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Conseqguence and Confirmation

PETER ROEPER and HUGUES LEBLANC

Abstract Gentzen’s account of logical consequence is extended so as to be-
come a matter of degree. We characterize and study two kinds of fur@tion
whereG(X, Y) takes values between 0 and 1, which represent the degree to
which the sefX of statements (understood conjunctively) logically implies the
setY of statements (understood disjunctively). Itis then shown that these func-
tions are essentially the same as the absolute and the relative probability func-
tions described by Carnap.

1 Prior to Gentzen’s 1934-35 papefZ], logical consequence was thought of as
arelation from a conjunctively interpreted s¥tof statements to aingle statement
A. However, in the paper in question Gentzen introduced a new notion of derivability
which permits one to derive a disjunctively interpreted sequence of statements from a
conjunctively interpreted one. Sets may of course substitute in Gentzen for sequences
and often do, which makes for a new notion of logical consequence, one according
to which—given setX andY of statements—X hasY as a logical consequence if (i)
it is impossible for all the statements K to be true and, simultaneously, all those
in Y to be false, or equivalently (ii) at least one statemenY imust be true if all
the statements iX are true. It is Gentzen’s notion of logical consequence which we
shall extend here to one dégrees of logical consequence or—equivalently, as we
shall prove—to one aflegrees of confirmation in the sense of Carnafd]f

In Sections 2 and 3 we formulate characterizations of two classes of functions
(Gz1-functions andG,-functions) which, in different ways, assign degrees of logical
consequence to paitX, Y) of sets of statements. This is done axiomatically by ex-
tending Gentzen’s structural rules to apply to functions from finite antecedent and
succedent sets of statements to real numbers in the intervd| @nd these gener-
alized constraints are then justified in terms of weighted truth-value assignments. In
Section 4 the constraints are further extended to cover infinite antecedent and succe-
dent sets of statements. We next turn to Gentzen’s introduction rules for connectives
and extend them also 8, andG; functions, and we show in Section 5 that, as long
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as the restrictions o; and G, functions to sets of atomic statements meet the re-
spective structural constraints, the full functions obtained by using the generalized
introduction rules in a recursive definition do, too, a result that is analogous to, in
fact a generalization of, Gentzen’s Cut Elimination Theorem. In Section 6 lastly it is
shown that the5; and G, functions can be construed, respectively, as absolute and
relative probability functions in Carnap’s and Popper’s sense.

SupposeL is a language that has onfinitely many statements, a restriction
which, as indicated earlier, will be lifted from Section 4 on; and understand by a truth-
value assignmernt for £ any result of assigning either O (i.e., False) or 1 (i.e., True)
to each statement af. Then,w will be for us aweight function with the truth-value
assignments foL as its arguments and such that:

W1. 0< w(a) for everya, and

W2. Y, w(x) =1, whered_, w(x) is the sum of the weights of the various
truth-value assignments fa.

A truth-value assignment faf will be calledpossibleif the statements of to which

it assigns 1 can all be true and, simultaneously, those to which it assigns 0 can all be
false; otherwise it will be calleinpossible. And when—as at this point%-is afinite
language, all and only the impossible truth-value assignments éan have weight

0, the possible ones in contrast having positive weights which reflect, if you will, their
respectivdikelihood. Given the notion of an impossible truth-value assignment for

L formulation (i) of the account of logical consequence in paragraph one above can
be restated as followsX hasY as a logical consequence, for short,

XEY,

if any truth-value assignment faj that assigns 1 to all the membersXand 0 to all
those ofY is an impossible one, i.e., if

> {w(@) : XS Ty andY € Ry} =0,

whereT, = {Ae€ L:a(A) =1} andF, = {Ae L:a(A) =0}.2

Weshall concurrently be interested in a secangblicit, characterization of log-
ical consequence, one which is an adaptation of Gentzen’s own rules of derivability
to suit sets rather than sequences of statements. The following three are versions of
his so-calledstructural rules, with ‘ =, the standard symbol for logical consequence,
in place of his arrow->":

R1. If XNY # @,thenX =Y (Overlap)
R2. If X =Y, then{AJU X EYandX i YU {A} (Thinning)
R3. If X EYU{A}and{A}U X =Y, thenX =Y (Cut).

Any relation satisfying these three constraints will constitute for us a consequence
relation, and raised with respect to such a relation is the question: “Can it be so gen-
eralized as to become a matter of degree, measurable by a number in the intdrjal [0
(end-points included)?”
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2 A generalization of= whereby the logical relationship between sétandY be-
comes “a matter of degree” would make use of a binary fundBomith values in
the above mentioned interval,[0] and such thaG (X, Y) = 1lifandonly if X =Y.
The first characterization g& in Section 1 provides the best starting point for the
generalization.

It should be a simple matter to calcula® X, Y) in terms of the weights that
we presumed in that section to be assigned to the various truth-value assignments for
L. There are two different ways, it quickly appears, of doing the calculation. The
first exploits the formulation (i) of the consequence relation: “It is impossible for all
the statements X to be true and, simultaneously, all thoseYirio be false.” The
formulation suggests that in calculatiy X, Y) we add up the weights of the truth-
value assignments fof in which either not all the statements ¥are true or else
not all those inY are false. Theecond exploits formulation (ii) of the consequence
relation:; “If all the statements iX are true, then at least one statemernyY imust be
true.” This formulation suggests that to calcul&eX, Y) is to answer the question:
“To exactly which degree is it possible to find a membelrdhat is true in a truth-
value assignment faf in which all the members oX are true?”

We pursue both alternatives, and for clarity’s sake we shall wiag(X, Y)’
when attending to the first an®; (X, Y)’ when attending to the secon@y (X, Y) is
calculated by adding up the weights of all the truth-value assignmentsifowhich
either some member of is false or else some memberYfis true. This means of
course leaving out of the sum the weights of just those truth-value assignments in
which all the statements iK are true and all those ¥ are false. It proves conven-
ient to give a label of its own,F;’, to the sum of the latter weights. So

1. F(XY) =) {w@): XS T,andY C R},
and hence

2. Gi(X,Y)=1—F(X,Y),
which of course yields

3. Fi(X,Y) =1—Gy(X,Y).

For a given finite languagg, each and every weight thus determines a binary func-
tion F; and a binary on€&,;, G;1(X, Y) measuring the extent to whick (understood
conjunctively) ha¥ (understood disjunctively) as a consequence i, Y) mea-
suring the extent to whiclX fails to do so. Note incidentally th&; (X, Y) = 0 if
and only if @ = {A} for every Ain X and@ = {—B} for everyB in Y, whereas
Go(X,Y)=0if and only if X = {—B]} for everyBin Y.

The various function$5; on a languagel can also be specified implicitly by
placing onG; these three constraints:

Gil. Gi(X,Y) <1
Gi12. Gi(z,2)=0
G13. Fi(X, YU{A}D) + Fi{A U X, Y) = Fi (X, Y).
In G13, a constraint reminiscent of Gentze@st, ‘ F,’ can in view of (3) be thought

of as short for ‘1— G,’. So appearances to the contrary notwithstand® is a
constraint orG;.3
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Theorem§.1land2.5below show that the present characterization of degrees
of logical consequence is equivalent to the one using (1) —(2) in the preceding para-
graph. And Theorer.6lshows that the implicit characterization of logical conse-
guence in Section 1 utilizing constraints R1-R3 issues via (3) from const@ifhts
G13, this whenY being a logical consequence Xfis defined a$5; (X, Y) = 1.

Theorem 2.1 Let F; bedefined asin (1), i.e.,
FL(X.Y) =) {w(@): XS T, andY C Ry},

and G; asin (2). Then G; meets constraints G;1-G, 3.

Proof: (i) G; meetsG;1 by W; and the definition of5;.

(i) D {w(x) : @ € T, ando C F,} = 1 byW,. SoFi (2, @) = 1 by the defi-
nition of F;. S0G; meetsG; 2.

(i) Foranya, X C T, andY C F, ifand only if eitherX C T, andY U {A} C F,
or{AJU X C T, andY C F,. S0G; meetsG;3. O

In Lemma$2.2H2_2lwe presumes; to meet constraint€;1-G,3.
LemmaZ22 If XNY#a,then F(X,Y)=0and Gy (X,Y) =1

Proof: SupposeXNY # @, andlet A belong to bothX andY. ThenX = {A} U
XandY = YU {A}. HenceFi(X,Y) + Fi.(X,Y) = F.(X,Y) by G;3. Hence
Fi(X,Y) =0andG;(X,Y) =1. O

The next lemma amounts to a generalization of const(aift

Lemma23 (a) Fi(X,Y) = S{F(Z UX,YU(Z-2Z)):Z C Z};
(b) Fl(xv Y) = Z{Fl(Ta, Fa) - X c Ta and Y - Foz}-

Proof: (@) By induction on the cardinality of Z.
Basis: n = 0. Then (a) holds trivially.
Inductive Sep: n > 0. LetAbe amember o andZ* beZ — {A}. ThenFy(X,Y) =
Fi(X, YU{AD) + FL({A}U X, Y) by G13. ButF (X, YU{A}) =) {F(ZUX, YU
(AVU(Z*—2Z')):Z € Z*}andFL({AJU X, Y) = Y {F1(Z U{AJU X, YU (Z* —
Z")) : Z/ € Z*} by the inductive hypothesis. So (a).

