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On Gabbay’s Proof of the
Craig Interpolation Theorem
for Intuitionistic Predicate Logic

MICHAEL MAKKAI

Abstract  Using the framework of categorical logic, this paper analyzes and

streamlines Gabbay’s semantical proof of the Craig interpolation theorem for
intuitionistic predicate logic. In the process, an apparently new and interesting
fact about the relation of coherent and intuitionistic logic is found.

1 Introduction  For any logical system with entailment relatienby saying that
the Craig interpolation theorem holds we mean the following:

for any sentenceg,, ¢, over the respective vocabulariég L, if o1 - ¢ then
there is a sentenagover £, N L,, the common part of the given vocabularies,
such thatp; - ¢ - ¢s.

The interpolation theorem for classical predicate logic was found by CHig [
Craig’s proof used a proof-theoretic approach. MaeHathdave the well known
proof through Gentzen’s sequent calculus. iBth[LE] extended the theorem to in-
tuitionistic logic with a similar proof-theoretical proof. As Bell and Machover point
out (seelf], Chapter 9, Section 13), the theorem for classical logic can be deduced
from the Intuitionistic version by a use of the double negation interpretation.

The model theory of classical logic gives several illuminating proofs of the in-
terpolation theorem for classical logic. It is customary (see Chang and K&3er [
to reduce the result to Robinson’s consistency lemma, originally used by Robinson
[15] for a proof of Beth’s definability theorem (see Bdifj)[ a consequence of Craig
interpolation. For the proof of the consistency lemma, Robinson used the method
of alternating chains of model-extensions. Gabbay’s proof of interpolation for intu-
itionistic logic in Gabbay{f] exploits the same method. Gabbay’s proof is based on
Kripke’s semantic analysis of intuitionistic logic in KripkE][

Avery elegant and conceptually satisfactory proof of interpolation for intuition-
istic logic is given by Pitts[T4]; he uses locale-theoretic methods, and his work is
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inspired by the ground breaking work of Joyal and Tierf@y&vailable in preprint

form earlier) that introduced locales into topos theory (and thus logic). Pitts’s proof

is constructive as opposed to Gabbay’s, which is model-theoretic and uses non-
constructive tools such as the compactness theorem. On the other hand, as we intend
to show, Gabbay’s proof shows something stronger than the interpolation theorem
(we have nothing to say here on the question whether Pitts’s methods, or other con-
structive methods, could yield the same additional conclusion).

Let us recall some basic concepts of categorical logic, intended to capture the
notion of theory in intuitionistic, and coherent (see below), predicate logideyling
category is a category in which:

1. all finite limits exist;

2. the poseBub(A) of subobjects of every obje@ is a lattice (with 0 and 1);

3. for any arrowf : A — B, the mapf* : Sub(B) — Sub(A) defined as taking
pullback (inverse image) is a lattice homomorphism;

4. f*asin (3) has both left and right adjoints

=l
—_—
Sub(A) Sub(B): 3; 4 f* Vs
_—
\&i
5. 3¢ is stable under pullback (Beck-Chevalley condition): if
f
A B
a b is a pullback square, then
A B’
g
3¢
Sub(A) Sub(B)
ar b* commutes.
Sub(A’) Sub(B’)
3

9
(The analogous condition f&f; s follows.)

The notion of Heyting category embodies that of a theory in multisorted intuitionistic
predicate logic with equality. This correspondence is explained in Makkai and Reyes
[12], and although Heyting categories are not explicitly introduced there, all the cat-
egorical operations involved are. In particular, given a thedaryX) in intuitionistic

logic with vocabularyL and set of axiom&’, we have the corresponding Heyting
categoryLT (L, 7T), or more explicitlyL Teyting (L, 7), with the lettersL andT re-
ferring to the fact that the construction bff (£, 7) is like the Lindenbaum-Tarski
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construction, originally of a Boolean algebra, based on formulas of the theory taken
as a basis; see Chapter 8[0P].

We may, equivalently for the purposes of the Craig interpolation theorem, use
Heyting pretoposes instead, as is dondTif][ In fact, every Heyting pretopos is
a Heyting category (although not conversely). However, Heyting categories corre-
spond more directly to the usual symbolic logical notion of theory.

