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Consequence and Confirmation

PETER ROEPER and HUGUES LEBLANC

Abstract Gentzen’s account of logical consequence is extended so as to be-
come a matter of degree. We characterize and study two kinds of functionG,
whereG(X, Y ) takes values between 0 and 1, which represent the degree to
which the setX of statements (understood conjunctively) logically implies the
setY of statements (understood disjunctively). It is then shown that these func-
tions are essentially the same as the absolute and the relative probability func-
tions described by Carnap.

1 Prior to Gentzen’s1 1934–35 paper [2], logical consequence was thought of as
a relation from a conjunctively interpreted setX of statements to asingle statement
A. However, in the paper in question Gentzen introduced a new notion of derivability
which permits one to derive a disjunctively interpreted sequence of statements from a
conjunctively interpreted one. Sets may of course substitute in Gentzen for sequences
and often do, which makes for a new notion of logical consequence, one according
to which—given setsX andY of statements—X hasY as a logical consequence if (i)
it is impossible for all the statements inX to be true and, simultaneously, all those
in Y to be false, or equivalently (ii) at least one statement inY must be true if all
the statements inX are true. It is Gentzen’s notion of logical consequence which we
shall extend here to one ofdegrees of logical consequence or—equivalently, as we
shall prove—to one ofdegrees of confirmation in the sense of Carnap [1].

In Sections 2 and 3 we formulate characterizations of two classes of functions
(G1-functions andG2-functions) which, in different ways, assign degrees of logical
consequence to pairs〈X, Y〉 of sets of statements. This is done axiomatically by ex-
tending Gentzen’s structural rules to apply to functions from finite antecedent and
succedent sets of statements to real numbers in the interval [0,1], and these gener-
alized constraints are then justified in terms of weighted truth-value assignments. In
Section 4 the constraints are further extended to cover infinite antecedent and succe-
dent sets of statements. We next turn to Gentzen’s introduction rules for connectives
and extend them also toG1 andG2 functions, and we show in Section 5 that, as long
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as the restrictions ofG1 andG2 functions to sets of atomic statements meet the re-
spective structural constraints, the full functions obtained by using the generalized
introduction rules in a recursive definition do, too, a result that is analogous to, in
fact a generalization of, Gentzen’s Cut Elimination Theorem. In Section 6 lastly it is
shown that theG1 andG2 functions can be construed, respectively, as absolute and
relative probability functions in Carnap’s and Popper’s sense.

SupposeL is a language that has onlyfinitely many statements, a restriction
which, as indicated earlier, will be lifted from Section 4 on; and understand by a truth-
value assignmentα for L any result of assigning either 0 (i.e., False) or 1 (i.e., True)
to each statement ofL . Then,w will be for us aweight function with the truth-value
assignments forL as its arguments and such that:

W1. 0≤ w(α) for everyα, and

W2.
∑

α w(α) = 1, where
∑

α w(α) is the sum of the weights of the various
truth-value assignments forL .

A truth-value assignment forL will be calledpossible if the statements ofL to which
it assigns 1 can all be true and, simultaneously, those to which it assigns 0 can all be
false; otherwise it will be calledimpossible. And when—as at this point—L is a finite
language, all and only the impossible truth-value assignments forL can have weight
0, the possible ones in contrast having positive weights which reflect, if you will, their
respectivelikelihood. Given the notion of an impossible truth-value assignment for
L formulation (i) of the account of logical consequence in paragraph one above can
be restated as follows:X hasY as a logical consequence, for short,

X |= Y,

if any truth-value assignment forL that assigns 1 to all the members ofX and 0 to all
those ofY is an impossible one, i.e., if

∑
{w(α) : X ⊆ Tα andY ⊆ Fα} = 0,

whereTα = {A ∈ L : α(A) = 1} andFα = {A ∈ L : α(A) = 0}.2
Weshall concurrently be interested in a second,implicit, characterization of log-

ical consequence, one which is an adaptation of Gentzen’s own rules of derivability
to suit sets rather than sequences of statements. The following three are versions of
his so-calledstructural rules, with ‘ |=,’ the standard symbol for logical consequence,
in place of his arrow ‘→’:

R1. If X ∩ Y �= ∅, thenX |= Y (Overlap)

R2. If X |= Y , then{A} ∪ X |= Y andX |= Y ∪ {A} (Thinning)

R3. If X |= Y ∪ {A} and{A} ∪ X |= Y , thenX |= Y (Cut).

Any relation satisfying these three constraints will constitute for us a consequence
relation, and raised with respect to such a relation is the question: “Can it be so gen-
eralized as to become a matter of degree, measurable by a number in the interval [0,1]
(end-points included)?”
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2 A generalization of|= whereby the logical relationship between setsX andY be-
comes “a matter of degree” would make use of a binary functionG with values in
the above mentioned interval [0,1] and such thatG(X, Y ) = 1 if and only if X |= Y .
The first characterization of|= in Section 1 provides the best starting point for the
generalization.

It should be a simple matter to calculateG(X, Y ) in terms of the weights that
we presumed in that section to be assigned to the various truth-value assignments for
L . There are two different ways, it quickly appears, of doing the calculation. The
first exploits the formulation (i) of the consequence relation: “It is impossible for all
the statements inX to be true and, simultaneously, all those inY to be false.” The
formulation suggests that in calculatingG(X, Y ) we add up the weights of the truth-
value assignments forL in which either not all the statements inX are true or else
not all those inY are false. Thesecond exploits formulation (ii) of the consequence
relation: “If all the statements inX are true, then at least one statement inY must be
true.” This formulation suggests that to calculateG(X, Y ) is to answer the question:
“To exactly which degree is it possible to find a member ofY that is true in a truth-
value assignment forL in which all the members ofX are true?”

We pursue both alternatives, and for clarity’s sake we shall write ‘G1(X, Y )’
when attending to the first and ‘G2(X, Y )’ when attending to the second.G1(X, Y ) is
calculated by adding up the weights of all the truth-value assignments forL in which
either some member ofX is false or else some member ofY is true. This means of
course leaving out of the sum the weights of just those truth-value assignments in
which all the statements inX are true and all those inY are false. It proves conven-
ient to give a label of its own, ‘F1’, to the sum of the latter weights. So

1. F1(X, Y ) = ∑{w(α) : X ⊆ Tα andY ⊆ Fα},
and hence

2. G1(X, Y ) = 1− F1(X, Y ),

which of course yields

3. F1(X, Y ) = 1− G1(X, Y ).

For a given finite languageL , each and every weightw thus determines a binary func-
tion F1 and a binary oneG1, G1(X, Y ) measuring the extent to whichX (understood
conjunctively) hasY (understood disjunctively) as a consequence, andF1(X, Y ) mea-
suring the extent to whichX fails to do so. Note incidentally thatG1(X, Y ) = 0 if
and only if ∅ |= {A} for every A in X and∅ |= {¬B} for every B in Y , whereas
G2(X, Y ) = 0 if and only if X |= {¬B} for everyB in Y .

The various functionsG1 on a languageL can also be specified implicitly by
placing onG1 these three constraints:

G11. G1(X, Y ) ≤ 1
G12. G1(∅,∅) = 0
G13. F1(X, Y ∪ {A}) + F1({A} ∪ X, Y ) = F1(X, Y ).

In G13, a constraint reminiscent of Gentzen’sCut, ‘ F1’ can in view of (3) be thought
of as short for ‘1− G1’. So appearances to the contrary notwithstanding,G13 is a
constraint onG1.3
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Theorems2.1 and2.5 below show that the present characterization of degrees
of logical consequence is equivalent to the one using (1) – (2) in the preceding para-
graph. And Theorem2.6 shows that the implicit characterization of logical conse-
quence in Section 1 utilizing constraints R1–R3 issues via (3) from constraintsG11–
G13, this whenY being a logical consequence ofX is defined asG1(X, Y ) = 1.

Theorem 2.1 Let F1 be defined as in (1), i.e.,

F1(X, Y ) =
∑

{w(α) : X ⊆ Tα and Y ⊆ Fα},

and G1 as in (2). Then G1 meets constraints G11–G13.

Proof: (i) G1 meetsG11 by W1 and the definition ofG1.
(ii)

∑{w(α) : ∅ ⊆ Tα and∅ ⊆ Fα} = 1 by W2. So F1(∅,∅) = 1 by the defi-
nition of F1. SoG1 meetsG12.

(iii) For anyα, X ⊆ Tα andY ⊆ Fα if and only if eitherX ⊆ Tα andY ∪{A} ⊆ Fα

or {A} ∪ X ⊆ Tα andY ⊆ Fα. SoG1 meetsG13. �
In Lemmas2.2–2.4we presumeG1 to meet constraintsG11–G13.

Lemma 2.2 If X ∩ Y �= ∅, then F1(X, Y ) = 0 and G1(X, Y ) = 1.

Proof: SupposeX ∩ Y �= ∅, andlet A belong to bothX andY . Then X = {A} ∪
X and Y = Y ∪ {A}. Hence F1(X, Y ) + F1(X, Y ) = F1(X, Y ) by G13. Hence
F1(X, Y ) = 0 andG1(X, Y ) = 1. �
The next lemma amounts to a generalization of constraintG13.

Lemma 2.3 (a) F1(X, Y ) = ∑{F1(Z ′ ∪ X, Y ∪ (Z − Z ′)) : Z ′ ⊆ Z};
(b) F1(X, Y ) = ∑{F1(Tα, Fα) : X ⊆ Tα and Y ⊆ Fα}.
Proof: (a) By induction on the cardinalityn of Z.
Basis: n = 0. Then (a) holds trivially.
Inductive Step: n > 0. Let A be a member ofZ andZ∗ beZ −{A}. ThenF1(X, Y ) =
F1(X, Y ∪ {A}) + F1({A} ∪ X, Y ) by G13. But F1(X, Y ∪ {A}) = ∑{F1(Z ′ ∪ X, Y ∪
{A} ∪ (Z∗ − Z ′)) : Z ′ ⊆ Z∗} andF1({A} ∪ X, Y ) = ∑{F1(Z ′ ∪ {A} ∪ X, Y ∪ (Z∗ −
Z ′)) : Z ′ ⊆ Z∗} by the inductive hypothesis. So (a).

