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Propositional Quantification in
the Topological Semantics for 4

PHILIP KREMER

Abstract Fineand Kripke extended S5, $4, $4.2 and such to produce propo-
sitionally quantified systems S+, SAn+, S4.27+: given aKripke frame, the
quantifiers range over all the sets of possible worlds. S5+ isdecidable and, as
Fine and Kripke showed, many of the other systems are recursively isomorphic
to second-order logic. In the present paper | consider the propositionally quan-
tified system that arises from the topological semanticsfor $4, rather than from
the Kripke semantics. The topological system, which | dub S4nt, is strictly
weaker than its Kripkean counterpart. | prove herethat second-order arithmetic
can be recursively embedded in $4xt. In the course of the investigation, | also
sketch aproof of Fine's and Kripke's results that the Kripkean system SAn+ is
recursively isomorphic to second-order logic.

1 Introduction Oneway to extend apropositional logic to alanguage with proposi-
tional quantifiersisto begin with asemanticsfor thelogic; extract from the semantics
a notion of a proposition; and interpret the quantifiers as ranging over the proposi-
tions. Thus, Fine [4] extends the Kripke semantics for modal logics to proposition-
aly quantified systems Sbn+, S4n+, S4.27+, and such: given a Kripke frame, the
quantifiers range over al sets of possible worlds. S5x+ is decidable ([IZ] and Ka
plan [I4]). In later unpublished work, Fine and Kripke independently showed that
HAn+, SA4.2n+, K4+, T+, K+, and Brr+ and others are recursively isomorphic to
full second-order classical logic.

(Fineinformsmethat helater proved thisstronger result. Kripkeinformsmethat
he too proved this stronger result in the early 1970s. A proof of this result occursin
Kaminski and Tiomkin [13], who use techniques similar to those used in Kremer [[I6]
and to those used below. These techniques do not apply to S4.37+. But according to
Kaminski and Tiomkin, work of Gurevich and Shelah ([9], [[10], and [39]) implies
that second-order arithmetic is interpretable in $4.37+ and furthermore that, under
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certain set-theoretic assumptions, $4.3 7+ is recursively isomorphic to second-order
logic.)

Kripke's semantics for modal logic is the most well known, but is predated
by topological semantics for S4 (Tsao-Chen [40], McKinsey [22], McKinsey-Tarski
23], [24], [25], and Rasiowa-Sikorski [22]). In the topological semantics, a model
isatopological space X together with an assignment of a subset of X to each propo-
sitional variable. Conjunction is interpreted as intersection on the subsets of X, dis-
junction as union, negation as complementation; and [J is interpreted as topological
interior (int).

The present paper will extend the topological interpretation of $4 to a propo-
sitionally quantified topological system S$4nt: the quantifiers will range over the
subsets of topological spaces. SArt is strictly weaker than its Kripkean counterpart
SAr+. The main result is that second-order arithmetic can be recursively embedded
in HAsnt. Inthe course of theinvestigation, | will sketch aproof of Fine'sand Kripke's
resultsthat S4s+ isrecursively isomorphic to second-order logic. | include this proof
since proving of the topological result will rely ontheideasinit, aswell as additional
ideas specific to the topological framework. | do not know whether S4rt is recur-
sively isomorphic to second-order logic, but | conjecture that it is.

Just as there are both Kripke and topological semantics for $4, there are both
Kripke and topological semantics for the intuitionistic logic H. In Kremer [17, | be-
gan with the Kripke semantics for H, and defined a Kripkean propositionally quanti-
fied intuitionistic system, Hxr+, analogousto S4r+. | showed that H+ isrecursively
isomorphic to second-order logic. The proof is similar to that given below for S4r+,
but additional bellsand whistles are needed in the intuitionsitic context, given the ex-
pressive weakness of the intuitionistic language.

One can aso define a topological propositionally quantified intuitionistic sys-
tem, Hxt. Given the details of the topologica semantics for H, the propositional
guantifiersrange over the open subsets of atopologica spacein theintuitionistic con-
text. | have recently discovered a proof that second-order arithmetic can be embed-
ded in Hzxt. The proof involves anontrivial extension of the topological ideasin the
current paper and the intuitionistic ideas in [[L7].

Troelstra and Polacik [20] and have already given atopological inter-
pretation of propositional quantifiersin intuitionistic logic, but they restrict their at-
tention to this interpretation’s behavior in Cantor space, CS. Note that the proposi-
tionally quantified intuitionistic theory of CSisdecidable: it can be encoded in S2S,
the monadic second-order theory of two successors, proved decidable by Rabin [32].
For details on reproducing the topology of CSin S2S, see Rabin [33].

Semantic approaches are not the only ways to enrich nonclassical propositional
logics with propositional quantifiers. Axiomatic approaches have been considered,
extending propositional logics by adding new axioms or rules of inference governing
the quantifiers. (See Kripke [18], Bull [[J, [Z], Murungi [27], Dishkant [[3], Ghilardi-
Zawadowski [[8] aswell asthe classic Lewis-Langford [20] on modal logic; and Gab-
bay [[6] and [[7], L6b [21], Sobolev [[38], Kreisel [[15], Scedrov [B5], and Pitts [29] on
intuitionistic logic.) Axiomatic approaches are closely related to semi-semantic sub-
stitutional interpretations of the quantifiers. (See, for example, the modal systems of
Gabbay [[5].) Axiomatic systems can often be given a semantics by beginning with a
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propositional semantics and adapting Henkin's [11] techniques for secondary mod-
eling of axiomatizable fragments of second-order logic. (See[[], [£] and [[7].)

2 The modal systems SArnt and S4n+ Our language has a countable set PV =
{ps,..., Pn, ...} of propositional variables; connectives &, — and [J; and a propo-
sitional quantifier V. Weuse p, q, . .. for membersof PV and A, B, ... for formulas.
We assume that v, ¢, — and 3 are defined in the usual manner.

Definition 2.1  Given atopological space X, aproposition isasubset of X. A topo-
logical model isan ordered pair M = (X, V) where X isatopological spaceand where
V (the valuation function) assigns a proposition to each p € PV. Given amodel M,
aproposition P, and apropositiona variable p, M[ P/ p] isthemodel just like M ex-
cept that it assigns the proposition P to the propositional variable p.

