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Abstract The aim of this paper is to investigate a Curry-Howard interpre-
tation of the intersection and union type inference system for Combinatory
Logic. Types are interpreted as formulas of a Hilbert-style lagiwhich turns

out to be an extension of the intuitionistic logic with respect to provable dis-
junctive formulas (because of new equivalence relations on formulas), while
the implicational-conjunctive fragment a&fis still a fragment of intuitionistic
logic. Moreover, typable terms are translated in a typed version, so/that
typed combinatory logic terms are proved to completely codify the associated
logical proofs.

1 Introduction In the last few years typing has become a crucial aspect in func-
tional programming languages design, as a way of incorporating in the language it-
self the logic of program properties. This perspective gives an important role to the
“Curry-Howard isomorphism,” which provides a constructive explanation of type
disciplines, by the analogies “types as logical formulas” and “terms as constructive
proofs.” In this approach the implicational fragment of propositional intuitionistic
logic is related, in a natural way, to the basic functional type theory of Curry and
Feys [B], whose only type constructor is the arrow for building functional types.
Roughly speaking, inhabited arrow-types are interpreted as implicational theorems,
since the axioms for implication become the types of atomic combinators, and modus
ponens corresponds to well-typed application of terms.

Intersection types were introduced in Coppo, Dezani-Ciancaglini, and Ven-
neri [E]las ageneralization of Curry’s basic system, mainly with the aim of describing
the functional behavior of all terminating programs. In the intersection type discipline
the usual—-based type language is extended by adding a new connestier‘the
intersection of two types. With suitable axioms and rules assigning types to terms,
the obtained system enjoys the following main properties.
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(i) The set of types given to a term is invariant with respect to reduction (namely,
B-reduction fori-calculus and weak-reduction for combinatory logic).

(i) The set of all strongly normalizing terms can be characterized very neatly by
the types of their members.

Union types were first introduced in MacQueen, Plotkin, and Si ivhere the
properties of the formal system were not investigated, but only a brief discussion
of their use to argue about thgpes as idealsemantics was given. Their interest

in computing is discussed for example in Jenef],[and Coppo and Ferrai].

The intersection and union type inference systemforlculus is defined and stud-

ied in Barbanera and Dezani-Ciancagli&]] &nd Barbanera, Dezani-Ciancaglini, and
de’Liguoro [4].

The present paper concerns a sysfién,, for assigning both intersection and
union types to terms of combinatory logic. The most obvious extension of implica-
tional propositional calculus with intuitionistic conjuction and disjunction is the natu-
ral candidate for a logical mapping @A ... Unfortunately, intersection does not cor-
respond to conjunction as already noted in Hind[E3]a simple counterexample is
the intuitionistic theorenA — B — A A B which cannot be deduced for any combi-
nator. Similarly, unionv does not correspond to disjunction; a simple counterexam-
ple is given by the intuitionistic theoreA —~ B) - (C— B) - AvC — B. All
these are consequences of the factthas not the right adjoint of. Instead, there is
some “duality” between intersection and union since the fornidla> B) A (C —

B) - Av C — Bis atype for the identity combinator.

The crucial pointin defining a logical mapping for this type discipline is the rules

for introducing intersection and for eliminating union, that is,

(Al r-""M:0¢ TH"VM:1
r"YM:oAT

OLx:oF"YM:p Ix:tHE"M:p THY N:iovrt
'Y MIN/X]: p

(VE)

which look far from the standard shape of logical rules. In fact if terms are to be iden-
tified with proofs, thenAl) says that a proof of a conjunctive formula requires the
sameproof in deriving both the conjuncts, that is, a stronger request than their sim-
ple provability. Analogously, rulévE) says that a proof of the formula can be
obtained fromB v C only provided that thsameproof of A can be obtained both
from B and fromC. In other words, rulegal) and(v E) are constrained by a global
condition of applicability involving properties of the whole subderivations.

Our goal is to set out a logical system matchify,, such that the intersec-
tion and union type constructors are interpreted as propositional connectives and then
their derivability is completely represented by derivability in a logical Hilbert-style
axiomatizationL. We will do that using essentially the results of Venn&dl], [B],
and (] In [[20] a new formulation of the intersection type inference for combinatory
logic is presented, which is equivalent to the original version of the system of Dezani-
Ciancaglini and Hindley[d], while the intersection operator is no longer dealt with
as a proof-functional connective. As a consequence a Hilbert-style axiomatization is
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obtained in such a way that inhabited intersection types are all and only the provable
formulas in the logical system there defined.

In the present paper we will succeed in modeling such a logical system for the
union constructor as well, by mapping each type into a finite set of types without
unions and each deduction T\, into a set of deductions in the intersection type
assignment system. As a consequence, a typed version of combinatory logic with
union and intersection types is presented, such that all typed combinators are viewed
as proofs in the logical axiomatizatidnand vice versa.

Let us remark that an important component of the systany, is the inclusion
(=) relation between types, which is justified by interpretingas a function space
constructorA as intersection, and as union between types. This ordering relation
will be totally mapped into axioms and rules of the Minimal Relevant Ldgjicas
defined in Meyer and Routlefi]], plus one clause corresponding to the Extended
Disjunction Property (Harrofl[l). The logical axiomatization isomorphic T ..,
will be defined as the pure implicational calculus, increased by the fact that all theo-
rems of the above relevant logic are assumed and used as major premises of modus
ponens.

The results of the present paper lead to the main conclusion thatghdyv type
constructors are essentially interpreted as the conjunction and disjunction of a rele-
vant logic, respectively. In other words, proof-theoretic conditions of applicability in
A-introduction andv-elimination are logically translated by requirementsadévant
dependencies between the assumptions and the conclusion of a proof.

In order to obtain these results, the original version of the-type inference
will be mapped into progressively more restricted systems, in the sense that proof
functional rules are eliminated and they are replaced by equivalent logical rules. To
help the reader progress along this tortuous path, we provide the following Table 1
listing the notations and definitions of the various systems.

System Name Derivability Axioms and Rules Definition
TA A S,K, I, (VAR), (= E),(AD),(VE), (=) [2.5]
TA%, - S,K, 1, (VAR), (= E),(Al),(VE), (<*)
TAL - S,K, 1, (VAR), (= E). (Al), (24) 2.1d
TA# H# S*, K%, I, (VAR), (— E), (<4) 224
TA = S* K# I#, (VAR), (= E), (<*) 229
Table 1.

Lastly, we want to point out that our approach is in the framework of Curry-Howard
isomorphism and so it is completely different from that of Lopez-Escdia}; [

Mintz [[19], Alessi and Barbaner&], and Barbanera and Martif&]. In fact the au-

thors of those papers investigated the intersection as a proof-theoretic operator, in the
context of “untyped terms as realizers of logical formulas.”