(b) Let Z in (a) beL . ThenF1(X, Y ) = ∑
α F1(Tα ∪ X, Y ∪ Fα). But (Tα ∪ X)∩

(Y ∪ Fα) �= ∅ if and only if X ⊆ Tα andY ⊆ Fα. Hence (b) by Lemma2.2. �

Lemma 2.4 (a) G1(X, Y ) ≤ G1({A} ∪ X, Y ) and G1(X, Y ) ≤ G1(X, Y ∪ {A});
(b) G1(X, Y ) ≤ G1(Z ∪ X, Y ) and G1(X, Y ) ≤ G1(X, Y ∪ Z);
(c) 0 ≤ G1(X, Y ).

Proof: (a) F1({A} ∪ X, Y ) ≤ F1(X, Y ) andF1(X, Y ∪ {A}) ≤ F1(X, Y ) by G13 and
G11. So (a) by (2).

(b) by repeated use of (a).
(c) G1(∅,∅) = 0 by G12. Hence 0≤ G1(X, Y ) by (b). �

Theorem 2.5 If G1 meets constraints G11–G13, then there exists a weight function
w such that F1(X, Y ) = ∑{w(α) : X ⊆ Tα and Y ⊆ Fα}.



CONSEQUENCE AND CONFIRMATION 345

Proof: SupposeG1 meets constraintsG11–G13, and letwG1(α) = F1(Tα, Fα).
Then wG1(α) ≥ 0 by G11. And

∑
α wG1(α) equals

∑
α F1(Tα, Fα), which itself

equals
∑{F1(Tα, Fα) : ∅ ⊆ Tα and ∅ ⊆ Fα}. So

∑
α wG1(α) = F(∅,∅) by

Lemma2.3(b), and hence
∑

α wG1(α) = 1 by G12 and statement (2) above. So
wG1 is a weight function. Now letF′

1(X, Y ) be
∑{wG1(α) : X ⊆ Tα andY ⊆ Fα}.

ThenF′
1(X, Y ) equals

∑{F(Tα, Fα) : X ⊆ Tα andY ⊆ Fα}, and henceF1(X, Y ) by
Lemma2.3(b) again. So Theorem2.5. �
Theorems2.1and2.5thus guarantee that the characterizations (1) and (2) of the de-
grees of logical consequence in terms of weight functions and that in terms of con-
straintsG11–G13 are equivalent.

As for our second task, let|=G1 be this binary relation on subsets ofL :

X |=G1 Y if and only if G1(X, Y ) = 1,

or, equivalently,
X |=G1 Y if and only if F1(X, Y ) = 0.

Theorem 2.6 If G1 meets constraints G11–G13, then the relation |=G1 satisfies R1–
R3.

Proof: (i) SupposeX ∩ Y �= ∅. ThenG1(X, Y ) = 1 by Lemma2.2, i.e., X |=G1 Y .
Hence|=G1 meetsOverlap. (ii) SupposeX |=G1 Y , i.e., G1(X, Y ) = 1. Then both
G1({A} ∪ X, Y ) ≥ 1 andG1(X, Y ∪ {A}) ≥ 1 by Lemma2.4(a). HenceG1({A} ∪
X, Y ) = 1andG1(X, Y ∪{A}) = 1 byG11. Hence|=G1 meetsThinning. (iii) Suppose
X |=G1 Y ∪{A} and{A}∪ X |=G1 Y , i.e.,F1(X, Y ∪{A}) = 0andF1({A}∪ X, Y ) = 0.
ThenF1(X, Y ) = 0 by G13. HenceX |=G1 Y . Hence|=G1 meetsCut. �

3 Turning now to formulation (ii) of the consequence relation in paragraph one of
Section 1, hence to the second way described in Section 2 of calculatingG(X, Y ) in
terms of weights, let the functionF2 be defined thus,w being of course the weight
function described in Section 1:

1′. F2(X, Y ) =
{

0 if
∑{w(α) : X ⊆ Tα} = 0∑{w(α) : X ⊆Tα andY ⊆ Fα}/

∑{w(α) : X ⊆Tα} otherwise,

andG2 defined thus:

2′. G2(X, Y ) = 1− F2(X, Y ),

which of course yields:

3′. F2(X, Y ) = 1− G2(X, Y ).

The resulting functionsG2 on L can also be specifiedimplicitly by placing on
them these five constraints:

G21. 0≤ G2(X, Y )

G22. G2(X, Y ) ≤ 1
G23. G2(∅,∅) = 0
G24. F2(X, Y ∪ {A}) + F2({A} ∪ X, Y ) × G2(X, {A}) = F2(X, Y )

G25. If G2(X, {A}) = 0, thenG2({A} ∪ X,∅) = 1.
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In G24, a constraint reminiscent likeG13 of Gentzen’sCut, ‘ F2’ can in view of (3′)
be thought of as short for ‘1− G2’. So G24 is aconstraint onG2, the wayG13 was a
constraint onG1.4

Proceeding as in Section 2, we go on to show that the characterization of degrees
of logical consequence using constraintsG21–G25 isequivalent to the one using (1′)–
(2′) in the preceding paragraph (= Theorems3.2and3.12below). We then show that
the implicit characterization of logical consequence in Section 1 that utilizes R1–R3
issues via (3′) from constraintsG21–G25, this whenY being a logical consequence
of X is defined asG2(X, Y ) = 1 (= Theorem3.13below). Accomplishing the second
task will be a lengthy affair, one that will call in particular for an auxiliary function,
the functionH introduced after Lemma3.7.

Lemma 3.1 Let F2 and G2 be defined as in (1′) and (2′), and let
∑{w(α) : X ⊆

Tα} �= 0. Then G2(X, {A}) = ∑{w(α) : {A} ∪ X ⊆ Tα}/
∑{w(α) : X ⊆ Tα}.

Proof: Since
∑{w(α) : X ⊆ Tα} �= 0, F2(X, {A}) = ∑{w(α) : X ⊆ Tα and A ∈

Fα}/
∑{w(α) : X ⊆ Tα}. SoG2(X, {A})=[∑{w(α) : X ⊆ Tα}−

∑{w(α) : X ⊆ Tα

and A ∈ Fα}] /
∑{w(α) : X ⊆ Tα}. So G2(X, {A}) equals

∑{w(α) : X ⊆ Tα and
A /∈ Fα}/

∑{w(α) : X ⊆ Tα}, which equals
∑{w(α) : {A} ∪ X ⊆ Tα}/

∑{w(α) :
X ⊆ Tα}. �

Theorem 3.2 Let F2 and G2 be defined as in (1′) and (2′). Then G2 meets con-
straints G21–G25.

Proof: (i) That G2 meetsG21, G22, andG23 is obvious from (1′) and (2′).
(ii) For anya, X ⊆ Tα andY ⊆ Fα if and only if either{A} ∪ X ⊆ Tα andY ⊆ Fα

or X ⊆ Tα andY ∪ {A} ⊆ Fα. So assume first that
∑{w(α) : X ⊆ Tα} = 0. Then∑{w(α) : {A} ∪ X ⊆ Tα} = 0. Hence all ofF2(X, Y ∪ {A}), F2({A} ∪ X, Y ), and

F2(X, Y ) equal 0, andG2 meetsG24. Assume next that
∑{w(α) : X ⊆ Tα} �= 0.

Then, owing to Lemma3.1 in the first step,

F2(X, Y ∪ {A}) + F2({A} ∪ X, Y ) × G2(X, {A}) =
=

∑
{w(α) : X ⊆ Tα andY ∪ {A} ⊆ Fα}/

∑
{w(α) : X ⊆ Tα} +

+
[∑

{w(α) : {A} ∪ X ⊆ Tα andY ⊆ Fα}/
∑

{w(α) : {A} ∪ X ⊆ Tα}
]
×

×
[∑

{w(α) : {A} ∪ X ⊆ Tα}/
∑

{w(α) : X ⊆ Tα}
]

=
=

[∑
{w(α) : X ⊆ Tα andY ∪ {A} ⊆ Fα}+

+
∑

{w(α) : {A} ∪ X ⊆ Tα andY ⊆ Fα}
]
/
∑

{w(α) : X ⊆ Tα} =
=

∑
{w(α) : X ⊆ Tα andY ⊆ Fα}/

∑
{w(α) : X ⊆ Tα} =

= F2(X, Y ).

HenceG2 meetsG24.
(iii) SupposeG2(X, {A}) = 0. Then

∑{w(α) : X ⊆ Tα} �= 0. So
∑{w(α) :

{A} ∪ X ⊆ Tα} = 0 by Lemma3.1. So F2({A} ∪ X,∅) = 0, and consequently
G2({A} ∪ X,∅) = 1 by (2′). SoG2 meetsG25. �



CONSEQUENCE AND CONFIRMATION 347

In Lemmas3.3–3.11, which will yield Theorem3.12, we presumeG2 to meet con-
straintsG21–G25.

Lemma 3.3 (a) F2(X, Y ∪ {A}) ≤ F2(X, Y ) and G2(X, Y ) ≤ G2(X, Y ∪ {A});
(b) F2(X, Y ∪ Z) ≤ F2(X, Y ) and G2(X, Y ) ≤ G2(X, Y ∪ Z);
(c) If G2(X, Y ) = 1, then G2(X, Y ∪ Z) = 1 (i.e., if F2(X, Y ) = 0, then
F2(X, Y ∪ Z) = 0).

Proof: (a) is byG24, G21, andG22; (b) is by repeated use of (a); and (c) is by (b)
andG22. �

Lemma 3.4 If X ∩ Y �= ∅, then G2(X, Y ) = 1.

Proof: With A a member of bothX andY , F2(X, Y ) + F2(X, Y ) × G2(X, {A}) =
F(X, Y ) by G24. So eitherF2(X, Y ) = 0 or G2(X, {A}) = 0. But in the latter case
G2(X,∅) = 1 by G25, and henceG2(X, Y ) = 1 by Lemma3.3(c). �

Lemma 3.5 (a) If F2(X, Y ) = 0, then F2({A} ∪ X, Y ) = 0;
(b) If G2(X, Y ) = 1, then G2(Z ∪ X, Y ) = 1 (i.e., if F2(X, Y ) = 0, then F2(Z ∪
X, Y ) = 0).