Definition 2.2 A Kripkeframeisa3-tuple F = (W, 0, <) where W isanonempty
set; 0 € W; and < isareflexive and transitive relation on W. Given a Kripke frame,
a proposition is a subset of W. A Kripke model isapair M = (F, V) where F =
(W, 0, <) isaKripkeframeand V assignsapropositiontoeach p e PV. M[P/p] is
defined as above.

Definition 2.3  Given atopological model M = (X, V) and aformula A, we de-
fine M(A), the proposition assigned by M to A : M(p) = V(p); M(A& B) =
M(A) N M(B); M(—A) = X — M(A); M(OA) = int(M(A)), the topological in-
terior of M(A); M(YpA) = N{M[P/p](A) : P C X].

Definition 2.4  Given a Kripke model M = (W, 0, <), V) and aformula A, we
define M(A), the proposition assigned by M to A: M(p) = V(p); M(—A) =W —
M(A); M(A& By = M(A)NM(B); MOA) ={fweW:Vw'(w <uw = w' €
M(A)}; M(YpA) = N{M[P/p](A) : P < W}

Definition 25 Supposethat M = (X, V) isatopological model and Aisaformula.
M validates A(M = A) if andonly if M(A) = X. Xvalidates A(X = A) if and only
if M = Aforevery model M = (X, V). Aisvaid (= A)ifandonly if Aisvalidated
by every topological model (or, equivalently, by every topological space).

Definition 2.6 Suppose that F = (W, 0, <) is a Kripke frame, that M = (F, V)
isa Kripke model and that A isaformula M validates A(M = A) if and only if
0e M(A). F vaidates A(F = A) if and only if M = A for every Kripke model
M = (F, V). Aisvadidinthe Kripkean sense (= A) if and only if A isvalidated
by every Kripke model (or, equivalently, by every Kripke frame).

Theorem 2.7 (McKinsey [22]) If Aisaquantifier-free formulathen A € S4if and
onlyif = A.

Theorem 2.8 (Kripke[[19]) If Aisaquantifier-freeformulathen A € S4if and only
if =k A

Definition 29 SAnt=4 {A: = A}
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Definition 210 SAn+=4 {A:Ek A}.

Theorem 2.11 (Mainresult)  Second-order arithmetic can be recursively embed-
ded in S$Art.

Theorem 2.12 (Fine, Kripke) S4n+ is recursively isomorphic to second-order
logic.

For the proof of Theorem P T2lsee Section[3] and for the proof of TheoremZ.TTlsee
Section[4land Section[Slbelow.

Theorem 2.13  SAnt C SAn+.

Proof: Supposethat Aisinvalidated by theKripkemaodel M = ((W, 0, <), V). Let
M+ be the topological mode (W, V), where asubset of W isopenif and only if itis
closed under <. Notethat, for every formula B, Mt (B) = M(B). So Aisinvalidated
by Mt. This shows that S4nt C SAn+. Example@] in Sectionﬁlbelow, provides a
topological space that does not validate the Barcan formula (YqC1B > CIvgB), where
B isthe formuladOqv—qvr. And Examplel6-4] provides a space that does not val-
idate the Barcan formula (vqOOB D> [OVgB), where B is the formula —qvJ{q. But
every Barcanformulaisvalidated by every Kripke model, sincetheintersection of ar-
bitrary sets closed under < isalso closed under <. Thisshowsthat SAnt # SAn+. O

3 Theorem[2.12] S4x+ isrecursively isomorphic to second-order logic Here we
sketch a proof that second-order logic can be recursively embedded in the Kripkean
system S4x+. The proof is asimplification of the proof in Kremer [[L7] for the anal-
ogous Kripkean intuitionistic system Hx+. We will rely on an ideafrom Nerode and
Shore [28]: they reproduce unpublished considerations of Rabin and Scott, showing
how to code arbitrary n-ary relations by sib (symmetric irreflexive binary) relations.
So second-order logic is recursively isomorphic to second-order logic with second-
order quantification restricted to sib relations. Let 2-SIB? be the second-order theory
of domains with two or more elements, with all second-order quantification over sib
relations. Then second-order logic is recursively isomorphic to 2-SIB2. So our jobis
reduced to encoding 2-SIB? in S4n+.

To effect this encoding, we focus our attention on a particular class of Kripke
frames. First we define asimple Kripke frameto be one satisfying the following con-
dition: for every w € W, 0 < w. And we define a simple Kripke model to be one
whose underlying frame is simple. Note that S47+= {A : A isvalidated by every
simple Kripke model}. So henceforth we assume that all Kripke frames and models
aresimple. Among simple Kripke frames, we distinguish 3-tiered frames. Beforewe
define this notion, we introduce the following notation: w < w’ if and only if w < w’
and w’' £ w. A (simple) Kripke frame is 3-tiered if and only if (1) if w < w’ and
w' < w then w = w’; (2) there exists w, w’ such that 0 < w < w’; and (3) for no
w, w and w” dowehave0 < w < w’ < w”. A Kripke model is 3-tiered if and only
if its underlying frameis. Figures 1 to 6 represent sample 3-tiered frames. Precise
definitions of tiery, tierp and tiers are easy enough to give.

The idea behind our encoding of 2-SIB? in S4x+ is this: suppose we begin with a
domain of two or more individuals, and we want to quantify over the individuals and
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Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

sib relations. We will represent such domains by peculiar 3-tiered frames. We want
3-tiered frames so that the pointsin tier, stand in for the individuals in the domain;
and the points in tiers stand in for unordered pairs of distinct individuals from the
domain. The subsets of tiers can then stand in for sib relations on the domain, sincea
sib relation can be thought of as a set of unordered pairs of distinct individuals. This
motivates our definition, given presently, of a special kind of 3-tiered frame, a sib
frame. Figures 4, 5, and 6 above represent 3-tiered sib frames representing domains
of, respectively, two, three, and four members. Figures 1, 2, and 3 represent lesswell-
behaved 3-tiered frames.

