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On Gabbay’s Proof of the
Craig Interpolation Theorem

for Intuitionistic Predicate Logic

MICHAEL MAKKAI

Abstract Using the framework of categorical logic, this paper analyzes and
streamlines Gabbay’s semantical proof of the Craig interpolation theorem for
intuitionistic predicate logic. In the process, an apparently new and interesting
fact about the relation of coherent and intuitionistic logic is found.

1 Introduction For any logical system with entailment relation�, by saying that
the Craig interpolation theorem holds we mean the following:

for any sentencesϕ1, ϕ2 over the respective vocabulariesL1,L2, if ϕ1 � ϕ2 then
there is a sentenceϕ overL1 ∩ L2, the common part of the given vocabularies,
such thatϕ1 � ϕ � ϕ2.

The interpolation theorem for classical predicate logic was found by Craig [4].
Craig’s proof used a proof-theoretic approach. Maehara [11] gave the well known
proof through Gentzen’s sequent calculus. Schütte [16] extended the theorem to in-
tuitionistic logic with a similar proof-theoretical proof. As Bell and Machover point
out (see [2], Chapter 9, Section 13), the theorem for classical logic can be deduced
from the Intuitionistic version by a use of the double negation interpretation.

The model theory of classical logic gives several illuminating proofs of the in-
terpolation theorem for classical logic. It is customary (see Chang and Keisler [3])
to reduce the result to Robinson’s consistency lemma, originally used by Robinson
[15] for a proof of Beth’s definability theorem (see Beth [1]), a consequence of Craig
interpolation. For the proof of the consistency lemma, Robinson used the method
of alternating chains of model-extensions. Gabbay’s proof of interpolation for intu-
itionistic logic in Gabbay [5] exploits the same method. Gabbay’s proof is based on
Kripke’s semantic analysis of intuitionistic logic in Kripke [9].

A very elegant and conceptually satisfactory proof of interpolation for intuition-
istic logic is given by Pitts [14]; he uses locale-theoretic methods, and his work is
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inspired by the ground breaking work of Joyal and Tierney [8] (available in preprint
form earlier) that introduced locales into topos theory (and thus logic). Pitts’s proof
is constructive as opposed to Gabbay’s, which is model-theoretic and uses non-
constructive tools such as the compactness theorem. On the other hand, as we intend
to show, Gabbay’s proof shows something stronger than the interpolation theorem
(we have nothing to say here on the question whether Pitts’s methods, or other con-
structive methods, could yield the same additional conclusion).

Let us recall some basic concepts of categorical logic, intended to capture the
notion of theory in intuitionistic, and coherent (see below), predicate logic. AHeyting
category is a category in which:

1. all finite limits exist;
2. the posetSub(A) of subobjects of every objectA is a lattice (with 0 and 1);
3. for any arrowf : A → B, the map f ∗ : Sub(B) → Sub(A) defined as taking

pullback (inverse image) is a lattice homomorphism;
4. f ∗ as in (3) has both left and right adjoints

−−−−−−−−−→∃ f

Sub(A) ←−−−−−−−f ∗
Sub(B) : ∃ f � f ∗ � ∀ f ;

−−−−−−−→∀ f

5. ∃ f is stable under pullback (Beck-Chevalley condition): if

A �
f

B

A′

�

a

�
g

B′

�

b is a pullback square, then

Sub(A) �
∃ f

Sub(B)

�

a∗

Sub(A′)
�

b∗

Sub(B′)�
∃g

commutes.

(The analogous condition for∀ f s follows.)

The notion of Heyting category embodies that of a theory in multisorted intuitionistic
predicate logic with equality. This correspondence is explained in Makkai and Reyes
[12], and although Heyting categories are not explicitly introduced there, all the cat-
egorical operations involved are. In particular, given a theory (L, T ) in intuitionistic
logic with vocabularyL and set of axiomsT , we have the corresponding Heyting
categoryLT (L, T ), or more explicitlyLTHeyting(L, T ), with the lettersL andT re-
ferring to the fact that the construction ofLT (L, T ) is like the Lindenbaum-Tarski
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construction, originally of a Boolean algebra, based on formulas of the theory taken
as a basis; see Chapter 8 of [12].

We may, equivalently for the purposes of the Craig interpolation theorem, use
Heyting pretoposes instead, as is done in [14]. In fact, every Heyting pretopos is
a Heyting category (although not conversely). However, Heyting categories corre-
spond more directly to the usual symbolic logical notion of theory.

A Heyting functor is one between Heyting categories, preserving in the usual
sense the operations posited in Heyting categories. The various notions ofmodel used
in intuitionistic logic arethe same, modulo the correspondence of categories and the-
ories, as Heyting functors with a specific kind of target category. For example Kripke
models of (L, T ) (“modified Kripke structures” in Gabbay [6]) correspond to Heyt-
ing functors fromLT (L, T ) into SetP, with any posetP. Here SetP is the category
of functors fromP (as a category) into Set, the category of (small) sets; Set is a topos,
in particular, a Heyting category.