Proof: (a) SupposeF2(X, Y ) = 0. Then eitherF2({A}∪ X, Y ) = 0 orG2(X, {A}) =
0 byG24 andG22. But in the latter caseG2({A} ∪ X,∅) = 1 byG25, henceF2({A} ∪
X,∅) = 0, and henceF2({A} ∪ X, Y ) = 0 by Lemma3.3(c). SoF2({A} ∪ X, Y ) = 0
in either case. (b) is by repeated use of (a). �

Lemma 3.6 (a) G2(X,∅) equals either 0 or 1.
(b) If G2(X, {A}) �= 1, then G2(X,∅) = 0. (If F2(X, {A}) �= 0, then F2(X,∅) = 1.)

Proof: (a) is by induction on the cardinality ofX. If X = ∅, then (a) byG23.
Assume then thatG2(X,∅) = 0 or G2(X,∅) = 1, and letA be a statement not
in X. G2(X,∅) = G2({A} ∪ X,∅) × G2(X, {A}) by G24. So if G2(X,∅) = 1,
thenG2({A} ∪ X,∅) = 1, whereas ifG2(X,∅) = 0, thenG2({A} ∪ X,∅) = 0 or
G2(X, {A}) = 0, and in the latter caseG2({A} ∪ X,∅) = 1 by G25.

(b) SupposeG2(X,∅) �= 0. ThenG2(X,∅) = 1 by (a), and henceG(X, {A}) =
1 by Lemma3.3(c). �

Lemma 3.7 (a) G2(X, {A})×G2({A}∪ X, {B})=G2(X, {B})×G2({B}∪ X, {A});
(b) Let A1, . . . , An be the members of Y in some order or other, let Y0 be ∅, and let
Yi be Yi−1 ∪ {Ai} for i = 1, . . . , n. Then

∏n
i=1 G2(X ∪ Yi−1, {Ai}) is independent of

the order of the members of Y.

Proof: (a) By G24, 1− F2(X, {A}) − F2(X, {B}) + F2(X, {B} ∪ {A}) equals [1−
F2(X, {A})] × [1 − F2({A} ∪ X, {B})] as well as [1− F2(X, {B})] × [1 − F2({B} ∪
X, {A})]. So (a). (b) is by (a). �
Needed at this point to abbreviate matters is an auxiliary functionH(X, Y ), whose
definition is sanctioned by Lemma3.7(b).

H(X, Y ) =
{ ∏n

i=1 G2(X ∪ Yi−1, {Ai}) if Y �= ∅

1 if Y = ∅.5

The following lemma amounts to a generalization of constraintG24.
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Lemma 3.8 F2(X, Y ) = ∑{F2(Z ′ ∪ X, Y ∪ (Z − Z ′)) × H(X, Z ′) : Z ′ ⊆ Z}.
Proof: By induction on the cardinalityn of Z.
Basis: n = 0. F2(X, Y ) = F2(X, Y )× H(X,∅), sinceH(X,∅) = 1 by the definition
of H.
Inductive Step: n > 0. Let A be a member ofZ and letZ∗ = Z − {A}. Then

F2(X, Y ) = F2(X, Y ∪ {A}) + F2({A} ∪ X, Y ) × G2(X, {A})

by G24. But

F2(X, Y ∪ {A}) =
∑

{F2(X ∪ Z ′, Y ∪ {A} ∪ (Z∗ − Z ′)) × H(X, Z ′) : Z ′ ⊆ Z∗}

and

F2({A} ∪ X, Y ) × G2(X, {A}) =
∑

{F2({A} ∪ X ∪ Z ′, Y ∪ (Z∗ − Z ′)) ×
×H({A} ∪ X, Z ′) × G2(X, {A}) : Z ′ ⊆ Z∗}

by the inductive hypothesis. ButH({A} ∪ X, Z ′) × G2(X, {A}) = H(X, Z ′). Hence
Lemma3.8. �

Lemma 3.9 If H(∅, X) = 0, then G(X,∅) = 1.

Proof: Let A1, . . . , An be the members ofX in any order one pleases, letX0 be
∅, and let Xi be Xi−1 ∪ {Ai} for i = 1, . . . , n. SupposeH(∅, X) = 0. Then
G2(Xi−1, {Ai}) = 0 for somei (1 ≤ i ≤ n). So G2(Xi,∅) = 1 by G25, and hence
G2(X,∅) = 1 by Lemma3.5(b). �

Lemma 3.10 Let F∗(X, Y ) be F2(X, Y ) × H(∅, X), and let G∗(X, Y ) be 1 −
F∗(X, Y ). Then G∗ meets constraints G11–G13.

Proof: (i) G11 by G21 andG22. (ii) G12 by G23. (iii) Since H(∅, X ∪ {A}) =
H(∅, X)× G(X, {A}), F∗(X, Y ∪ {A})+ F∗({A} ∪ X, Y ) equals [F2(X, Y ∪ {A})+
F2({A} ∪ X, Y ) × G2(X, {A})] × H(∅, X), and henceF2(X, Y ) × H(∅, X) by G24.
HenceG13. �

Lemma 3.11 F2(X, Y ) = F∗(X, Y )/F∗(X,∅), if F∗(X,∅) �= 0, otherwise
F2(X, Y ) = 0.

Proof: AssumeF∗(X,∅) = 0. Then eitherF2(X,∅) = 0 or H(∅, X) = 0. But
in the latter caseF2(X,∅) = 0 as well by Lemma3.9. Hence F2(X, Y ) = 0
by Lemma3.3(c). Now assumeF∗(X,∅) �= 0. Then F2(X,∅) �= 0, and hence
F2(X,∅) = 1 by Lemma3.6(a). HenceF∗(X,∅) = H(∅, X), and thusF2(X, Y ) =
F∗(X, Y )/F∗(X,∅). �

Theorem 3.12 If G2 meets constraints G21–G25, then there exists a function w

such that

F2(X, Y ) =
{

0 if
∑{w(α) : X ⊆ Tα} = 0∑{w(α) : X ⊆ Tα and Y ⊆ Fα}/

∑{w(α) : X ⊆ Tα} otherwise.
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Proof: SupposeG2 meetsG21–G25, and letwG2(α) be F∗(Tα, Fα). ThenwG2 is a
weight function by Theorem2.5. Now let F′

2(X, Y ) be 0 if
∑{wG2(α) : X ⊆ Tα} = 0

and
∑{wG2(a) : X ⊆ Tα and Y ⊆ Fα}/

∑{wG2(a) : X ⊆ Tα} otherwise. Then
F′

2(X, Y ) equals
∑{F∗(Tα, Fα) : X ⊆ Tα andY ⊆ Fα}/

∑{F∗(Tα, Fα) : X ⊆ Tα}
by the definition ofwG2. SoF′

2(X, Y ) = F∗(X, Y )/F∗(X,∅) by the same reasoning
as in Theorem2.5. HenceF′

2(X, Y ) = F2(X, Y ) by Lemma3.11. �
So Theorems3.2and3.12guarantee that the characterization (1′) and (2′) of the de-
grees of logical consequence in terms of weight functions and that in terms of con-
straintsG21–G25 are equivalent. And since (i) by Theorem3.12the functionsG2 and
the weight functionsw match one-to-one, and (ii) by Theorem2.5 the functionsG1

and the functionsw also do, theG1 functions and theG2 functions stand in one-to-one
correspondence.

As for our second task, let|=G2 be this relation on pairs of statements ofL :
X |=G2 Y if and only if G2(X, Y ) = 1, or equivalently,X |=G2 Y if and only if
F2(X, Y ) = 0.

Theorem 3.13 If G2 meets G21–G25, then the relation |=G2 satisfies R1–R3.

Proof: (i) |=G2 meetsOverlap by Lemma3.4. (ii) |=G2 meetsThinning by Lem-
ma3.3(a) and Lemma3.5(a). (iii) SupposeX |=G2 Y ∪ {A} and{A} ∪ X |=G2 Y , i.e.,
F2(X, Y ∪ {A}) = 0 andF2({A} ∪ X, Y ) = 0. ThenF2(X, Y ) = 0 by G24. Hence
X |=G2 Y . So|=G2 meetsCut. �

4 As we turn to languages with infinitely many statements, we extend the counter-
parts R1–R3 of Gentzen’s structural rules to R1′–R3′, where the earlier setsX andY
may now be infinite as well as finite and so may the new setsZ andZ ′:

R1′. If X ∩ Y �= ∅, thenX |= Y
R2′. If X |= Y , thenZ ∪ X |= Y andX |= Y ∪ Z
R3′. If Z ′ ∪ X |= Y ∪ (Z − Z ′) for everyZ ′ ⊆ Z, thenX |= Y .6

In Sections 1–3 we defined|=G (with the subscript ‘G’ here short for either of
‘ G1’ and ‘G2’) in the following manner:

X |=G Y if and only if G(X, Y ) = 1.

The definition clearly does not suit infinite sets, for, as indicated by Lemmas2.4(b)
and3.3(b), G(X, Y ) will frequently equal 1 even thoughX �|= Y . One alternative way
of defining logical consequence is suggested by the class of compact consequence re-
lations, relations that are fully determined by their restrictions to finite sets of state-
ments. So we will deal with infinite languages but restrict ourselves to compact con-
sequence relations and define|=G thus:

X |=G Y if and only if G(X ′, Y ′) = 1

for some finite subsetX ′ of X and some finite subsetY ′ of Y .

