM-4: (A0), (Ad), (A4) (DeMorgan algebras);
(49 WDM-5: (A0), (A1), (A5), (A6);

(5) WDM-6: (A0), (A1), (A6);

(6) WDM-8: (A0), (A1), (A8).



WEAK DEMORGAN ALGEBRAS 399

Examples:
1
c Nc=Db
Q(5)
a b Na=1Nb=b
1
0 Nd = d
Nc=Db
d ¢ Na=1
Nb = b
Q(6) a b
Q(8) 0
1
d € Nd=d, Ne=0
Nc=b, Nf =d
a b Na=1 Nb=bh.
0

Asindicated below, aWDM-n algebrahas an n-valued algebra ©2(n) asamodel. Itis
obviousthat al the finite WDM-n algebras 2(n) are subalgebras of the finite WDM-
8 algebra 2(8). In contrast to this result however, we shall show in Section 4 that
thereis no subalgebra of 22(8) with seven elements. Hence we do not define WDM-7
algebras here but consider below the caseswheren =5, 6, 8.

Remark 2.1  Since (DML) holdsin any WDM-n agebras, these satisfy the condi-
tion: x < yimplies Ny < Nx.

Remark 2.2  If we add the condition N?x = x to those of WDM-n algebras, the
WDM-5 algebras become Kleene algebras and the other al gebras become DeM organ
agebras. Itisclear that (A8) (N3x = NXx) holdsin these WDM-n algebras.
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3 Representation Theorem of WDM-n  In this section we shall prove a Represen-
tation Theorem for these algebras. That is, we shall show that for any WDM-n alge-
bra L(n) there exists a quotient WDM-n algebra L(n)/~ of that algebra such that it
is embedded in the n-valued weak DeMorgan algebra ©2(n). We denote this fact by
(L(n)/~) & Q(n).

Developing agenera theory, let L bean arbitrary WDM-n algebra. A nonempty
subset F of L iscalled afilter of L when it satisfies the following conditions.

(F1) x,ye FimpliesxAye F;

(F2) xe Fandx<yimplyye F.
A filter F of L is called proper when it is a proper subset of L; that is, 0 ¢ F. A
proper filter Piscaled primeif xvy e Pimpliesxe Pory e P forevery xand y
in L. Prime filters play an important role in this paper. By a maximal filter M of L,

we mean a proper filter M such that there is no proper filter which properly contains
it. The next two propositions are well known, so we omit the proofs.

Proposition 3.1 If M isamaximal filter, then it isalso a prime filter.

Proposition 3.2  For any proper filter M, the following conditions are equivalent:

1. Misamaximal filter;
2. if x¢ M, thenthereisan element u € M suchthat x Au=0.

Let F be any proper filter of L. We introduce arelation ~¢ (or simply ~ if no con-
fusion arises) on L defined by F asfollows. For xand y in L, we define:

x~gy iff FIfeF;xAf=yAf,NxA f=NyAa f, and
N?x A f = N2y f.

Lemma3.3 ~f isacongruencerelationon L.

Proof: We show only that x ~aandy ~bimply XAy~ aAb. Sincex~ aand
y ~ b, there are elements f, g € F such that:

XA f=an f, Nx A f = Nana f, N2x A f = N2a A f:
yAg=bAg, NyAg=NbAg, N2y Ag= N2bAg.

Itisclearthat h= f A g € F, and hencethat (x A y) Ah= (aAb) A h. By (DML),
we have N(XA Y) Ah=(NxVv Ny) Ah=(NxAh)Vv (NyAh) =(Nanah)v
(Nb A h) = N(@aA b) A h. Similarly N2(x A y) A h= N?(aA b) A h. Thuswe have
XAYy~aAh.

Let [X] bethe equivalenceclass{y € F|x~ y} of x € L and L/~ bethe quotient
setof L by ~, thatisL/~ = {[X]|x € L}. Since the relation is congruent, we can
consistently definein L/~ the operations A, v, and N. For [X] and [y] in L/~:

[XIALY] = [xAY]
[XIVIyl = [xvy]
N[X] = [NX]
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Of course the symbols A, v, N of the left hand sidearenot in L but in L/~. For the
sake of simplicity, we use the same symbolsasthosein L. Clearly we have the result
by the general theory of universal algebras. O

Theorem 3.4  For every WDM-n algebra L(n), L(n) is homomorphic to the quo-
tient WDM-n algebra L(n) /~.