Heyting categories and functors, with all natural transformations between the
latter as 2-arrows, form a 2-category calledH EY T I N G; restricting objects to small
ones gives the 2-categoryH eyting. The 2-categorical aspects will play a minor role
only; most of the time it is enough to keep in mind the ordinary categories involved.

In fact, the 2-category of Heyting categories that is “good” from an algebraic
point of view is the one in which only isomorphism 2-arrows are allowed. By de-
noting the result of discarding 2-arrows that are not isomorphism by postfixing an
asterisk, we are talking about the 2-categoriesH EY T I N G∗ andH eyting∗.

Every Heyting category is acoherent category. In [12] these were called “log-
ical categories” and played a central role. The definition of a coherent category is
obtained from our definition of a Heyting category by deleting reference to∀ f in (4)
and (5). As explained in [12], coherent categories correspond tocoherent theories. In
coherent logic formulas are positive existential (coherent), that is, built up of atomic
formulas using∧,∨ and∃; andaxioms are of the form∀�x(ϕ(�x) → ψ(�x)) with ϕ and
ψ coherent. In this paper, all the “action” around a Heyting category will take place
in thecoherent doctrine: we will deal with properties of Heyting categoriesqua co-
herent categories, properties that are not generally true for coherent categories, but
hold if the coherent category carries the additional structure of a Heyting category as
well. In this way, we “explain” intuitionistic logic via the simpler coherent logic.

A Boolean category is a coherent category in which each subobject lattice is
complemented (a Boolean algebra); every Boolean category is a Heyting category
at the same time. Boolean categories correspond to theories in full classical logic in
the usual sense (see [12]).

An important point in our story is that the interpolation property of a logical sys-
tem such as classical logic, intuitionistic logic, and others as well, is equivalent to
an exactness property of the (2-) category of the corresponding kind of categories:
for classical logic the 2-category of Boolean categories, for intuitionistic logic the 2-
category of Heyting categories. The exactness property in question refers topushouts.
For the record we give the definition of the 2-categorical version of pushout, also
called bipushout (see Street [17]). However, the reader will not go far wrong if he
takes the notion to be the ordinary categorical notion, especially in view of the re-
marks to follow later.
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Given a 2-category and a diagram

S

R

�

F (1)

� T
G

and any objectQ, an extension of the form

S

R

�

F α : I F �
∼=

JG

� T
G

�

�

J

I

������

Q
α

∼=

is called aQ-cocone on (1). Q-cocones on the given triangle (1) and a fixedQ form a
category. With anotherQ-cocone, and with data denoted by primed letters, an arrow
(Q, I, J, α) −→ (Q, I ′, J ′, α′) is a pair(ϕ : I −→ I ′, ψ : J −→ J ′) such that the
square of 2-arrows

I F

I ′ F
�

ϕF

� J ′G
α′

�

�

ψG

α
JG

commutes; composition of these arrows is defined in the expected way. The category
of Q-cocones on the fixed (1) is denotedCoconeQ (with reference to (1) suppressed).
Note that for any two objectsP andQ, a P-cocone� = (P, I, J, α) and an arrow H :
P −→ Q gives aQ-cocone�∗(h) = (Q, H I, H J, Hα), and that, in fact, we obtain
a functor:

�∗ : Hom(P, Q) −→ CoconeQ.

Wesay that� is apushout of (1) if for all objectsQ, the functor�∗ is anequivalence
of categories. Pushouts, when they exist, are determined up toequivalence.

The 2-categoriesH eyting∗,Boole∗,C oherent, are all “good”; they are locally
finitely presentable 2-categories (unfortunately, the 2-categorical versions of the well
known concepts of Gabriel and Ulmer [7] have not been written down in the literature,
despite, or maybe because, of the fact that the work to be done is straightforward), and



368 MICHAEL MAKKAI

as a consequence, pushouts exist in them; moreover, pushouts inH eyting∗ are also
pushouts inH EY T I N G∗, etc. In fact, they can be so constructed that the canon-
ical equivalences�∗ are surjective on objects (although they still fall short of being
isomorphisms), which somewhat simplifies the notation when working with them.
A further simplification of the notion of pushout is to require that the structure map
α : I F −→ JG in the pushout-cocone be an identity; in particular thatI F = JG. In
all our examples it is in fact possible to achieve this. When this is done a pushout in
the 2-category is almost a pushout in the corresponding ordinary category (without
the 2-arrows), except that the uniqueness part of the universal condition holds with
the qualification “up to an isomorphism 2-arrow.” Note however that the definition
of the 2-categorical pushout has 2-dimensional aspects that go beyond the defining
properties of the ordinary pushout.

In our proofs we will never have the need to use the explicit constructions of
pushouts; their universal properties will suffice. Nevertheless, it is important to point
out that pushouts have a well-known meaning when our categories are given via the-
ories. Suppose we have the intuitionistic theories (L0, R ), (L1, S), (L2, T ) with
L0 ⊂ L1,L0 ⊂ L2, R ⊂ S, andR ⊂ T ; moreover, assume that the vocabulariesL1

andL2 have nothing more common than the elements ofL0,L1 ∩ L2 = L0. Wethen
have the pushout diagram:

LT (L1, S)

LT (L1 ∩ L2, R )

�

� LT (L2, T )

�

�

LT (L1 ∪ L2, S ∪ T )

(2)

in which all arrows are induced by inclusions of vocabularies. This can be seen by
applying the universal property ofLT (L, T ) as the free Heyting category in which
(L, T ) is interpreted. For the analogous statement of this universal property for the
coherent doctrine rather than the Heyting one, see Proposition 8.2.3 on page 247 of
[12].