A Heyting functor is one between Heyting categories, preserving in the usual
sense the operations posited in Heyting categories. The various notimodebiised
in intuitionistic logic arethe same, modulo the correspondence of categories and the-
ories, as Heyting functors with a specific kind of target category. For example Kripke
models of (€, T) (“modified Kripke structures” in Gabbalg]) correspond to Heyt-
ing functors fromLT (L, 7) into Sef’, with any posetP. Here Sef is the category
of functors fromP (as a category) into Set, the category of (small) sets; Set s a topos,
in particular, a Heyting category.

Heyting categories and functors, with all natural transformations between the
latter as 2-arrows, form a 2-category callédEY 7 I \_G; restricting objects to small
ones gives the 2-categofy eyting. The 2-categorical aspects will play a minor role
only; most of the time it is enough to keep in mind the ordinary categories involved.

In fact, the 2-category of Heyting categories that is “good” from an algebraic
point of view is the one in which only isomorphism 2-arrows are allowed. By de-
noting the result of discarding 2-arrows that are not isomorphism by postfixing an
asterisk, we are talking about the 2-categofi€& 7 I\ G* and # eyting*.

Every Heyting category is eoherent category. In [12] these were called “log-
ical categories” and played a central role. The definition of a coherent category is
obtained from our definition of a Heyting category by deleting referen¥g ia (4)
and (5). As explained ifilZ], coherent categories corresponaoberent theories. In
coherent logic formulas are positive existentiaherent), that is, built up of atomic
formulas using\, v and3; andaxioms are of the fornvX(¢(X) — (X)) with ¢ and
Y coherent. In this paper, all the “action” around a Heyting category will take place
in the coherent doctrine: we will deal with properties of Heyting categorigsa co-
herent categories, properties that are not generally true for coherent categories, but
hold if the coherent category carries the additional structure of a Heyting category as
well. In this way, we “explain” intuitionistic logic via the simpler coherent logic.

A Boolean category is a coherent category in which each subobject lattice is
complemented (a Boolean algebra); every Boolean category is a Heyting category
at the same time. Boolean categories correspond to theories in full classical logic in
the usual sense (sd&]).

Animportant point in our story is that the interpolation property of a logical sys-
tem such as classical logic, intuitionistic logic, and others as well, is equivalent to
an exactness property of the (2-) category of the corresponding kind of categories:
for classical logic the 2-category of Boolean categories, for intuitionistic logic the 2-
category of Heyting categories. The exactness property in question repeshtots.

For the record we give the definition of the 2-categorical version of pushout, also
called bipushout (see Streéif7f]). However, the reader will not go far wrong if he
takes the notion to be the ordinary categorical notion, especially in view of the re-
marks to follow later.
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Given a 2-category and a diagram

S

F (1)

R T
G

and any objec), an extension of the form
I
S - Q

F J a:lF —/—+ G

l

R T
G

is called aQ-coconeon (1). Q-cocones on the given triangle (1) and a fix@dform a
category. With anothe@-cocone, and with data denoted by primed letters, an arrow
Q. I,Ja)— (Q,JF,od)isapair(p: | — I',4%: J — J) such that the
square of 2-arrows

o
IF JG

oF vG

I'F JG
a/

commutes; composition of these arrows is defined in the expected way. The category
of Q-cocones on the fixed (1) is denot€dconeq (with reference to (1) suppressed).
Note that for any two object® andQ, a P-coconel” = (P, I, J, «) and an arow H :

P — Q gives aQ-coconel™*(h) = (Q, HI, HJ, Ha), and that, in fact, we obtain

a functor:

I'*: Hom(P, Q) — Coconeg.

We say thatl" is apushout of (1) if for all objectsQ, the functor™ is anequivalence
of categories. Pushouts, when they exist, are determined eguitzal ence.

The 2-categoried eyting*, Boole*, Coherent, are all “good”; they are locally
finitely presentable 2-categories (unfortunately, the 2-categorical versions of the well
known concepts of Gabriel and UImEfhave not been written down in the literature,
despite, or maybe because, of the fact that the work to be done is straightforward), and
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as a consequence, pushouts exist in them; moreover, pushdtsyting* are also
pushouts irﬂ[ZQ’TI?\[g*, etc. In fact, they can be so constructed that the canon-
ical equivalence$™ are surjective on objects (although they still fall short of being
isomorphisms), which somewhat simplifies the notation when working with them.
A further simplification of the notion of pushout is to require that the structure map
a: |F — JGinthe pushout-cocone be an identity; in particular tiat= JG. In

all our examples it is in fact possible to achieve this. When this is done a pushout in
the 2-category is almost a pushout in the corresponding ordinary category (without
the 2-arrows), except that the uniqueness part of the universal condition holds with
the qualification “up to an isomorphism 2-arrow.” Note however that the definition
of the 2-categorical pushout has 2-dimensional aspects that go beyond the defining
properties of the ordinary pushout.