Definition 3.1 A 3-tiered frameisasib frameif and only if

1. every pair of distinct pointsin tier, has a unique upper bound;
2. every point in tiers isthe upper bound of two pointsintier,; and
3. nothree distinct pointsin tier, have an upper bound.

A Kripke model is a sib model if and only if the underlying Kripke frameis a sib
frame.

Definition 3.2  SIB-SAn+= { A: for every 3-tiered sib model M, M = A}.

Our encoding of 2-SIB? in S4z+ will now proceed in two steps. Step 1 isto find
aformula sib of the propositional language with the following property: for every
formula A, A € SIB-SAn+ if and only if (sib D A) € S4x+. This shows that SIB-
S+ can be encoded in S4z+. Step 2 isto recursively encode 2-SIB? in SIB-S4r+.

For step 1, it suffices for the formula sib to express the claim that the model
(or frame) under consideration is a sib model (or frame). So the following suffices:
for every model M, M = sib if and only if M isasib model. We will construct the
formula sib in stages, keeping the following idea in mind. Given a Kripke model
M = ((W, 0, <), V), we can think of aformula A as playing two roles: (i) A hames
a subset of W, in particular, M(A); and (ii) A makes a claim about the model. For
example, (p— q) namestheset M(p—=q) and (p— q) saysthat M(p) € M(q)
since, for every model M, M = (p—=q) if and only if M(p) € M(q). (I appea
to the same considerations in and [I7].) Table 1 defines some object language
connectives and formulas, and indicates what the definienda say. In particular, Table
1 defines a two-place connective € . If pisapropositional variable and if A and B
are formulas, then (Vp € A)B is an abbreviation of the formulaVp((p € A) D B);
and (3p € A)B is an abbreviation of the formula3p((p € A) & B). Using €, we
can mimic quantification over the elements of W by restricting quantification to the
singleton subsets of W.

Given the last row of Table 1, step 1 iscompleted. Although most of the defini-
tionsin Table 1 are straightforward, the definitions of the formulas 3-tier and sib are
difficult to parse. In the definition of 3-tier, we are expressing, in the modal object-
language, the three conditions placed on 3-tiered frames or models. Similarly, in the
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Definiendum | Definiens What the definiendum says:
M = Definiendum
if and only if
T dpp
(A>B) O(AD B) M(A) € M(B)
(A=B) (A>B)& (B> A) M(A) = M(B)
(A€ B) OA& (A>B)& for some w € M(B),
Vp(O(A& p) D (A2 p)) M(A) = {w}
(A< B) (AecT)& (BeT) & for some w, w’, M(A) =
(A > 0B) {w}and M(B) = {w'}
andw < w’
(A< B) (A<B)&—~(B< A for some w, w’, M(A) =
{w} and M(B) = {w'}
andw < w’
3-tier VMVpeTH(Mge (PP & (Q<p) D M is3-tiered

(p=®) & FpeT)@EqeT)(@EreT)
(P& (p<P&(q<r) &
—(@JpeT)3qeT)@reT)(dseT)
(P& (P<P&(G<r) & (r<¥9)
sib 3tier & VpYq(—=p& —q& Ir(p<r)&Ir(g<r) > M isasib model
I(p<nN&@<r)&Vs((p<s)&(q<s)D(s=T))))
& Vp@EgIr(@& (@< & (r < p) D

J9Irds(@& (<N & (<9 & r<p)&(s<p)&
Yu((q<uw & (U< p)DU=r)vu=s9)))

& —~3pIgErdsiu(p& (P<P& (p<N & (P<9 &
Q<w& rFr<uw&(S<w&—-(Q=r)&—(q=9s &
—(r=9)

Table 1;

definition of sib, we are expressing the various conditions of sib frames.

Now that step 1 is completed, we move to step 2: we want a trandation of
a second-order language with second-order quantification over sib relations to our
propositionally quantified modal language. So we assumethat we areworking with a
second-order classical language with individual variables xy, ..., X, .. .; binary re-
lational variables Ry, ..., Ry, ...; parentheses; connectives & and —; identity, =;
and first- and second-order universal quantifiers. Shortly we define arecursive 1-1
function, fq, from second-order formulas to modal formulas. In the definition of fy,
propositional variableswith even subscriptsstandinfor individua variables, and with
odd subscripts, binary relational variables. The variable g should be chosen in some
systematic way so as not to conflict with quantifiers. Note also that in our definitions
of f1(Vx A) andof f1(VR; A), werestrict quantification to propositions representing
individualsin aclassical domain, and sib relationsin aclassical domain. Hereis our
definition of f4:

fix =X%j) = (P2 = P2j)
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fi(RiXjx) = (3qe pa—)((p2j < & (px < Q)
fi(=A) = —f1(A)

fi(A& B) = fi1(A)& fi(B)

fi(VXA) = Vpa(—=p2 & 3q9(p2 < q) D f1(A))
fi(VRIA) = Vpi_1((p2ic1—>Va(q D 0qg)) D f1(A)).

Note that for any closed second-order formula A, A € 2-SIB? if and only if f1(A) €
SIB-SAn+. Now we define a recursive 1-1 function f, from second-order formu-
las to second-order formulas. Suppose that A is a second-order formula and that n
is the greatest number such that x, or R, appearsin A. Let f2(A) = VX, ..., VX
VRy, ..., YRyA. Notethat for any second-order formula A, A € 2-S| B2 if and only
if f1fo(A) € SIB-SAn+. This sufficesfor step 2, and for our desired result.

4 Proof of Theorem 111 Expressing topological notions in the object language
Before we prove that second-order arithmetic can be recursively embedded in SAxt
(Theorem 211}, we specify some preliminary topological notions. First, a pointed
topological space is an ordered pair Y = (X, b) where b € X. A pointed topologi-
cal model isan ordered pair M = (Y, V) where Y is a pointed topological space and
V is, as above, avauation function. A proposition will just be a subset of a pointed
topological space. Clearly we can give the same definition of M (A) asfor unpointed
topological models. In the case of apointed topological model M = ((X, b), V), we
say that M = Aif and only if b € M(A). And we say that (X, b) &= Aif and only
if, for every pointed model M = ((X, b), V), wehave M = A. Notethat = A if
and only if Aisvalidated by every pointed topological spaceif and only if Aisvali-
dated by every pointed topological model. So we can henceforth restrict our attention
to pointed topological spaces and models. The advantage of thisis that they behave
much more like Kripke frames, each with a privileged world.