2 Intersection and union typesfor combinatorylogic For the main definitions and
notions in combinatory logic we refer to Hindley and Seldif][ chapter 2. Let us
recall some basic notions in order to fix the notations.
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Definition 2.1 (Combinatory logic) Assume that an infinite set of variables and the
basic combinatorS, K, andl are given. The sef of CL-terms is built from variables
andS, K, | by application. Anatomis a variable or a basic combinatorcambina-

tor is a CL-term without variables. Each atomic combinator is assumed to have an
axiom-scheme for reduction:

Sfgx— fx(gx) (composition)
Kxy — X (formation of constant function)
IX — x (identity).

Weak reduction(—) of CL-terms is defined as usual.
Let us recall also the followingbstraction algorithmwhich is defined in[f]
section 6A:

A*X.X = |

A*X.M = KM if xg FV(M)
A*xUx = U if xg FV(U)
A*xX UV = SO*xU)(A*X.V) otherwise.

2.1 Typeinference We consider the set of types built out of an infinite set of type
variables by the function space-¢"), intersection (A’), and union (V") type con-
structors.

Definition 2.2 (Intersection and union types) The Jebf intersection and union
types is inductively defined by:

1.« B,v3,...€T(type variables);
2.0,teT= (c—>1),(cnT1),(0VvT)eT.

Notation 2.3 We omit parentheses assuming that:

1. — associates to the right;
2. A andvV have precedence oves.
NAic oi and\/;_, oi, wherel = {iy, ..., in}, are shorts fobj, A --- A i, andoj, v
.-+ V aj,, respectively.
A preorderrelation on types naturally arises-# is regarded as the function space

constructor, whilen andv are regarded as intersection and union on sets, respec-
tively.
Definition 2.4 (Preorder< onT)
(i) Thepreorder< onT isinductively defined by the following axioms and rules:
(a) Axioms
l.o<oAo,oVvVo<o
ONT=<O0,0NT=<T
o<oVT,T<OoVT
(6> p)A(6—=>T)<0—> pAT
(c—>p)A(t—>p)<oVT—p
oAN(TVp)<(cAT)V (OAP)

© 0 AN
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(b) Rules
l.o<od,t1<t'=0AT<0 AT
2. 0<d,1<t'=o0ovi<o vt
.o<d,1<7"T=—=0 —>1t<0—>17

4 o<t t<p=—o0=<p.
(i) The relation of equivalencer on T is defined in the following way:
o~ 7 ifandonlyif o <7 and t <o.

Many interesting equivalence relations on types are provable: reflexivity odm-
mutativity and associativity of andv. We mention here also that

() (c—=>p)A(T—>p)~0oVT—>p

(k%) oA(tVp)~(cAT)V(0APpP),

since these relations will be used in the following) kolds by axiom 5 in one di-
rection, and by axioms 1 and 3, and rules 1, 3, and 4 in the other erehdlds by
axiom 6 in one direction, and by axioms 1 and 2 and rules 1, 2, and 4 in the other one.
The following expressions link the notions of types and terms.

1. A statements an expression of the forfl : o, whereM is a term §ubjec}
ando is a type predicatd.
2. Anassumptions a statement whose subject is a term variable.
3. Abasisis a set of assumptions with distinct term variables.
If " is a basis, therV (I") will denote the set of term variables which are subjects
of some assumption iA. Given a basig§" such thaix ¢ FV(T"), the basid" U {x : o}

will be denoted by, X : . Now we introduce a type inference system, as a set of
axioms and rules deriving intersection and union types for untyped CL-terms.

Definition 2.5 (The type assignment systéfA,,) A statemenM : o is derivable
from a basid", notationl" =" M : o, if ' =¥ M : o can be proved using the fol-
lowing axioms and inference rules.
(a) Axioms
LS[a—>B—>y)—> (@a—> B —a— v,
2. Ko - B— a],
3. ll[a — «],

where p] denotes any instance of that is, any type obtained by substituting
types for type variables is.

(b) Rules
(VAR Lx:oF" X:0o
(—)E) r‘"m:c—->1t TV N:o

="V MN:t
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(/\|) r-YmM:e¢ THVM:1
T’ M:oAT

Ox:oF"Y M:ip Ix:itHE"YM:p THVY N:iovr

(VE)

LY MIN/X]: p
(<) "Y' M:o o<t
- rE"YM:rt

For examplei-"Y Sll: (¢ A (a« — B) — B) vé. Clearly, if T Y M :ocandl" D T,
thenI” Y M : 0. The rules

(AE) Fr'E"YM:oAT FrE"Y'M:oAT
"Y' M:o rE"YM:t

and

(\/|) r"VM:o r-"VM:r
rk"YM:ovrt rE"YM:ovrt

are derivable ifTA ../, as particular cases of rule<). Moreover, it is easy to check
that the following rules are admissible:

Lx:oF"Y'M:t p<o

(=D
O,x:pHE"Y Mt

O,Xx:oF"Y M:p O,x:tF"Y M:p

(VIL)
Ox:ovtHE"Y M:p

The admissibility of rule(< L) is an immediate consequence of using r(#e on
premises. For rulévIL) notice that its assumptions imply, y : o =Y M[y/X] : p
andl’,y: t =Y M[y/X] : p, wherey does not occur ii" and M, since derivations

are independent from the names of free term variables. So the following deduction
shows the admissibility ofvIL):

O,x:ovrty:oE"Y My/X]:p
O,x:ovrny: Y My/X]: p LX:oVTHENY XioVvT
x:ovtE"Y M:p

(VE)

The aim of this paper, as mentioned in the introduction, is to investigate the logical

characterization of the systef .., by means of the Curry-Howard approach.
Intersection and union considered as type forming operators look like the propo-

sitional connectivesonjunctionanddisjunction respectively. However im itis

shown that intersection on types does not correspond to (product) types, that is, to

propositional conjunction. After a brief look at the type inference system one can

notice immediately that in order to assign an intersection typegsay , to aterm

M from a basid" it is necessary to assign separately both typasdr to the term

M from the same basiB. Thus the termM in the conclusion is the same term in

both premises. This is a point where the Curry-Howard isomorphism is lost, since
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the term remains the same, although the inference (deduction) grows, that is, terms
are not encoding deductions anymore. Nevertheless an equivalent type inference sys-
tem for the restriction ofA ., to the intersection types is conceivedid], together

with the Hilbert-style logical system which corresponds to it by the Curry-Howard
isomorphism. The main idea i&(] is to avoid rule(A 1) replacing it by “structural”
inference rules.