In our proofs we will never have the need to use the explicit constructions of
pushouts; their universal properties will suffice. Nevertheless, it is important to point
out that pushouts have a well-known meaning when our categories are given via the-
ories. Suppose we have the intuitionistic theoriég R), (L1, 5), (L, T) with
LoC Ly, Lo C £, R C S andR C T, moreover, assume that the vocabularigs
and £, have nothing more common than the element§0fL, N £, = £5. Wethen
have the pushout diagram:

LT (L, S) LT(L1U Lp, SUT)
2)

LT(LN Lz, R) LT (L, T)

in which all arrows are induced by inclusions of vocabularies. This can be seen by
applying the universal property &fT (L, 7) as the free Heyting category in which
(L, T) is interpreted. For the analogous statement of this universal property for the
coherent doctrine rather than the Heyting one, see Proposition 8.2.3 on page 247 of
2.

Consider the following property of any 2-category, ®eong Amalgamation
Property:

(SAP) If in the pushout

(0)]
O

F is conservative then so ik
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(In any of our “concrete” 2-categories, “conservative” means ‘“reflects isomorph-
isms”; conservative functors correspond to conservative extensions of theories.)
In the main part of this paper, we will be giving a proof of the following theorem.

Theorem 1.1  Both Boole* and # eyting* have the SAP.

It had long been known that the SAP is equivalent to the Craig Interpolation Theo-
rem. For one thing, Robinson’s Lemma, which is used in the usual model-theoretical
proofs of interpolation, is a special case of SAP ®oole. With reference to (2),
Robinson’s Lemma says that if{ N £, R) is complete, and £4, S), (Lo, 7) are
consistent, thenfy U £, SU 7T) is consistent. This follows from the SAP, since by
(£L1N Ly, R) being complete andg, 5) consistentF is conservative. By the SAB,
is conservative. Sincelg, 7) is mnsistent, its conservative extension is consistent.

Nevertheless, | do not know any place other than the above mentioned paper
[14] of Pitts where the SAP is explicitly established, and interpolation is derived from
it, for the intuitionistic doctrine. In fact[l[4] goes beyond this and shows that any
pushout square has the interpolation property in an appropriate sense provided SAP
holds. Let me briefly indicate how the interpolation theorem follows from the SAP
in a simpler way than through Robinson’s Lemma.

With reference to the notation in the statement of Craig’s Theorem above, con-
sider the following square.

LT (L, {e1}) LT(L U Lo, {@1})

LT (LN Lz, Cngng, (91)) LT (L2, Cnyng, (91)).

Here,Cnz ., (¢1) denotes the set of consequenceppbver the vocabulary,; N
L, that is, the set of sentencé®sver £; N £, such thatp; - 6. The arrows are all
induced by inclusions of vocabularies. The diagram is a pushout by the above more
general situation: note thép1} U Cng,nr,(¢1) has the same deductive strength as
{e1}. Now, observe that the left vertical arrow is conservative. If the sent@nger
Ly N Ly is provable fromp;, (thatis, has become 1 in the left upper corner), thbe-it
longsto Cny,ny, (¢1). Thusitis provable from the same set of axioms. (Here we are
using the easily seen fact that conservativeness for a map of Heyting categories—but
not for coherent categories—is reduced to the following special case: ifthe monomor-
phismU »— 1 into the terminal object in the domain category becomes an isomor-
phism in the codomain category, then it was an isomorphism.) By SAP, the right
vertical is conservative. Since by the assumption of the interpolation-statement
is provable fromypy, it follows that it is provable fronCng,n ., (¢1), which clearly
implies the desired conclusion.

To continue with the account of the necessary background, let us consider a co-
herent category, andlet Mod(T) denote the category of all coherent functdrs—
Set, with all natural transformations as arrows: Niog= COH ER ENT (T, Seb.
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We have the evaluation functor:

er: T —» SeModm
A — [M+— M(A)]

and also its variant:

lerf|: T —s SetModm]

where in the second case we disregard arrows inMlp@hus, SéMOAMIis merely
a—large—Cartesian power of Set). Now, the categorical version of fiiel&om-
pleteness theorem says that, for a snia(bs will be assumed throughoutgr| is
a conservative functor (see for example MakH{&g]] Theorem 2.2.2). In fact, this

is obviously equivalent to saying thet is conservative. Whereas 84P9Ml s a
Boolean category, MEA™ is not. However, the latter is a Heyting category. A
fundamental result of categorical logic is the following theorem.