We will need a number of other topological notions. These are motivated by
considering the expressive resources of the object language, in the context of pointed
topological spaces and models. In Section[3] we considered the expressive resources
in the context of Kripke frames and models, and summarized some of those consid-
erationsin Table 1. Here, we reconsider some of the connectives defined there, in the
new context. In our reconsiderations, we assume that M = ((X, b), V) isapointed
topological model, and that P, Q C X.

Reconsider (A— B). Notethat M = (A— B) if and only if thereis someopen
set Osuchthatb € Oand ON M (A) € M(B). Sohenceforthwewill say that P Cp, Q
if and only if for someopenset O,be Oand ONP C Q. Thus M = (A—> B) if
and only if M(A) €, M(B). Cy isthetopological analogue of C .

Reconsider (A = B). Notethat M = (A = B) if and only if there is some open
set Osuchthatbe€ Oand ON M(A) = ON M(B). So henceforthwewill say that P
and Q areindistinguishable (P =, Q) if and only if for some openset O, b € O and
ONP=0NQ. ThusM = (A= B) if and only if M(A) =, M(B). Note that =
is an equivalence relation: we will call the equivalence classes indistinguishability
classes, and we will use «, 8, ... to range over them. We will write | P| for the class
of propositions indistinguishable from P.

Reconsider (A € B). In the Kripke semantics, this expresses the claim that
M (A) isasingleton subset of M (B). Thetopological analogue of “ being asingleton”
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will be*“being singular” in the following sense: we say that P issingular if and only
if be cl(P)andforevery Q,ifbecl(PNQ)then PZ, Q. ThusM = (Ae B) if
andonly if M(A) issingular and M (A) €, M(B). Thenotion of singularity can aso
be applied to indistinguishability classes. we say that an indistinguishability class «
issingular if and only if some Q € « issingular (equivalently, if and only if every
Q € aissingular). Wewill so often mention singular indistinguishability classesthat
we henceforth call them sics.

Reconsider (A < B). Notethat M = (A < B) ifandonlyif M(A) and M (B) are
both singular, and M(A) <, ¢l (M(B)). So henceforth we will say, for any singular
propositions P and Q, that P < Q if and only if P Cy, ¢l (Q). And we will say that
P < Qifandonlyif P < Qand Q £ P. Wecan apply these notionsto sics: « < Biif
and only if, for some P € o and some Q € g wehave P < Q (equivalently, for every
Peaandevery Qe Bwehave P < Q). Anda < gifandonly if « < gand B £ «.

We point out some straightforward facts concerning these notions. <y, isreflex-
ive and transitive. P Cp Qand Q Sy Pif and only if P =, Q. If P Cp Q then
(P-Q)=p@. PSy QnNnRifandonly if P <, Qand P Sy R If Oisopen and
be O,then ON P =y P. If Pissingular and Q =, P, then Q issingular. If P is
singular, then, for each Q, either P C, Qor P S, (X — Q). {b} issingular.

Now for some strategy. With every pointed topological model M we will asso-
ciate a Kripke model Mg. Since the role of singleton propositions in the Kripke se-
mantics is played by singular propositions in the pointed topological semantics, the
worlds of My should be the singular propositions. But thisistoo quick: we want to
identify indistinguishable singular propositions. So the worlds of the Kripke model
Mk will be the sics. With these ideas on the table, we can define M.

Definition 4.1 If M = ((X, b), V) is a pointed topological model, we define the
associated Kripke model Mg =4 (W, 0, <), Vk) asfollows: W = {« : ¢ isasic };
0= |{b}|; @ < Bisdefined asabove; and Vk (p) = {« : forsome P € a, P S, V(p)}
or equivalently Vi (p) = {« : forevery P e «, P C, V(p)}. Notethat My isasimple
K ripke model, as defined in Section2]

It is, unfortunately, not always the case that M and Mg validate the same formulas.
We get something close to this, however, if the underlying pointed topological space
satisfies two conditions: specifiability and singularizability. We say that a pointed
topological space (X, b) isspecifiableif and only if whenever Pissingular and P Cj,
cl (Q), we can specify asingular Rsuchthat R €, Q and P < R. And we say that
(X, b) issingularizableif and only if thereare P, € « for each sic «, such that the P,
are pairwise disjoint. We will say that a pointed topological model is singularizable
(specifiable) if and only if the underlying pointed topological spaceis.

If M is both specifiable and singularizable, then M and Mg come pretty close
to satisfying the same formulas. In order to state this as a precise theorem, we in-
troduce one more notion. For each moda formula A, we introduce a new formula
BARCAN(A), which isso-called because it isthe universal closure of the conjunction
of the following instances of the Barcan formula, where VqC is a subformula of A,
and where p isthefirst variable not occurringin A:

vaq(p > C) D va(p > C).
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The central lemma of this section is as follows.

Lemmad4.2 Supposethat M isa specifiableand singularizable pointed topological
model and that M = BARCAN(A). Then Mk = Aifandonlyif M = A.

Remark 4.3 Dougherty’s Examplel6.3below, is of aspecifiableand singularizable
pointed topological model that does not validate every Barcan formula. Thisis not
only helpful in showing that S4nt C S4r+ (Theorem2.13]above), but it also shows
that the clause ‘ M = BARCAN(A)’ is not redundant in the statement of Lemmal4.2)
This example and three other examples are quiteinvolved and tangential to our main
argument, so we save them for a separate section, Section[Glbelow.

Lemmal4.2]is a corollary to Lemmad.7which we state and prove below. For now,
we comment on the significance of Lemmal4.2] Suppose that we could express both
specifiability and singularizability in the object language. That is, suppose that we
could define formulas, spec and sing, with the following characteristic: for every
pointed topological model M, both M = spec if and only if M is specifiable and
M k sing if and only if M is singularizable. Then, given Lemmal4.2] we would
have an encoding of S4n+ into S4nt, and thus of second-order logic into SAst:
the reason is that we would have, for every formula A, A € SAx+ if and only if
(spec & sing & BARCAN(A) D A) € HAnt.