In the same spirit it is our next task to design an extra constraint to be placed on
theG1 consequence functions and one to be placed on theG2 functions, constraints
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that will fix the values of these functions for infinite sets in terms of their values for
finite ones. As regards the first functions, we have from Lemma2.4(b)

G1(X, Y ) ≤ G1(X ′, Y ′) whenX ⊆ X ′ andY ⊆ Y ′,

which suggests this constraint:

G14. G1(X, Y ) = sup{G1(X ′, Y ′) : X ′ ⊆ f X andY ′ ⊆ f Y},
where ‘⊆ f ’ i s to be read ‘is a finite subset of’. This is of course equivalent to

F1(X, Y ) = inf{F1(X ′, Y ′) : X ′ ⊆ f X andY ′ ⊆ f Y}.
As regards the second functions, we have from Lemma3.11:

F2(X, Y ) =
{

F∗(X, Y )/F∗(X,∅) if F∗(X,∅) �= 0
0 otherwise,

which together with Lemma2.4suggests

G26. F2(X, Y ) =



inf{F∗(X ′, Y ′) : X ′ ⊆ f X andY ′ ⊆ f Y}/ inf{F∗(X ′,∅) :
X ′ ⊆ f X} if inf {F∗(X ′,∅) : X ′ ⊆ f X} �= 0

0 otherwise.7

Incidentally, we could have avoided placing constraintsG14 and G26 on the
presentG1 andG2 functions by extending the finitary functions from Sections 1 and
2 to infinitary ones with the help of definitions corresponding toG14 andG26. The-
orem4.1(which we prove) and Theorem4.2(proof of which we leave to the reader)
establish this.

Theorem 4.1 Let G1 be a function on the finite subsets of L meeting constraints
G11–G13, and let G′

1(X, Y ) = sup{G1(X ′, Y ′) : X ′ ⊆ f X and Y ′ ⊆ f Y}. Then G′
1

meets G11–G13.

Proof: That G′
1 meetsG11 and G12 is trivial. As for G13, F′

1(X, Y ∪ {A}) +
F′

1({A} ∪ X, Y ) = inf{F1(X ′, Y ′) : X ′ ⊆ f X andY ′ ⊆ f Y ∪ {A}} + inf{F1(X ′, Y ′) :
X ′ ⊆ f {A} ∪ X andY ′ ⊆ f Y}, which by Lemma2.4(a) equals inf{F1(X ′, Y ′ ∪ {A}) :
X ′ ⊆ f X andY ′ ⊆ f Y}+ inf{F1(X ′ ∪ {A}, Y ′) : X ′ ⊆ f X andY ′ ⊆ f Y}, which equals
inf{F1(X ′, Y ′ ∪ {A}) + F1(X ′ ∪ {A}, Y ′) : X ′ ⊆ f X andY ′ ⊆ f Y}, which by G13
equals inf{F1(X ′, Y ′) : X ′ ⊆ f X andY ′ ⊆ f Y}, which in turn equalsF′

1(X, Y ). �

Theorem 4.2 Let G2 be a function on the finite subsets of L meeting constraints
G21–G25, and let G′

2(X, Y ) = 1− F′
2(X, Y ), where

F′
2(X, Y ) =




inf{F∗(X ′, Y ′) : X ′ ⊆ f X and Y ′ ⊆ f Y}/ inf{F∗(X,∅) : X ′ ⊆ f X}
if inf{F∗(X ′,∅) : X ′ ⊆ f X} �= 0

0 otherwise.

Then G′
2 meets G21–G25.

So the presentG1 functions andG2 functions arecompact functions in the
broader sense that the value ofG for any two setsX andY depends exclusively upon
the values ofG for finite subsets ofX andY , and hence upon the values ofG for finite
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sets. And thanks to constraintsG14 andG26, and to the definitions of|=G1 and|=G2,
the latter relations conform to R1′, R2′, andR3′. For the restrictions to finite sets
of |=G1 and of|=G2 meet R1, R2, and R3, as we have established in Theorems2.6
and3.13. And proof that a compact relation of this kind satisfies R1′, R2′, and R3′ is
to be found in Shoesmith and Smiley [10], p. 37. Hence these two theorems.

Theorem 4.3 If G1 meets G11–G14, then the relation |=G1 satisfies R1′–R3′.

Theorem 4.4 If G2 meets G21–G26, then the relation |=G2 satisfies R1′–R3′.

5 The previous section dealt with compact|= andG in general. The present one
will concern a particular language, the languageL0 of propositional logic, with de-
numerably many atomic statements, ‘¬’ and ‘∧’ asits primitive connectives, and ‘∨’,
‘⊃’, and ‘≡’ defined in terms of them in the customary manner. In Theorems5.1–5.4
all sets of statements are presumed to be finite; but in view of Theorems4.1and4.2
like results hold when the sets are infinite. As usual, thecomplexity c(A) of an atomic
statementA is 0, that of a negation¬A is c(A)+ 1, and that of a conjunctionA ∧ B is
c(A)+c(B)+1; and the complexity c({A1, A2, . . . , An}) of a finite set of statements
is c(A1) + c(A2) + · · · + c(An).

It is generally presumed in logic texts that the atomic statements from which the
other statements under study are compounded are logically independent of one an-
other. A more precise account of this matter is imperative here, according to which
the members of a setZ of statements of a (finite or infinite) languageL are said to
be logically independent under a consequence functionG (be itG1 or G2) if and only
if, for any two disjoint subsetsX andY of Z, G(X, Y ) �= 1. The following constraint
on G1 thus requires of the atomic statements ofL0 that they be logically independent
underG1.

Ind1. If X andY are sets of atomic statements andX ∩ Y = ∅, thenG1(X, Y ) �=
1.8

Now for the statements ofL0 that can be compounded from atomic statements
by means of ‘¬’ and ‘∧’. To accommodate them, we place uponG1 the following
counterparts of Gentzen’sintroduction rules (to the left and to the right) for ‘¬’ and
‘∧’, to be known asthe G1-constraints regarding ‘¬’ and ‘∧’.

¬R1. F1(X, Y ∪ {¬A}) = F1({A} ∪ X, Y )

¬L1. F1({¬A} ∪ X, Y ) = F1(X, Y ∪ {A})
∧R1. F1(X, Y ∪ {A ∧ B}) = F1(X, Y ∪ {A}) + F1({A} ∪ X, Y ∪ {B})
∧L1. F1({A ∧ B} ∪ X, Y ) = F1({A, B} ∪ X, Y ).

Theorem 5.1 Let the restriction of G1 to sets of atomic statements of L0 meet G11–
G13, and Ind1, and let G1 meet the G1-constraints regarding ‘¬’ and ‘∧’. Then G1

meets G11–G13.

Proof: ThatG1 meetsG12 istrivial, that it meets the other two constraints is shown
by induction onn = c(A) + c(X) + c(Y ).
Basis: n = 0. ThenA, the members ofX, and those ofY are atomic statements, and
G12 andG13 are met by assumption.
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Inductive step: n > 0. (i) That G11 is met is immediate by inspection of the con-
straints for ‘¬’ and ‘∧’ and the inductive hypothesis.

(ii) For G13 there are 6 (not necessarily mutually exclusive) subcases to be con-
sidered, namely¬B beingA itself, or a member ofX, orone ofY , andA ∧ B likewise
being A itself, or a member ofX, or one ofY .

Case 1:

Subcase 1 (¬B is A): Then F1(X, Y ∪ {A}) equalsF1({B} ∪ X, Y ) (by ¬R1) and
F1({A} ∪ X, Y ) = F1(X, Y ∪ {B}) (by ¬L1). HenceF1(X, Y ∪ {A}) + F1({A} ∪
X, Y ) = F1(X, Y ) by the inductive hypothesis.

Subcase 2 (¬B ∈ X): Let X ′ be X − {¬B}. Then F1(X, Y ∪ {A}) = F1(X ′, Y ∪
{A, B}) andF1({A} ∪ X, Y ) = F1({A} ∪ X ′, Y ∪ {B}) (both by¬L1). So F1(X, Y ∪
{A})+ F1({A}∪ X, Y ) equalsF1(X ′, Y ∪{B}) by the inductive hypothesis, and hence
equalsF1(X, Y ) by ¬L1.

Subcase 3 (¬B ∈ Y): Like Subcase 2, but using¬R1 in place of¬L1.

Case 2:

Subcase 1 (B ∧ C is A): ThenF1(X, Y ∪{A})=F1(X, Y ∪{B})+ F1({B}∪ X, Y ∪
{C}) (by ∧R1) andF1({A} ∪ X, Y ) = F1({B, C} ∪ X, Y ) (by ∧L1). HenceF1(X, Y ∪
{A})+ F1({A} ∪ X, Y ) equalsF1(X, Y ∪ {B})+ F1({B} ∪ X, Y ) by the inductive hy-
pothesis, and hence equalsF1(X, Y ) by the inductive hypothesis again.

Subcases 2 (B ∧ C ∈ X) and 3 (B ∧ C ∈ Y) by similar reasoning. �

The foregoing theorem establishes that, given the constraints for ‘¬’ and ‘∧’, G1 is
in effect recursively definable from its restriction to finite sets of atomic statements.
And by virtue of Theorem4.1this result, which parallels Gentzen’s Cut-Elimination
theorem for propositional logic, includes the case where the arguments ofG1 are infi-
nite sets of statements. Theorem5.2will establish that theG1 functions in this section
are indeed a generalization of the consequence relation for propositional logic. The
consequence relation for propositional logic being compact,|=G1 is of course defined
as in Section 4.

Theorem 5.2 Let G1 meet G11–G13, Ind1, and the G1-constraints regarding ‘¬’
and ‘∧’. Then, X |=G1 Y (i.e., G1(X, Y ) = 1 or, equivalently, F1(X, Y ) = 0) if and
only if X |= Y.

Proof: By induction onn = c(X) + c(Y ).
Basis: n = 0. ThenX andY are sets of atomic statements andX |= Y if and only if
X ∩ Y �= ∅. But if X ∩ Y �= ∅, thenG1(X, Y ) = 1 by Lemma2.2. And if G1(X, Y ) =
1, thenX ∩ Y �= ∅ by Ind1. So X |= Y if and only if G1(X, Y ) = 1.
Inductive Step: n > 0.

Case 1:

Subcase 1 (¬A ∈ X): Let X ′ be X − {¬A}. Then by¬L1 F1(X, Y ) = 0 if and only
if F1(X ′, Y ∪ {A}) = 0, so by the inductive hypothesis if and only ifX ′ |= Y ∪ {A},
so if and only ifX |= Y .
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Subcase 2 (¬A ∈ Y): Let Y ′ beY − {¬A}. Then by¬R1 F1(X, Y ) = 0 if and only
if F1({A} ∪ X, Y ′) = 0, so by the inductive hypothesis if and only if{A} ∪ X |= Y ′,
so if and only ifX |= Y .