Theorem 1.2 (Joyal's Theorem) If T is a (small) Heyting category, then er is a
Heyting functor.

Note that ModT) still has the same sense: the category of coherent functorstfrom
to Set. As a consequence of Joyal's anifl€l’'s theorems, we have a conservative
Heyting embedding of into a very special Heyting category, one of the form' Set
wherel is a category. Joyal's theorem (combined witbdgl's) is a completeness
theorem. In fact, it is essentially equivalent to Kripke's completeness theorem (see
his [9]) for intuitionistic logic. From the formulation of Joyal’s theorem, it is quite
easy to prove the existence of a conservative Heyting embedding of th&ferm
Sef’ with a posetP, with possible further conditions oR (for example regarding its
size, or that it be a forest—"a tree with many roots”). However, for our purposes, the
canonical form of Joyal’s theorem is quite sufficient.

For later reference, let us review what is involved in the proof of Joyal's theorem
(the proof can be found ifilf], as Theorem 6.3.5). In the Heyting category'Set

with F -2 G and a subfunctot of F, the subfunctoigU of G is given by the
prescription: for any € |I| andy € G(i),

ye (YgU)(i) <<= forallarrowsa:i— jinl,
Vx e Fj.gjx=(Ga)y = xe Uj.

Let T be a Heyting categoryf, : A— BanarrowinT, X € Sub(A), V¢ X € Sub(B).

With | = Mod(T),g=er(f), F =er(A), G=er(B), andU = er(X), to say that

er preserves the particulsl; X is to say that the above equivalence holds wYign

on the left is replaced bgy (V¢ X). Let us writeh: M — N for o : i — j. Asusual,

one direction (left to right) of the equivalence is automatic. Thus, it remains to show
that for anyM € Mod(T), andy € M(B):

y¢Z M(V¢X) = thereareh: M — N andx e N(A) such that
(Nf)(X) = ha(y) andx ¢ N(X).

Let us say that the paith, x) witnessesy £ M(V X) if (Nf)(X) = ha(y) andx
¢ N(X). In [I7] it isshown, by an application of the method of diagrams in model



INTUITIONISTIC INTERPOLATION 371

theory, that each instance gf¢ M(V; X) is in fact withnessed. We will not repeat
the argument here, especially since similar arguments will have to be made below.
However, we make an observation on witnessing to be used later.

Let us call a map (natural transformatidn) N — P in Mod(T) (for any co-
herentT for the momentpure if for any objectAin T, any X € Sub(A), and any
x € N(A), wehaveka(x) € P(X) (if and) only if x e N(X). Our observation is that,
with the above notation, ifh, x) is a withess fory ¢ M (V¢ X), then so igkh, ka (X))
provided thak is pure.

2 Thenewresult and other lemmas Giventhe arrows: R— S G: R— Tin
H eyting* (or Boole*), we consider the pushout

|
S P

12

F J (1)

R T
G

in H eyting* (or Bool€*), but also, the pushout

A

| .
S p

12

F J 2)

R T
G

in Coherent. (It will be essential that the universal property®fefers to arbitrary
2-cells inCoherent, not just isomorphisms as i eyting*.) Since# eyting* is a

sub-2-category of oherent, there is a canonical coherent functdr: P — P such
thatHI = I, HJ = J, andH& = « (H is unique up to isomorphism). Now, & is

to be shown to be conservative, we had better be able to show thabnservative.
This we proceed to do now.

Let us pause for a moment. We are claiming thaf oherent, the SAP holds
for pushouts of Heyting arrows. To be surégherent does not satisfy the SAP in
general asl[4] points out (the first example was given by Reyes). Thus, although
we deal with a statement formulated in the coherent doctrine, we will have to use the
Heyting character of the data involved.

Let Ae T and X € Sub(A) with X # 14 (= the top element of the lattice
Sub(A)). We want to show thaf X # 1;,. Using Godel completeness, take any
N € Mod(T) such thatN X # NA(= N(14)). We need a model e Mod(P) with
LJX # LJA. But the modeld. are in an essentially 1-1 correspondence with triples
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(M, N, h: M’|RiN/|R) with M" € Mod(S), N’ € Mod(T), and with the nota-
tion M'|R= MF, N'|R = NG; in particular,L|T =gt LJ = N/, and thusL X =
LJA meansN’X # N’A. (In the above definition of the pushout (2), taking place in
COHERENT, let Q be Set; an object doconeq is an entity(M’, N’, h’) as de-
scribed; HontP, Q) is Mod(P); the equivalence functdr* takesL to (M’, N’, h')
whereN’ = LJ, etc.) Therefore, if we can makeM’, N’, h") with a pure mapn :

N — N’, weare done. Actually, we first make a careful choicéNofvith N X #£ NA.