If we analyze the union types in the same framework, we notice that a similar
difficulty arises in the case of rule/E), since the ternrM has to be the same in both
premises. So our aim is to consider a system containing both intersection and union
types as defined above and then to show that(ulg) can be avoided too, still as-
signing the same types to the same combinators.

First, let us discuss the consequences of leaving outwli®. In [[4] itisshown
that the type inference systerA .., is closed under parall@-reduction, that is, types
are preserved under parallgireduction. The following example shows that this
property is lost by leaving out rule/ E).

Example26 Letl'= {X:(c—>0—=>p)A(t—>T—p), Yipg—>0oVT Z:¢}.
We have the following derivation ifiA .
,t:oF"Y xtt:p [, ticHY xtt:p T FY yziovr

(VE)
I = x(y2(y2) : p

We obtain the following derivation without rulev E), from the same basisby set-
ting
l:(c— o)A (t— 1), and

S ((c>0—>p)—>(0—>0)>0>pDA(t—>T—>p)—> (T—>1T)—>T— p),
=Y Sxl:(60— p)A(T— p)

LY Sxl:ovt—p (=)
r = Sxl(y2) : p

(= E) r =™ yziovre

Howeverx(yz)(yz) is the normal form o6xlI(yz). Without rule (Vv E) it is not pos-

sible to derivel’ ="V x(y2)(y2) : p. This shows that types are not preserved under
any notion of reduction. Thus we obtain the same type inhabited, but for an expanded
term.

2.2 Howto avoid the (VE) rule Itis shown in ] that the type inference system
TA v is not closed under weak reduction. However, a union type inference system
is introduced in[B], which is shown to be closed under weak reduction. This system
is characterized by a new preorder on types, denoted*hgefined as an extension

of the preorder< which is given in Definitio2.4] <* uses the predicate : T —

{ true, false, which is essentially a syntactical constraint such tRas true for a
typet if v occurs int only in the left arguments of some arrows.

Definition 2.7 (Preorder relatior<™* on T)

(i) The predicateP : T — {true, falsg is defined by induction on types as fol-
lows:
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P(x) = true

Plo— 1) = P(1)

P(o A1) = P(o)and P(r) (Hereandis the usual logical conjunction.)
P(ocvt) = false

(i) The preorder relatiorc™ on T is inductively defined by adding to the axioms
and the rules of Definitio.4lthe following axiom.

7. o= pVv1<*(0c— p)V (0 — 1)foranyos such thatP(o) is true
(i) o~* rifand only ifo <* randr <* 0.
Notice that we can prove the following equivalence relation:
(k * %) co—pVt~ (6= pV(c—1)

for any o such thatP (o) is true. & * x) holds by axiom 7 in one direction, and by
axioms 1 and 3 and rules 2, 3, and 4 in the other one. Usiidx), and é x x),

we can rewrite any type as an equivalenttypg, v - -- v o, (n > 0), such that each

o; does not contain the union type operator. Namely, a very simple procedure can be
devised to pull out all union types from the insidesofin fact by (x) we can eliminate

union types on the left side of arrows. Byx«) we can pull unions out of intersections.
Lastly by (x * %) we pull out unions which occur in the right arguments of arrows. For
example, we have

(0= puvv) =~ ((a—=>pn) = @) A(a—v)— ).

In fact,
(x> puvy)—> o~ (a—> uw)Via—>v)—>ge

by (% % %) and
(@a—=> W) Vi—=>v)=> e~ ((a—=pn) =) A{(ad—=>v)— @

by (x). The mappingn of Definition[2.13Will show this property in a formal way,
by associating to each typea €t of typesm (o) = {01, ..., on}, Uch thalo ~* o1 v
-+ V op and noo; containsv.

Remark 2.8 Inthe definition of<*, the additional axiom 7 does not naturally arise
from the interpretation of> as function space constructor. However, if types are
interpreted as subsets of Scott domains which can model the lambda calculus, then
“P(o) is true” implies that the interpretation of has a least element; whd¥ o)

is false, either the interpretation efdoes not have a least element, or there exists

a t such thato ~* T and P(7) is true. There is an obvious relation between the
presentP and the predicat€ as defined in Abramsk¥d], that is, P(o) = true im-

plies C(o) = true andC(o) = true implies that there is a such thato ~* r and

P(7) = true. Actually in [I] types are interpreted @@mpact-opesubsets and the
conditionC means “to be @oprime”

Definition 2.9 (The type assignment systd@i,,) The type inference systélA%,,
is defined by the axioms and rules of Definitiai] where rule(<) is substituted by
rule (<*), obtained by replacing the preordeby <*. We writeI" =* M : o for the
derivability in this system.



254 DEZANI-CIANCAGLINI, GHILEZAN, and VENNERI

This is the type inference system introduced and investigaté€].imhe derivabil-
ity in the subsystem off[g] restricted to the type constructors, A, andv implies
derivability in the systenTA’,,, .

Let TA,. denote the system obtained frdiA’,,, by restricting types to intersec-
tion types only. In order to show th@A’,,, is closed under weak reduction one has
to relate it toTA .. Then the problem is shifted A ., which is known to be closed
under weak reduction.

Definition 2.10 (The type assignment systerA )

(i) T, isthe set ofntersection typebuilt out of type variables using only the type
constructors— andA.
(i) The preorder<, is the relation defined by restricting all axioms and rules in
Definition[2.4lto types inT,.
(iii) The systemTA, is the subsystem &fA’,, where only types fronT, are used.

Wewrite ' = M : ¢ for the derivability in this system.

Namely, inTA,, rule (VE) is not included and in rulé<*) the preorder* is re-
placed by the preordet,. Rule (<) will denote this restriction of rulé<*). Theo-
remZ_20ill show thatTAY,, is conservative oveFA .. The systenTA,, for deriving
intersection types for CL-terms has been formulateliinfhere the following prop-

erty is proved for a number of abstraction algorithms, including the one considered
in the present paper.

Lemma211(@) T, x:o0 " M:it<=T F* A*xM:0— 1.

In order to associate to each typeliraset of intersection types (a subsefla), we
can use some properties of types which are statég.iThe mapping of intersection
and union type derivability into intersection type derivability, stated in the following
Theoreni2.20 means that rul¢v E) can be avoided in type derivations by essentially
using rule(<*). We shall obtain, as a main result, that any derivatioTAj ,, is
associated to a set of derivationsliii,,.

First we define a mapping between types with>, v, andA, and sets of types
without v. This mapping is extended to bases in a natural way.