Case 2:

Subcase 1 (A ∧ B ∈ X): Let X ′ be X − {A ∧ B}. Then by∧L1 F1(X, Y ) = 0 if and
only if F1(X ′ ∪ {A, B}, Y ) = 0, so by the inductive hypothesis if and only ifX ′ ∪
{A, B} |= Y , so if and only if X |= Y .

Subcase 2 (A ∧ B ∈ Y): Let Y ′ beY − {A ∧ B}. Suppose firstF1(X, Y ) = 0. Then
by ∧R1 F1(X, Y ′ ∪ {A}) + F1({A} ∪ X, Y ′ ∪ {B}) = 0. So X |= Y ′ ∪ {A} and
{A} ∪ X |= Y ′ ∪ {B} by G11 and the inductive hypothesis. HenceX |= Y ′ ∪ {A, B}
by Thinning, andX |= Y ′ ∪ {B} by Cut. HenceX |= Y . Suppose nextX |= Y . Then
X |= Y ′ ∪ {A} and X |= Y ′ ∪ {B}. So {A} ∪ X |= Y ′ ∪ {B} by Thinning. Hence
F1(X, Y ′ ∪ {A}) = 0 andF1({A} ∪ X, Y ′ ∪ {B}) = 0 by the inductive hypothesis. So
F1(X, Y ) = 0 by∧R1. �

Wenext place uponG2 counterparts of Ind1 and the constraints above regarding ‘¬’
and ‘∧’.

Ind2. If X andY are sets of atomic statements andX ∩ Y = ∅, then
G2(X, Y ) �= 1.

¬R2. F2(X, Y ∪ {¬A}) = F2({A} ∪ X, Y ) × G2(X, {A})
¬L2. F2({¬A} ∪ X, Y ) =

{
F2(X, Y ∪ {A})/F2(X, {A}) if F2(X, {A}) �= 0
0 otherwise

∧R2. F2(X, Y ∪ {A ∧ B}) = F2(X, Y ∪ {A}) + F2({A} ∪ X, Y ∪ {B}) ×
G2(X, {A})

∧L2. F2({A ∧ B} ∪ X, Y ) = F2({A, B} ∪ X, Y ).

Theorem 5.3 Let the restriction of G2 to sets of atomic statements of L0 meet G21–
G25, and Ind2, and let G2 meet the G2-constraints regarding ‘¬’ and ‘∧’. Then G2

meets G21–G25.

Proof: ThatG2 meetsG23 is trivial, that it meets the other four constraints is shown
by induction onn = c(A) + c(X) + c(Y ).
Basis: n = 0. ThenA, the members ofX, and those ofY are atomic statements, and
G21, G22, G24, andG25 are met by assumption.
Inductive step: n > 0.

(i) That G21 andG22 are met is immediate by inspection of the constraints for
connectives and the inductive hypothesis, except in the case of¬L2, where in addition
the inductive hypothesis forG24 has to be invoked so as to yieldF2(X, Y ∪ {A}) ≤
F2(X, {A}).

(ii) For G24 there are six (not necessarily mutually exclusive) subcases to be con-
sidered, namely¬B beingA itself, or a member ofX, orone ofY , andB ∧ C likewise
being A itself, or a member ofX, or one ofY .

Case 1:

Subcase 1 (¬B is A): First assumeF2(X, {B}) = 0 (i.e., G2(X, {B}) = 1). Then
F2(X, Y ∪ {A})= F2({B} ∪ X, Y ) by¬R2 andF2({A} ∪ X, Y )=0 by¬L1. F2(X, Y ∪
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{B}) = 0 by Lemma3.3(b), which uses the inductive hypothesis forG21, G22,
andG24. HenceF2(X, Y ∪ {A}) + F2({A} ∪ X, Y ) × G2(X, {A}) equalsF2({B} ∪
X, Y ). And, asF2(X, Y ∪ {B}) = 0, this equalsF2(X, Y ) by the inductive hypothe-
sis for G24. Assume nextF2(X, {B}) �= 0, F2(X, Y ∪ {A}) = F2({B} ∪ X, Y ) ×
G2(X, {B}), F2({A} ∪ X, Y ) = F2(X, Y ∪ {B})/F2(X, {B}), and G2(X, {A}) =
1 − [ F2({B} ∪ X,∅) × G2(X, {B})]. But sinceF2(X, {B}) �= 0, F2(X,∅) = 1 by
Lemma3.6(b), which uses the inductive hypothesis forG21, G22, G24, andG25.
Hence 1− [ F2({B} ∪ X,∅) × G2(X, {B})] = F2(X, {B}) by the inductive hypothe-
sis forG24. HenceF2(X, Y ∪ {A}) + F2({A} ∪ X, Y ) × G2(X, {A}) equalsF2({B} ∪
X, Y ) × G2(X, {B}) + F2(X, Y ∪ {B}), which equalsF2(X, Y ) by the inductive hy-
pothesis forG24.

Subcase 2 (¬B ∈ X): Let X ′ be X − {¬B}. Assume first thatF2(X ′, {B}) = 0, in
which caseF2({A} ∪ X ′, {B}) = 0 as well by Lemma3.3(b), which uses the induc-
tive hypothesis forG21, G22, andG24. ThenF2(X, Y ∪ {A}), F2({A} ∪ X, Y ), and
F2(X, Y ) all equal 0 by¬L2. SoG24. Assume next thatF2(X ′, {B}) �= 0, but that
F2({A} ∪ X ′, {B}) = 0. ThenF2({A} ∪ X ′, Y ∪ {B}) = 0 by Lemma3.3(b), which
uses the inductive hypothesis forG21, G22, andG24. Then, by¬L2, F2(X, Y ∪
{A}) = F2(X ′, Y ∪ {A, B})/F2(X ′, {B}) andF2({A} ∪ X, Y ) = 0. HenceF2(X, Y ∪
{A})+ F2({A}∪ X, Y )× G2(X, {A}) equalsF2(X ′, Y ∪{A, B})/F2(X ′, {B}), which
equals [F2(X ′, Y ∪ {A, B}) + F2({A} ∪ X ′, Y ∪ {B}) × G2(X ′, {A})]/F2(X ′, {B}),
which equalsF2(X ′, Y ∪ {B})/F2(X ′, {B}) by the inductive hypothesis, and hence
F2(X, Y ) by¬L2. Assume finally thatF2({A}∪ X ′, {B}) �= 0, and soF2(X ′, {B}) �= 0
as well, by Lemma3.3(b), which uses the inductive hypothesis forG21, G22, and
G24. ThenF2(X, Y ∪ {A}) = F2(X ′, Y ∪ {A, B})/F2(X ′, {B}), F1({A} ∪ X, Y ) =
F1({A} ∪ X ′, Y ∪ {B})/F2({A} ∪ X ′, {B}), and G2(X, {A}) = 1 − [ F2(X ′,
{A, B})/F2(X ′, {B})] (all by ¬L2). ThenG2(X, {A}) equals [F2(X ′, {B}) − F2(X ′,
{A, B})]/F2(X ′, {B}), which equals [G2(X, {A}) × F2({A} ∪ X ′, {B})]/F2(X ′, {B})
by the inductive hypothesis forG24. HenceF2(X, Y ∪ {A}) + F2({A} ∪ X, Y ) ×
G2(X, {A}) equals [F2(X ′, Y ∪ {A, B}) + F1({A} ∪ X ′, Y ∪ {B}) × G2(X, {A})]/
F2(X ′, {B}), which equalsF2(X ′, Y ∪ {B})/F2(X ′, {B}) by the inductive hypothesis,
and hence equalsF2(X, Y ) by ¬L2.

Subcase 3 (¬B ∈ Y): Let Y ′ be Y − {¬B}. Then F2(X, Y ∪ {A}) = F2({B} ∪
X, Y ′ ∪ {A}) × G2(X, {B}) and F2({A} ∪ X, Y ) = F2({A, B} ∪ X, Y ′) × G2({A} ∪
X, {B}) by¬R2. G2({A}∪ X, {B})× G2(X, {A}) = G2({B}∪ X, {A})× G2(X, {B})
by Lemma3.7, which uses the inductive hypothesis forG24. SoF2(X, Y ∪ {A}) +
F2({A}∪ X, Y )× G2(X, {A}) equals [F2({B}∪ X, Y ′ ∪ {A})+ F2({A, B}∪ X, Y ′)×
G2({B} ∪ X, {A})] × G2(X, {B}), so by the inductive hypothesisF2({B} ∪ X, Y ′) ×
G2(X, {B}), and henceF2(X, Y ) by ¬R2.

Case 2:

Subcase 1 (B ∧ C is A): ThenF2(X, Y ∪{A})=F2(X, Y ∪{B})+ F2({B}∪ X, Y ∪
{C})× G2(X, {B}) (by∧R2) andF2({A} ∪ X, Y ) = F2({B, C} ∪ X, Y ) (by∧L2), and
G2(X, {A}) = 1− [ F2(X, {B}) + F2({B} ∪ X, {C}) × G2(X, {B}) (by ∧R2). Hence
F2(X, Y ∪ {A}) + F2({A} ∪ X, Y ) × G2(X, {A}) equalsF2(X, Y ∪ {B}) + F2({B} ∪
X, Y ) × G(X, {B}) by the inductive hypothesis, and hence equalsF2(X, Y ) by the
inductive hypothesis again.
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Subcase 2 (B ∧ C ∈ X): Let X ′ = X −{B ∧ C}. Then F2(X, Y ∪{A}) = F2({B, C}
∪ X ′, Y ∪ {A}), F2({A} ∪ X, Y ) = F2({A, B, C} ∪ X ′, Y ), and G2(X, {A}) =
G2({B, C}∪ X ′, {A}) (all by∧L2). SoF2(X, Y ∪{A})+F2({A}∪ X, Y )×G2(X, {A})
equalsF2({B, C} ∪ X ′, Y ∪ {A}) + F2({A, B, C} ∪ X ′, Y ) × G2({B, C} ∪ X ′, {A}),
which equalsF2({B, C} ∪ X ′, Y ) by the inductive hypothesis, and hence equals
F2(X, Y ) by ¬L2.