Unfortunately, we were not able to find a suitable formula sing, expressing sin-
gularizability. Thereis, however, aformula expressing specifiability:

spec =¢r Va(Vp € 0q)@r e )(p =T).

Lemma4.4 For every pointed topological model M, M = specif and onlyif M is
specifiable.

Proof: It sufficesto consider what is expressed by spec in light of the definition of
a specifiable model. O

Remark 45 We note that spec € S4n+, since it is validated by every Kripke
model: in the context of Kripke semantics, spec says that if a proposition Q is pos-

sible relative to a world w then thereis aworld w’ € Q such that w < w’. Inthe
present context, spec expresses a different claim, that M is specifiable. Examplel6.1]
in Section[Glbelow, is of a nonspecifiable pointed topological space. This shows that

spec ¢ SAnt. So we have another proof that S4xt C S4r+ (Theorem B.13]above).

As an added bonus, Example[6.T]will be singularizable, showing that singul arizabil -

ity does not imply specifiability.

As pointed out above, we were not able to find a formula expressing singulariz-
ability. Example[E2]in Section [E]l(emailed to me by Dougherty) is of a specifiable
but nonsingularizable pointed topol ogical space, showing both that nonsingularizable
pointed topol ogical spaces exist and that specifiability does not imply singularizabil-
ity. Though not all pointed topological spaces are singularizable, alarge and useful
class of them are.
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Lemma4.6 Every pointed topological model with countably many sics is singu-
larizable.

Proof: Suppose that (X, b) is a pointed topological space with countably many
Sics: a1, a2, ..., an, ... With the ¢; distinct. Choose any P; € 1. Suppose that
P, € oy, ..., Py € an have been chosen so that they are pairwise digjoint. Choose any
Qeanr. Fori=1,...,n, wehave Q #, P, since|Q| # |R|. So, since Q and the
P, aresingular, thereareopensets O;(i=1,...,n)withbe Qand O, N QN PR = 2.
Let Pn+1 =0QNO;N---NOp. Then Pn+l =p Qso Pn+1 € 0nt1- Also, Pn+1 isdis-
joint from each of Py, ..., P,, asdesired. O

Countability plays an important rolein Lemmal.6]and will be the focus of Section[5]
below. In Section[5] wewill bring LemmaslZ.2land 46 ogether with some considera-
tions of countability, in order to show that second-order logic over countably infinite
domains can be encoded in S4rt. This will suffice for our claim that second-order
arithmetic can be recursively embedded in $4nt.

In the rest of this section, we state and prove Lemmal4.Z]to which Lemmal4.2]
isacorollary.

Lemmad4.7 Supposethat M = ((X, b), V) isa specifiable topological model and
that P, € o have been chosen for each sic @ so that the P, are pairwisedigoint. Also
supposethat M = BARCAN(A). Then, for each subformula B of A, and for each sic
a, we have a € Mg (B) if and only if B, Cp M(B). Here Mg = (W, 0, <), Vk) is
defined asin Definition[4.1]

Proof: By induction on the complexity of B. Here, « and 8 range over sics.

Case 1l (B atomic): Then, by definition, « € Mk (B) if and only if, for some P € «,
P Cp M(B). But thisistrueif and only if P, Cp M(B) since, for every P € o we
have P =, P,.

Case2(B=(C& D)): a € M(C& D) if and only if « € Mk(C) and o €
Mk (D) if and only if P, €, M(C) and B, <, M(D) (by IH) if and only if P, Cj
M(C)N M (D) if and only if P, Sy, M(C & D).

Case3(B=—-C): « € Mk(—C) if and only if « ¢ Mk (C) if and only if P, Cy
M(C) (by IH) if and only if P, Cp, (X — M(C)) (since P, issingular) if and only if
Poz Sh M(_'C)

Case4 (B=0C): We consider both directions of the biconditional separately.

(=) Supposethat P, Zp M(CC). Then P, ¢, int(M(C)). Since P, issingu-
lar, P, Cp (X —int(M(C))) = cl (X — M(C)). By the specifiability of the pointed
topological space, thereisasingular R< X suchthat P, < Rand RCy, (X — M(C)).
Let = |R|. So Bisasicwitha < B. Since Pg =, R, we have Pg Sy, (X — M(C)).
So P ¢ M(C). So, by IH, B8 ¢ Mk (C). Soa ¢ Mk (OJC), as desired.

(=) Suppose that & ¢ Mg (CIC). Then thereisasic B witha < gand 8 ¢
Mk (C). We want to show that P, Z int(M(C)). By IH, P; € M(C), inwhich case
Pg Cp (X — M(C)), since Pg issingular. Since o < B, we have P, < Pg, that is,
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Py Sp ¢l (Pg). So P, Sp el (X — M(C)) = X —int(M(C)). So P, € int(M(C)), as
desired.

Beforewe do theinductive step for B = VgC, weintroduce some new notions. Recall
that Mk = (W, 0, <), Vk) asin Definition[4.1] Now for each Q C X, define Qk =
{a : P, Cp Q). Andfor each Q € W, define Qt = U{P, : @ € Q}. Note that, for
Q C X, Mk[Qk/d] = M[Q/d]k, as can be seen by unpacking the definitions of Mg
and of Qg. Now weshow that, for Q C W, (Q1)k = Q. Toseethat Q C (Qr)k, note
that € Q= Ps C Qr = Pg S Qr = B € (Qr)k. Toseethat (Qr)k € Q,
notethat B ¢ Q = Pg ¢ {P, : « € Q} = Py isdigoint from every member of
{(Priae Q= PsNQr =9 = Ps Zp Qr = B ¢ (Qr)k. (Wecould also
use the specifiability of M and the disjointness of the P, to show, for Q C X, that
(Qk)T =p Q. But we do not need thisfact here.)

Now we do our induction for B = YqC. We consider both directions of the de-
sired biconditional separately.