Notation 2.12  E(l4, ..., I, J) is the finite set of all functions frory x --- x I,
to J, wherelq, ..., I, Jrange over finite sets of indexes.

Definition 2.13 (Mapping betweerm andT,)
(i) The mappingn: T — P(T,) is inductively defined by

m(«) = Ao}
mp—>1) = {Aie(pi = i) | x € E(I, D)}
m(p A T) = {pintjliel, jed}
m(pv = m(p)um(r),
under the assumptioms(p) = {p; | i € I} andm(z) ={7j | j e J}.

(i) If Tis a basis, theB(I") is the set of bases defined by
B(I') ={I" | FV(I") = FV(I'") and
X:o0eI' = 3¢’ em(o) suchthat x: ¢ eI}
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A way of rephrasinf.13ii) is: if x: o is a statement ifv, then each™ in B(I") will
contain one statement: o’ for somes’ € m(o) (and vice versa). Notice that only
types withoutv occur in the bases belongingBarl").

Example2.14 If o = a1V oz — B1V B2, and2 = {1, 2}, then we have

M(ayVaz) = {ay,az}
m(BrVv B2) = {B1, B2}
m(o) = {A1<i<2(ai = Byi)) | x € E(2,2)}

= {(a1— B1) A (a1 — B2) A (a2 — B1) A (a2 — B2)}.
IfI'={X:a1VaYy:B1V B}, thenB(I') contains exactly the following four bases:

't = {Xiog,y:p}
o = {Xiog,y:pB2}
I's = {XiazYy: B}
Iy = {Xioag,y:po}
Lemma?2l15 ForalloeT,ifm(o)={oy1,...,0n},thenc~*o1Vv---Vop.

Proof: By induction ono. All cases follow easily from Definitio®.13i) except
o=p— 1 Letm(p) ={pi | i €l}andm(r) ={rj | j € J}, thenm(o) =
{Aiel (pi = Ty)) | x € E(I, J)}. By induction we havep ~* Vi¢| pj. This implies
o ~* Viel pi — t. By iterated applications of the equivalen@e to Vvic| pi — T we
can derive

o ~* Niel(pi = 1) 1)

Again by inductionz ~* V7). Itis easy to verify thaP(u) is true for all types
w € T,, S0 in particular we havé(p;) true for alli € 1. By iterated applications of
the equivalencéx x x) to pj — V<37 We can derive

pi = VieaTi ~* Viea(pi = Tj) 2
From [ and ) we have
o ~* Ajel Viea (pi = 1)),
and by repeatedly applying the equivaleriee) we conclude
0~ Vyer(,3) Aiel (i = Tyi))- a

The following property of the mapping was stated and proved in Lemma 4.4 [

Lemma216 Forallo,te T,o0<*rifandonlyifforalloc’ € m(o) thereist’ €
m(t) such thatv’ <, 7.

Now we can prove the main result, that is, we can associate to each derivatigh,in

a <t of derivations inTA ., one for each basis iB(I"), whereT is the basis which
occurs in the conclusion of the current derivation. The same property has been proved
in [[4] for A-calculus instead of combinatory logic. Notice that the difference between
the present systems and those givefJligthe replacement of axion® K , and! for

the standard rule of>-introduction. For this reason, we have to prove the property
for the axiomsS, K, andl only, while for rules we refer to the proof of Theorem 4.6

in [E].
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Lemma?2.17 If* C:¢isanaxiom, thenthere is € m(¢) suchthat-" C: ¢'.

Proof: Wedistinguish the cases = S, K, orl.

Casel C=1: Inthiscase,then= o — o. By Definition2.13i) if m(o) = {o; |
i € 1}, thenm(c — o) = {Ajei (0i = 04)) | x € (I, 1)}. Letus choosg(i) as the
identity, thatisx (i) =i, othat¢’ = Ai¢| (o7 — 0i) € m(o — o). By axioml, =" 1| :
oi — oj foralli € |, sinceo; € T, by construction. Therefore™ | : Ai¢i (oi — i)
by using(Al).

Case2 C=K: Inthiscase,then= o — t— o. By Definition2.13j) if m(o) =
{oi |1 el}andm(r) = {7} | j € J},thenm(c — 7 — 0) = {Ajel Ajeg (0i = Tj =
oy, ) | x € B(1, J, 1)}. Letus choosg(i, j) as the first projection, thatig(i, j) =

i, sothatl’ = Ajei Aje (07 — 1) = 0)) e m(0 — T — o). By axiomK, " K :
oi — 1j — o foralli e I andj € J, sinceoj, tj € T, by construction. Therefore
FA K2 Ajel Ajeg (01 = Tj — 07) by using(Al).

Case3 C=S. Inthiscase, thed=(c > 17— p) > (0 - 1) > 0 — p.
Let 2(E(l, J, L), E(l, J), |, L) denote the finite set of functions froBx(l, J, L) x
2(1,J) x | to L. By DefinitionR.13i) if m(o) = {ai |i € I}, m(z) = {7 | j €
J},andm(p) = {p || € L}, thenm((c - 71— p) = (6 > T) > 0 — p) =
{Apea, L) Apesd,a) Aiellp®™ — v — o — py il | x3 €
E(E(1, 3, L), E(1, ), 1, L)}, wherep®) = Ajrey Ajeg (01 = T)p = pyyir.jn), and
Y2 = Ajug (ojr — Ty,Gi7y)- Let us chooses(x1, x2.1) = xa(i, x2(i)), so that
I = Ayes,a.0) Apea,d) Aiel[pP — Y2 — 67 — py i o)) € M.

By axiomS,+" S: (o — 1 — p)) = (0i = 1j) > 0i = p foralliel, je J,
| € L sinceai, 7j, p| € Tx by construction. Thereforle” S: Ajel Ajeg Ajel[ (o7 —
Ty = p) = (0i = 1}) = 0i — p] by using(Al).

Now we conclude the proof by showing that
(®)  AleL Ajes Aiell(oi = Tj = p1) = (01 = Tj) > 0i = p] <A 7,
that is,¢’ can be assigned ®by using(<,). To this aim let us define the type

U= Ayrea(l,d L) Apes, 3) Niel[(Gi = Ty = Pyydixa(i)))

= (01 = Tyy(i) = Oi = Pyy(ixa(in]

then we prove &) in two steps. First we show that <, ¢’. Second, we verify that
NeL Njed Aiell(oj — Tj = p;) = (0 = 1)) = 0 —> o] = w. First notice that
Airel Njed (ojr —> Ty —> le(i/,j/)) SAOY = Tj = Py, i) foralli’ eI, j/ € J,so
in particular when’ =i andj’ = x2(i). AnalogouslyAi¢| (oir = Tyyiry) <A Oir —
T,,in foralli” e 1, so in particular wheri” = i. Thereforeu <, ¢’ because of the
contravariance of the arrow in the definition-of.