(b) LetZin (a) beL. ThenFy(X,Y) =3, Fi(T,UX, YUF,). But(T,UX)N
(YUF,) # @ifand only if X € T, andY C F,. Hence (b) by LemmB&.2] O

Lemma24 (a) Gi(X.Y) < Gi({A}UX,Y) and G1(X,Y) < Gi(X, YU {A});
(b) Gi(X,Y) < G1(ZU X, Y) and G1(X, Y) < G1(X, YU Z);
(© 0= Gi(X.Y).

Proof: (@) F({AJUX,Y) < F(X,Y)andF (X, YU{A}) < F(X,Y) byG;3and
G11. So (a) by (2).

(b) by repeated use of (a).

(c) G1(@, @) = 0 by G;2. Hence O< G1(X, Y) by (b). O

Theorem 2.5 If G; meetsconstraints G;1-G; 3, then there exists a weight function
w suchthat Fi(X,Y) =) {w(a): XS Ty,and Y C F,}.
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Proof: SupposeG; meets constraint§&,1-G;3, and letwg, (o) = F1(To, Fy).
Thenwg, (¢) > 0 by Gi11. And )", wg, («) equals)_, Fi(T,. Fy), which itself
equals) {F1(Ty. Fy) : @ € T, and@ € F,}. So ), wg, (o) = F(@, ) by
Lemmal2.3(b), and hence_, wg, (@) = 1 by G;2 and statement (2) above. So
wg, is a weight function. Now lef[ (X, Y) be ) {wg,(x) : X € T, andY C F,}.
ThenF[(X,Y) equals) {F(Ty, Fy) : XS T, andY C F,}, and henceF1(X, Y) by
LemmadZ3b) again. So Theored g

Theorem& TJand2.Skhus guarantee that the characterizations (1) and (2) of the de-
grees of logical consequence in terms of weight functions and that in terms of con-
straintsG,1-G; 3 are equivalent.

As for our second task, l¢tg, be this binary relation on subsets 6f

XEg, Yifandonly if G1(X,Y) =1,

or, equivalently,
X =g, Yifandonly if F (X, Y) =0.

Theorem 2.6  If G; meetsconstraints G;1-G; 3, thentherelation =g, satisfiesR1-
R3.

Proof: (i) SupposeXNY # @. ThenG (X, Y) = 1 by Lemmal2i.e., X =¢, Y.
Hencel=g, meetsOverlap. (ii) SupposeX =g, Y, i.e., Gi1(X,Y) = 1. Then both
Gi({AJU X, Y) > 1 andGy(X, YU {A}) > 1 by Lemma2.4{a). HenceG;({A} U
X, Y) =1andG; (X, YU{A}) =1byG;1. Hence=g, meetsThinning. (iii) Suppose
XEg, YU{A}and{A}U X =g, Y,i.e.,F (X, YU{A}) =0andF ({A}U X, Y) =0.
ThenF1(X,Y) = 0 by G;3. HenceX =g, Y. Hencel=g, meetsCut. O

3 Turning now to formulation (ii) of the consequence relation in paragraph one of
Section 1, hence to the second way described in Section 2 of calcuatiKgy) in
terms of weights, let the functioR, be defined thusyw being of course the weight
function described in Section 1:
0if ) fw(a): XS Ty} =0
d{w(a) : XST,andYC R}/ D {w(w) : XS T,} otherwise
andG; defined thus:

2. Ga(X,Y) =1-F(X,Y),
which of course yields:

3. BKRXY)=1-Gy(XY).

The resulting function$, on £ can also be specifigdnplicitly by placing on
them these five constraints:

Gyl. 0< Gy(X,Y)
G,2. Go(X.Y) <1

G3. Gy(@,2)=0

G4 R(X, YU{AD + R({ATU X Y) x Go(X, {A}) = R(XY)
G,5. If Go(X, (A}) = 0, thenG,({A} U X, @) = 1.

1. Fo(X,Y) = {
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In G,4, a constraint reminiscent lik8,3 of Gentzen'sCut, ‘' F,’ can in view of (3)
be thought of as short for ‘2 G,’. So G,4 is aconstraint or,, the wayG;3 was a
constraint orG;.4

Proceeding as in Section 2, we go on to show that the characterization of degrees
of logical consequence using constrai@id —G,5 isequivalent to the one using’j%
(2)) inthe preceding paragraph (= Theordindand3.T2below). We then show that
the implicit characterization of logical consequence in Section 1 that utilizes R1-R3
issues via (3 from constraintss,1-G,5, this whenY being a logical consequence
of X is defined a6, (X, Y) = 1 (= Theoren3.13below). Accomplishing the second
task will be a lengthy affair, one that will call in particular for an auxiliary function,
the functionH introduced after Lemn{a7]

Lemma3.1 LetF, and G, be defined asin (1) and (2), and let Y {w(a) : X C
T} # 0. Then Go(X, {A}) = Y {w(a) : {AJUX C T}/ S{w(a) : X C T,}.

Proof:  SinceY {w(a) : X € Ty} # 0, Fo(X, {A}) = Y {w(w) : X S T, andA
Fol/ Y {w(@) 1 X C To}. S0G2(X, {AD=[Y{w(@) : X S T} =Y {w(@): XS T,
and Ae F}] /> {w(a) : X C Ty} S0G(X, {A}) equals) {w(a) : X € T, and
A¢ Fyl/d {w(e): X C Ty}, which equals) {w(e) : {AJU X C T}/ > {w(a) :
XC T} O

Theorem 3.2 Let I, and G, be defined asin (1') and (2'). Then G, meets con-
straints G,1-G,5.

Proof: (i) That G, meetsG,1, G,2, andG,3 isobvious from (1) and (2).

(i) Foranya, X C T, andY C F, ifand only if either{ A}U X C T, andY C F,
or X € T, andY U {A} € F,. So assume first thap {w(«x) : X € T,} = 0. Then
Y {w(a) : {AJU X C T,} = 0. Hence all ofF(X, Y U {A}), R({A}U X, Y), and
F2(X,Y) equal 0, and>, meetsG,4. Assume next thal {w(a) : X € T,} # 0.
Then, owing to LemmB&_1lin the first step,

F(X,YU{AD + R{ATU X Y) x G (X, {A}) =

= D> (w@:XST,andYU{A] SR/} (w(@): XS T+
+ [Z{w(a) H{AJUX S T, andY € Fy)/ Y (w(@) : {AJUX S Ta}] x
x [P (@  (AIUX C Tl Y fw@) : XS T} =

— [Z{w(oz) X C T, andY U {A} C F, 1+
+ fw(e) : (AJUX S T, andY < Fa}] /3 fw(@) XS T} =
Y fw(@ XS T,andY € Fol/ ) {w(@): XS T} =

= F(XY).

HenceG, meetsG,4.

(iii) SupposeG, (X, {A}) = 0. Then) {w(a) : X S Ty} #0. So) {w(w) :
{AJUX C T,} =0 by Lemma3dl SoF({A} U X, @) = 0, and consequently
Gy ({AlU X, @) = 1 by (2). S0oG, meetsG,5. O
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In Lemmad3.3H3.11] which will yield Theoreni3.12] we presumeG; to meet con-
straintsG,1-G,5.

Lemma3.3 (a) F(X, YU{A}D) < F(X,Y)and Gy(X,Y) < Go(X, YU {A});
(b) F(X, YU Z) < F(X,Y)and Go (X, Y) < Go(X, YU 2Z);

© FG(X,Y)=1,then Go(X, YU Z) =1(i.e, if F,(X,Y) =0, then

F(X, YU Z)=0).

Proof: (@) is byGy4, Gy1, andG,2; (b) is by repeated use of (a); and (c) is by (b)
andG,2. O

Lemma34 If XNY#a,thenGy(X,Y) =1

Proof: With A amember of bothX andY, Fo(X,Y) + Fo(X, Y) x Go(X, {A}) =
F(X,Y) by Gy4. So either~ (X, Y) = 0 or Gy(X, {A}) = 0. But in the latter case
Go(X, @) = 1 by G,5, and henc&, (X, Y) = 1 by Lemmd3.3(c). O

Lemma3d5 (a)lf F(X,Y)=0,then R({AUX,Y)=0;
(b)) If G(X,Y) =1, then Go(ZU X, Y) =1 (i.e, if FK(X,Y) =0, then F,(ZU
X, Y) =0).