Subcase 3 (B ∧ C ∈ Y): By similar reasoning.

(iii) For G25 there are four (not necessarily mutually exclusive) subcases to be
considered, namely¬B beingA or a member ofX, andB ∧ C beingA or a member
of X. So assumeG2(X, {A}) = 0.

Case 1:

Subcase 1 (¬B is A): Then F2({B} ∪ X,∅) × G2(X, {B}) = 1 by ¬R2. Hence
G2(X, {B}) = 1 by the inductive hypothesis forG21andG22. SoF2({¬B}∪ X,∅) =
0 by¬L2. HenceG2({A} ∪ X,∅) = 1.

Subcase 2 (¬B ∈ X): Let X ′ = X − {¬B}. It follows that F2(X ′, {B}) �= 0 and
F2(X ′, {A, B})= F2(X ′, {B}) by¬L2. But F2(X ′, {B})= F2(X ′, {A, B})+ F2({A} ∪
X ′, {B})× G2(X ′, {A}) by the inductive hypothesis forG24. SoF2({A} ∪ X ′, {B})×
G2(X ′, {A}) = 0. If F2({A} ∪ X ′, {B}) = 0, thenF2({A,¬B} ∪ X ′,∅) = 0 by¬L2.
If G2(X ′, {A}) = 0, thenG2({A} ∪ X ′,∅) = 1 by the inductive hypothesis forG25,
andG2({A,¬B}∪ X ′,∅) = 1 by Lemma3.5(b), which uses the inductive hypothesis
for G22, G24, andG25. HenceG2({A} ∪ X,∅) = 1 in either case.

Case 2:

Subcase 1 (B ∧ C is A): Then 1= F2(X, {B}) + F2({B} ∪ X, {C}) × G2(X, {B})
by ∧R2, i.e., G2(X, {B}) × G2({B} ∪ X, {C}) = 0. If G2({B} ∪ X, {C}) = 0, then
G2({B, C} ∪ X,∅) = 1 by the inductive hypothesis forG25. If G2(X, {B}) = 0, then
G2({B}∪ X,∅) = 1 by the inductive hypothesis forG25, andG2({B, C}∪ X,∅) = 1
by Lemma3.5(b), which uses the inductive hypothesis forG22, G24, andG25. So
G2({A} ∪ X,∅) = 1 by∧L2 in either case.

Subcase 2 (B ∧ C ∈ X): Let X ′ be X − {B ∧ C}. ThenG2({B, C} ∪ X ′, {A}) = 0
by ∧L2. SoG2({A, B, C} ∪ X ′,∅) = 1 by the inductive hypothesis forG25. Hence
G2({A} ∪ X,∅) = 1 by¬L2 again. �

The foregoing theorem is of course the counterpart forG2 functions of Theorem5.1.
It shows that, given the constraints for ‘¬’ and ‘∧’, G2 is in effect recursively defin-
able from its restriction to finite sets of atomic statements. And by virtue of The-
orem4.2 this result, which again parallels Gentzen’s Cut-Elimination theorem for
propositional logic, includes the case where the arguments ofG2 are infinite sets of
statements. The next theorem will establish that theG2 functions of this section are
indeed a generalization of the consequence relation for propositional logic. Said con-
sequence relation being compact,|=G2 is of course defined as in Section 4.

Theorem 5.4 Let G2 meet G21–G25, Ind2, and the G2-constraints regarding ‘¬’
and ‘∧’. Then, X |=G2 Y (i.e., G2(X, Y ) = 1 or, equivalently, F2(X, Y ) = 0) if and
only if X |= Y.
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Proof: By induction onn = c(X) + c(Y ).
Basis: n = 0. ThenX andY are sets of atomic statements andX |= Y if and only if
X ∩ Y �= ∅. But if X ∩ Y �= ∅, thenG2(X, Y ) = 1 by Lemma3.4. And if G2(X, Y ) =
1, thenX ∩ Y �= ∅ by Ind2. So X |= Y if and only if G2(X, Y ) = 1.
Inductive Step: n > 0.

Case 1:

Subcase 1 (¬A ∈ X): Let X ′ = X − {¬A}. Suppose first thatF2(X ′, {A}) = 0.
ThenF2(X, Y ) = 0 by¬L2. Suppose next thatF2(X ′, {A}) �= 0. ThenF2(X, Y ) = 0
if and only if F2(X ′, Y ∪ {A})/F2(X ′, {A}) = 0 (by¬L2), so by the inductive hypoth-
esis if and only ifX ′ |= Y ∪ {A}, so if and only if X |= Y .

Subcase 2 (¬A ∈ Y): Let Y ′ = Y − {¬A}. AssumeF2(X, Y ) = 0. ThenF2({A} ∪
X, Y ′) × G2(X, {A}) = 0 (by¬R2). HenceF2({A} ∪ X, Y ′) = 0 or G2(X, {A}) = 0.
But if G2(X, {A}) = 0, thenG2({A}∪ X,∅) = 1 byG25, andG2({A}∪ X, Y ′) = 1 by
Lemma3.3(c). And, if F2({A} ∪ X, Y ′) = 0, alsoG2({A} ∪ X, Y ′) = 1. Hence by the
inductive hypothesis,{A} ∪ X |= Y ′ in either case. SoX |= Y . Conversely, assume
X |= Y . Then{A} ∪ X |= Y ′, and by the inductive hypothesisF2({A} ∪ X, Y ′) = 0.
So F2(X, Y ) = 0 by¬L2.

Case 2:

Subcase 1 (A ∧ B ∈ X): Let X ′ = X − {A ∧ B}. Then F2(X, Y ) = 0 if and only
if F2(X ′ ∪ {A, B}, Y ) = 0 (by ∧L2), so by the inductive hypothesis if and only if
X ′ ∪ {A, B} |= Y , so if and only if X |= Y .

Subcase 2 (A ∧ B ∈ Y): Let Y ′ = Y − {A ∧ B}. SupposeF2(X, Y ) = 0. Then
F2(X, Y ′ ∪ {A})+ F2({A}∪ X, Y ′ ∪ {B})× G2(X, {A}) = 0 by∧R2. If G2(X, {A})=
0, thenG2({A} ∪ X,∅) = 1 by G25, and henceG2({A} ∪ X, Y ′ ∪ {B}) = 1 by
Lemma3.3(c). If G2(X, {A}) �= 0, then bothF2(X, Y ′ ∪ {A}) = 0 and F2({A} ∪
X, Y ′ ∪ {B}) = 0 by G22. So in either case,X |= Y ′ ∪ {A} and{A} ∪ X |= Y ′ ∪ {B}
by the inductive hypothesis. HenceX |= Y ′ ∪ {A, B} by Thinning, andX |= Y ′ ∪ {B}
by Cut. HenceX |= Y . On the other hand, assumeX |= Y . ThenX |= Y ′ ∪ {A} and
X |= Y ′ ∪ {B}. So{A} ∪ X |= Y ′ ∪ {B} by Thinning. HenceF2(X, Y ′ ∪ {A}) = 0 and
F2({A} ∪ X, Y ′ ∪ {B}) = 0 by the inductive hypothesis. SoF2(X, Y ) = 0 by∧R2. �

6 Relative probabilities (and hence absolute probabilities, the latter being but re-
strictions of the former to a tautology as second argument) have been interpreted in a
variety of ways:subjectively, aswhenP(A, B) is taken to be the degree to whichA
is credible in light ofB, andobjectively, as when P(A, B) is taken to be the degree
to which A is confirmed byB. Carnap, the objectivist par excellence on this matter,
understoodP(A, B) the latter way. Our final item of business in this paper is to take
Carnap’s position one step further and show that degrees of confirmation are but de-
grees of logical consequence in disguise. This will be done in two steps, as we deal
first with the absolute probability functions associated in Roeper and Leblanc [9] with
Carnap and then with the relative ones which are associated there with him.

More specifically, letL0 again be the propositional language of Section 5, letX
andY be finite (rather than finite or infinite) sets of statements ofL0, let

∧
X and

∨
Y
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respectively be the conjunction of the statements inX and the disjunction of those in
Y , when X andY are not empty, let

∧
∅ be a fixed but arbitrary contradiction and∨

∅ be its negation, and letP be a unary function on the statements ofL0. We shall
first show that

If P(A) is understood as G1(∅, {A}) (or, equivalently, as F1({A},∅)), then P
constitutes an absolute probability function in Carnap’s sense (= Theorem 6.2),

and

If G1(X, Y ) is understood as P(
∧

X ⊃ ∨
Y ), where P is an absolute proba-

bility function in Carnap’s sense, then G1 meets constraints G11–G13 plus the
G1-constraints in Section 5 relating to ‘¬’ and ‘∧’ (= Theorem 6.3).

This done, letL0, X, Y,
∧

X,
∨

Y,
∧

∅, and
∨

∅ be as before, but letP this
time be a binary function onL0. Weshall next show that:

If P(A, B) is understood as G2({B}, {A}), then P constitutes a relative prob-
ability function in Carnap’s sense (= Theorem 6.8),

and

If G2(X, Y ) is understood as P(
∨

Y,
∧

X), where P is a relative probability
function in Carnap’s sense, then G2 meets constraints G21–G25 plus the G2-
constraints in Section 5 relating to ‘¬’ and ‘∧’ (= Theorem 6.10).

The constraints placed on Carnap’s absolute probability functions are the follow-
ing six, simplifications of the constraints that Popper [7] places on his own functions,
plus a seventh one which is characteristic of those among Popper’s functions that are
Carnap ones.

A1. 0 ≤ P(A) (Non-Negativity)
A2. P(¬(A ∧ ¬A)) = 1 (Normality)
A3. P(A) + P(¬A) = 1 (Addition)
A4. P(A ∧ B) + P(A ∧ ¬B) = P(A) (Special Addition)
A5. P(A ∧ B) ≤ P(B ∧ A) (Commutation)
A6. P(A ∧ (B ∧ C)) ≤ P((A ∧ B) ∧ C) (Association)
AC. If P(A) = 1, then∅ |= {A}.
As for the constraints on Carnap’s relative probability functions, they are the

following seven, simplifications of the constraints that Popper [7] places on his own
functions, plus an eighth one which is characteristic of those among Popper’s func-
tions that are Carnap ones.