Second, let us replace,,cz (1, 3) by Ajeg in . This leavesu unchanged, since
x2(i) is used only when the argumaris fixed. So we can rewritg as follows.

Ayiea,3,0) Njed Niell (0 = Tj = Py ) = (@i = Tj) = 0i = Pyyipl-
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Analogously we can replace,,cz1,3.1) by AleL in the last type. So we can rewrite
u as follows:

AleL ANjea Aietl(ai = 1) = p) = (0i = T}) = 0i = pi]. g

Example2.18 lfo=(aiVar,—> B—> y) = (@1 Vary —> B) > a1 Vay — ¥,
then

m(o) = {(e1 > B—=>yY)A(e2—> p—>y)—>
(a1 = B) A (a2 = B) = (a1 = ) A (2 —> p)}-
We havet* S: ¢, and also
FY S (a1 —=>B—=y)A(a2—=B—y) = (a1 =B A(a2— ) = (a1 —=>Y) A (a2 =),
by axiom(S) and rule(<,).
Example2.19 Ifo=(a—> B8—> y1Vy2) > (@ = B) —> a — y1V y», then

me) = {[(a—B—y1)—> (@— p)—a— n]A
[(0 = B—= y2) = (@ = B) = a— y],
[(a—B—y1) = (@a— B) = a— y]A
[(0 = B— y2) = (@ = B) = a— y,
[(0 = B— y1) = (@ — B) > a— yo]A
[(0 = B— y2) = (@ — B) = a— y],
[(0 = B— y1) = (@ — B) = a— yo]A
[(@ = B— y2) = (@ — B) = a— yol}.

We have-* S: o, and also

S [(@—>p—y1)— (@—B) = a—yi]All@—B—y2) > (e —p) = a—y2],
by axiom(S) and rule(Al).

Theorem 2.20 (Relations betweeMA%,, andTA,)

= M:o&=VI"eB() 30’ em(o).I" - M:o.

Proof: By induction on derivations. The first step is proved in Lenitnb/] For
the induction step, we can use the proof of Theorem 4 &in [ O

Theoren2.20Rhllows us to extend the most important properties of intersection type
disciplines to union types as well, in particular the invariance of types under weak
reduction of subjects.

Theorem 2.21 (Invariance of types under weak reduction)
O T M:candM— N= I'" N:o.
(i) TH*M:ocandM— N=— T'F* N:o.

Proof:

(i) This property is the invariance of types under weak reduction prove@.in [
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(i) Immediately from (i) and Theoref&.2d O

The meaning of Theorel12dis that one associates to each deductioffih, afinite
set of deductions ifiA ,, in aunique way, for the same CL-term, mainly by eliminat-
ing rule (v E) and by replacing rulé< ) for rule (<*). It isworth pointing out that
axioms 5, 6, and 7 of the definition of the preordgrare significant for the existence
of the mappingn. Hence theirimportance for the type invarianc&Af ., is obvious.

We can also associate to each deductiomAi},, exactly one deduction ifA,.
The price that must be paid is that of considering the abstraztiari the given CL-
term with respect to all variables which have union types as predicates in the current
basis. The remaining part of the present section is devoted to this proof.

The following lemma allows to eliminate the unions occurrind ity taking
advantage oB(T").

Lemma 2.22

(@) If o1 ~* Viego!” (1 <i < n), then
Njredy  Njpeds (Gijl) — = ar(]J“) - 1)~*0o1—> - = on— T

(i) Let B(T) = {Th}1<h<m WhereTh = {x : 6™ }1<i<n. If 6i ~* Vi<p=mo™,
then

/\lfhfm(aih) - "'—>G,(1h) —>1)~* o> - >on—> T

Proof:

(i) First notice that we have
(0= WA (p— V)~ (p— LAD)

by axiom 4 in one direction, and by axioms 1 and 2 and rules 1, 3, and 4 in the
other one. This implies
/\jneJn(ol—>---—>crn,1—>ar(,j”)—>1:)~*01—>--- 3)

— Op_1 —> /\jneJn(or(,J”) — 1)

By iterated applications of equivalence (o o ~* Ve 3,04, we have
Njnedn (oflj”) 1)~ on—>1 4)
From [3) and &) we derive:

Njnedn (01 — ~--—>on_1—>a,(1]”)—>t)~*01—>---—>0n_1—>0n—>t.

Analogously, by repeating this argument in turrsto 4, ..., o1, We prove the
lemma.
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(if) Notice that, by construction, ifn(c;) = {ai(j) | j € %}, then
Ajredr** Njnedn (G:(le) NN Ué]n) o) ~F
Mehzm(@” = - = oV - 1)
for all z. Therefore (i) implies
Alshsm(Gih)ﬁ~‘—>G§,h)—>t)~*al_>..._>Gn_>f_ (]

Obviously, any basik can be splitinto a basis,, containing the assumptions whose
predicates can be written without, and a basid’,,, containing all the predicates
which require the/-operator.

Definition 2.23  For any basi§’, letI", andI',, denote the following related bases:

1. T,={x:0|X:0 eI andm(o) contains only one tygeand
2. F\/ - F - F/\.

Theorem 2.24 (Mapping of TA’,,, into TA,) Let I' be a basis andB(I'y) =
{Th}1<h<mWherel', = {x : 6" }1 < <n. Then

h)

TH M:te Do F A%, o X0 M Archem(al — - — oV — ™)

for a suitabler™ e m(x).

Proof;

(=) THFM:z
— VIR3t™ e m(z). TAUTH* M : o™ (by Theorenk.20]
sinceB(I") = {I"'x U 'h}1<nh<m by construction)
— VI3t e m(o).

ThF 5% %Mol = o — ™ (by Lemma2 1]
== LA FN A*Xq, ..., X0 M :Alfhfm(aima ---—>0r(]h)—>
™) by the rule(al).

(<) Lemmd22Zii) implies
Alghsm(gih) —> O'r(1h) -t <o 5 ... 50— 1,

recalling thatr™ e m(z) impliest™ <* 7.