Proof: (@) Suppos&,(X,Y)=0. TheneitheF({A}U X, Y)=00rGx(X, {A}) =
0 by Gy4 andG,2. Butin the latter cas€,({ A} U X, @) = 1 by G,5, hence- ({ A} U
X, @) =0, and henc&,({A} U X, Y) = 0 by Lemmd3.3{c). SoR({A}JUX,Y) =0
in either case. (b) is by repeated use of (a). O

Lemma3.6 (a) Gy(X, @) equalseither O or 1.
(b) 1f Go(X, {A}) # 1, then Go(X, @) = 0. (If Fo(X, {A}) # 0, then Fo(X, @) = 1.)

Proof: (@) is by induction on the cardinality oX. If X = @, then (a) byG,3.
Assume then thaG,(X, @) = 0 or G,(X, @) = 1, and letA be a statement not
in X. Gy(X,2) = G({AlU X, @) x Go(X, {A}) by G,4. So if Go(X, @) = 1,
thenGy({A} U X, @) = 1, whereas iiG,(X, @) = 0, thenG,({A} U X, @) = 0 or
Go(X, {A}) =0, and in the latter cagé, ({A} U X, @) = 1 by G,5.

(b) Supposé&s, (X, @) £ 0. ThenGy (X, @) =1 by (a), and henc&(X, {A}) =
1 by LemmaZ.3c). a

Lemma3.7 (a) Go(X, {AHxG({AU X, {BH)=GC2(X, {B}) x G2({B}U X, {A});

(b) Let Aq, ..., Ay bethe membersof Y in some order or other, let Yy be @, and let
YibeYi_jU{A}fori=1,..., n. Then [T, G2(X U Yi_1, {Ai}) isindependent of
the order of the membersof Y.

Proof: (a) ByGy4, 1— Fo(X, {A}) — R (X, {B}) + F (X, {B} U {A}) equals [1—

F(X {AD] x [1 - R({A U X, {Bh] aswell as [1- F(X, {B})] x [1 — R({B} U

X, {A}D)]. So (a). (b) is by (a). O

Needed at this point to abbreviate matters is an auxiliary funddoX, Y), whose
definition is sanctioned by Lemr&az{b).

[T Ga(XU Y, {ADif Y # @

H(X’Y):{ 1ifY=025

The following lemma amounts to a generalization of constr@gat.
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Lemma38 F(X,Y)=Y{FR(ZUX,YU(Z—Z) x H(X,Z):Z < Z}.

Proof: By induction on the cardinality of Z.

Basiss n=0. F2(X,Y) = (X, Y) x H(X, @), dnceH (X, @) = 1 by the definition
of H.

Inductive Sep: n > 0. Let Abe a member of and letZ* = Z — {A}. Then

F(X,Y) = R(X, YU{AD + (AU X Y) x Go(X, {A})
by G,4. But
F(X, YU{AD =Y {R(XUZ . YU{AJU(Z* = Z)) x H(X. Z)): Z' € Z*)
and

RAAIUX.Y) x Go(X. {A) = Y (RUAJUXUZ, YU(Z" -Z))x
xH{AJU X, Z') x Go(X, {A)}) : Z' € Z%)

by the inductive hypothesis. Bt ({ A} U X, Z') x Go(X, {A}) = H(X, Z'). Hence
Lemmd33 O

Lemma3.9 If H(@, X) =0,then G(X, @) = 1.

Proof: Let A4, ..., Ay be the members oKX in any order one pleases, |& be
@, andlet X; be Xi_y U {Aj} fori = 1,...,n. SupposeH(z, X) = 0. Then
Go(Xi_1, {A}) =0forsomei (1 <i <n). SoGy (X, @) =1 byGy5, and hence
Gy (X, @) = 1 by Lemmd3.Hb). O

Lemma3.10 Let F*(X,Y) be F(X,Y) x H(@, X), and let G*(X,Y) be 1 —
F*(X,Y). Then G* meets constraints G;1-G; 3.

Proof: (i) G11 by Gy,1 andGy2. (ii) G;2 by G,3. (iii) Since H(@, X U {A}) =
H(@, X) x G(X, {A}), F*(X, YU{AD) + F*({A}U X, Y) equals Fo(X, YU{A}) +
F({AJU X, Y) x Go(X, {AD] x H(@, X), and hence (X, Y) x H(, X) by G4.
HenceG; 3. O

Lemma3.ll F(X,Y) = F*(X,Y)/F*(X, @), if F*(X,2) # 0, otherwise
F(X,Y)=0.

Proof: AssumeF*(X, @) = 0. Then eithe(X, @) = 0 or H(@, X) = 0. But
in the latter casd—(X, @) = 0 as well by LemmaB.9] Hence F(X,Y) = 0
by Lemmal3.3{c). Now assume*(X, @) # 0. ThenF,(X, @) # 0, and hence
Fo(X, @) = 1 by LemmdZ§a). HenceF* (X, @) = H(@, X), and thus (X, Y) =
F*(X,Y)/F*(X, ). O

Theorem 3.12 If G, meets constraints G,1-G,5, then there exists a function w
such that

0if Y{w(@) : XS T} =0

FQ(X, Y) = { Z{w(a) X C Ta and Y C Fa}/ Z{w(a) X C Toz} otherwise.
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Proof: Supposes, meetsG,1-G,5, and letwg, (o) be F*(T,, Fy). Thenwg, is a
weight function by Theoreff.5] Now let (X, Y) be 0 if Y "{wg, (o) : XS T} =0
and ) {wg,(@) : X S Ty andY C F,}/ > {wg,(@) : X € T,} otherwise. Then
Fy(X,Y) equals) {F*(Ty, Fo) : X € Ty andY € Fy}/ Y {F*(To, Fo) - X S Ty}
by the definition ofwg,. SOF, (X, Y) = F*(X, Y)/F*(X, @) by the same reasoning
as in Theorer.5] HenceF, (X, Y) = F»(X, Y) by LemmaB.11] O

So TheoremB.2land3.1guarantee that the characterizatiof) éind (2) of the de-
grees of logical consequence in terms of weight functions and that in terms of con-
straintsG,1-G,5 are equivalent. And since (i) by Theor&r dthe functionss, and
the weight functionsv match one-to-one, and (i) by Theorénbkhe functionsG,
and the functions also do, thés, functions and th&, functions stand in one-to-one
correspondence.

As for our second task, letg, be this relation on pairs of statements £f
X =g, Y if and only if Go(X,Y) = 1, or equivalently,X =g, Y if and only if
Fo(X,Y) =0.

Theorem 3.13  If G, meets G,1-G;5, then the relation =g, satisfies R1-R3.

Proof: (i) =g, meetsOverlap by Lemma3.4] (ii) g, meetsThinning by Lem-
ma@a) and Lemm@a). (iii) SupposeX =g, YU {A}and{A} U X =g, Y, i.e.,
F(X,YU{A}) =0andR({A} U X,Y) = 0. ThenF(X,Y) = 0 by G,4. Hence
X g, Y. Sok=g, meetsCut. O

4 As we turn to languages with infinitely many statements, we extend the counter-
parts R1-R3 of Gentzen'’s structural rules td-FHR3, where the earlier set andY
may now be infinite as well as finite and so may the new Zeiad Z’:

RY. If XNY # @, thenX =Y
R2. If XY, thenZUXEYandXE=YUZ
R3. If ZUXEYU(Z—-2Z)foreveryZ C Z,thenX = Y.

In Sections 1-3 we defingg (with the subscriptG’ here short for either of
‘Gy’ and ‘Gy)) in the following manner:

XEg Yifandonly if G(X,Y) = 1.

The definition clearly does not suit infinite sets, for, as indicated by Ler@is)
and3.3(b), G(X, Y) will frequently equal 1 even though = Y. One alternative way

of defining logical consequence is suggested by the class of compact consequence re-
lations, relations that are fully determined by their restrictions to finite sets of state-
ments. So we will deal with infinite languages but restrict ourselves to compact con-
sequence relations and defigg; thus:

XEg Yifandonly if G(X',Y) =1
for some finite subseX’ of X and some finite subs#&t of Y.