(=) Suppose that « € Mk (B) = Mk (¥qC). We want to show that P, <y
M(YQqC). First, we show (x): for each Q € X, P, Cp M[Q/q](C). So choose
Q C X. Sincex € Mk (VqC), wehavea € Mk[Qk/d](C) = M[Q/q]k (C). So, by
IH, B, Cp M[Q/q](C). So (x) isproved. Let p bethefirst variable not occurring in
A. From () we have, for each Q € X, M[PF,/p][Q/d](pP) Sp M[Pu/p][Q/d](C).
So, for each Q € X, M[P,/p][Q/d] = O(p > C). So M[P,/p] = Ygd(p > C).
So, since M = BARCAN(A), we have M[P,/p] &= OvVg(p > C). So M[P,/p] =
O(p > VgC). So P, S, M(VQC), asdesired.

(=) Supposethat a & Mk (YqC). Thenforsome Q C W, a ¢ Mk[Q/q](C) =
Mk [(Q)k/dl(C) = M[Qr/d]k (C). (We just used the fact that (Qr)x = Q). So,
by IH, P, Z, M[Q+/q](C). So P, €, M(VqC), as desired. O

5 Proof of Theorem[211] Considerations of countability. Before we consider
countability, it will be useful to have the following general definition of extensions
of S4n+ and SAxrt.

Definition 5.1 If Aisaformulaand T isaset of formulas, then T + A =4 {B:
ADBeT].

Lemma5.2 SAnt+ A+ -+ Ar={B: A& --&A, D Be HAnt} ={B: Bis
validated by every pointed topological model validating A4, ..., An}. SAx++ A +
o+ An={B: A& ---& Ay D B e HAnt+} = {B: Bisvalidated by every Kripke
model validating A, .. ., An}.

Remark 5.3 Thetheory SIB-S4r+ defined in SectionlZlis, in this new terminol ogy,
HAn+ + sib.

Now we can outline our strategy for encoding second-order arithmetic in S4xt. First,
it suffices to encode second-order logic over countably infinite domains. Secondly,
Nerode and Shore’s [28] strategy for encoding arbitrary relations as sib relations
(see Section[Blabove) applies in countably infinite domains. So it suffices to encode
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second-order logic over countably infinite domains, with all second-order quantifi-
cation over sib relations. Furthermore, it will be convenient (though unnecessary)
to enrich the second-order language of Section [3]above, with standardly interpreted
unary predicate variables, Xi, Xo, .... Let us cal the resulting second-order theory
w-SIB2. So we will encode w-SIB? in S4nt.

Before we indicate how to effect this encoding, we note that there is a second-
order formula, COUNT, which istruein and only in countably infinite domains (with
R ranging over sib relations):

COUNT =g JR(VXYWZVw(RXy& Rxz& Rxw Dy=zvy=wvz=w) &
AxIYRxy & VxIYyRxy & VX(AXXX D IX(XX & YYWZ(Xy & Xz &
Rxy & RxzD> y = 2)))).

Now adjust the definition of thetrandlation function f;, from Secti on[3] to get atrans-
lation function g; from the enriched second-order language (with unary predicate
constants) as follows:

(X =Xj) = (Ps = p3j)

gu(Rixjx) = (3g€ p3i—)((P3j <) & (P3x < qd))

g1(—A) = —01(A)

01(A& B) = 01(A) & 091(B)

91 (VXA = Vp3(—ps & 3q(psi <) D f1(A)

g(VRA) = Vpz_1((psi-1—=2Va(q > UQg)) D 91(A))
g(VXiA) = Vpgi2(—psi2& (Vg€ p3i_2)Ar(q<r) D gi(A)

And define closed modal formulacount =4 g1(COUNT). Wewill now consider what
is expressed by count in both the Kripke and the topological semantics.

Actualy, inthe context of all Kripke models, it isunclear, and not very interest-
ing, what count expresses. We do, however, have the following theorem.

Lemmab5.4 For every sib Kripke model M, M = count if and only if M is count-
ably infinite.

Proof:  This can be seen by considering the constraints put on the size of tier, by
the fact that the model validates count. These constraints are the same as are put on
aclassical domain, if the second order formula COUNT istruein that domain. O

So, in the context of sib Kripke models, count expresses the claim that the model
is countably infinite, and in particular that its second tier is countably infinite. So,
among all Kripke models, the formula (sib & count) expresses the claim that the
model is a countably infinite sib model: for every Kripke model M, M
(sib & count) if and only if M is sib and countably infinite. If we define the func-
tion g, analogously to f, in Section[3] we then find that for any second-order formula
A, A € w-SIB? if and only if g102(A) € S4r+ + sib + count. This gives us the fol-
lowing.

Lemmab.5 Second-order arithmetic can be recursively embedded in SAn+ +
sib + count.
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Of course, we are not primarily interested in Kripke models and extensions of S4x+,
but in pointed topological models and extensions of S4xt. But our strategy will rely
on Lemmal5.5] we will show that S4z+ + sib 4 count can be recursively embedded
in S4nt (Corollary E11]below), and this will suffice for our main result. In order
to show this, we must consider what is expressed by sib and count in the context of
pointed topological models.

For this discussion, we assume that M = ((W, b), V) is a pointed topolog-
ical model. First we consider what is expressed by the formula 3-tier, defined
in Table 1, in the context of pointed topological models. Recall that 3-tier =
Vpe DHMVMaeMH((P=P&@=pP)D(P=d)&@EApe T)(Fqge T)(@r €
DP&(P<P&@<r)&—-EpeT)@E@qe T)@r € H(Fse HH(p& (p <
Q& (Q=<r)& (r < s)). 3tier saystwo things.

1. For singular propositions Pand Q, P < Qand Q < Pifandonly if P =, Q.
2. Singular propositions come in three varieties:

(@) firsttier singular propositions that are indistinguishable from {b};

(b) second tier singular propositions P such that, for some singular proposi-
tion Q, we have {b} < P < Q, and for no singular proposition Q do we
have{b} < Q < P;

(c) thirdtier singular propositions P such that for some singular proposition
Q, wehave {b} < Q < P, and for no singular proposition Q do we have
P<Q.

These claims can aso be expressed as claims about sics. This motivates the
following definitions and lemma.