LA BN A*Xq, .00, X0 M : Alfhgm(ﬁih) — e a,ﬁh) — ()
= CAF*A*X1,.... %M 01— -+ > o0on—> 1
(by above and rulg¢<*))
- CE* (A*Xq, ..., %0 M)Xq, ..., Xn i T
(by iterated applications of rule— E))
— r=*M:zt
by TheorenfZ ZT[ji). O

Example2.25 LetI'={x:(c—>o0— p)A(t— 17— p), V.oV ), then[, =
X:(c—>0—>p)A(t— 1= p)}andB(,) = {I'y, I'o}, wherel'; = {y : ¢} and
> ={y: 1}. Wehavel' H* xyy: p andl', F" A*y.xXyy: (o — p) A (T — p).
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2.3 How to avoid the (Al) rule  Rule (A1) has to be eliminated as well as ),
because of its proof-functional shape. This has already been dd&g]imhere a
new formulation of the systeiA, has been defined. This new formulation denoted
TA* here (andTA% in [20)) has been proved to be equivalent to the original system
while avoiding rule £ 1). The systenTA” can be defined from the systeFA, by

() replacinginthe axioms “one instance” by “any finite intersection of instances,”
(ii) eliminating rule (A 1).

Definition 2.26 (The type assignment systéfA”) Let us consider only types
belonging toT .. For any typeo € T,, let [¢]* denote an arbitrary intersection of
instances oty that is, anyo; A --- A oy (N > 1) such that each; is an instance of
o(1<i<n). AstatemenM : o is derivable from a basig, notationI' - M : o, if

I' =¥ M : o can be obtained using the following axioms and rules.

(a) Axioms

(% S[(a— B—>8 — (a— p) = a— 8
(K% K:[a = B— o]
(@) I: [a — o]

(b) Rules(VAR), (— E), (24).
Theorem 2.27 (Equivalence betweefA, andTA* [20])) T'H* M:o < I +*
M:o.

Hence, we can map any derivationi#’, ,, into a derivation offA*, by using first the
mapping fromTA7,, to TA,, and then the above equivalence betw&an andTA”.
Again we have to apply the mappimg to types and consider the abstraction of the
given CL-term with respect to some term variables occurring in the current basis.

Corollary 2.28 (Mapping TA*,, into TA*) Let I' be a basis andB(I',) =
{T™}1 hem whereT'®™ = {x: 6™} <p. Itfollows that

FTH M:t<= T A%, ..., %M Alfhfm(agh) — s or(]h) — M)
for a suitabler™ e m(7).

Proof: TH*M: 1

= LA BN A %1, .00, X0 M Alghfm(aih) - o ar(]h) — ()
(by Theoren2.29)
= TAF % %M Arcphem” — = oV — M)
(by Theoren2.279). O

A natural way of generalizing the systéi” is to extend the set of types frof to
T and then to replace rule< ) by rule (<*) in order to assign intersection and union
types to CL-terms.

Definition 2.29 (The type assignment systefA) Let o and all the types of be-
long to T. A statementM : o is derivable from a basiE, notationl' = M : o, if
I' = M : o can be obtained by using the following axioms and rules.
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(@) Axioms(S#), (K¥), (")
(b) Rules(VAR), (— E), (%)

TA is the final system allowing the assignment of intersection and union types to CL-
terms, while avoiding ruleéal) and(Vv E). So, we are interested in the relation be-
tweenTA*,, andTA. Since(S¥), (K¥), and(I) are derived rules ifA*,, thenTA%,

is an extension ofA. But unfortunately, it is a proper extension. In other words, the
equivalence betweef . andTA* cannot be generalized to union types. For exam-
ple,{X: (c —o—> p)A(t— T— p),y:oV1}E*Xyy: p, butthis does not hold for

. Our result is that any derivation iFA% ., having subjecM and predicate can be
translated into a derivation ifA assigning the same typeto a CL-termM’ weakly
reducing toM. This translation leaves the basis unchanged. We have, for example,
X:i(c—>0—=>pA(T—>1T—> p),Y:0oVTIE A*txtt)y: p. However, ifMis a
combinator, then the type can be assigned exactly k in TA.

Theorem 2.30 (MappingTA%,, into TA)

() LetT" be abasisand’, = {X; :01,...,%Xn:0on}. ThenTH M1 <= T+
(A*Xq, oo, X0 MDX, .., Xn o T,

(i) HMit<=FM:1.

Proof:

(i) (=) LetB(T'y) = {T™};-p<m whereT'™ = {x : 6 }; - <. Then

r'H*M:t
= T HF A%, ..., %M : /\1<h<m(a(h) — = o,ﬁh) — ()
wherer™ e m(1), by Coro_lla?y
— TAF A%, XM Archem(0Y — - = o — o)

sinceTA is an extension ofA%.

This implies, by LemmB.22ii) and by applying rule(<*)
CAFEA*X, ..., XM 01— ---0q — T,
from which the result follows by— E).

(<—)TFA*X, ..., %.M)Xq, ..., %X T
= I'F*" (A%, ..., X0 M)Xe, ..., X0 T
sinceTA%,, is an extension ofA
— T F* M : r by Theoreni2_2jii).

(i) Immediate from (). O

3 TypedCL-terms The systenTA does not involve any proof-functional rule, such
as(Al) and(vE), while preserving derivability of union and intersection types. So
it allows us to define the s&T of typed CL-terms which corresponds in the standard
way to the set of deductions TA. Namely, by erasing the type information in a typed
CL-term of typec we will obtain a CL-term which has the typein TA (and vice
versa).
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Definition 3.1 (The setCT of typed CL-terms)

(i) The set of preterms is generated by
M:=x|S|K|I|MM|oM | Mg,

wherex ranges over term variables aadver the types of .

(i) A pretermM is a typed CL-term if and only if there are a baBisand a typer
suchthal" =T M : o can be obtained by using the following axioms and rules.

(a) Axioms
So17T101, - .., OnTnPn : A1<i<n((0i = 7§ = pi) = (0i = Ti)) —
ai —> pi)
Ko1t1,...,0nTn  A1<i<n(0i = 7§ = 0j)
lo1,...,0n: A1<i<n(oi = 0i).
(b) Rules
(VAR [,X:oF X:o
TN - TN -
(— E) '+ M.a—;t I'"N:o
'"MN:1
(<*) '-"TM:o o<*rt

r-"(c—-1M:t

(i) CT is the set of all typed CL-terms.

Let us remark that the only terms of the shdge we allow are those generated by
the axioms. In contrast the terms of the shajM are used to represent applications
of the subsumption rule<*).

Definition 3.2 (Forgetful map) There is a trivial forgetful mapfrom preterms to
CL-terms defined as follows:

X = X

S| = S

Kl = K

n =1
loM] = [M]
IMo| = |M].

We can easily prove, by induction on derivations, the desired correspondence be-
tweenCT andTA.