Consider the following property of any 2-category, theStrong Amalgamation
Property:

(SAP) If in the pushout

S

R

�

F

� T
G

�

�

J

I

������

Q
α

∼=

F is conservative then so isJ.
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(In any of our “concrete” 2-categories, “conservative” means “reflects isomorph-
isms”; conservative functors correspond to conservative extensions of theories.)

In the main part of this paper, we will be giving a proof of the following theorem.

Theorem 1.1 Both Boole∗ and H eyting∗ have the SAP.

It had long been known that the SAP is equivalent to the Craig Interpolation Theo-
rem. For one thing, Robinson’s Lemma, which is used in the usual model-theoretical
proofs of interpolation, is a special case of SAP forBoole. With reference to (2),
Robinson’s Lemma says that if (L1 ∩ L2, R ) is complete, and (L1, S), (L2, T ) are
consistent, then (L1 ∪ L2, S ∪ T ) is consistent. This follows from the SAP, since by
(L1 ∩L2, R ) being complete and (L1, S) consistent,F is conservative. By the SAP,J
is conservative. Since (L2, T ) is consistent, its conservative extension is consistent.

Nevertheless, I do not know any place other than the above mentioned paper
[14] of Pitts where the SAP is explicitly established, and interpolation is derived from
it, for the intuitionistic doctrine. In fact, [14] goes beyond this and shows that any
pushout square has the interpolation property in an appropriate sense provided SAP
holds. Let me briefly indicate how the interpolation theorem follows from the SAP
in a simpler way than through Robinson’s Lemma.

With reference to the notation in the statement of Craig’s Theorem above, con-
sider the following square.

LT (L1, {ϕ1})

LT (L1 ∩ L2, CnL1∩L2(ϕ1))

�

� LT (L2, CnL1∩L2(ϕ1)).

�

�

LT (L1 ∪ L2, {ϕ1})

Here,CnL1∩L2(ϕ1) denotes the set of consequences ofϕ1 over the vocabularyL1 ∩
L2, that is, the set of sentencesθ overL1 ∩ L2 such thatϕ1 � θ. The arrows are all
induced by inclusions of vocabularies. The diagram is a pushout by the above more
general situation: note that{ϕ1} ∪ CnL1∩L2(ϕ1) has the same deductive strength as
{ϕ1}. Now, observe that the left vertical arrow is conservative. If the sentenceθ over
L1 ∩L2 is provable fromϕ1, (that is, has become 1 in the left upper corner), then itbe-
longs to CnL1∩L2(ϕ1). Thus it is provable from the same set of axioms. (Here we are
using the easily seen fact that conservativeness for a map of Heyting categories—but
not for coherent categories—is reduced to the following special case: if the monomor-
phismU � 1 into the terminal object in the domain category becomes an isomor-
phism in the codomain category, then it was an isomorphism.) By SAP, the right
vertical is conservative. Since by the assumption of the interpolation-statementϕ2

is provable fromϕ1, it follows that it is provable fromCnL1∩L2(ϕ1), which clearly
implies the desired conclusion.

To continue with the account of the necessary background, let us consider a co-
herent categoryT , andlet Mod(T ) denote the category of all coherent functorsT −→
Set, with all natural transformations as arrows: Mod(T )= C OH ER EN T (T,Set).
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Wehave the evaluation functor:

eT : T −→ SetMod(T )

A �−→ [M �−→ M(A)]

and also its variant:

|eT | : T −→ Set|Mod(T )|

where in the second case we disregard arrows in Mod(T ) (thus, Set|Mod(T )| is merely
a—large—Cartesian power of Set). Now, the categorical version of the Gödel com-
pleteness theorem says that, for a smallT (as will be assumed throughout),|eT | is
a conservative functor (see for example Makkai [13], Theorem 2.2.2). In fact, this
is obviously equivalent to saying thateT is conservative. Whereas Set|Mod(T )| is a
Boolean category, SetMod(T ) is not. However, the latter is a Heyting category. A
fundamental result of categorical logic is the following theorem.

Theorem 1.2 (Joyal’s Theorem) If T is a (small) Heyting category, then eT is a
Heyting functor.

Note that Mod(T ) still has the same sense: the category of coherent functors fromT
to Set. As a consequence of Joyal’s and Gödel’s theorems, we have a conservative
Heyting embedding ofT into a very special Heyting category, one of the form SetI

whereI is a category. Joyal’s theorem (combined with Gödel’s) is a completeness
theorem. In fact, it is essentially equivalent to Kripke’s completeness theorem (see
his [9]) for intuitionistic logic. From the formulation of Joyal’s theorem, it is quite
easy to prove the existence of a conservative Heyting embedding of the formT −→
SetP with a posetP, with possible further conditions onP (for example regarding its
size, or that it be a forest—“a tree with many roots”). However, for our purposes, the
canonical form of Joyal’s theorem is quite sufficient.