In the same spirit it is our next task to design an extra constraint to be placed on
the G; consequence functions and one to be placed oGgieinctions, constraints
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that will fix the values of these functions for infinite sets in terms of their values for
finite ones. As regards the first functions, we have from Lefan¥i)

G1(X,Y) < Gi(X,Y)whenX € X"andY C Y/,

which suggests this constraint:
Gi4d. G1(X,Y) =supGi (X, Y): X Cs XandY' C Y},
where ‘T’ is to beread ‘is a finite subset of’. This is of course equivalent to

Fi(X,Y) =inf{F(X',Y): X' Cf XandY’ < Y).
As regards the second functions, we have from Leffma]

F*(X,Y)/F*(X,2)if F*(X,2)#0

FR(X.Y) = { 0 otherwise

which together with Lemmia.4lsuggests

inf{F*(X',Y") : X' €¢ X andY’ C Y}/inf{F*(X', @) :
G6. Fo(X,Y) = X' C¢ X}if inf{F*(X, @) : X' C¢ X} £0
0 otherwise’

Incidentally, we could have avoided placing constrai@igl and G,6 onthe
presentG; andG, functions by extending the finitary functions from Sections 1 and
2 to infinitary ones with the help of definitions corresponding3gt andG,6. The-
oremZT](which we prove) and TheorelaZ]proof of which we leave to the reader)
establish this.

Theorem 4.1 Let G; be a function on the finite subsets of £ meeting constraints
G11-G;3, and let G/l(X, Y) = SUHG]_(X/, Y): X Cs Xand Y < Y}. Then G/l
meets G11-G4 3.

Proof: That G} meetsG;1 and G;2 is tivial. As for G3, F{(X,Y U {A}) +
FIHALU X Y) =inf{F (X, Y) : X' S¢ XandY' St YU {A}} +inf{F (X, Y'):
X' C¢ {AJU X andY’ C¢ Y}, which by Lemmd2.4{a) equals infF, (X', Y/ U {A}) :
X' C¢ XandY' C¢ Y} +inf{F (X' U{A},Y): X' C; XandY’ C; Y}, which equals
inf{FL(X', Y U {A}) + Fi(X'U{A},Y) : X' C¢ XandY’ C; Y}, which by G;3
equals infF (X', Y") : X' € XandY’ C¢ Y}, which in turn equald[(X,Y). O

Theorem 4.2 Let G, be a function on the finite subsets of £ meeting constraints
Gp1-G,5, and let Gy(X, Y) = 1 — F5(X, Y), where

inf(F*(X",Y): X' C¢ Xand Y’ C; Y}/Iinf{F*(X, @) : X' C¢ X}
Fo(X,Y) = if inf{F*(X',2): X' Cs X} #0
0 otherwise.

Then G, meets G,1-G,5.

So the presen6; functions andG, functions arecompact functions in the
broader sense that the value®for any two setsX andY depends exclusively upon
the values ofs for finite subsets oK andY, and hence upon the values®@for finite
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sets. And thanks to constrair®4 andG,6, and to the definitions d&g, andi=g,,
the latter relations conform to R1IR2, andR3. For the restrictions to finite sets
of =g, and ofl=g, meet R1, R2, and R3, as we have established in Thedeeshs
and3.13 And proof that a compact relation of this kind satisfied, R, and R3is
to be found in Shoesmith and Smildid], p. 37. Hence these two theorems.

Theorem 4.3 If Gy meets G11-G14, then the relation =g, satisfies R1'-R3'.

Theorem 4.4 If G, meets G,1-G,6, then the relation =g, satisfies R1'-R3'.

5 The previous section dealt with compaetand G in general. The present one
will concern a particular language, the languaggeof propositional logic, with de-
numerably many atomic statements; and ‘A’ asits primitive connectives, and”,
‘>, and ‘=" defined in terms of them in the customary manner. In Theole@&.2]
all sets of statements are presumed to be finite; but in view of The@ellasdi4.2]
like results hold when the sets are infinite. As usualctimgplexity c(A) of an atomic
statemeni s 0, that of a negatiorr Ais c(A) + 1, and that of a conjunctioA A Bis
c(A) +c(B) + 1; and the complexity@ A1, Ao, ..., An}) of afinite set of statements
is (A1) + C(A2) + -+ - + c(An).

Itis generally presumed in logic texts that the atomic statements from which the
other statements under study are compounded are logically independent of one an-
other. A more precise account of this matter is imperative here, according to which
the members of a sét of statements of a (finite or infinite) languageare said to
be logically independent under a consequence fun&idoe it G, or Gy) if and only
if, for any two disjoint subsetX andY of Z, G(X, Y) # 1. The following constraint
on G; thus requires of the atomic statement<gtthat they be logically independent
underG;.

Ind;. If XandY are sets of atomic statements ahad Y = &, thenG; (X, Y) #£
18

Now for the statements of, that can be compounded from atomic statements
by means of =’ and ‘A’. To accommodate them, we place up@n the following
counterparts of Gentzenastroduction rules (to the left and to theright) for ‘=’ and
‘A’, to be known aghe G;-constraintsregarding ‘=" and ‘ A’

—R;. F1(X, YU [=A}) = FL({A} U X, Y)

—L1. F({~AJU X, Y) = Fi(X, YU{AD

ARy Fi(X, YU{AAB}) = Fi(X, YU{AD + FL({A}U X, YU {B})
AL1. FI{AABIUX,Y) = Fi({A, BJU X, Y).

Theorem 5.1 Lettherestriction of G, to setsof atomic statements of Lo meet G1—
G13, and Indy, and let G; meet the G;-constraints regarding ‘=" and ‘A’. Then G,
meets G;1-G4 3.

Proof: ThatG; meetsG,2 istrivial, that it meets the other two constraints is shown
by induction omn = c(A) + ¢(X) + c(Y).

Basis: n = 0. ThenA, the members oK, and those ol are atomic statements, and
G2 andG; 3 are met by assumption.



352 PETER ROEPER and HUGUES LEBLANC

Inductive step: n > 0. (i) ThatG;1 is met is immediate by inspection of the con-
straints for =’ and ‘A’ and the inductive hypothesis.

(i) For G13 there are 6 (not necessarily mutually exclusive) subcases to be con-
sidered, namely-B beingAitself, or a member oK, orone ofY, andA A B likewise
being A itself, or a member oK, or one ofY.

Case 1.

Subcase 1 (—Bis A): ThenFi(X, Y U{A}) equalsF ({B} U X,Y) (by —=R;) and
Fi{ALU X, Y) = Fi(X, YU {B}) (by —L1). HenceFi (X, YU {A}) + FL({A} U
X, Y) = F1(X, Y) by the inductive hypothesis.

Subcase2 (—B e X): Let X' be X — {=B}. ThenFi(X,YU{A}) = F;(X,YU
{A, B) andF ({AJU X, Y) = F({A} U X', YU {B}) (both by—L1). SoF(X,YU
{AD + FL({A}U X, Y) equals— (X, YU {B}) by the inductive hypothesis, and hence
equalsF, (X, Y) by —L1.

Subcase 3 (—B € Y): Like Subcase 2, but usingR; in place of—Lj.
Case 2:

Qubcase1 (BACisA): ThenF (X, YU{AH)=F (X,YU{B})+ F({BjUX,YU
{C}) (by ARy) andF ({A}U X, Y) = FL({B, C}U X, Y) (by AL;). HenceF, (X, YU
{AD) + FL({A}U X, Y) equalsF (X, YU {B}) + F.({ B} U X, Y) by the inductive hy-
pothesis, and hence equ&g X, Y) by the inductive hypothesis again.

Subcases 2R A C € X) and 3 B A C € Y) by similar reasoning. (]

The foregoing theorem establishes that, given the constraints-fand ‘A", G; is

in effect recursively definable from its restriction to finite sets of atomic statements.
And by virtue of Theorerf. 1lthis result, which parallels Gentzen’s Cut-Elimination
theorem for propositional logic, includes the case where the argume@isaoé infi-

nite sets of statements. Theof&Awill establish that th&; functions in this section

are indeed a generalization of the consequence relation for propositional logic. The
consequence relation for propositional logic being compagt, is of course defined

as in Section 4.

Theorem 5.2 Let G; meet G;1-G13, Ind;, and the G;-constraints regarding ‘ —’
and ‘A’. Then, X =g, Y (i.e, G1(X,Y) = 1 or, equivalently, F1(X,Y) = 0) if and
onlyif X =Y.

Proof: By induction onn = c¢(X) + c(Y).

Basis. n=0. ThenX andY are sets of atomic statements aXd¢= Y if and only if
XNY #@. Butif XNY # @, thenGy (X, Y) = 1 by Lemmd22] And if G (X, Y) =
1,thenXNY # @ by Ind;. SoX = Yifandonly if G (X,Y) = 1.

Inductive Sep: n > 0.

Case 1.