Definition 5.6 A pointed topological space (X, b) is 3-tiered if and only if

1. forsicse and Bwehaveif« < Band B < athena = §;
2. thereexist sicsa and 8 such that |{b}| < « < B; and

3. for sics «, B8, and y we never have |[{b}| < « < B8 < y. (Compare thisto the
definition of 3-tiered Kripke framesin Section 2.)

A 3-tiered pointed topological model is one whose underlying space is 3-tiered.
Given a 3-tiered topological space, we define tier; =¢ {|{b}|}; tiers =g {@ : @ isa
sicand |{b}| < « and for somesic 8, « < B}; and tiers = {« : e isasic and for some
sic B, |{b}| < B < a}.

Definition 5.7 A 3-tiered pointed topological space (X, b) isasib pointed topo-
logical spaceif and only if
1. every pair of distinct sicsin tier, has a unique upper bound (with the ordering
< defined on sics);
2. every sicintiers isthe upper bound of two sicsin tiery; and
3. nothreedistinct sicsintier, have an upper bound.

A pointed topological model isasib model if and only if the underlying spaceisasb
space.
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Lemmab.8 If M isa pointed topological model then M = 3-tier if and only if M
is3-tiered, and M = sib if and only if M isa sib model.

Proof: Thissimply requiresacareful reading of the formulas 3-tier and sib, defined
on Table 1. Such areading should revea how the relevant conditions are expressed
in the object language. O

Lemmab.9 Supposethat the pointedtopological model M issib. Then M = count
if and only if M has countably many sics.

Proof:  Seethe remarks proving Lemmal5.4] O
Now we bring the pieces of the puzzle together.

Lemma5.10 For every formula A, A € SAnt + spec + sib + count+
BARCAN(A) + BARCAN(Sib) + BARCAN(count) if and only if A € S4n+ + sib +
count.

Proof: Suppose that A ¢ SAnt + spec + sib + count + BARCAN(A)+
BARCAN(Sib) + BARCAN(count). Then there is a pointed topological model M
of spec & sib & count & BARCAN(A) & BARCAN(Sib) & BARCAN(count) such that
M ¥ A. M issib (LemmalE8), and M has countably many sics (Lemmal59). So
M is singularizable (Lemmal4.6). Furthermore, M is specifiable (Lemmal4.4). So,
since M = BARCAN(A) & BARCAN(sib) & BARCAN(count) we have, by Lemma
k2] M = Aif and only if Mk = A; M = sibif and only if Mk k= sib; and M =
count if and only if Mk = count. So Mg ¥ A, athough Mk = (sib & count). So
A & SAm+ + sib + count.

Onthe other hand, supposethat A ¢ SAr+ + sib+ count. ThenthereisaKripke
model M = (W, 0, <), V) of sib & count such that M # A. Since all Kripke mod-
elsvalidate spec, and al Kripke models validate all formulas of the form (vqB >
0vgB), M validates spec & BARCAN(A) & BARCAN(sib) & BARCAN(count). Let
X bethetopological space W, where the open sets are those closed under <, and con-
sider the pointed topological model M" = ((X, 0), V). M and M’ validate the same
formulas. In particular, M’ | (spec& sib & count & BARCAN(A) &
BARCAN(Sib) & BARCAN(count)) and M’ # A. So A & SAnt + spec + sib+ count +
BARCAN(A) + BARCAN(sib) + BARCAN(count). O

Corollary 5.11  S4x+ + sib + count can be recursively embedded in S4xt.

Proof: By Lemmal5.10] for any formula A, we have A € S4n+ + sib + count if
and only if (spec & sib & count & BARCAN(A) & BARCAN(Sib) & BARCAN(count)
D A) € HAnt. O

Our main result, TheoremP_TTlwhich says that second-order arithmetic can be recur-
sively embedded in S4xt, isacorollary to Corollary[5.11]and Lemmal5.5]

6 Slightly pathological examples
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Example6.1  For anonspecifiable but singularizable pointed topol ogical space, let
X = R with the standard topol ogy, and consider the pointed topological space (X, 0).
First wewill show (x): no subset of R — {0} issingular. So supposethat P isasingu-
lar subset of R — {0}. Since0 e cl (P) — P, thereisan SC P suchthat 0 € ¢l (S) and
Oecl(P—9). Since Pissingularandsince0 e cl(PNSyand0ecl(PN(P-Y9)),
wehave P Cg Sand P S (P — S). Sothereare open sets O and O’ suchthat 0 € O
and0e OandONPCSandONPC (P-9).LaaO’'=0Nn0".S0e O’ and
O"'N P =g, contradicting 0 € cl (P) and proving (x). Given (x), any singular sub-
set of X contains 0. So, since {0} issingular, (X, 0) has exactly one singular indistin-
guishability class: |{0}|. So (X, 0) istrivialy singularizable. But it is not specifiable:
{0} Co el (X —{0}), but thereisno singular P such that P o X — {0}.

Example 6.2 (Almost verbatim from Dougherty’semail.) For a specifiable non-
singularizable pointed topological space, let X be the natural numbers N, together
with an extrapoint b. Shortly, we define the open sets. First let Z be an uncountable
family of almost digjoint infinite subsets of N (as given, for example, by Jech [12],
Lemma 23.9). Let y be thefilter of cofinite subsets of N. Note that, for every P in
Z,(N— P) ¢ %. By Zorn's Lemma, extend 7, to afilter F over N, which is maxi-
mal subject to thefollowing condition: for every Pin Z, (N — P) ¢ #. Theopen sets
of X areasfollows: any subset of N; and any set of the form {b} U S, where Se ¥.
First we claim (x): every P € Z issingular.

Proof:  To show (x), we must show that (i) b € cl (P) and (ii) for any Q C X, either
PZp,Qor PNQ=,@. For (i), notethat, sinceN — Pisnotin 7, every member of
F meets P. For (ii), let Q C X, and consider three cases.

Casel: (PNQ)e 7. Then P Cy Q, since {b} U (PN Q) isopen.

Case2. N—(PNnQ) e 7. Then(PN Q) =, &, since{bjuU(N—- (PN Q))is
open.