Proof: Themap&: L(n) — L(n)/~ defined by &(x) = [X] provides the desired
result. O
Moreover, if M isamaximal filter of L(n) then we get the following strong result.

Theorem 3.5 If M isamaximal filter of L(n), then L(n)/~ is embeddable in the
WDM-n algebra €2(n), that is, L(n) /~ > (n).

We will prove thistheorem in anumber of stages. Let L(n) beany WDM-n algebra
We can devideit into subsets by the congruence relation ~. Moreover, £(n) can aso
be divided into some subsets by thefilter F as follows.

L1 = {xjxeF,Nx¢F, N°xe F};
Lo = {xx¢ F,NxeF, N°x¢ F};
La = {xxe F,NxeF, N°x¢ F};

L, = {x|x¢ F,Nx¢F,N°x¢ F};
Lc = {x|xe F,Nx¢ F,N°x¢ F};
Lg = {x|xe F,NxeF, N°xe F};
Le = {X|x¢ F,Nx¢F,N°xe F};
Lt = {x|x¢ F,NxeF, N°xe F}.

Some of these may be empty. We can show that the equivalence class [X] by ~ and
Lp by F areidentical in case of F being amaximal filter of L. Moreover in that case
the quotient algebra L(n) /~ is embedded in the finite WDM-n algebra Q2(n).

Lemma3.6 If M isamaximal filter, then the following are equivalent:

1 x~vy;
2. X,y € L for some subset L; of L(n).

Proof: (1) = (2): Supposethat x ~ y. Thereisan element f € M such that x A
f=yAf,NxA f=NyAa f,and N°>x A f = N?y A f. Since M is the filter, we
havex € M iff y e M, Nx € M iff Ny € M, and N?x € M iff N2y € M. Thismeans
that x and y arein the same subset L; of L(n).

(2) = (1): We assume that x and y are in the same subset, for instance in L.
The other cases can be proved in the sameway. By the definition of L, wehavex, y €
M, Nx, Ny € M, but N?x, N?y ¢ M. Since M is maximal, there are elements u and
vin M suchthat N°2x Au=0= N2y A v. Puta =XA YA NXxANyAuA v. Clearly
« € M. Now it follows that x ~ y for «. O

Hence each set L can be denoted simply by [t], e.g., L1 =[1], La = [a], and so on.
Let L be aWDM-5 (or WDM-6) algebra and M a maximal filter of L. From
Lemmal3.6] each set L, isidentical with an equivalence class.
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Lemma3.7 For WDM-5 (or WDM-6) algebras, Le and L s are empty.

Proof: Suppose that L is not empty. Then there is an element x € L such that x
¢ M, Nx ¢ M, and N?x € M. Since L is WDM-5 (or WDM-6), we have N?x < x.
Hencewehave x € M. But thisisacontradiction. Thus Le isempty. Inasimilar way
it followsthat L isempty. O

Lemma3.8 For WDM-5algebras, if Ly # &, then Ly = @.

Proof: Supposethat Lq isnot empty. Thereisan element u suchthatu € M, Nu e
M, and N?u e M. Thuswehaveu A NuA N?u e M. Forevery x € L, sinceuA NuA
N2u < xv NxVv N2x, weget x vV NxVv N2x e M. Thuswehavethat x e M, Nx € M,
or N°x € M, and henceit followsthat Ly, = &. O

Lemma3.9 For WDM-5algebras,if L. # @ thenwehave L, # @ andhencelLy =
.

Proof: Assumethat L is not empty. Then thereis an element u such that u € M,
Nu ¢ M, and N2u ¢ M. Since the element Nu belongs to Ly, the set Ly, is not
empty. O

Henceif L isaWDM-5 algebrathen we have the following two kinds of parti-
tionsof L:

1. {[1].[C]. [a]. [b]. [c]}; o,
2. {[1].10]. [a]. [d]}.