Subcase 1 (—A e X): Let X' beX —{—A}. Thenby-L; F;(X,Y)=0if and only
if FL(X’,YU{A}) =0, so by the inductive hypothesis if and onlyXf =Y U { A},
soifand only if X =Y.
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SQubcase2 (—A € Y): LetY beY —{—=A}. Then by—R; F (X, Y) =0if and only
if FL({A}U X,Y’) =0, so by the inductive hypothesis if and only{ii} U X = Y’,
soifandonly ifX =Y.

Case 2:

Subcase 1 (AA Be X): LetX'beX—{AAB}. ThenbyAaL; F1(X,Y)=0if and
only if Fi(X" U {A, B},Y) = 0, so by the inductive hypothesis if and onlyXf U
{A,B} =Y,s0ifandonly if X =Y.

Subcase2 (AABeY): LetY beY —{AA B}. Suppose firski (X, Y) =0. Then
by AR; F1(X,Y U {A) + FR({A}U X, Y U{B}) =0. SoX Y U{A} and
{A}U X = Y’ U {B} by G;1 and the inductive hypothesis. Hen¥e= Y’ U { A, B}
by Thinning, and X = Y’ U {B} by Cut. Hence X = Y. Suppose nexK = Y. Then
XEYU{AlandX = Y U{B}. So{A}U X = Y' U {B} by Thinning. Hence
Fi(X,YU{A})) =0andF,({A}U X, Y U{B}) = 0 by the inductive hypothesis. So
Fi(X,Y)=0 by AR1. O

We next place upoit, counterparts of Indand the constraints above regarding *
and ‘A’

Ind,. If X andY are sets of atomic statements aXxad Y = &, then

Go(X,Y) #£ 1.
=Ry, BH(X, YU{=AD = KH({AlUX,Y) x Go(X, {A})
_ ) RXYUAD/R(X {AD if R(X {A}D) #0
Lo RUZAIUXY) = { 0 otherwise
AR, FR(X, YU{AAB)) =FR(X, YU{A) + KR({AJU X, YU({B}) x
Ga(X, {AD

AL, BR{AABIUX YY) =FR{A,BjUX,Y).

Theorem 5.3 Lettherestriction of G, to sets of atomic statements of Lo meet Go1—
G,5, and Ind,, and let G, meet the G,-constraints regarding ‘—" and ‘' A’. Then G,
meets G,1-G,5.

Proof: ThatG, meetsG,3 is trivial, that it meets the other four constraints is shown
by induction om = c(A) + c(X) + c(Y).

Basis: n = 0. ThenA, the members oK, and those off are atomic statements, and
Go1, G2, Go4, andG,5 ae met by assumption.

Inductive step: n > 0.

(i) That G,1 andG,2 ae met is immediate by inspection of the constraints for
connectives and the inductive hypothesis, except in the casepfvhere in addition
the inductive hypothesis fdB,4 has to be invoked so as to yiel (X, Y U {A}) <
F(X, {AD.

(ii) For Gy4 there are six (not necessarily mutually exclusive) subcases to be con-
sidered, namely-B beingAitself, or a member oX, orone ofY, andB A C likewise
being A itself, or a member oK, or one ofY.

Case 1.

Subcase 1 (—Bis A): First assuméd= (X, {B}) = 0 (i.e., Go(X, {B}) = 1). Then
F(OXYU{AD=R({B}U X, Y) by—=R,andF({A}U X, Y)=0by—L;. F(X, YU
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{B}) = 0 by LemmalR.3lb), which uses the inductive hypothesis 651, G,2,
andGy4. HenceR (X, YU {A}D) + FR({A} U X, Y) x Go(X, {A}) equalsF({B} U
X,Y). And, asF,(X, YU {B}) = 0, this equald= (X, Y) by the inductive hypothe-
sis for Go4. Assume next (X, {B}) # 0, F(X, YU {A}) = F({B}U X,Y) x
Ga(X, {B}), R({A}UX,Y) = R(X, Y U {B})H/FR(X {B}), and G2(X, {A}) =
1-[R{B}UX, @) x Go(X, {B})]. ButsinceF,(X, {B}) # 0, F,(X, @) = 1 by
Lemmal2.gb), which uses the inductive hypothesis 851, G,2, G4, andG,5.
Hence 1- [FR({B} U X, @) x Go(X, {B})] = F2(X, {B}) by the inductive hypothe-
sis forGy4. HenceF, (X, YU {A}D + FR({ALU X, Y) x Go(X, {A}) equalsk ({B} U
X, Y) x Go(X, {B}) + Fo(X, Y U {B}), which equals— (X, Y) by the inductive hy-
pothesis foiIG,4.

Subcase2 (—B € X): Let X' be X — {—=B}. Assume first thaf> (X, {B}) =0, in
which caseF, ({A} U X/, {B}) = 0 as well by Lemma.3(b), which uses the induc-
tive hypothesis folGo1, G,2, andGy4. ThenF (X, Y U {A}D), R({A}U X,Y), and
F2(X,Y) all equal 0 by—L,. So0Gy4. Assume next thal, (X', {B}) £ 0, but that
(AU X/, {B}) = 0. ThenF({A} U X', Y U {B}) = 0 by Lemmd2.3(b), which
uses the inductive hypothesis f@1, G,2, andG,4. Then, by—L,, F(X, Y U
{A) = (X, YU{A, B))/F(X, {B}) and R ({A} U X, Y) = 0. HenceF,(X, YU
{AD) + F({AJU X, Y) x Ga(X, {A}) equalsko (X', YU{A, B})/F(X', {B}), which
equals F2(X', YU {A, B}) + R({A} U X', YU {B}) x Go(X', {AD]/F(X', {B}),
which equalsF (X', Y U {B})/F (X', {B}) by the inductive hypothesis, and hence
F>(X,Y) by—=L,. Assume finally thaE, ({ A} U X', {B}) # 0, and sd- (X', {B}) #0
as well, by Lemm43.3]b), which uses the inductive hypothesis 81, G,2, and
Gy4. ThenFa(X, YU {A}) = Fo(X, YU({A, B})/Fa(X, {B}), Fi({AJU X, Y) =
FL({A} U X, Y U {BY)/FR({A} U X', {B}), and Go(X,{A}) = 1 — [F(X,
(A, B))/F2(X', {B)] (all by =Ly). ThenGy(X, {A}) equals F2(X', {B}) — Fa(X/,
{A, BD]/F(X', {B}), which equals G2 (X, {A}) x R2({A}U X', {B}))]/F(X', {B})
by the inductive hypothesis fdB,4. HenceF, (X, Y U {A}) + F({A} U X, Y) x
Ga2(X, {A}) equals (X', YU {A, B}) + FL({A} U X', Y U {B}) x Ga(X, {AD]/
F (X, {B}), which equald= (X', YU {B})/F.(X, {B}) by the inductive hypothesis,
and hence equalk (X, Y) by —L».

SQubcase3(—B e Y): LetY beY — {=B}. ThenF(X, YU {A}) = (B} U
X, Y U{A}D x Go(X, {B}) andF({A} U X,Y) = F({A, BJU X, Y') x Go({A} U
X, {B}) by =Ro. Go({A}U X, {B}) x Ga(X, {A}) = G2({B}U X, {A}) x G2(X, {B})
by Lemmd3.7) which uses the inductive hypothesis f854. SoF,(X, Y U {A}) +
F({AJUX,Y) x Ga(X, {A}) equals Fo({B}U X, Y/ U{A} + F({A, BJU X, Y') x
Gy ({B} U X, {AD] x G2(X, {B}), s0 by the inductive hypothesiB,({B} U X, Y') x
G (X, {B}), and hencd= (X, Y) by =Ro.

Case 2:

Subcase 1 (BACisA): Thenk (X, YU{AD=F(X,YU{B})+ FR({B}UX, YU
{C}H) x Go(X, {B}) (by ARy) andF>({A}U X, Y) = F,({B, C}U X, Y) (by ALo), and
Go(X, {AD) =1—-[R(X, {B}) + R({B} U X, {C}) x G2(X, {B}) (by ARp). Hence
Fo(X, YU{AD + F({AU X, Y) x Go(X, {A}) equalsF> (X, YU {B}) + F({B} U
X, Y) x G(X, {B}) by the inductive hypothesis, and hence equaleX, Y) by the
inductive hypothesis again.
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SQubcase2 (BAC e X): LetX' = X—{BAC}. Then (X, YU{A}) = F({B, C}

U X,YU({A}), R{ATU X, Y) = R{A,B,C}U X,Y), and Go(X, {A}) =
G2({B, C}U X', {A}) (allby AL). SoF (X, YU{AH+F({AIU X, Y)xGa(X, {A})
equalsk({B,C} U X', YU{A) + R({A,B,ClU X', Y) x G({B,C}U X', {A}),
which equalsF,({B, C} U X', Y) by the inductive hypothesis, and hence equals
F2(X,Y) by —La.

Subcase3(BA C € Y): By similar reasoning.