For later reference, let us review what is involved in the proof of Joyal’s theorem
(the proof can be found in [12], as Theorem 6.3.5). In the Heyting category SetI,

with F
g−→ G and a subfunctorU of F, the subfunctor∀gU of G is given by the

prescription: for anyi ∈ |I| andy ∈ G(i),

y ∈ (∀gU)(i) ⇐⇒ for all arrows α : i → j in I,
∀x ∈ Fj.g jx = (Gα)y ⇒ x ∈ U j.

Let T be a Heyting category,f : A → B an arrow inT , X ∈ Sub(A),∀ f X ∈ Sub(B).
With I = Mod(T ), g = eT ( f ), F = eT (A), G = eT (B), andU = eT (X), to say that
eT preserves the particular∀ f X is to say that the above equivalence holds when∀gU
on the left is replaced byeT (∀ f X). Let us writeh : M → N for α : i → j. Asusual,
one direction (left to right) of the equivalence is automatic. Thus, it remains to show
that for anyM ∈ Mod(T ), andy ∈ M(B):

y �∈ M(∀ f X) ⇒ there areh : M → N andx ∈ N(A) such that
(N f )(x) = hA(y) andx �∈ N(X).

Let us say that the pair(h, x) witnesses y � ∈ M(∀ f X) if (N f )(x) = hA(y) and x
�∈ N(X). In [12] i t is shown, by an application of the method of diagrams in model
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theory, that each instance ofy � ∈ M(∀ f X) is in fact witnessed. We will not repeat
the argument here, especially since similar arguments will have to be made below.
However, we make an observation on witnessing to be used later.

Let us call a map (natural transformation)k : N → P in Mod(T ) (for any co-
herentT for the moment)pure if for any objectA in T , any X ∈ Sub(A), and any
x ∈ N(A), wehavekA(x) ∈ P(X) (if and) only if x ∈ N(X). Our observation is that,
with the above notation, if(h, x) is a witness fory �∈ M(∀ f X), then so is(kh, kA(x))

provided thatk is pure.

2 The new result and other lemmas Given the arrowsF : R → S, G : R → T in
H eyting∗ (or Boole∗), we consider the pushout

S

R

�

F

� T
G

(1)

�

�

J

I

������

P
∼=

α

in H eyting∗ (or Boole∗), but also, the pushout

S

R

(2)

�

F

� T
G

�

�

Ĵ

Î

������

P̂
∼=

α̂

in C oherent. (It will be essential that the universal property ofP̂ refers to arbitrary
2-cells inC oherent, not just isomorphisms as inH eyting∗.) SinceH eyting∗ is a
sub-2-category ofC oherent, there is a canonical coherent functorH : P̂ → P such
that H Î = I, H Ĵ = J, andHα̂ = α (H is unique up to isomorphism). Now, ifJ is
to be shown to be conservative, we had better be able to show thatĴ is conservative.
This we proceed to do now.

Let us pause for a moment. We are claiming that inC oherent, the SAP holds
for pushouts of Heyting arrows. To be sure,C oherent does not satisfy the SAP in
general as [14] points out (the first example was given by Reyes). Thus, although
we deal with a statement formulated in the coherent doctrine, we will have to use the
Heyting character of the data involved.

Let A ∈ T and X ∈ Sub(A) with X �= 1A (= the top element of the lattice
Sub(A)). We want to show that̂J X �= 1Ĵ A. Using Gödel completeness, take any
N ∈ Mod(T ) such thatN X �= N A(= N(1A)). We need a modelL ∈ Mod( P̂) with
L Ĵ X �= L Ĵ A. But the modelsL are in an essentially 1-1 correspondence with triples
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(M ′, N ′, h′ : M ′|R ∼=−→N ′|R) with M ′ ∈ Mod(S), N ′ ∈ Mod(T ), and with the nota-
tion M ′|R = M F, N ′|R = NG; in particular,L|T =de f LJ = N ′, and thusL Ĵ X �=
L Ĵ A meansN ′ X �= N ′ A. (In the above definition of the pushout (2), taking place in
C OH ER EN T , let Q be Set; an object ofCoconeQ is an entity(M ′, N ′, h′) as de-
scribed; Hom(P, Q) is Mod( P̂); the equivalence functor�∗ takesL to (M ′, N ′, h′)
whereN ′ = LJ, etc.) Therefore, if we can make(M ′, N ′, h′) with a pure mapn :
N → N ′, weare done. Actually, we first make a careful choice ofN with N X �= N A.

Lemma 2.1 Assume that F is conservative. Suppose that X ∈ Sub(A), X �= 1A in
T. Then there are M ∈ Mod(S), N ∈ Mod(T ), and a map h : M|R → N|R, such that
N X �= N A.