Lemma3.10 For two kinds of partitions of WDM-5 algebras, the subset L; isrep-
resented as follows:

xelp iff x~1;

Xe Ly iff x~0;

xe Ly iff x20and Nx~ 1;

xe Ly iff X~ Nxandx¢ M;

xe Le iff x 2 Nx, Nx~ N?x, and x € M;
6. xe Ly iff x~ Nxandxe M.

akrowbdpRE

Proof: Weprovehereonly Case(3). Theother casescan be provedinasimilar way.
Suppose that x € L. By definition, it follows that x € M, Nx € M, but N?x ¢ M.,
Since M isthe maximal filter, there exists an element u € M such that N2x A u = O.
Put 8 = xA NXxA ue M. Forthat element, weobtain NXxA = B=1A B, N°XA B =
0= N1AB,and N3x A B = 8= N21LAB. Itfollowsthat Nx ~ 1. Sincex € M, we
have x 0.

Conversely suppose that Nx ~ 1 but x # 0. We have Nx € M and N?x ¢ M
by Nx ~ 1. Now the fact x ¢ M meansthat x € Lo and so x ~ 0. However this
contradicts our assumption. Thuswe have x € L. O

Proof of Theorem[3.5](for the case of WDM-5):

Casel: Wedefinethemapé&: (L(5)/~) — Q(5) by &([X]) =t,wherex € L; and
te{1,0,a,b,c}. Clearly the map & iswell defined and yields the theorem.
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Case2: Wedefine&([X]) =twherex e Lyandt € {1, 0, a} and £&([X]) = d where
X € Lg.

O

Remark 3.11 We note that in case of L being partitioned {[1], [O], [a], [d]}, L is
aso a WDM-5 algebra. For in this case we have [0] < [a] < [d] < [1], N[a] =
[1], and N[d] = [d]. Of course, amap ¢ : {[1],[0], [a], [d]} —> 2(5), defined by
o([d]) = cand ¢([t]) =t wheret # d, isinjective and homomorphic; that is, is an
embedding. Thuswe can consider the algebra {[1], [O], [a], [d]} as the subalgebra of
Q(5).

If L(6) isaWDM-6 algebra, since L and L ¢ are empty, it follows that the maximal
filter M devides L(6) intosix parts{[1], [O], [a], [b], [c], [d]}. By asimilar argument,
we have the following theorem.

Theorem 3.12 For every WDM-6 algebra L(6), thereis a quotient WDM-6 alge-
bra L(6)/~ such that it can be embedded in Q(6) = {[1], [0], [a], [1], [c], [d]}; that
is, (L(6)/~) = Q(6).

Theorem 3.13 For every WDM-8 algebra L (8), thereis a quotient WDM-8 alge-
bra L(8)/~ such that it can be embedded in in the finite WDM-8 algebra ©2(8); that
is, (L(8)/~) & £(8).

We can establish the general theorem, which is an extended version of Stone’s Rep-
resentation Theorem of Boolean algebras.

Theorem 3.14 Let X bea WDM-n algebra and L (X) be the set of all maximal fil-
tersof X. Then Q(n)-X) isa WDM-n algebra and X can be embedded in Q(n)-*)
(wheren =5, 6, 8).

Proof: Wedefineamap ¥ : X — Q(n)-™ by W(x)(M) = t, where M isamax-
imal filter and x isin the equivalence class L; by M. The map ¥ gives usthe desired
result. O

4 Functional freenessof WDM-n  Inthissection we shall show that every Q(n) is
functionally free for the class CL(n) of all WDM-n algebras. In general, an algebra
Ais said to be functionally free for a nonempty class CL of algebras provided that
the following condition is satisfied: any two formulas are identically equal in A iff
they are identically equal in each algebrain CL. For example: (i) the two element
Boolean algebra2(2) = {0, 1} isfunctionally freefor the class CL (2) of all Boolean
algebras; (ii) thethree element Kleenealgebra2(3) = {0, 1/2, 1} isfunctionally free
for the class CL(3) of al Kleene agebras; and (iii) the four element DeMorgan al-
gebra 2(4) = {0, a, b, 1} is functionally free for the class CL(4) of al DeMorgan
algebras.

We define what it is to be a formula before proving the functional freeness of
Q(n). Let S= {Xg, X»...} bethe set of variables. We define formulas recursively.