Lemma21 Assumethat F isconservative. upposethat X € Sub(A), X # 1ain
T. Thenthereare M € Mod(S), N € Mod(T),andamap h: M|R— N|R, suchthat
NX # NA.

Proof: The proof is postponed until Section 3. O

Proposition 2.2 (Main Lemma) Start with the Heyting functors F : R — Sand
G: R— T, without any assumption on conservativeness. Given M € Mod(S), N €
Mod(T) withamap h: M|R — NI|R, there are M’ € Mod(S), N’ € Mod(T), and
mapsm: M — M’ n: N — N’suchthat nis pure and there is a commutative dia-
gram:

h/

M’|R — N'|R
mR nR
O
MR - N|R
h

with h" an isomorphism as indicated. Schematically:

M’ N’
i pure t
M N
MES NET
M'|R ~ N'|R
==
M|R N|R
M|R —> N|R

(here and below, we abbreviate, for arbitr&gndM, “M € Mod(S)" by “M E S).
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The proposition is proved by the help of the following two lemmas, expressed without
words in a similar schematic manner.

Lemma 2.3

<—Z
=

MES N R
Ma| R

pure

I
U

M|R — N

Lemma2.4

pure t
N

M E R NET
Np|R

I
1

M N|R
pure

M 2 NIR

The proofs of the last two lemmas are postponed to Section 3.

Proof of Proposition[2.2]from Lemmas[2.3land[2.4] ~ For this we build the following
diagrams:
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M2 No M2|R N2|R

pure
pure
My Ny M¢|IR N;|R
pure
pure
M N M|R N|R

We start with the giverM, N andM|R — N|R. Using Lemmd&_3with M andN of
the statement of the lemma as the preddrandN| R, we produceM — M; and the
lowest triangle. Then, applying Lemr@aZto M;|RandN asM andN, we produce
N =5 N; and the next triangle, etc.

With the three infinite diagrams, considdrf=colim;_, , M, N’ = colim;_ ., N;.
We have the canonical colimit coprojectiods — M’, andN — N’. The latter is
clearly pure (since all vertical arrows in the diagram of Meae pure). Finally, the
left to right horizontal arrows induce a mayy’ — N’, the slanted ones induce one
N’ — M’, and the commutativity of the infinite diagram shows that these latter two
arrows are inverses of each other. The isomorphigm— N’ clearly satisfies the
commutativity required in Propositidn2]

Let us return to our proof thakis conservative provideH is. Using Lemm&_1]
and PropositioR.2] we do haveN with NX # NA, and(M’, N, i’ : M’| Ri N’|R)
with a pure magN — N’, which, according to what was said above, completes the
proof. We have thus shown the following proposition. O

Proposition 2.5  Pushouts in Coherent of pairs of arrows in # eyting satisfy the
SAP.

Let us see that for the caseBbol g, this suffices for the proof of the SAP. Of course,

it is a special case of PropositiGHlthat pushouts i oherent of pairs of arrows in
‘Bool e satisfy the SAP. Continuing with our established notation, and assuming that
R, SandT are inBool e, we claim that the canonical méa : P— Pis conservative;

since the composite of conservative maps is conservative, the desired assertion will
follow from Propositio2.5] To demonstrate the claim, consider the left adjintb

the forgetful functol : Boole* — Coherent*; for a coherent categorly, T isthe

free Boolean category extension©f Since® is a left adjoint, it preserves colimits.
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Hence it takes a pushout diagram into a pushout diagram. Also, note Thiatiicelf
Boolean, thenbT >~ T. The reason is tha¥ is a full inclusion (see Theorem 1 in
Section IV.3 of MacLandl[(J). The latter statement just says that a coherent functor
between Boolean categories is a Boolean functor, which is rather clear. Our remarks
so far imply that in the Boolean case, we have an equival&nce ~ & I5, with K o

H = np, wheren is the canonical unit map of the adjunction. Howevgt, T —

®T is always conservative: we have the conservativeT — SetMod™MI —, . u
into a Boolean category; the universal propertypfmplies that there ig : ®T —
U with et = L o 51, from which it follows that;t is conservative. Our claim follows.