Proof: The proof is postponed until Section 3. �

Proposition 2.2 (Main Lemma) Start with the Heyting functors F : R → S and
G : R → T, without any assumption on conservativeness. Given M ∈ Mod(S), N ∈
Mod(T ) with a map h : M|R → N|R, there are M ′ ∈ Mod(S), N ′ ∈ Mod(T ), and
maps m : M → M ′, n : N → N ′ such that n is pure and there is a commutative dia-
gram:

M ′|R

M|R

�

m|R

� N|R
h

�

�

n|R

h′
N ′|R∼=

�
�

�
�

with h′ an isomorphism as indicated. Schematically:

M |= S

M|R −→ N|R

N |= T

=⇒

M

M ′
�

M ′|R

M|R

�

�

�

∼=
N ′|R

N|R

�

pure
N

N ′
�

(here and below, we abbreviate, for arbitraryS andM, “ M ∈ Mod(S)” by “ M |= S”) .
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The proposition is proved by the help of the following two lemmas, expressed without
words in a similar schematic manner.

Lemma 2.3

M |= S

M|R −→ N

N |= R

=⇒

M

M1

�

M1|R

M|R

�

� N
�

�
�

�
�

�
�

�
���

pure

�
�

�
�

Lemma 2.4

M |= R

M
pure←− N|R

N |= T

=⇒

M �

N1|R

N|R
	

	
	

	
	

	
	

	
	

	


�
�

�
�

�

pure
N

N1

�

The proofs of the last two lemmas are postponed to Section 3.

Proof of Proposition 2.2 from Lemmas 2.3 and 2.4: For this we build the following
diagrams:
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M2

M1

�

M

�

N2

N1

�

N

�

pure

pure

M2|R

M1|R

M|R

�

�

N2|R

N1|R

N|R

�

�

�

�

�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

pure

pure

Westart with the givenM, N andM|R → N|R. Using Lemma2.3with M andN of
the statement of the lemma as the presentM andN|R, we produceM → M1 and the
lowest triangle. Then, applying Lemma2.4to M1|R andN asM andN, we produce
N

pure−→ N1 and the next triangle, etc.
With the three infinite diagrams, considerM ′=colimi→ω Mi, N ′ = colimi→ω Ni.

We have the canonical colimit coprojectionsM → M ′, and N → N ′. The latter is
clearly pure (since all vertical arrows in the diagram of theNs are pure). Finally, the
left to right horizontal arrows induce a mapM ′ → N ′, the slanted ones induce one
N ′ → M ′, and the commutativity of the infinite diagram shows that these latter two
arrows are inverses of each other. The isomorphismM ′ → N ′ clearly satisfies the
commutativity required in Proposition2.2.

Let us return to our proof that̂J is conservative providedF is. Using Lemma2.1

and Proposition2.2, we dohaveN with N X �= N A, and(M ′, N ′, h′ : M ′|R ∼=−→N ′|R)

with a pure mapN → N ′, which, according to what was said above, completes the
proof. We have thus shown the following proposition. �

Proposition 2.5 Pushouts in C oherent of pairs of arrows in H eyting satisfy the
SAP.

Let us see that for the case ofBoole, this suffices for the proof of the SAP. Of course,
it is a special case of Proposition2.5that pushouts inC oherent of pairs of arrows in
Boole satisfy the SAP. Continuing with our established notation, and assuming that
R, S andT are inBoole, weclaim that the canonical mapH : P̂ → P is conservative;
since the composite of conservative maps is conservative, the desired assertion will
follow from Proposition2.5. To demonstrate the claim, consider the left adjoint� to
the forgetful functor� : Boole∗ −→ C oherent∗; for a coherent categoryT,�T is the
free Boolean category extension ofT . Since� is a left adjoint, it preserves colimits.
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Hence it takes a pushout diagram into a pushout diagram. Also, note that ifT is itself
Boolean, then�T � T . The reason is that� is a full inclusion (see Theorem 1 in
Section IV.3 of MacLane [10]). The latter statement just says that a coherent functor
between Boolean categories is a Boolean functor, which is rather clear. Our remarks
so far imply that in the Boolean case, we have an equivalenceK : P � � P̂, with K ◦
H = η P̂, whereη P̂ is the canonical unit map of the adjunction. However,ηT : T →
�T is always conservative: we have the conservativeeT : T → Set|Mod(T )| =de f U
into a Boolean category; the universal property ofηT implies that there isL : �T −→
U with eT

∼= L ◦ ηT , from which it follows thatηT is conservative. Our claim follows.

Theorem 2.6 The canonical coherent functor from the coherent pushout of a pair
of Heyting functors to the Heyting pushout of the same pair is always conservative.

This is the new result of this paper. Of course, together with Proposition2.5, it im-
plies the SAP forH eyting, and thus Craig for intuitionistic logic. Note however that
Theorem2.6does not follow (directly at least) from the SAP forH eyting, even for
pushouts in which one leg or both are conservative.

Let me point out that this is a result of “pure logic,” that is, a result about the
syntax of logic.