1. Every variableisaformula;
2. if f andgareformulas,thensoare f A g, f v g,and Nf.
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Themap V : S— L iscalled avaluation function of the algebra L. The valuation
function V isextended uniquely to al formulas asfollows; for any formulas f and g:

(V1) V(fArg) = V(H)AV(9);
(V2) V(fvg = V(f)vV(g:;
(V3)  V(Nf) = N(V().

Hencethevalue V ( f) of formula f is determined by the values of x; which are com-
ponents of f. We note that the symbols A, v, and N of the right hand side of the
equations are symbolsin L.

We say that f and g areidentically equal in L (or smply f = g holdsin L) if
V(f)=V(g) for every valuation function V of L. We also say that f and g areiden-
tically equal in the class CL(n) of WDM-n algebras (or simply that f = g holdsin
CL(n)) when f = gholdsinevery WDM-nalgebra L (n) in CL(n). Inthefollowing,
wesshall show that f = gholdsin CL(n) iff f = gholdsin (n). Itissufficient only
tocaculatethevaluesV ( f) and V(g) for al valuations of 2(n) in order to determine
whether f = g holds or not in the class CL(n) of WDM-n algebras.

Lemmad4.l Let D beanybounded distributive latticeand a, b € L. If a # b, then
thereisaprimefilter P of D suchthatae Pbutb ¢ P.

Proof: Thisisawell known theorem for distributive lattices so we omit the proof

here. See Rasiowa [[2] for the proof. O
We note that the relation ~p determined by P isacongruencerelation evenif Pisa
primefilter.

Now we provethefunctional freenessfor WDM-n algebras. Weshow only that a
WDM-5algebrag2(5) isfunctionally freefor theclass CL (5) of all WDM-5 algebras.
The other WDM-n algebras €2(n) (wheren = 6, 8) can be proved in asimilar manner
to be functionally free for the corresponding class CL(n) of all WDM-n algebras.

Let P bean arbitrary primefilter of aWDM-5 algebra L. We have thefollowing
partition of L into either {L,, Lo, La, Ly, L¢} or {Ly, Lo, La, Lg}, where:

L, = {xel|xeP,Nx¢ P, N> e P};
Lo = {xelL|x¢ P, Nxe P, N> ¢ P};
La = {xel|xeP,NxeP, N°x¢ P};
Ly, = {xel|x¢P, Nx¢P, N°x¢ P};
Le = {xel|xeP,Nx¢ P, N>x¢ P};
Ly = {xel|xeP, NxeP,N?xe P}.

Itisclear that if an equation f = g holds for formulas f and g in WDM-5 algebras
CL(5) thenit holdsin ©(5). To prove the converse we suppose that f = g does not
hold in CL(5). By definition there is then a WDM-5 agebra L(5) and a valuation
function V of L(5) suchthat V(f) # V(g). It issufficient to construct a valuation
function V* of Q(5) such that V*( ) # V*(Q).

Case 3: Firstly we consider the case of the partition {L1, Lo, La, Lp, Lc}. We now
define the map V* : S — Q(5) by V*(xj) =t when V(Xj) € Ly wheret ¢
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{1,0, a, b, c}. More precisely, for every variable x; € S, we define:

if V(Xj) € Ll
if V(xj) € Lo
if V(xj) € La
if V(xj) € Lp
if V(Xj) € Lc.

We shall show that V* isthevaluation function of €2(5). We proveonly that the defini-
tion of V* isconsistent. Sinceall the other cases can be proved similarly, we consider
merely the following cases. Welet f and g be formulas.

e x=V*(f)=aandy=V*(g) =a: Wemustshowtha V*(f Ag) =xAy=a.
Since x = y = a, we have x, Nx, y, Ny € P, but N?x, N2y ¢ P. Clearly it
followsthat x Ay € P, N(xA y) = NxVv Ny e P. Alsoit followsthat N?(x A
y) = N2xA N?y ¢ P. Thusweget X A y € L, and hence V*(f A g) = a.

e x=V*(f) =aand y = V*(g) = b: It suffices to show that V*(f A g) =
XAy =0. It follows from x = aand y = b that x, Nx € P, N°x ¢ P, and
y, Ny, N?y ¢ P. Since P isaprimefilter, wehave x A y ¢ P. Clearly we also
have N(x A 'y) = NxVv Ny € P, and N2(x A y) = N?x A N2y ¢ P. It follows
thaaxAy=V*(fAg)=0.