Case3: (PNQ)¢ FandN - (PN Q) ¢ ¥. By the maximality of 7 relativeto
the above given condition, the filter 71 generated by 7 U {N — (PN Q)} violates
that condition so that thereisa P’ ¢ ZwithN — P’ € F,. Sothereisan Se ¥ such
that SN(N— (PN Q)) CN-— P. Butthen SN P € PN Q. Now we will show
that P = P’. If not, then PN P’ isfinite, since P, P € Z. Now SN P"C PN P/, so
SN P isfinite. SON— (SNP)Y)e H € F.S0S—-P =SN(N-(SNnP)) e F.
So N — P’ € ¥, contradicting the condition that, for every P Z, N— P ¢ 7. So
wehaveshownthat P= P’. ThusSN P C Q. Let O = {b} U S, whichisopen. Note
that ON P C Q. So P & Q asdesired, proving (x). O

Given (x) and the fact that the topology istrivial away from b, (X, b) is specifiable.
All of the sets P in Z are singular and distinguishable from one another, so there are
uncountably many sics. There is no way to choose digoint representatives for un-
countably many sics since X is countable. So X is nonsingularizable.

Example 6.3 (Almost verbatim from Dougherty’semail.) For a specifiable and
singularizable pointed topological model that does not validate every Barcan for-
mula, first let X be the natural numbers N, together with an extra point b; and let



310 PHILIP KREMER

U be anonprincipal ultrafilter over N. Let the open subsets of X be &, all the sets
in U, and any set of the form {b} U S for S € U. Note that the pointed topologi-
cal space (X, b) is specifiable and singularizable. To see this, note that (X, b) has
only four indistinguishahility classes. |{b}| and |N|, which are singular; and | X| and
||, which are not singular. Now let M bethe model ((X, b), V), where V (r) = {b},
and let B be the formula O0qv—qvr. We claim that M ¥ (vqOOB D [OvgB), that
is, that M = vgddoqv—qvr), but M # Ovq@ddoqv—qvr). For thisit suffices
to show that (1) for every Q € X, b e int(int(cl (Q)) U (X — Q) U {b}) and that
(2 b gint(N{int(cl(Q) U (X—Q)U{b}: QC X}). For (1), if QNN ¢ U then
int(cl(Q)) = X; and if QNN € U then (N — Q) U {b} is an open set contain-
ing b. For (2), it suffices to point out that N{int(cl(Q)) U (X — Q) U {b}: Q C
X} C {b}. For suppose that n € X — {b} = N. Note that {n} is not open, and in-
deed that any other point can be surrounded by an open set digoint from {n}. So
inticl({n})) =@ .Butng (X—{n})U{b}. Son & int(cl({n})) U (X — {n}) U {b}.
Son ¢ nfint(cl (Q)) U (X—Q)U{b}: Qc X].

Example6.4 For a simpler rgjection of a Barcan formula, let X be the natural
numbers with an extra point b, and let the open sets be @ and the sets of the form
SU {b} where Sis a cofinite subset of N. Let M be any model ((X, b), V) and let
B be the formula (—q v 0J0q). Note the following, where Q € X : (Q is infinite
orb e Q = M[Q/q(0q) = X = M[Q/q(J0q) = X = M[Q/d](—q V
00q) = X= M[Q/q](0(—~q Vv 0q)) = X = M[Q/q](JB) = M[Q/d](B) =
X; and (Q isfiniteand b € Q) = M[Q/q](0q) = @ = M[Q/q[(T0Q) =
2= M[Q/d](=q Vv 10q) = X — Q= M[Q/qI((=qVv Q) = X— Q=
M[Q/ql(dB) = M[Q/q](B) = X — Q. Therefore M (VgJB) = M(VgB) = {b} and
M(OvgB) = @. Therefore M ¥ (YgCIB D [OvgB).

7 Concluding remarks One extension of the work in this paper would be to con-
sider propositional quantification in the topol ogical semanticsfor logics stronger than
$4. Given any propositional modal logic L stronger than $4, define L zt=¢ the set
of propositionally quantified formulas validated by every topological spacethat vali-
dates all the formulas of L. Just as the argument in Section[4]can be adapted to show
that the Kripkean system $4.27+ isrecursively isomorphic to second-order logic, the
arguments in Section[SJand Section[Glcan be adapted to show that second-order arith-
metic is recursively embeddable in the topological system S4.2xt, which is weaker
than $4.27+. It is worth noting that Sbmt = S5+, Clearly Sbat € Sbr+. To see
that Sbr+ C Sbrt, suppose that A ¢ Sort. Then there is some topological space
X validating every theorem of S5, with X # A. Since X = (p—=0¢0p), we have
(WVx e X)(YVSC X)(S<xint(cl(S))). Andsoxe S= (3O C X)(xe€ Oand Ois
openand ON SCint(cl(S))) = x e int(cl(S)). Thus, (VSC X)(SCint(cl(S))).
This means that every open set is closed and vice versa, so that, for every x € X,
there is a smallest open set Oy containing x. Now since X ¥ A, there is some model
M = (X, V) and some point X € X with x ¢ M(A). Let M’ be the Kripke model
((Oy, X, <), V') where < is the universal relation Oy x Oy, and where, for each
pe PV,V'(p) =V(p) N O« Notethat M"(B) = M(B) N Oy, for every formula B.
So M ¥ A. So A & Sbr+, as desired. Given that Sbrt=Sbn+, the following ques-
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tion arises: is there a natural characterization of the logics L, intermediate between
4 and S5, such that L wt=L 7 +7?

A second extension of the work in this paper would be to consider issues in
propositional quantification in the neighborhood semanticsfor modal logics, agener-
alization of thetopol ogical semantics. See Montague [[26], Scott [[36], Segerberg [27],
and Chellas [2].

Our work leaves us with anumber of open questions. First, is S4n+ recursively
isomorphic to second-order logic? Second, is there some way to express singulariz-
ability in the object language? As pointed out after the statement of Lemmal2] this
would give us away to encode second order logic, and not just second-order arith-
metic, in S4rt. Third, what istherelationship between S4xt and S47+? For example,
isthereaformula A such that S4n+ = SAnt + A?

More generally, thiswork underscores the fact that although the Kripke and the
topological semanticsagree on which ungquantified propositional argumentsarevalid,
they deliver different theories of propositions, differences that can be brought out in
an object language with propositional quantifiers.
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