Theorem 3.3 (CT is the typed version ofA)

(i) Let M be atyped CL-term. Than+" M : o impliesT" + |[M| : o.
(i) Let M be a CL-term. Their = M : o implies that there is a typed CL-term’M
suchthat" T M’ : o and|M’| = M.
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4 Relevantlogic correspondingto <*  Types of Definitior2.2lcan be considered as
logical formulas of a propositional language, such that the type variables,, and

v correspond to propositional variables, implication, conjunction, and disjunction,
respectively.

Definition 4.1 (The sefF of logical formulas) The st of logical formulas is in-
ductively defined by

1. propositional letters are formulas;
2. ABeF— (A— B),(AAB),(AvB)eF.

Clearly, we can identify the s@t of types with the seff of logical formulas. In this
approach, DefinitioR_4lhnd2 Zof <* can be viewed as a system allowing us to prove
theorems of the shap® <* B by using axioms 1—7 and rules 1 -4 as a set of axioms
and rules, respectively.

The logical system representing® will be showed to be a minimal relevant
logic, in which the usual contraction and weakening laws do not hold. Namely this
logic is the systenB™, defined in [[7] and Meyer and RoutleyIF], without the
“Church constant,” plus an axiom corresponding to axiom 7 of Defirlitiah

A similar correspondence has been prove@) petween the definition of
and the systenB* restricted to axioms and rules involving only implicational and
conjunctive formulas. In the present paper this result is extended to disjunctive for-
mulas. The logical meaning of axiom 7 is discussed in Refadik

Definition 4.2 (The minimal relevant logi®RL) RL is the logic on the language
defined by the following axioms and rules.

(a) Axioms

(al) A— A

(a2) AAB— A, AAB— B

(@3) A— AvB,B— AvB

@) (A-—BAA->C) - (A—BAC)

(@) (A-C)A(B—>C) — (AvB—0C)

(@a6) AA(BVC)—> (AABYV(AAC)

@7) (A—- BvC)— (A— B)V (A— C)foranyA such that
P(A) is true, whereP is given in Definitior2Z] ~ (Harrop)

(b) Rules

ALA—~B —B (modus ponens)
A, B — AAB (adjunction)
A— B = B—-C)—-A->C (suffixing)
B—C — (A—->B)—>A->C (prefixing).

Th(RL) will denote the set of theorems BL. For exampleA — AA A, AV A—
A € Th(RL). These theorems can be proved frg/ — A) A (A — A)—which
belongs tarh(RL) by axiom(al) and rule(adjunction—by using axiomga4) and
(ab), respectively. Itis easy to verify that, if we era@®) from the definition oRL,
we obtain theB* logic, without the “Church constant.” A property corresponding to
the Extended Disjunction Property of Harrop formulas (B&§) jholds in BT, that is
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“for any formula A such thatP(A), if A— BV Cis provable then eitheA — B or
A — Cisprovable”. Analogously, the extended disjunction property is an admissible
rule, but not a derived rule, in intuitionistic logic.

Let RL, denote the restriction oRL to formulas which do not contaix.
Th(RL ) will denote the set of its theorems. We want to prove that the logical connec-
tives of implication, conjunction, and disjunctionRE are the type constructors,

A, andv, when the<*-relation is mapped into the minimal relevant implication. In
order to do this we extend the equivalence which has been pro&dlirdtweerTA ,
andRL, and we use the correspondence betwRemandRL . proved in Lemm&L4]

Theorem 4.3 (Equivalence between , andRL, [20])
A<,B A— BeTh(RL,).

Notice that, by reading types as formulas, the mappinigecomes a way of associ-
ating to each formula iRL a st of formulas inRL ..

Lemma 4.4 (Relation betweeRL, andRL) If A € Th(RL), then3A" € m(A)
such that Ac Th(RL,).

Proof: By induction on a proof ofA.
First step: Notice that all axioms oRL are of the shap8 — C whereB <* C.
Then by Lemm&.16 VB € m(B) 3C’ € m(C) such that8’ <, C’, which implies
B’ — C’ € Th(RL,) by Theorenf 3]
Induction step:The only interesting case is when the last applied rule is modus
ponens:
B,B—~C=—C.

Letm(B) = {Bu, ..., By}. By the induction hypothesi3k (1 < k < n) such that
Bx € Th(RL,) andaD € m(B — C) such thatD € Th(RL,). By definition D =
A1<i<n(Bi = Gj), for someC; € m(C). Then the result follows by modus ponens
from By and By — Ci. O

Corollary45 If A— B e Th(RL) thenvA; e m(A)IB e m(B) A — Bj e
Th(RL,).

Proof: By Lemmd4.4lthere existdD € m(A — B) such thatD € Th(RL,). Let
m(A) = {Aq, ..., An}. ThenD is of the formA;<j<n(A — Bi), for someB;
m(B), and the thesis follows easily. O

Theorem 4.6 (Relation betweer* andRL)

A<*B<<= A— Be Th(RL).

Proof: (=) Straightforward by induction on the definition ef*, using the ex-
tended disjunction property.

(<) Letm(A) = {Aq, ..., Ay}. If A= B e Th(RL), then, by Corollar{4.5]
VA € m(A) 3B, e m(B) such thatA; — B; € Th(RT ), thatis,Vi(1<i<n) A <A
Bi by Theorent.3] Then by rule 2vi<j<nA < Vi<i<nBi, SO we an conclude
A <* Bsincevi<i<nA ~* Aandvi<j<nBi <* B. O
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Let us notice the absence of the theor&m> B — A A B as well as the absence of
the exportation law

(exp (AAB—-C)—- A—->B—->C
in RL. On the other hand, the following formula
(A-B—-C)—-> AAB—> AAB—>C

is a theorem oRL. This will allow the converse formula of (exp), that is, the impor-
tation law, to be provable in the logical system (presented in the next section) whose
derivations will parallel typed CL-terms.

The disjunction is the dual notion of the relevant conjunction. So the axiom
for the elimination of disjunction isA — C) A (B — C) — Av B — C, which
is not equivalent to the intuitionistic axiom for the disjunction elimination, that is,
(A->-C) - (B—-C)— (AvB— C).

5 Typed CL-termsaslogical proofs Now we shall present a logical system whose
deductions correspond, in a Curry-Howard isomorphism, to the typed CL-terms of
Definition[3.1] This logic contains a Hilbert-style version of the implicative fragment
of the intuitionistic propositional logic. Moreover, conjunctive and disjunctive for-
mulas are derived by means of the following features.

() The standard notion of axiom-schemes is extended to include as axioms not
only any instance but also any conjunction of instances of the axiom scheme.