Theorem 2.6  The canonical coherent functor from the coherent pushout of a pair
of Heyting functors to the Heyting pushout of the same pair is always conservative.

This is the new result of this paper. Of course, together with Propogitigrit im-
plies the SAP forH eyting, and thus Craig for intuitionistic logic. Note however that
Theoreni2.6ldoes not follow (directly at least) from the SAP ffeyting, even for
pushouts in which one leg or both are conservative.

Let me point out that this is a result of “pure logic,” that is, a result about the
syntax of logic.

With reference to (2) in Section 1, let us say that a formula dyew £, is rela-
tively coherent if it is built up using\, v, and3 from £,-formulas and.,-formulas.
TheorenZ.6lamounts the assertion that if the sentevik@ — ), with ¢ andy rel-
atively coherent formulas, is provable fro$tu 7" in intuitionistic logic over£, U Ly,
then the coherent sequent=  is provable using the rules of coherent logic only
(see for examplél[Z]) from assumption entailments each of which is provable either
from S in intuitionistic logic overL; or from 7 in intuitionistic logic overL,.

For the proof of Theorefd.6] we show the following.

Proposition 2.7  With the notation in (2), the composites:
. e )
T3 p P, seMod®  gng
s p %, geMod

are Heyting functors.

Note that the proposition specializes to Joyal's Theorem whenfbatidG are taken
to be identity functors.

Proof: Note that the domain and the codomain of the composite are Heyting cat-
egories, although the factors are not necessarily Heyting functors. Looking back at
the remarks on the proof of Joyal's Theorem, and using the fact that the objects of
Mod(P) are essentially triplesM =S N =T, h: M|Ri> N|R) (via the equiva-
lence functol™* : Mod(P) — Cocones; see Section 1), a little thought shows that
what is to be shown is this: witli : A — B and X as before, giveriM, N, h) and

y e NB, if y ¢ N(V; X), then there is an arrodm, n) : (M, N, h) — (M’, N’, h") in
Coconeg, and somex such that(n, x) is a witness foty ¢ N(V; X) in the original
sense introduced above. Now, by (the proof of) Joyal’'s Theorem, there is a withess
(n*: N — N* x e N*(A)). Apply Propositioi22lfor M andN* asM andN, and
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n*|Roh: M|R— N*|Rasthe arrovh. Weobtainm: M — M’, n; : N* — N’ such
thatn, is pure, and we obtain the following commutative diagram.

h/
M| R — N |R
m| R ni | R
M| R N* | R
1 n*| Roh 4
Iuir n* | R
M| R N|R
h

By a remark made above, singegis pure,(nin*, (ny) aX) is a witness, and thus with
n=ni:n*, m,n, and(ny) o(X), are as desired. O

Proof of Theorem[2.6] Consider the following diagram:

sefMod®)

es: P— seMod®
I*=e|5I, J*=e|5\]
a: |lF=JG, o=Ha
6 F=Jc

G ot FF = G, o = ed.

Here, after the familiar ingredient$?, J*, anda™* are defined as showmag is not
drawn). Since by Propositida.7]1* and J* are Heyting functors, by the univer-
sal propety of P, we haveH* with |H* = |*, JH* = J*, andaeH* = «*. Hence,
[H*H = I*, JH*H = J*, andaH*H = «*. By the uniqueness part of the universal
property ofP, it follows thatH*H = ep. But, by Godel, e, is conservative; hence,
soisH. O
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3 Model-theoretical arguments  The categorical language is superior for the pur-
poses of expressing the important things (stating results, for instance), but it is not
convenient for stating certain arguments, e.g., the model-theoretical ones involving
the “method of diagrams.” In our view (which reverses the historical order), symbolic
logic is the auxiliary language, to be introduced to deal in convenient ways with the
concepts primarily given in the categorical framework.

With any coherent categofly, weassociate a particular coherent the@fy, T),
also written simply ag, theinternal theory of T (in [1Z], Tt is written for (Lr, T);
see Chapter 3, Section 5, page 128). Héxrehas sorts the objects @f, unary sorted
operation symbols are the arrows©f The models of Ly, T) are identical to the
models ofT (objects of ModT)). The (universal algebraic) homomorphisms of mod-
els are the same as the arrows in Niogl (see Theorem 3.5.3. dif]).