(iii) For G5 there are four (not necessarily mutually exclusive) subcases to be
considered, namely B being A or a member oK, andB A C being A or a member
of X. So assumeGy (X, {A}) = 0.

Case 1.

SQubcase1 (—Bis A): ThenF({B} U X, @) x Gy(X, {B}) = 1 by =R,. Hence
Go (X, {B}) =1 by the inductive hypothesis f@,1 andG,2. SoF,({—B}U X, @) =
0 by—L,. HenceG,({Al U X, @) = 1.

Subcase2 (—B e X): Let X' = X — {=B]}. It follows that F,(X’, {B}) # 0 and
F(X' {A, Bh)=Fa(X’, {B}) by —Lo. But R(X', {Bh) =F(X', {A, B}) + RR({A}U
X', {B}) x Go(X’, {A}) by the inductive hypothesis f@,4. SoF({A}U X/, {B}) x

Gy (X, {A}) = 0. If Fa({A} U X/, {B}) =0, thenFo({A, =B} U X', @) = 0 by —L,.

If Go(X/, {A}) =0, thenG,({A} U X', @) = 1 by the inductive hypothesis fdB,5,
andG,({A, =B} U X, @) = 1 by Lemmd3.5b), which uses the inductive hypothesis
for G,2, G,4, andG,5. HenceG,({A} U X, @) = 1 in either case.

Case 2:

Qubcase 1 (BACisA): Then 1= F(X, {B}) + F({B} U X, {C}) x Go(X, {B})
by ARy, i.e., Ga(X, {B}) x Go({B}U X, {C}) = 0. If Go({B} U X, {C}) = 0, then
Gy ({B, C}U X, @) = 1 by the inductive hypothesis f@g,5. If Gy (X, {B}) =0, then
Go({B}U X, @) = 1 by the inductive hypothesis f@,5, andG,({B, C}U X, @) =1
by Lemma3.5b), which uses the inductive hypothesis 852, G,4, andG,5. So
G ({A}U X, @) = 1 by AL» in either case.

SQubcase2(BACe X): Let X' beX - {BAC}. ThenG,({B,ClU X', {A}) =0
by AL,. S0Gy({A, B, C}U X', @) = 1 by the inductive hypothesis fdg,5. Hence
G (AU X, @) =1 by—L, again. O

The foregoing theorem is of course the counterparGsfunctions of Theorera1]

It shows that, given the constraints fer'‘and‘ A’, G, is in effect recursively defin-

able from its restriction to finite sets of atomic statements. And by virtue of The-
oreml4.2lthis result, which again parallels Gentzen’s Cut-Elimination theorem for
propositional logic, includes the case where the argumen®; @fre infinite sets of
statements. The next theorem will establish that@adunctions of this section are
indeed a generalization of the consequence relation for propositional logic. Said con-
sequence relation being compaelg, is of course defined as in Section 4.

Theorem 5.4 Let Gy, meet G,1-G,5, Ind,, and the G,-constraints regarding ‘ —'

and ‘A’. Then, X =g, Y (i.e, G2(X,Y) = 1 or, equivalently, F>(X, Y) = 0) if and
onlyif X =Y.
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Proof: By induction onn = c(X) + c(Y).

Basis. n=0. ThenX andY are sets of atomic statements aXd¢= Y if and only if
XNY #@. Butif XNY # @, thenGy(X, Y) = 1 by Lemmd3.4] And if G,(X, Y) =
1,thenXNY # @ by Ind,. SoX = Yifandonly if Go(X,Y) = 1.

Inductive Sep: n > 0.

Case 1.

Subcase 1 (—A e X): Let X' = X — {—=A}. Suppose first thaF,(X’, {A}) = 0.
ThenF,(X,Y) = 0 by—L,. Suppose next thd, (X', {A}) #0. ThenF(X,Y) =0
ifand only if (X', YU{A})/F (X', {A}) = 0(by—L>), so by the inductive hypoth-
esisifand only ifX' = YU {A}, o ifand only if X =Y.

SQubcase2 (—A€Y): LetY =Y —{—A}. AssumeR (X, Y) =0. Thenk({A} U
X, YY) x Go(X, {A}D) =0 (by—Ry). HenceF>({A} U X, Y) =0 orG,(X, {A}) =0.
Butif Go(X, {A}) =0, thenG,({A} U X, @) = 1byG,5, andG,({A}U X, Y') =1 by
Lemmd3.3{c). And, if R ({A} U X, Y’) =0, alsoG,({A} U X, Y') = 1. Hence by the
inductive hypothesig,A} U X = Y’ in either case. SX = Y. Conversely, assume
X E Y. Then{A}U X = Y/, and by the inductive hypothesis ({A} U X, Y") = 0.
SoF,(X,Y) =0by—L..

Case 2:

Subcase 1 (AABe X): Let X' = X—{AA B}. ThenF,y(X,Y) =0 if and only
if F2(X U {A, B},Y) =0 (by AL»), so by the inductive hypothesis if and only if
XU{A Bl EY,oifandonlyif X =Y.

SQubcase2 (AABeY): LetY =Y — {AA B}. Supposer,(X,Y) =0. Then
(X, Y U{AD + FB({AJUX, Y U{B}) x Ga(X, {A}) = 0byAR,. If Go(X, {A}) =
0, thenG,({A} U X, @) = 1 by G5, and henceéG,({A} U X, Y U {B}) = 1 by
LemmaB3c). If Go(X, {A}) # 0, then bothF(X, Y U {A}) = 0 and Fo({A} U
X, Y U{B}) =0byGy2. Soin either caseX = Y U {A} and{A} U X = Y' U {B}
by the inductive hypothesis. Henée= Y’ U {A, B} by Thinning, andX = Y' U { B}
by Cut. HenceX = Y. Onthe other hand, assumékE= Y. ThenX = Y' U {A} and
XEY U{B}. So{A}U X = Y'U{B} by Thinning. HenceF>(X, Y U {A}) = 0and
Fo({A}U X, Y U {B}) = 0 by the inductive hypothesis. F&(X,Y) =0byAR,. O

6 Relative probabilities (and hence absolute probabilities, the latter being but re-
strictions of the former to a tautology as second argument) have been interpreted in a
variety of ways:subjectively, aswhenP(A, B) is taken to be the degree to whigh
is credible in light of B, andobjectively, aswhen P(A, B) is taken to be the degree
to which A is confirmed byB. Carnap, the objectivist par excellence on this matter,
understoodP (A, B) the latter way. Our final item of business in this paper is to take
Carnap’s position one step further and show that degrees of confirmation are but de-
grees of logical consequence in disguise. This will be done in two steps, as we deal
first with the absolute probability functions associated in Roeper and Lelfhwith
Carnap and then with the relative ones which are associated there with him.

More specifically, letLy again be the propositional language of Section 5Xlet
andY be finite (rather than finite or infinite) sets of statementsgflet A X and\/ Y
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respectively be the conjunction of the statementX Bind the disjunction of those in
Y, when X andY are not empty, ley\ @ be a fixed but arbitrary contradiction and
\/ @ be its negation, and lé® be a unary function on the statementsgf We shall
first show that

If P(A) isunderstood as G (2, { A}) (or, equivalently, as F1 ({ A}, @)), then P
constitutesan absol ute probability function in Carnap’s sense (= Theoreml6.2),

and

If G1(X,Y) isunderstood as P(/\A X D \/ Y), where P is an absolute proba-
bility function in Carnap'’s sense, then G; meets constraints G;1-G; 3 plusthe
G;-constraintsin Section 5 relating to ‘=’ and ‘A’ (= Theorem[6.3).

This done, letZo, X, Y, A X, VY, A\ @, and\/ @ be as before, but leP this
time be a binary function oy. We shall next show that:

If P(A, B) isunderstood as G,({B}, {A}), then P constitutes a relative prob-
ability function in Carnap’s sense (= Theoreml&.8),

and

If G2(X,Y) isunderstood as P(\/ Y, A X), where P is a relative probability
function in Carnap’s sense, then G, meets constraints G,1-G,5 plus the Go-
constraintsin Section 5 relating to ‘=" and ‘ A’ (= Theorem[6.10).

The constraints placed on Carnap’s absolute probability functions are the follow-
ing six, simplifications of the constraints that Popjiidlaces on his own functions,
plus a seventh one which is characteristic of those among Popper’s functions that are
Carnap ones.

Al. 0< P(A) (Non-Negativity)
A2. P((AA—-A) =1 (Normality)
A3. P(A)+ P(=A) =1 (Addition)
Ad. P(AAB)+ P(AA—=B) = P(A) (Special Addition)
A5. P(AAB) < P(BA A) (Commutation)
A6. P(AA(BAC)) < P((AAB)AC) (Association)

AC. If P(A) = 1, then |= {A}.