(i) A Relevant Modus Ponens is added as an inference rule, using theorems of the
relevant logicRL as major premises.

Definition 5.1 (The logicL) Let [D]* denote a conjunction of instancesdf that
is, anyD1 A --- A Dp(n > 1) such that eaclp; is an instance oD (1 <i <n). Fis
the language of propositional formulas involviag, A, andv as connectivesL is
the logic on the languade, given by the following axioms and rules

(a) Axioms

[[A—-B—-C)— (A—> B)—> A— CJ*
[A— B— A"
[A— A"

(b) Rules

MP (Modus Ponens) A— B A— B
RMP (Relevant Modus PonensA — B € Th(RL), A= B.

A will denote a set of assumptions. We will write - A if and only if there is a
deduction ofA from A.

Our main result is that typed CL-terms codiy-derivations. Let us keep on
reading types as formulas, &d -derivability may be viewed as derivability of for-
mulas for CL-terms.



266 DEZANI-CIANCAGLINI, GHILEZAN, and VENNERI

Theorem 5.2 (Curry-Howard isomorphism)
AF-Ae=TF" M: A for some Me CT,
where Be A if and only if x: B € " for some variable x.
Proof: By induction on the deductions. The proof is trivial by associating:

(i) the typed atomic combinators with axiomslof
(ii) the rule (— E) with the inference rulP,
(i) the rule (<*) with the inference rul&®MP, taking into account thaf <* B if
and only if A— B e Th(RL), by Theorent.6] O

Example 5.3 (Contraction law) +-(A— A— B) — A— B. A proof of the pre-
vious theorem is codified by the typed CL-tetiN, whereM = (S(A— A— B)

(A— A)(A— B))(SAAB), andN = (K(A— A)(A— A— B))(IA). Moreover,
by using the contraction law and the theoréd— B— C) - AAB— AAB—

C, one proves

F- (A B—-C)— AAB—>C (importation law)
and

<) F- (A B)A(C— B)— AvC— B (disjunction elimination).

A proof of (¢) is codified by the typed CL-ter®(I(A — B) A (C — B)), where
D=(A—B)A(C—>B)— (A—>B)A(C— B)) > (A= B)A(C— B) >
Av C — Bis atheorem oRL.
Let us consider the subsystdm defined from Definitiof5. by considering the lan-
guage of implicational conjunctive formulas, and by replacifgRL ) to Th(RL)
in theRMP-rule. In 20], L, has been proved to be a logical system corresponding
to the intersection type inference. Then the following corollary characterizes deriv-
ability in L by means of derivability in. .. Roughly speaking, it says that any proof
D of a theorem inL can be transformed into a pro@f* of an equivalent formula
(modulo~*) such that®* is built up of a proof inL, plus one application of rule
(=").
Corollary 5.4

(i) " M: A+ A,

(i) F- A= 3B suchthat B<* Aand" B,where B is an implicational con-

junctive formula.

Proof:

() Lemma 4.8 in[pQ].
(i) Let m(A) = {Aq, ..., A}, then byZI5IA ~* Aj v -V A,

FLA = +FTM:A for some typed CL-ternM by[5.2]
= F|M|: A by B3(i) andZ-3qii)
= F"|M]|: Ajforsomej<n by
&= kA from point (i),

S0 we can choosB = A,. O
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Remark 5.5 (L versus intuitionistic and Dummet'’s logic) It is interesting to look
at the systeni just from the logical point of view, thus comparing it with the intu-
itionistic and Dummet’s logicdl[0]. To this end let us defink as in Definitior5.1]
but erasing the relevant modus ponens, while adding all theoreRisad axioms for
simplicity. This is clearly an equivalent formulation, sincéif> B € Th(RL), then
we can deducet A— BbyRMPfrom (A— A) - A— Be Th(RL) (prefixing)
and the axiomA — A.

As far as implicational-conjunctive formulas are concerriedturns out to be
a subsystem of intuitionistic logic, since the intersection is a “relevant” restriction
of intuitionistic conjuction as proved if2[]. The handling of disjunction is more
difficult, since all axioms oRL are intuitionistic theorems, but the Harrop axiom (a7)
is not so.

The logic known as Dummet’s logid L) can be defined by adding to the intu-
itionistic axiomatization the axiom scheme

(D-AX) (A—-BvC) - (A— B V(A= C).

(D-Ax)isvalidinL only whenAis a Harrop formula, and itis not valid in intuitionis-
tic logic. In DL one gets two different results. The first one is that all the disjunctions
are pulled out from the inside of the formulas, by using b@hAX) and the law

(o) (AVvB—-C - (A—-0C)A(B— Q).

The second result is that the pure implicational fragment turns out to be also stronger
than intuitionistic logic. Namely, iDL one can prove the following theorem, which
is not intuitionistically valid.

(00) (A-B)—-C—-(B— A —>C)—C.

Thus a question arises about the Harrop-Axionh givhich looks very similar toD-
AX), except for restricting the validity of the axiom to the case in wihAdk a Harrop
formula: By adding the (Harrop) axiom, do we getlirthe same effect as in Dum-
met’s logic?

The answer is positive with respect to the first result (the elimination of disjunc-
tion inside formulas shown by the mappimg and negative with respect to the second
one (the extension of intuitionistic implication). This last result shows the “construc-
tive” meaning of the union-type constructor.

Let us notice that i both the restricted shape of the (Harrop) axiom versus the
(D-AX) and the lack of the exportation lagh A B — C) -~ (A— B — C) avoidto
prove the above formuléo). On the other hand, Corollafy.4ii) and the fact that
L is a subsystem of the implicational conjunctive intuitionistic logic mean that any
disjunctive formula provable i must be considered equivalent to an intuitionistic
theorem. Namely, the last one is provable from some implicational conjunctive the-
orem by using essentially only theintroduction rule. Let us consider, for example,
the Harrop formula:

(A—-BvlO) - (A— B) Vv (A— O),

which is a theorem itself in the case in whiéhis a propositional variable. lh it is
proved to be equivalent to an intuitionistic disjunction of implicational conjunctive
formulas in the following way:
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(A—-BvO - (A—-BVA— 0O

’\/*

(A-BVA-C—-A—-BVA-0 by (Harrop)
(A->B)—- (A—->BVA->CHOA(A—=C) —

(A—- B VA= Q) by (o)
((A>B)—-A—->BV({(A—>B) —> A—>0)A

(A C)->A—->BVH(A—-0C—=A—->0) by (Harrop)
(A B >A—>BA(A—-C) - A—->0C) V... by distributivity

where((A— B) - A— B) A ((A— C) — A— C) is an intuitionistic theorem.
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