For any coherent formula(X) with free variables among, we have the inter-
pretation ofy, [X | ¢] € Sub([X]), where [] isthe product of the objects that are the
respective sorts of the variablesir(in [12], [¢] is written for [X | ¢]). Given any
subobjectX € Sub(A), there is a canonically selected coherent formXi{a) such
that [x € A | X(x)] = X (herex s a variable of sorfA; “x € A”isjust a reminder of
this). If X € SUb(A; x ... x Ap), wehaveX(Xy, ..., Xn) (= X(X)) such that

[x e []X1X®] = X
i:l

Let us introduce some auxiliary notation. Wi R — Sacoherent functor, ifp(X)

is any formula overr (e.g., in full first-order logic, or even in infinitary logia) (X)
denotes itd--translate, that is, the result of substitutifd for A, andFf for f, for

any f : A— Bin R; the sorting of the variables, both free and bound, is redone ac-
cordingly. Thusg® (X) is a formula ovelLs. If, in particular,p is a coherent formula,
thenF[X | ¢] = [X| ¢]; this is precisely to say that the functBris coherent. With
alittle abuse of language, we also wripé for " (F : R— S).

With M € Mod(R), Diag™ (M) denotes theositive diagram of M, that is, the
set of all coherent (positive existential) sentences, over the languigdé) contain-
ing an individual constard of sort A for each paifA € T,a< M(A)), that are true
in M whenais interpreted aa. As iswell known, and immediately seen, the arrows
(homomorphisms) out d¥1 are in an essentially one-to-one correspondence with the
models ofDiag™ (M). WithG : R— T, say, when writingDiag™ (M) T, we meathe
set of G-translates of all members @fiag* (M), with the new individual constants
left alone except that their sortings are redone in the obvious way.

The negative diagrarDiag— (M) is defined similarly, with negated existential
positive sentences. Models Biiagt (M) U Diag™ (M) correspond to embeddings,
that is, pure maps, out dfl.

In this section, we usé-= in the sense of semantical consequence in ordinary
classical predicate logic (many-sorted, with possibly empty sorts).

Proof of Lenma[2.1] Let = denote the set of all coherent (positive existential) sen-
tencess over Lg such that-o' is a consequence @fU {—VxX(x)}. We claim that
SU({—c%: o € X} is consistent. Otherwise, from the fact tixats closed under dis-
junction, we obtairr € X such thatlS= oS. SinceF is conservativeR = ¢; hence,
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T = o'. But sinceT U {—=VxX(X)} = o' (by the definition ofx), it follows that
T = VxX(X), contrary to the hypothesis that # 1,.

Let M be any model 08U {—¢S: o € X}; in particular,M € Mod(S). We daim
thatDiag(M|R)T U T U {=¥xX(x)} is consistent; once proved, the claim establishes
the lemma. If the claim fails, there is(@) € Diag(M|R) with T U {=VYXX(X)} =
—¢(&). HencedXy € . SinceM k= (IXp)S, this is a contradiction to the assumption
on M. U

Before turning to the proofs of LemmBs3land2.4] we discuss how the fact tha
is a Heyting category is reflected on the “coherent logicRof

Firstof all, with A e R, andX, Y € Sub(A), we may conside¥y(X) e Sub(Y)
wherey : Y — Ais the structure map for € Sub(A). With z the structure map for
Vy(X) € Sub(Y), we letX — Y be the subobject of represented by the monomor-
phismyo x. Itis easyto see tha&X — Y isthe “Heyting implication” (relative pseudo-
complement) in the sense that for afy SUb(A), ZA X <Yiff Z< X — Y. Fur-
ther,if f : A— BandX,Y € Sub(A), thenV¢{(X — Y) € Sub(B) satisfies the fol-
lowing condition: for anyZ € Sub(B),

Z<Vi(X=Y) & (DHAXY.

This is easy to see.

Now, suppose we have the coherent formglas y), v (X, y) over the language
Lr. Let A=[X] andB =[y], thusAx B=[X,Vy]. Let7: Ax B— Abe the
projection. And letX = [X, ¥ | ¢] andY = [X, Yy | ¥]. We define the subobject
[X|VY(p — ¥)]tobeV,(X — Y) € Sub(A); note thatvy(p — 1) is not a coherent
formula, thus the expressior [ VY (¢ — v)] isnot defined in the general context of
a oherentR; [X | VY(¢ — )] isthe interpretation irR of the formulavy(¢ — )
taken in intuitionistic logic. If there were no difference between classical and intu-
itionistic logic, we would have:

? 1 R YX([X|VY(@ = P]IX) «— Y¥(e(X, Y) = ¥(X Y)).