e x=V*(f)=bandy= V*(g) = c. Weshow that V*(f Ag) =xAy=Dh.
It suffices to demonstrate that X A y € Lyp; thatis, XAy ¢ P,N(XAY) ¢ P,
and N?(x A'y) ¢ P. From our assumption we get x, Nx, N°x ¢ P,y € P, and
Ny, N°y ¢ P. Itisclearthat x A y ¢ Pand N?(x A y) ¢ P. Supposethat N(x A
y) € P, then N(XxA y) = NxVv Ny € P. Since P is prime, this means that
Nx e Por Ny e P. Butthisiscontradiction. Thus N(XA y) ¢ P. Thisimplies
that x Ay € L. Sowehave V*(f Ag) =Dh.

For the case of V*(NT), we consider only the following case.

e x=V*(f)=a: It suffices to demonstrate that Nx = 1; that is, Nx € P, N2x
¢ P, and N3x € P. By assumption, we get x, Nx € P and N?x ¢ P. Since
N3x = NXx, it is obvious that Nx = N3x € P. Hencewe have Nx = 1 € L;.
The other cases can be proved in asimilar way.

Case4: L hasapartition {Ly, Lo, La, Lg}. It is sufficient to define V*(x;) = t if
V(X)) € Lt, wheret € {1, 0, a, d}. The proof is similar.

V*(xj) =

O T ® O

Now we establish the following theorem.

Theorem 4.2 The WDM-n algebra ©2(5) is functionally free for the class CL(5)
of all WDM-5 algebras. That is, for any formulas f and g, f = g holdsin CL(5) iff
f = g holdsin Q(5).

Proof: Itissufficient to show that if f = g doesnot holdin CL(5) then it does not
holdin ©(5). Supposethat f and g arenot identically equal in CL(5). Thenthere ex-
istsaWDM-5 algebra L and avaluation function V of L suchthat V(f) £ V(g). As
above we can construct the valuation function V* of Q(5) suchthat V*(f) # V*(g),
that is, f = g doesnot hold in 2(5). This completes the proof. O

For the other WDM-n agebras (where n = 6, 8), we can establish the same theorem
without difficulty. The method of proof is similar, so we omit their proofs.
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Theorem 4.3 TheWDM-n algebras2(n) arefunctionally freefor the classCL (n)
of all WDM-n algebras.

5 7-valued WDM-algebra Thefollowing results were proved in Section 4 and are
well known. For any class CL(n) of WDM-n algebras (wheren = 2, 3, 4):

*1. VL € CL(n)VF: maximal filter of L, Card(L/~n) < n;
*2. AL € CL(n)aM’”: maxima filter of L, Card(L’/~m') = n.

It is natural to expect that the results hold for the case of n = 7. But we have the
following negative result.

Lemmab.l Let M beamaximal filter of WDM algebra. Then thereisno subalge-
bra with seven elements of WDM algebra {L1, Lo, ..., L¢}.

Proof: Suppose that there is a subalgebra {L;} with seven elements. Clearly L,
and Lo are not empty. If Ly is empty, then L¢ is dso empty. Otherwise, there
is an element x such that x ¢ M, Nx € M, and N2x € M. In this case we have
Nx, N2x, N3x = Nx € M. Thisyields Nx e Lq which is a contradiction. Thus we
can conclude that if Ly isempty then sois L¢. In that case the subalgebra {L;} has
at most six elements. This contradicts our assumption, so Ly cannot be empty. The
same argument impliesthat Ly, cannot be empty either. However the subalgebra {L;}
must include {L1, Lo, Ly, Lg}. Thus exactly one of the rests (La, L, Le, OF L¢) is
empty. Suppose that L, isempty and othersarenot. Forany u € L and v € Ly we
haveu e M, Nu ¢ M, N2u ¢ M, and v, Nv, N%v € M. For these elements we obtain
uaveM,NUAv) e M, and N>(uA v) ¢ M. Thismeans that L, is not empty,
which isacontradiction. The other cases also yield a contradiction provided that ex-
actly one of them is empty. Hence thereis no subalgebra {L;} with 7 elements. [

Theorem[E2]follows obviously from this lemma.

Theorem 5.2 Thereareno axiomssuch that (* 1) and (* 2) hold for theclassCL(7)
of WDM algebras.
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