With reference to (2) in Section 1, let us say that a formula overL1 ∪ L2 is rela-
tively coherent if it is built up using∧,∨, and∃ from L1-formulas andL2-formulas.
Theorem2.6amounts the assertion that if the sentence∀�x(ϕ → ψ), with ϕ andψ rel-
atively coherent formulas, is provable fromS ∪ T in intuitionistic logic overL1 ∪ L2,
then the coherent sequentϕ ⇒ ψ is provable using the rules of coherent logic only
(see for example [12]) from assumption entailments each of which is provable either
from S in intuitionistic logic overL1 or from T in intuitionistic logic overL2.

For the proof of Theorem2.6, weshow the following.

Proposition 2.7 With the notation in (2), the composites:

T −−−→Ĵ
P̂ −−−→eP̂ SetMod( P̂) and

S −−−→Î
P̂ −−−→eP̂ SetMod( P̂)

are Heyting functors.

Note that the proposition specializes to Joyal’s Theorem when bothF andG are taken
to be identity functors.

Proof: Note that the domain and the codomain of the composite are Heyting cat-
egories, although the factors are not necessarily Heyting functors. Looking back at
the remarks on the proof of Joyal’s Theorem, and using the fact that the objects of

Mod( P̂) are essentially triples(M |= S, N |= T, h : M|R ∼=−→N|R) (via the equiva-
lence functor�∗ : Mod( P̂) → Coconeset; see Section 1), a little thought shows that
what is to be shown is this: withf : A → B and X as before, given(M, N, h) and
y ∈ N B, if y �∈ N(∀ f X), then there is an arrow(m, n) : (M, N, h) → (M ′, N ′, h′) in
Coconeset, and somex such that(n, x) is a witness fory �∈ N(∀ f X) in the original
sense introduced above. Now, by (the proof of) Joyal’s Theorem, there is a witness
(n∗ : N → N∗, x ∈ N∗(A)). Apply Proposition2.2 for M andN∗ asM andN, and
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n∗|R ◦ h : M|R → N∗|R as the arrowh. Weobtainm : M → M ′, n1 : N∗ → N ′ such
thatn1 is pure, and we obtain the following commutative diagram.

M ′ | R

M | R

M | R

�

�

m | R

1M|R

N ′ | R

N∗ | R

N | R

�

�

n1 | R

n∗ | R

�

�

�

h′
∼=

n∗ | R ◦ h

h

By a remark made above, sincen1 is pure,(n1n∗, (n1)Ax) is a witness, and thus with
n = n1n∗, m, n, and(n1)A(x), are as desired. �

Proof of Theorem 2.6: Consider the following diagram:

R

S

F

T

P

G

I

J

� �

�

�
�

�
�

���

�
�

�
�

���

	
	

	
	

	


Î
P̂

H

Ĵ

���������������������


	
	

	
	

	
	

	
	

		


�
�

�
�

�
�

�
�

�
�

�
�

�
��

I∗

H∗

J∗

SetMod( P̂)

eP̂ : P̂ → SetMod( P̂)

I∗ = eP̂ Î, J∗ = eP̂ Ĵ
α : I F ∼= JG, α = Hα̂

α̂ : Î F ∼= ĴG
α∗ : I∗ F ∼= J∗G, α∗ = eP̂α̂.

Here, after the familiar ingredients,I∗, J∗, andα∗ are defined as shown (eP̂ is not
drawn). Since by Proposition2.7 I∗ and J∗ are Heyting functors, by the univer-
sal property of P, we haveH∗ with I H∗ = I∗, J H∗ = J∗, andαH∗ = α∗. Hence,
Î H∗ H = I∗, Ĵ H∗ H = J∗, andα̂H∗ H = α∗. By the uniqueness part of the universal
property ofP̂, it follows thatH∗ H ∼= eP̂. But, by Gödel,eP̂ is conservative; hence,
so isH. �
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3 Model-theoretical arguments The categorical language is superior for the pur-
poses of expressing the important things (stating results, for instance), but it is not
convenient for stating certain arguments, e.g., the model-theoretical ones involving
the “method of diagrams.” In our view (which reverses the historical order), symbolic
logic is the auxiliary language, to be introduced to deal in convenient ways with the
concepts primarily given in the categorical framework.

With any coherent categoryT , weassociate a particular coherent theory(LT , T ),
also written simply asT , the internal theory of T (in [12], TT is written for(LT , T );
see Chapter 3, Section 5, page 128). Here,LT has sorts the objects ofT , unary sorted
operation symbols are the arrows ofT . The models of(LT , T ) are identical to the
models ofT (objects of Mod(T )). The (universal algebraic) homomorphisms of mod-
els are the same as the arrows in Mod(T ) (see Theorem 3.5.3. of [12]).

For any coherent formulaϕ(�x) with free variables among�x, we have the inter-
pretation ofϕ, [�x | ϕ] ∈ Sub([ �x]), where [�x] is the product of the objects that are the
respective sorts of the variables in�x (in [12], [ϕ] is written for [�x | ϕ]). Given any
subobjectX ∈ Sub(A), there is a canonically selected coherent formulaX(x) such
that [x ∈ A | X(x)] = X (herex is a variable of sortA; “ x ∈ A” i s just a reminder of
this). If X ∈ Sub(A1 × . . . × An), wehaveX(x1, . . . , xn)(= X(�x)) such that

[ �x ∈
n∏

i=1

Xi | X(�x)] = X.