As for the constraints on Carnap’s relative probability functions, they are the
following seven, simplifications of the constraints that Popfggp[aces on his own
functions, plus an eighth one which is characteristic of those among Popper’s func-
tions that are Carnap ones.

B1l. For at least oné and at least on8, P(A,B) #1 (Existence)
B2. 0< P(A, B) (Non-Negativity)
B3. P(A,A) =1 (Normality)
B4. If P(C, B)#1for atleast on&€,® thenP(A, B)+P(—A, B)=1(Addition)
B5. P(AAB,C) = P(A,BAC) x P(B,C) (Multiplication)
B6. P(AAB,C) < P(BAAC) (Commutation)
B7. P(A,BAC) < P(A,CAB) (Commutation)

BC. If P(A, B) = 1, then{B} = {A}.
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Unlike those in Carnafl] the present functions are total ones, WRhA, B)
equal to 1 whemB is a contradiction. But Carnap himself, though he did not officially
count contradictions as second argument®o$aw no objection to its being done,
and that has been our practice in all of our papers since Leblanc and Regper [

By the way, it is shown in Leblan&] that, (i) given the so-calledutonomous
constraints A1-AG,

If o = {A= A}, thenP(A) = P(A),
and, (ii) given theautonomous ones B1-B7,
If o = {A= A}, thenP(A, B) = P(A’, B)

and
If o |={B= B}, thenP(A, B) = P(A, B)).

In the proofs that follow we shall avail ourselves of these results and interchange with-
out further ado arguments—be they of absolute probability functions or of relative
ones—that are logically equivalent.

Lemma6.l Gi(2, (A) = FL({A}, 2).

Proof: Fi(@,{A}D) + FL({A}, 9) = F1(2, @) by G13. ButF1 (2, @) = 1 by G;2.
Hence Lemmb&.1] O

Theorem 6.2 If P(A) is understood as G, (&, {A}), where G; meets G11-G, 3,
Ind;, and the G;-constraints regarding ‘—’ and ‘ A’, then P constitutes an absolute
probability function in Carnap’s sense.

Proof: (1) 0< G1(2, {A}) by Lemmd2.4(c). SoP meets Al.

(2) Fi(@, {~(AA A} = FL({A A=A}, @) by =Ry, which equalsF;({A,
—A}, @) by ALy, and FL({A}, {A}) by —L;. But Gi({A}, {A}) = 1, and hence
F1({A}, {A}) = 0, by Lemmd2.2] S0G1 (2, {—=(AA —=A)}) = 1. SOP meets A2.

(3) Fu(@, {—A}) = F1({A}, @) by =Ry. F1(@, @) = F1(2, {A) + F({A}, @)
by G13. ButF (2, @) = 1 by G12. SoP meets A3.

(4) Fi{AA B}, @) = Fi({A, B}, @) by ALy Fi({AA =B}, 9) = Fi({A}L {B))
by AL; and—=L;. But F({A}, {B}) + FL({A, B}, @) = F.({A}, @) by G;3. SoP
meets A4 by Lemmb_1]

(5) FL1({AA B}, @) = Fi({BA A}, @) by AL1. SoP meets A5 by Lemmia.1l]

6) FF{AA (BAC)}, @) = Fi({(AA B) AC}, @) by AL1. SOP meets A6 by
Lemmadg1l

(7) AssumeP(A) = 1, i.e.,G1(@, {A}) = 1. Theno [= {A} by Theorents.2]
So P meets AC. O

Theorem 6.3  If G1(X, Y) isunderstood as P(/\ X > \/ Y),! where P is an ab-
solute probability function in Carnap’s sense, then G, meets G;1-G, 3, Indy, plusthe
G;-constraintsregarding ‘=" and ‘A’

Proof: Note first thatF; (X, Y) = P(A XA =\/Y) by A3.
1) P(AXDVY) <1byAladA3. SoG; meetsG; 1.
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(2) P(A 2 > VV @) equalsP(\/ @), which equals 0 by A2 and A3. SB; meets
G, 2.

B PUAXA=NVY)A=A) + P(AXA=VY)AA) =P(AXA=VY)by
Ad. SOP(AXA=VNYU{AD) + PIN{ATUX) A=V Y) = P(AXA=VY),
andG; meetsG; 3.

(4) SupposeX andY are sets of atomic statements aXd Y = @. Then [~
A XD VY. Hence by ACP(A XD VY) # 1. SoGi1(X,Y) # 1, andG; meets
|nd1.

(5) P(A XA =(\/(YU{=A})) equalsP(/\ X A—=(\/Y Vv —=A)), which equals
P(A\ XA (VYA A)),whichinturnequal®(/\ ({A}U X) A—=\/Y). SoG; meets
—-R;.

(6) PIA(XU{=A}H A=\Y) equalsP((/\ XA —=A) A—=\/Y), which in turn
equalsP(/\ X A =\/ (YU {A}). SoG; meets—L;.

(7)P(AXA=V(YU{AAB}) equalsP((/\ XA—=\/Y)A=(AA B)),which
by A4 equalsP(A\ XA =\ Y)—P((A XA=VY)A (AA B)),which by A4 again
equalsP((AXA=VY)AA) +PAAXA=VY)A=A) —P(AXA=VY)A
(A A B)), which equalsP((A X A =\/Y) A=A+ PUAXA=VY)AA) —
P(((AXA=VY)A A) A B), which by A4 once more equaB((/A\ XA —=\/Y) A
=A) + P(((AXA=VY)A A A—=B), which equalsP(A\ X A =\/(YU{A}) +
P(A{A}UX) A= \/(YU{B}). SOG; meetsAR;.

8) PIN(XU{AABH A=VY) equalsP(/\(XU({A, B})) A—=\/Y) by defi-
nition. SoG; meetsaL;. O

Lemma6.4 (a) Given G,1-G,5, =R, and —L, are equivalent to
—20 R(X, YU{=A}D) = R(X)Y) = R(X, YU{A});

and (b) given G,1-G,5 and ALy, ARy isequivalent to
N2t G X {AN B} = Ga(X, {A}) x G({A}U X, {B}).

Proof: (a) Assume first=R,. Then—;, by G,4. Assume next,. Then—R, by
Gy4. Moreover,F>(X,Y) = Fo(X, YU {=A}D) + F({=AU X, Y) x Go(X, {—A})
by Go4. But Fo(X, Y U {—=A}) = Fo(X, Y) — F2(X, YU {A}), andGy(X, {—A}) =
Gy2(X, @) + F»(X, {A}), both by —. Hence F({—=A} U X,Y) x [Ga(X, @) +
Fo(X, {AD] = Fo(X, YU {A}). If F2(X, {A}) = 0andGy(X, @) = 0, thenG,(X,
{=A}) = 0and soG,({—=AlU X,Y) =1, i.e., R({—Al U X,Y) = 0, by G,5 and
Lemmal33c). If Fa(X, {A}) = 0 but Go(X, @) # 0, thenF»(X, Y U {A}) = 0
by Lemmal3.3[c), and soF({—A} U X,Y) = 0. And if F(X, {A}) # 0, then
Gy (X, @) = 0by Lemmd3.6la) and LemmB_.3c). SoR({—A}U X, Y)=F(X, YU
{AD/ (X, {A}). Hence—L,.

(b) Assume firstR,. ThenF>(X, {AA B)=F(X, {A}) + F({A}U X, {B}) x
Go(X, {AD),i.e.,Ga(X, {AA B}) = Gy(X, {A}) x Go({A}U X, {B}). Hencea,. As-
sume next; andAL,. ThenFo(X, Y) = Fo(X, YU{AA B}) + F({A, BJUX, Y) x
Ga2(X, {A}) x Ga({A} U X, {B}) by Go4, ALy, andA,. But Fo({A, B} U X, Y) x
Go({AJ U X, {B}) = R({ALU X, Y) — R({Al U X, Y U {B}), and F»(X,Y) =
Fo(X, YU{A}) + B({A}U X, Y) x Go(X, {A}), both byG,4. SoF,(X, YU {AA
B}) = RK(X, YU{A}) + F({AU X, YU {B}) x Ga(X, {A}). HenceAR,. O
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So constraint, will hereafter do duty for-R, and—L,, and constraint, do duty
for AR,. As aresult, theG,-constraints regarding=" and ‘A’ will be =5, Ao, and
ALs.

Lemma6.5 If Go(X, @) =0,then Go(X, {A}) + Go(X, {—A}) =1.
Proof: By —, andG,3. O

Lemma6.6 Gy(X, [A, AA B}) = Gy(X, {A}).