B1. For at least oneA and at least oneB, P(A, B) �= 1 (Existence)
B2. 0≤ P(A, B) (Non-Negativity)
B3. P(A, A) = 1 (Normality)
B4. If P(C, B) �=1 for at least oneC,9 thenP(A, B)+P(¬A, B)=1(Addition)
B5. P(A ∧ B, C) = P(A, B ∧ C) × P(B, C) (Multiplication)
B6. P(A ∧ B, C) ≤ P(B ∧ A, C) (Commutation)
B7. P(A, B ∧ C) ≤ P(A, C ∧ B) (Commutation)
BC. If P(A, B) = 1, then{B} |= {A}.
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Unlike those in Carnap [1] the present functions are total ones, withP(A, B)

equal to 1 whenB is a contradiction. But Carnap himself, though he did not officially
count contradictions as second arguments ofP, saw no objection to its being done,
and that has been our practice in all of our papers since Leblanc and Roeper [5].10

By the way, it is shown in Leblanc [4] that, (i) given the so-calledautonomous
constraints A1–A6,

If ∅ |= {A ≡ A′}, thenP(A) = P(A′),

and, (ii) given theautonomous ones B1–B7,

If ∅ |= {A ≡ A′}, thenP(A, B) = P(A′, B)

and
If ∅ |= {B ≡ B′}, thenP(A, B) = P(A, B′).

In the proofs that follow we shall avail ourselves of these results and interchange with-
out further ado arguments—be they of absolute probability functions or of relative
ones—that are logically equivalent.

Lemma 6.1 G1(∅, {A}) = F1({A},∅).

Proof: F1(∅, {A}) + F1({A},∅) = F1(∅,∅) by G13. But F1(∅,∅) = 1 by G12.
Hence Lemma6.1. �

Theorem 6.2 If P(A) is understood as G1(∅, {A}), where G1 meets G11–G13,
Ind1, and the G1-constraints regarding ‘¬’ and ‘∧’, then P constitutes an absolute
probability function in Carnap’s sense.

Proof: (1) 0≤ G1(∅, {A}) by Lemma2.4(c). SoP meets A1.
(2) F1(∅, {¬(A ∧ ¬A)}) = F1({A ∧ ¬A},∅) by ¬R1, which equalsF1({A,

¬A},∅) by ∧L1, and F1({A}, {A}) by ¬L1. But G1({A}, {A}) = 1, and hence
F1({A}, {A}) = 0, by Lemma2.2. SoG1(∅, {¬(A ∧ ¬A)}) = 1. SoP meets A2.

(3) F1(∅, {¬A}) = F1({A},∅) by ¬R1. F1(∅,∅) = F1(∅, {A}) + F({A},∅)

by G13. But F1(∅,∅) = 1 by G12. SoP meets A3.
(4) F1({A ∧ B},∅) = F1({A, B},∅) by∧L1. F1({A ∧¬B},∅) = F1({A}, {B})

by ∧L1 and¬L1. But F1({A}, {B}) + F1({A, B},∅) = F1({A},∅) by G13. So P
meets A4 by Lemma6.1.

(5) F1({A ∧ B},∅) = F1({B ∧ A},∅) by ∧L1. So P meets A5 by Lemma6.1.
(6) F1({A ∧ (B ∧ C)},∅) = F1({(A ∧ B) ∧ C},∅) by ∧L1. So P meets A6 by

Lemma6.1.
(7) AssumeP(A) = 1, i.e.,G1(∅, {A}) = 1. Then∅ |= {A} by Theorem5.2.

So P meets AC. �

Theorem 6.3 If G1(X, Y ) is understood as P(
∧

X ⊃ ∨
Y ),11 where P is an ab-

solute probability function in Carnap’s sense, then G1 meets G11–G13, Ind1, plus the
G1-constraints regarding ‘¬’ and ‘∧’.

Proof: Note first thatF1(X, Y ) = P(
∧

X ∧ ¬∨
Y ) by A3.

(1) P(
∧

X ⊃ ∨
Y ) ≤ 1 by A1 and A3. SoG1 meetsG11.
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(2) P(
∧

∅ ⊃ ∨
∅) equalsP(

∨
∅), which equals 0 by A2 and A3. SoG1 meets

G12.
(3) P((

∧
X ∧¬∨

Y )∧¬A)+ P((
∧

X ∧¬∨
Y )∧ A) = P(

∧
X ∧¬∨

Y ) by
A4. So P(

∧
X ∧ ¬∨

(Y ∪ {A})) + P(
∧

({A} ∪ X) ∧ ¬∨
Y ) = P(

∧
X ∧ ¬∨

Y ),
andG1 meetsG13.

(4) SupposeX andY are sets of atomic statements andX ∩ Y = ∅. Then∅ �|=∧
X ⊃ ∨

Y . Hence by ACP(
∧

X ⊃ ∨
Y ) �= 1. SoG1(X, Y ) �= 1, andG1 meets

Ind1.
(5) P(

∧
X ∧ ¬(

∨
(Y ∪ {¬A})) equalsP(

∧
X ∧ ¬(

∨
Y ∨ ¬A)), which equals

P(
∧

X ∧ (¬∨
Y ∧ A)), which in turn equalsP(

∧
({A}∪ X)∧¬∨

Y ). SoG1 meets
¬R1.

(6) P(
∧

(X ∪ {¬A}) ∧ ¬∨
Y ) equalsP((

∧
X ∧ ¬A) ∧ ¬∨

Y ), which in turn
equalsP(

∧
X ∧ ¬∨

(Y ∪ {A}). SoG1 meets¬L1.
(7) P(

∧
X ∧ ¬∨

(Y ∪ {A ∧ B}) equalsP((
∧

X ∧ ¬∨
Y ) ∧ ¬(A ∧ B)), which

by A4 equalsP(
∧

X ∧ ¬∨
Y ) − P((

∧
X ∧ ¬∨

Y ) ∧ (A ∧ B)), which by A4 again
equalsP((

∧
X ∧ ¬∨

Y ) ∧ A) + P((
∧

X ∧ ¬∨
Y ) ∧ ¬A) − P((

∧
X ∧ ¬∨

Y ) ∧
(A ∧ B)), which equalsP((

∧
X ∧ ¬∨

Y ) ∧ ¬A) + P((
∧

X ∧ ¬∨
Y ) ∧ A) −

P(((
∧

X ∧ ¬∨
Y ) ∧ A) ∧ B), which by A4 once more equalsP((

∧
X ∧ ¬∨

Y ) ∧
¬A) + P(((

∧
X ∧ ¬∨

Y ) ∧ A) ∧ ¬B), which equalsP(
∧

X ∧ ¬∨
(Y ∪ {A}) +

P(
∧

({A} ∪ X) ∧ ¬∨
(Y ∪ {B}). SoG1 meets∧R1.

(8) P(
∧

(X ∪ {A ∧ B}) ∧ ¬∨
Y ) equalsP(

∧
(X ∪ {A, B}) ∧ ¬∨

Y ) by defi-
nition. SoG1 meets∧L1. �

Lemma 6.4 (a) Given G21–G25, ¬R2 and ¬L2 are equivalent to

¬2: F2(X, Y ∪ {¬A}) = F2(X, Y ) − F2(X, Y ∪ {A});
and (b) given G21–G25 and ∧L2, ∧R2 is equivalent to

∧2: G2(X, {A ∧ B}) = G2(X, {A}) × G2({A} ∪ X, {B}).
Proof: (a) Assume first¬R2. Then¬2 by G24. Assume next¬2. Then¬R2 by
G24. Moreover,F2(X, Y ) = F2(X, Y ∪ {¬A}) + F2({¬A} ∪ X, Y ) × G2(X, {¬A})
by G24. But F2(X, Y ∪ {¬A}) = F2(X, Y ) − F2(X, Y ∪ {A}), andG2(X, {¬A}) =
G2(X,∅) + F2(X, {A}), both by ¬2. Hence F2({¬A} ∪ X, Y ) × [G2(X,∅) +
F2(X, {A})] = F2(X, Y ∪ {A}). If F2(X, {A}) = 0 andG2(X,∅) = 0, thenG2(X,

{¬A}) = 0 and soG2({¬A} ∪ X, Y ) = 1, i.e., F2({¬A} ∪ X, Y ) = 0, by G25 and
Lemma3.3(c). If F2(X, {A}) = 0 but G2(X,∅) �= 0, then F2(X, Y ∪ {A}) = 0
by Lemma3.3(c), and soF2({¬A} ∪ X, Y ) = 0. And if F2(X, {A}) �= 0, then
G2(X,∅) = 0 by Lemma3.6(a) and Lemma3.3(c). SoF2({¬A}∪ X, Y )= F2(X, Y∪
{A})/F2(X, {A}). Hence¬L2.

(b) Assume first∧R2. ThenF2(X, {A ∧ B})= F2(X, {A})+ F2({A} ∪ X, {B})×
G2(X, {A}), i.e.,G2(X, {A ∧ B}) = G2(X, {A})× G2({A} ∪ X, {B}). Hence∧2. As-
sume next∧2 and∧L2. ThenF2(X, Y ) = F2(X, Y ∪{A ∧ B})+ F2({A, B}∪ X, Y )×
G2(X, {A}) × G2({A} ∪ X, {B}) by G24, ∧L2, and∧2. But F2({A, B} ∪ X, Y ) ×
G2({A} ∪ X, {B}) = F2({A} ∪ X, Y ) − F2({A} ∪ X, Y ∪ {B}), and F2(X, Y ) =
F2(X, Y ∪ {A}) + F2({A} ∪ X, Y ) × G2(X, {A}), both byG24. SoF2(X, Y ∪ {A ∧
B}) = F2(X, Y ∪ {A}) + F({A} ∪ X, Y ∪ {B}) × G2(X, {A}). Hence∧R2. �



360 PETER ROEPER and HUGUES LEBLANC

So constraint¬2 will hereafter do duty for¬R2 and¬L2, and constraint∧2 do duty
for ∧R2. As aresult, theG2-constraints regarding ‘¬’ and ‘∧’ will be ¬2, ∧2, and
∧L2.

Lemma 6.5 If G2(X,∅) = 0, then G2(X, {A}) + G2(X, {¬A}) = 1.