The leftto rightimplication and a suitable weakening of the other implication are true:

RE[XIVY(@ = P — ¥Y(eX Y) = ¥(X V) (1)

and for any coherenfr-formulad(X),

RUO)} EVY(@(X 9) = ¥ (X ) = RU{X)} = [X] ¥Y(p - YIX) (2)

(in the latter X is treated as a tuple of constants, in the natural way). These assertions
are immediately seen on the basis of the definitiorkafy(¢ — ¥)].
Furthermore, ifF : R — Sis Heyting, then, clearly,

F(X| ¥Y(p — Y] = [X] ¥¥(p — ¥)7].

Proof of Lemmal23] Let f be the given arroviv|R — N. Informing the diagrams
below, we make sure that the set of constants used for elemeltésadisjoint from
the set of constants used for element$of
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We modify Diag™ (N) to Diag™ (N)* by adding all axioms of the form=x b
wheneverA e R,ae (M|R)(A) = (MF)(A) and fa(a) = b, and closing the result
under conjunction. The assertion of the lemma is equivalent to saying that

S U Diagt(M) U (Diag"(N)*)S U (Diag™(N))®

is consistent. Assume the contrary. Then there is a finite sdbstthe displayed set
which is inconsistent. Lei be the tuple oM-constants of sorts Awith A € R, cthe
rest of theM-constants, ant the N-constants occurring i®. Taking conjunctions,
there ar@ (3, ¢) € Diagt (M), ¢(@, b) € Diag™ (N)*, and—y(b) € Diag™— (N) such
that R R
Sk 0308 A¢°@ b — vib),

that is,

SU{B@E. D) = VI @ ) = ¥3(9).
Thus, by (2),

SU{0(E B) E [X] YJ(@3(X ¥) — vS(IN]@),

which, byM = SU {4(3, ©)}, implies that

M = [X] ¥Y(e5(% ¥) = v G)]@).

SinceF : R— Sis a Heyting functor,

MIR = [X] YY¥(p(X ¥) > v (1@,

and since the homomorphisipreserves the meaning of coherent formulas,

N = [X] ¥Y(eX ¥) = y(INI(fa). 3

However,N|R = ¢(fa, D), andN|R = —y(b), hence

N | =Vi(e(fa, §) — v(H). 4)
(1), (3) and (4) give a contradiction. O

Proof of Lemmal2.4] This is easier; it does not need the Heyting character of the
data involved. Letf : N|R — M be the given map. It suffices to prove that

T U Diag*(N) U Diag~(N) U (Diagt(M)*)T

is consistent (here, as befol@jag* (M)* is obtained by adding t®iag™ (M) the
sentences of the forim= a wheneverA € Rand fa(b) = a). Otherwise, there is
a finite subsetd of the displayed set which is inconsistent. Bgte the tuple oM-

constantsE) the N-constants of sort& A for A € R, andc the rest of theN-constants
occurring in®. Taking conjunctions, we havéb, ¢) € Diagt(N), —y(b,¢) €
Diag™ (N), andg(a, b) € Diag™ (M)* such that

T U {"@b} E 6.8 — v o).
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And as a consequence,
T U 3 &b} £ 6B — v(®o).

Now, sincef : NJR — M is pure andM = IXp(X, fb), we hae that N|R =
IXe(X, b), that is, N = I%Xp' (X, b). Since alsoN = T, we conclude thatN =
6(b,¢) — (b, ). However, this contradicts the choice of the formwlag. [

Let us make some remarks comparing our procedures with thdsk ¢f fhat paper,

a version of Robinson’s Consistency Lemma is proved, and Craig’s Theorem is de-
rived from it. The proof of “Robinson’s Lemma” is given, essentially, in one piece;
no (real) lemmas are formulated; in particular, no statement comparable to Theorem
_dlis given. Nevertheless, most of the ingredients of our proofs appear in Gabbay’s
proof. Instead ofmodels(in our sense) of , “complete and saturated extensiong df
appear; this is indeed an equivalent concept. LefamkPropositio2_2hnd Propo-
sition[Z.5ldo not appear in a recognizable form, but Lemf@Aa#andZ.4ldo appear

in several places (as essentially the same two arguments repeated). Finally, there is a
construction of a tree-based Kripke model, with a tree whose nodes are various tuples
consisting of formulas, etc.; this is avoided in our treatment by the use of a Joyal-type
canonical Kripke model.
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