Let us introduce some auxiliary notation. WithF : R → S acoherent functor, ifϕ(�x)

is any formula overLR (e.g., in full first-order logic, or even in infinitary logic),ϕF(�x)

denotes itsF-translate, that is, the result of substitutingFA for A, andF f for f , for
any f : A → B in R; the sorting of the variables, both free and bound, is redone ac-
cordingly. Thus,ϕF(�x) is a formula overLS. If, in particular,ϕ is a coherent formula,
thenF[ �x | ϕ] = [ �x | ϕF]; this is precisely to say that the functorF is coherent. With
a little abuse of language, we also writeϕS for ϕF(F : R → S).

With M ∈ Mod(R), Diag+(M) denotes thepositive diagram of M, that is, the
set of all coherent (positive existential) sentences, over the languageLR(M) contain-
ing an individual constanta of sort A for each pair(A ∈ T, a ∈ M(A)), that are true
in M whena is interpreted asa. As iswell known, and immediately seen, the arrows
(homomorphisms) out ofM are in an essentially one-to-one correspondence with the
models ofDiag+(M). With G : R → T , say, when writingDiag+(M)T , we meanthe
set ofG-translates of all members ofDiag+(M), with the new individual constants
left alone except that their sortings are redone in the obvious way.

The negative diagramDiag−(M) is defined similarly, with negated existential
positive sentences. Models ofDiag+(M) ∪ Diag−(M) correspond to embeddings,
that is, pure maps, out ofM.

In this section, we use|= in the sense of semantical consequence in ordinary
classical predicate logic (many-sorted, with possibly empty sorts).

Proof of Lemma 2.1: Let 
 denote the set of all coherent (positive existential) sen-
tencesσ overLR such that¬σT is a consequence ofT ∪ {¬∀xX(x)}. We claim that
S ∪ {¬σS : σ ∈ 
} is consistent. Otherwise, from the fact that
 is closed under dis-
junction, we obtainσ ∈ 
 such thatS |= σS. SinceF is conservative,R |= σ; hence,
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T |= σT . But sinceT ∪ {¬∀xX(x)} |= σT (by the definition of
), it follows that
T |= ∀xX(x), contrary to the hypothesis thatX �= 1A.

Let M be any model ofS ∪{¬σS : σ ∈ 
}; in particular,M ∈ Mod(S). We claim
that Diag(M|R)T ∪ T ∪ {¬∀xX(x)} is consistent; once proved, the claim establishes
the lemma. If the claim fails, there isϕ(�a) ∈ Diag(M|R) with T ∪ {¬∀xX(x)} |=
¬ϕ(�a). Hence,∃�xϕ ∈ 
. SinceM |= (∃�xϕ)S, this is a contradiction to the assumption
on M. �
Before turning to the proofs of Lemmas2.3and2.4, we discuss how the fact thatR
is a Heyting category is reflected on the “coherent logic” ofR.

First of all, with A ∈ R, andX, Y ∈ Sub(A), wemay consider∀y(X) ∈ Sub(Y )

wherey : Y → A is the structure map forY ∈ Sub(A). With z the structure map for
∀y(X) ∈ Sub(Y ), we letX → Y be the subobject ofA represented by the monomor-
phismy ◦ x. It is easy to see thatX → Y is the “Heyting implication” (relative pseudo-
complement) in the sense that for anyZ ∈ Sub(A), Z ∧ X ≤ Y iff Z ≤ X → Y . Fur-
ther, if f : A → B andX, Y ∈ Sub(A), then∀ f (X → Y ) ∈ Sub(B) satisfies the fol-
lowing condition: for anyZ ∈ Sub(B),

Z ≤ ∀ f (X → Y ) ⇐⇒ f ∗(Z) ∧ X ≤ Y.

This is easy to see.
Now, suppose we have the coherent formulasϕ(�x, �y), ψ(�x, �y) over the language

LR. Let A = [ �x] and B = [ �y], thus A × B = [ �x, �y]. Let π : A × B → A be the
projection. And letX = [ �x, �y | ϕ] and Y = [ �x, �y | ψ]. We define the subobject
[ �x | ∀�y(ϕ → ψ)] to be∀π(X → Y ) ∈ Sub(A); note that∀�y(ϕ → ψ) is not a coherent
formula, thus the expression [�x | ∀�y(ϕ → ψ)] isnot defined in the general context of
a coherentR; [ �x | ∀�y(ϕ → ψ)] is the interpretation inR of the formula∀�y(ϕ → ψ)

taken in intuitionistic logic. If there were no difference between classical and intu-
itionistic logic, we would have:

? : R |= ∀�x([ �x | ∀�y(ϕ → ψ)](�x) ←→ ∀�y(ϕ(�x, �y) → ψ(�x, �y))).