Proof: By ¬2 andG23. �

Lemma 6.6 G2(X, {A, A ∧ B}) = G2(X, {A}).
Proof: F2(X, {A, A ∧ B}) = F2(X, {A}) + F2({A} ∪ X, {A, B}) × G2(X, {A}) by
∧R2. But F2({A} ∪ X, {A, B}) = 0 by Lemma3.4. Hence Lemma6.6. �

Lemma 6.7 G2(X, {A ∧ B}) = G2(X, {B ∧ A}).
Proof: By ∧2 and Lemma3.7. �

Theorem 6.8 If P(A, B) is understood as G2({B}, {A}), where G2 meets G21–
G25, Ind2, and the G2-constraints regarding ‘¬’ and ‘∧’, then P constitutes a relative
probability function in Carnap’s sense.

Proof: (1) Let A and B be distinct atomic statements. ThenG2({B}, {A}) �= 1 by
Ind2. So P meets B1.

(2) 0≤ G2({B}, {A}) by G21. SoP meets B2.
(3) G2({A}, {A}) = 1 by Lemma3.4. So P meets B3.
(4) SupposeG2({B}, {C}) �= 1 for someC in L0. Then G2({B},∅) = 0 by

Lemma3.6(b). HenceG2({B}, {A}) + G2({B}, {¬A}) = 1 by Lemma6.5. So P
meets B4.

(5) G2({C}, {A ∧ B}) = G2({C}, {B ∧ A}) by Lemma6.7. So G2({C}, {A ∧
B}) = G2({C}, {B}) × G2({B, C}, {A}) by ∧2. So G2({C}, {A ∧ B}) = G2({B ∧
C}, {A}) × G2({C}, {B}) by ∧L2. So P meets B5.

(6) G2({C}, {A ∧ B}) = G2({C}, {B ∧ A}) by Lemma6.7. So P meets B6.
(7) G2({B ∧ C}, {A}) = G2({C ∧ B}, {A}) by ∧L2. So P meets B7.
(8) AssumeP(A, B) = 1, i.e.,G2({B}, {A}) = 1. Then{B} |= {A} by Theo-

rem5.4. So P meets BC. �

The following lemma lists, without proof,12 well-known results about Carnap relative
probability functions.

Lemma 6.9 Let P be a relative probability function in Carnap’s sense. Then
(a) P(A, B) ≤ 1;
(b) P(

∨
∅,

∧
∅) = 0;

(c) P(A ∨ B, C) = P(A, C) + P(B, C) − P(A ∧ B, C);
(d) If P(A, B) = 0, then P(

∨
∅, A ∧ B) = 1;

(e) If B is P-abnormal, then P(B,
∧

∅) = 0.

Theorem 6.10 If G2(X, Y ) is understood as P(
∨

Y,
∧

X), where P is a relative
probability function in Carnap’s sense, then G2 meets constraints G21–G25, Ind2, and
the G2-constraints regarding ‘¬’ and ‘∧’.
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Proof: (1) 0≤ P(
∨

Y,
∧

X) by B2. SoG2 meetsG21.
(2) P(

∨
Y,

∧
X) ≤ 1 by Lemma6.9(a). SoG2 meetsG22.

(3) P(
∨

∅,
∧

∅) = 0 by Lemma6.9(b). SoG2 meetsG23.
(4) By the definition ofF2 and that ofG2, F2(X, Y ∪ {A}) equals 1− P(

∨
Y ∨

A,
∧

X), which by Lemma6.9(c) equals 1− P(
∨

Y,
∧

X)− P(A,
∧

X)+ P(
∨

Y ∧
A,

∧
X), which by B5 equals 1− P(

∨
Y,

∧
X)− P(A,

∧
X)+ P(

∨
Y, A ∧∧

X)×
P(A,

∧
X), which by the definition ofF2 and that ofG2 equalsF2(X, Y )− F2({A} ∪

X, Y ) × G2(X, {A}). SoG2 meetsG24.
(5) SupposeG2(X, {A}) = 0, i.e., P(V{A},∧ X) = 0, i.e., P(A,

∧
X) = 0.

ThenP(
∨

∅,
∧

({A} ∪ X)) = 1 by Lemma6.9(d). SoG2 meetsG25.
(6) SupposeX and Y are sets of atomic statements andX ∩ Y = ∅. Then

{∧ X} �|= {∨ Y}. Hence by BCP(
∨

Y,
∧

X) �= 1. SoG2(X, Y ) �= 1 andG2 meets
Ind2.

(7) Suppose
∧

X P-normal. Then 1− P(
∨

(Y ∪ {¬A}),∧ X) = 1− P(
∨

Y ∨
¬A,

∧
X), which by Lemma6.9(c) equals 1− [ P(

∨
Y,

∧
X) + P(¬A,

∧
X) −

P(
∨

Y ∧ ¬A,
∧

X)], which by B4 equals 1− P(
∨

Y,
∧

X) − 1 + P(A,
∧

X) +
P(

∨
Y,

∧
X) − P(

∨
Y ∧ A,

∧
X), which by Lemma6.9(c) again equals [1−

P(
∨

Y,
∧

X] − [1 − P(
∨

Y ∨ A,
∧

X)], which equals [1− P(
∨

Y,
∧

X)] − [1 −
P(

∨
(Y ∪ {A}),∧ X)]. But 1− P(

∨
(Y ∪ {A}),∧ X) = [1 − P(

∨
Y,

∧
X)] − [1 −

P(
∨

(Y ∪ {A}),∧ X) by definition when
∧

X is P-abnormal. SoG2 meets¬2.
(8) P(A ∧ B,

∧
X) equalsP(B,

∧
X ∧ A) × P(A,

∧
X) by B5, B6, and B7,

which of course equalsP(B,
∧

({A} ∪ X)) × P(A,
∧

X). SoG2 meets∧2.
(9) Since

∧
(X ∪ {A ∧ B}) and

∧
(X ∪ {A, B}) are the same,P(

∨
Y,

∧
(X ∪

{A ∧ B}) cannot but equalP(
∨

Y,
∧

(X ∪ {A, B}). SoG2 meets∧L2. �
Degrees of logical consequence in the sense represented byG2 functions can also
be introduced for languages whose consequence relation is not compact. The cor-
responding relative probability functions turn out to be those we associate with
Rényi in [8], and as a result they too prove to be degrees of logical consequence in
disguise.13
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NOTES

1. Gentzen’s extant contributions to logic and metamathematics [3], edited and translated
by Szabo, were published in 1969 by North-Holland. A second edition, with a new in-
troduction and minor changes, is to appear shortly.

2. Note that for brevity’s sake we use ‘L ’ here and on later occasions to refer to the set of
the statements ofL .

3. The reader will often have to think of ‘F1’ and ‘1− G1’, and of course of ‘G1’ and
‘1 − F1’, as interchangeable, a warning also in order when ‘2’ as well as ‘1’ will be sub-
scripted to ‘F’ and ‘G’.

ConstraintsG11–G13 are independent of one another. This can be shown by (i) using a
language with just one statement,A, hence with just two sets of statements (∅ and{A}),
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and (ii) constructing for each of the three constraints a function which does not meet that
constraint but meets the other two.

G1(∅,∅) =
G1(∅, {A}) =
G1({A},∅) =

G1({A}, {A}) =

G11 G12 G13
0 1 0
2 1 0

−1 1 0
1 1 0

4. G25 istheG2-counterpart of a constraint placed on the relative probability functions that
we associate in Roeper-Leblanc [9] with Kolmogorov. It is the definition ofX |= Y as
G2(X, Y ) = 1 that isolates here those among Kolmogorov’s functions that are Carnap
ones.

ConstraintsG21–G25are independent of one another, as can be shown by using the same
language as in Note 3 and constructing for each of the five constraints a function which
does not meet that constraint but meets the other four.

G2(∅,∅) =
G2(∅, {A}) =
G2({A},∅) =

G2({A}, {A}) =

G21 G22 G23 G24 G25
0 0 1 0 0

−1 2 1 1/2 0
0 0 1 1/2 0
1 1 1 1 1

5. To anticipate,Y in G2(X, Y ) is disjunctively understood, whereas inH(X, Y ) Y is con-
junctively understood;G2(X, Y ) amounts toP(

∨
Y,

∧
X), whereasH(X, Y ) amounts

to P(
∧

Y,
∧

X).

6. For finiteX, Y , andZ, R2′–R3′ are consequences of R2–R3, as is obvious in the first case
and easily verified in the second. The resulting R3′ is calledCut for Sets in Shoesmith
and Smiley [10], p. 29.

7. Recall that ‘F2’ and ‘1− G2’ are interchangeable. SoG24 is in effect a constraint onG2.

8. The notion of logical independence used here is a generalization of one of Moore’s
(cf. [6]), who took two statementsA andB to be logically independent of each other if
neither ofA and¬A has either ofB and¬B as a logical consequence. Wittgenstein [11],
Proposition 4.27, may have been the first explicitly to require of atomic statements that
they be logically independent of one another in Moore’s sense. For more on the mat-
ter see the authors’ “OfA andB being logically independent of each other and of their
having no common factual content.”

9. Hereafter we shall say thatB is P-abnormal whenP(C, B) = 1 for everyC.

10. The total functions we associate here with Carnap can be defined in terms of his absolute
ones thus:

P(A, B) =



P(A ∧ B,
∧

∅)/P(B,
∧

∅) if P(B,
∧

∅) �= 0
(i.e., if {B} �|= ∅)

1 otherwise,

a definition which parallels Lemma3.11. Since P(A) is tantamount toP(A,
∧

∅),
Carnap’s absolute probability functions thus stand in one-to-one correspondence with
his relative ones, the way theG1 functions andG2 ones do.

11. Note that withG1(X, Y ) thus defined,F1(X, Y ) is the same asP(
∧

X ∧ ¬∨
Y ), a fact

of which we shall make use in the proof of the theorem.
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12. Proof of (e) is in Roeper and Leblanc [9], p. 13, where it appears as Theorem 3.6.

13. Shown in Roeper-Leblanc [9] is that Carnap’s relative probability functions are all Rényi
ones, but of course not vice-versa.
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