Proof:  Fo(X, {A, AA B}) = Fo(X, {AD) + FR({A} U X, {A, B}) x Go(X, {A}) by
AR, But Fo({A}U X, {A, B}) = 0 by Lemmd3.4] Hence Lemmd6.6] O

Lemma6.7 Gy(X, {AA B}) = Gy(X, (BA A)).
Proof: By A, and LemmdB.7] O

Theorem 6.8 If P(A, B) is understood as G,({B}, {A}), where G, meets Gy1—
G.5, Ind,, and the G,-constraintsregarding ‘—' and* A’, then P constitutesarelative
probability function in Carnap’s sense.

Proof: (1) Let A and B be distinct atomic statements. Théa({B}, {A}) # 1 by
Ind,. SoP meets B1.

(2) 0< G({B}, {A}) by Go1. SOP meets B2.

(3) Go({A}, {A}) =1 by Lemmd3.4] So P meets B3.

(4) SupposeG,({B}, {C}) # 1 for someC in Lg. ThenGy({B}, @) = 0 by
LemmaBAlb). HenceG,({B}, {A}) + G,({B}, {—A}) = 1 by Lemmd6.5] SoP
meets B4.

(5) G2({C}, {A A B}) = Go({C}, {B A A}) by Lemmab.Z] SoG,({C}, {A A
B} = G2({C}, {B}) x G2({B, C}, {A}) by An2. SoGo({C}L {AA B} = Ga({BA
C}, {A}) x G2({C}, {B}) by AL,. So P meets B5.

(6) Go({C}, {A A B}) = Gy ({C}, {B A A}) by LemmdG.7] So P meets B6.

(7) Go({BACY, {A}) = G2({C A B}, {A}) by AL,. SOP meets B7.

(8) AssumeP(A, B) = 1, i.e.,G,({B}, {A}) = 1. Then{B} &= {A} by Theo-
remB.2] So P meets BC. O

The following lemma lists, without prodf well-known results about Carnap relative
probability functions.

Lemma6.9 Let P bearelative probability function in Carnap’s sense. Then
(@ P(A,B) <1,

(b) P(V 2, A2) =0;

(c) P(AV B,C)=P(A,C)+ P(B,C) — P(AA B, C);

(d) If P(A, B) =0,then P(\/ 2, AAB) =1,

(e) If Bis P-abnormal, then P(B, A\ @) = 0.

Theorem 6.10 If Go(X, Y) isunderstood as P(\/ Y, /\ X), where P is a relative
probability functionin Carnap’s sense, then G, meetsconstraints G,1-G,5, Ind,, and
the Gy-constraintsregarding ‘—' and ‘ A’.
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Proof: (1) 0< P(\/Y, A X) by B2. SoG, meetsG,1.

(2) P(V Y, A X) <1 by Lemmd6.Ya). SoG, meetsG,2.

(3) P(\/ @, A @) =0 by Lemmag.9b). SoG, meetsG,3.

(4) By the definition ofF, and that ofG,, F,(X, YU {A}) equals - P(\/Y Vv
A, A\ X), which by Lemm_.9c) equals - PVY, AX)—P(A,LAX)+P(\/YA
A, A X),whichbyB5equals + P(\/ Y, A X)— P(A, A X)+ P(\/ Y, AA A\ X) x
P(A, A X), which by the definition of, and that ofG, equalsF (X, Y) — F,({A}U
X, Y) x Ga(X, {A}). SoG, meetsG,4.

(5) Supposes, (X, {A}) =0, i.e., P(V{A}, A X) =0, i.e., P(A, A X) = 0.
ThenP(\/ @, A({A} U X)) = 1 by LemmdE.9d). SoG, meetsG,5.

(6) SupposeX andY are sets of atomic statements akd Y = @. Then
{/\ X} = {\V Y}. Hence by BCP(\/ Y, A\ X) # 1. S0G,(X,Y) # 1 andG, meets
Inds.

(7) Suppose\ X P-normal. Then = P(\/(YU{=AD, AX)=1-P(\/YV
—=A, A X), which by Lemmd&.9c) equals 1— [P(\/ Y, A X) + P(=A, A\ X) —
P(\VVY A=A, A\ X)], which by B4 equals & P(\/Y, A X) — 1+ P(A, A X) +
PIVY, AX) — POVY A A, A X), which by Lemmd6.9c) again equals [+
PIVY. AX]I—[1- P/ YV A, A X)], which equals [I- P(\/Y, A X)] —[1 —
PV (YU{A}, A X)]. But1— P(\/(YU{AD, A X) =[1— P(\V/ Y, A X)] —[1 -
P(\V/ (YU {A}), A X) by definition when/\ X is P-abnormal. S&, meets—,.

(8) P(AA B, A\ X) equalsP(B, A\ X A A) x P(A, )\ X) by B5, B6, and B7,
which of course equalB(B, A\ ({A} U X)) x P(A, A X). SoG, meetsa,.

(9) Since A\ (XU {AA B}) and A\ (XU {A, B}) are the sameP(\/ Y, A(XU
{A A B}) cannot but equaP(\/ Y, A (XU{A, B}). SoG, meetsiL.,. O

Degrees of logical consequence in the sense representéd tnctions can also

be introduced for languages whose consequence relation is not compact. The cor-
responding relative probability functions turn out to be those we associate with
Rényi in , and as a result they too prove to be degrees of logical consequence in
disguiset?
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NOTES

1. Gentzen’s extant contributions to logic and metamathem&]cedited and translated
by Szabo, were published in 1969 by North-Holland. A second edition, with a new in-
troduction and minor changes, is to appear shortly.

2. Note that for brevity’s sake we usé’* here and on later occasions to refer to the set of
the statements of..

3. The reader will often have to think of;’ and ‘1— G;’, and of course of G;" and
‘1 — Fy’, asinterchangeable, a warning also in order when ‘2’ as well as ‘1’ will be sub-
scripted to F’ and ‘G'.

Constraint95;1-G; 3 are independent of one another. This can be shown by (i) using a
language with just one statemeAt,hence with just two sets of statementsgnd{ A}),
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and (i) constructing for each of the three constraints a function which does not meet that
constraint but meets the other two.

Gl G2 G:3
G1(2,92) = 0 1 0
Gi1(2, {A}) = 2 1 0
Gi({A}, @) = -1 1 0
Gi({AL{A) = 1 1 0

G,5 isthe G,-counterpart of a constraint placed on the relative probability functions that
we associate in Roeper-Leblafi fvith Kolmogorov. It is the definition o = Y as
Gz2(X,Y) = 1that isolates here those among Kolmogorov's functions that are Carnap
ones.

Constraint$5,1-G,5 are independent of one another, as can be shown by using the same
language as in Note 3 and constructing for each of the five constraints a function which
does not meet that constraint but meets the other four.

Gl G2 G3 G G5
Go(2, @) = 0 0 1 0 0
G2, [Ah= | -1 2 1 172 0
Gy ([Al, @) = 0 0 1 12 0
G2({A}L {A) = 1 1 1 1 1

. To anticipateY in Gy(X, Y) is disjunctively understood, whereaskh(X, Y) Y is con-

junctively understoodG, (X, Y) amounts toP(\/ Y, /A X), whereasH (X, Y) amounts
to P(AY, A X).

. ForfiniteX, Y,andZ, R2—R3 are consequences of R2—-R3, as is obvious in the first case

and easily verified in the second. The resulting R alledCut for Setsin Shoesmith
and Smiley[[d], p. 29.

RecallthatF,’ and ‘1— G’ are interchangeable. %4 is in effect a constraint of®,.

The notion of logical independence used here is a generalization of one of Moore’s
(cf. [E]), who took two statement& and B to be logically independent of each other if
neither of A and— A has either oB and—B as a logical consequence. WittgenstEif[
Proposition 4.27, may have been the first explicitly to require of atomic statements that
they be logically independent of one another in Moore’s sense. For more on the mat-
ter see the authors’ “OA and B being logically independent of each other and of their
having no common factual content.”

Hereafter we shall say th&tis P-abnormal wherP(C, B) = 1 for everyC.

The total functions we associate here with Carnap can be defined in terms of his absolute
ones thus:

P(AA B, A2)/P(B, \9)if P(B, \@)#0
P(A, B) = (i.e., if {B} }£ @)
1 otherwise

a definition which parallels Lemn@8I1 Since P(A) is tantamount toP(A, A 2),
Carnap’s absolute probability functions thus stand in one-to-one correspondence with
his relative ones, the way th& functions ands,; ones do.

Note that withG; (X, Y) thus definedF; (X, Y) is the same aB(/A\ X A —=\/Y), afact
of which we shall make use in the proof of the theorem.
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12. Proof of (e) is in Roeper and Leblaff,[p. 13, where it appears as Theorem 3.6.

13. Shownin Roeper-Leblarfg][is that Carnap’s relative probability functions are aiyi
ones, but of course not vice-versa.
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