The left to right implication and a suitable weakening of the other implication are true:

R |= [ �x | ∀�y(ϕ → ψ)](�x) −→ ∀�y(ϕ(�x, �y) → ψ(�x, �y)); (1)

and for any coherentLR-formulaθ(�x),

R ∪ {θ(�x)} |= ∀�y(ϕ(�x, �y)) → ψ(�x, �y)) =⇒ R ∪ {θ(�x)} |= [ �x | ∀�y(ϕ → ψ)](�x) (2)

(in the latter,�x is treated as a tuple of constants, in the natural way). These assertions
are immediately seen on the basis of the definition of [�x | ∀�y(ϕ → ψ)].

Furthermore, ifF : R → S is Heyting, then, clearly,

F([ �x | ∀�y(ϕ → ψ)]) = [ �x | ∀�y(ϕ → ψ)S].

Proof of Lemma 2.3: Let f be the given arrowM|R → N. In forming the diagrams
below, we make sure that the set of constants used for elements ofM is disjoint from
the set of constants used for elements ofN.
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Wemodify Diag+(N) to Diag+(N)∗ by adding all axioms of the forma =A b
wheneverA ∈ R, a ∈ (M|R)(A) = (M F)(A) and f A(a) = b, and closing the result
under conjunction. The assertion of the lemma is equivalent to saying that

S ∪ Diag+(M) ∪ (Diag+(N)∗)S ∪ (Diag−(N))S

is consistent. Assume the contrary. Then there is a finite subset� of the displayed set
which is inconsistent. Let�a be the tuple ofM-constants of sortsFA with A ∈ R, �c the
rest of theM-constants, and�b the N-constants occurring in�. Taking conjunctions,
there areθ(�a, �c) ∈ Diag+(M), ϕ(�a, �b) ∈ Diag+(N)∗, and¬ψ(�b) ∈ Diag−(N) such
that

S |= θ(�a, �c) ∧ ϕS(�a, �b) → ψS(�b),

that is,
S ∪ {θ(�a, �c)} |= ∀�y(ϕS(�a, �y) → ψS(�y)).

Thus, by (2),

S ∪ {θ(�a, �c)} |= [ �x | ∀�y(ϕS(�x, �y) → ψS(�y))](�a),

which, byM |= S ∪ {θ(�a, �c)}, implies that

M |= [ �x | ∀�y(ϕS(�x, �y) → ψS(�y))](�a).

SinceF : R → S is a Heyting functor,

M|R |= [ �x | ∀�y(ϕ(�x, �y) → ψ(�y))](�a),

and since the homomorphismf preserves the meaning of coherent formulas,

N |= [ �x | ∀�y(ϕ(�x, �y) → ψ(�y))]( f �a). (3)

However,N|R |= ϕ( f �a, �b), andN|R |= ¬ψ(�b), hence

N |= ¬∀�y(ϕ( f �a, �y) → ψ(�y)). (4)

(1), (3) and (4) give a contradiction. �
Proof of Lemma 2.4: This is easier; it does not need the Heyting character of the
data involved. Letf : N|R → M be the given map. It suffices to prove that

T ∪ Diag+(N) ∪ Diag−(N) ∪ (Diag+(M)∗)T

is consistent (here, as before,Diag+(M)∗ is obtained by adding toDiag+(M) the
sentences of the formb =A a wheneverA ∈ R and f A(b) = a). Otherwise, there is
a finite subset� of the displayed set which is inconsistent. Let�a be the tuple ofM-
constants,�b the N-constants of sortsGA for A ∈ R, and�c the rest of theN-constants
occurring in�. Taking conjunctions, we haveθ(�b, �c) ∈ Diag+(N),¬ψ(�b, �c) ∈
Diag−(N), andϕ(�a, �b) ∈ Diag+(M)∗ such that

T ∪ {ϕT (�a, �b)} |= θ(�b, �c) → ψ(�b, �c).
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And as a consequence,

T ∪ {∃�xϕT (�x, �b)} |= θ(�b, �c) → ψ(�b, �c).

Now, since f : N|R → M is pure andM |= ∃�xϕ(�x, f �b), we have that N|R |=
∃�xϕ(�x, �b), that is, N |= ∃�xϕT (�x, �b). Since alsoN |= T , we conclude thatN |=
θ(�b, �c) → ψ(�b, �c). However, this contradicts the choice of the formulasθ,ψ. �
Let us make some remarks comparing our procedures with those of [5]. In that paper,
a version of Robinson’s Consistency Lemma is proved, and Craig’s Theorem is de-
rived from it. The proof of “Robinson’s Lemma” is given, essentially, in one piece;
no (real) lemmas are formulated; in particular, no statement comparable to Theorem
2.6 is given. Nevertheless, most of the ingredients of our proofs appear in Gabbay’s
proof. Instead ofmodels (in our sense) ofT , “complete and saturated extensions ofT”
appear; this is indeed an equivalent concept. Lemma2.1, Proposition2.2and Propo-
sition 2.5 do not appear in a recognizable form, but Lemmas2.3 and2.4 do appear
in several places (as essentially the same two arguments repeated). Finally, there is a
construction of a tree-based Kripke model, with a tree whose nodes are various tuples
consisting of formulas, etc.; this is avoided in our treatment by the use of a Joyal-type
canonical Kripke model.
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