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Abstract The aim of this paper is to investigate a Curry-Howard interpre-
tation of the intersection and union type inference system for Combinatory
Logic. Types are interpreted as formulas of a Hilbert-style logicL, which turns
out to be an extension of the intuitionistic logic with respect to provable dis-
junctive formulas (because of new equivalence relations on formulas), while
the implicational-conjunctive fragment ofL is still a fragment of intuitionistic
logic. Moreover, typable terms are translated in a typed version, so that∨-∧-
typed combinatory logic terms are proved to completely codify the associated
logical proofs.

1 Introduction In the last few years typing has become a crucial aspect in func-
tional programming languages design, as a way of incorporating in the language it-
self the logic of program properties. This perspective gives an important role to the
“Curry-Howard isomorphism,” which provides a constructive explanation of type
disciplines, by the analogies “types as logical formulas” and “terms as constructive
proofs.” In this approach the implicational fragment of propositional intuitionistic
logic is related, in a natural way, to the basic functional type theory of Curry and
Feys [8], whose only type constructor is the arrow for building functional types.
Roughly speaking, inhabited arrow-types are interpreted as implicational theorems,
since the axioms for implication become the types of atomic combinators, and modus
ponens corresponds to well-typed application of terms.

Intersection types were introduced in Coppo, Dezani-Ciancaglini, and Ven-
neri [6] as ageneralization of Curry’s basic system, mainly with the aim of describing
the functional behavior of all terminating programs. In the intersection type discipline
the usual→-based type language is extended by adding a new connective ‘∧’ for the
intersection of two types. With suitable axioms and rules assigning types to terms,
the obtained system enjoys the following main properties.
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(i) The set of types given to a term is invariant with respect to reduction (namely,
β-reduction forλ-calculus and weak-reduction for combinatory logic).

(ii) The set of all strongly normalizing terms can be characterized very neatly by
the types of their members.

Union types were first introduced in MacQueen, Plotkin, and Sethi [16], where the
properties of the formal system were not investigated, but only a brief discussion
of their use to argue about thetypes as idealssemantics was given. Their interest
in computing is discussed for example in Jensen [14], and Coppo and Ferrari [7].
The intersection and union type inference system forλ-calculus is defined and stud-
ied in Barbanera and Dezani-Ciancaglini [3] and Barbanera, Dezani-Ciancaglini, and
de’Liguoro [4].

The present paper concerns a systemTA∧∨ for assigning both intersection and
union types to terms of combinatory logic. The most obvious extension of implica-
tional propositional calculus with intuitionistic conjuction and disjunction is the natu-
ral candidate for a logical mapping ofTA∧∨. Unfortunately, intersection does not cor-
respond to conjunction as already noted in Hindley [12]; a simple counterexample is
the intuitionistic theoremA → B → A∧ B which cannot be deduced for any combi-
nator. Similarly, union∨ does not correspond to disjunction; a simple counterexam-
ple is given by the intuitionistic theorem(A → B) → (C → B) → A∨ C → B. All
these are consequences of the fact that→ is not the right adjoint of∧. Instead, there is
some “duality” between intersection and union since the formula(A → B) ∧ (C →
B) → A∨ C → B is a type for the identity combinator.

The crucial point in defining a logical mapping for this type discipline is the rules
for introducing intersection and for eliminating union, that is,

(∧I ) � �∧∨ M : σ � �∧∨ M : τ

� �∧∨ M : σ ∧ τ

(∨E) �, x : σ �∧∨ M : ρ �, x : τ �∧∨ M : ρ � �∧∨ N : σ ∨ τ

� �∧∨ M[N/x] : ρ

which look far from the standard shape of logical rules. In fact if terms are to be iden-
tified with proofs, then(∧I ) says that a proof of a conjunctive formula requires the
sameproof in deriving both the conjuncts, that is, a stronger request than their sim-
ple provability. Analogously, rule(∨E) says that a proof of the formulaA can be
obtained fromB ∨ C only provided that thesameproof of A can be obtained both
from B and fromC. In other words, rules(∧I ) and(∨E) are constrained by a global
condition of applicability involving properties of the whole subderivations.

Our goal is to set out a logical system matchingTA∧∨ such that the intersec-
tion and union type constructors are interpreted as propositional connectives and then
their derivability is completely represented by derivability in a logical Hilbert-style
axiomatizationL. We will do that using essentially the results of Venneri [20], [3],
and [4]. In [20] a new formulation of the intersection type inference for combinatory
logic is presented, which is equivalent to the original version of the system of Dezani-
Ciancaglini and Hindley [9], while the intersection operator is no longer dealt with
as a proof-functional connective. As a consequence a Hilbert-style axiomatization is
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obtained in such a way that inhabited intersection types are all and only the provable
formulas in the logical system there defined.

In the present paper we will succeed in modeling such a logical system for the
union constructor as well, by mapping each type into a finite set of types without
unions and each deduction inTA∧∨ into a set of deductions in the intersection type
assignment system. As a consequence, a typed version of combinatory logic with
union and intersection types is presented, such that all typed combinators are viewed
as proofs in the logical axiomatizationL and vice versa.

Let us remark that an important component of the systemTA∧∨ is the inclusion
(≤) relation between types, which is justified by interpreting→ as a function space
constructor,∧ as intersection, and∨ as union between types. This ordering relation
will be totally mapped into axioms and rules of the Minimal Relevant LogicB+ as
defined in Meyer and Routley [17], plus one clause corresponding to the Extended
Disjunction Property (Harrop [11]). The logical axiomatization isomorphic toTA∧∨
will be defined as the pure implicational calculus, increased by the fact that all theo-
rems of the above relevant logic are assumed and used as major premises of modus
ponens.

The results of the present paper lead to the main conclusion that the∧ and∨ type
constructors are essentially interpreted as the conjunction and disjunction of a rele-
vant logic, respectively. In other words, proof-theoretic conditions of applicability in
∧-introduction and∨-elimination are logically translated by requirements ofrelevant
dependencies between the assumptions and the conclusion of a proof.

In order to obtain these results, the original version of the∧-∨-type inference
will be mapped into progressively more restricted systems, in the sense that proof
functional rules are eliminated and they are replaced by equivalent logical rules. To
help the reader progress along this tortuous path, we provide the following Table 1
listing the notations and definitions of the various systems.

System Name Derivability Axioms and Rules Definition

TA∧∨ �∧∨ S,K, I, (VAR), (→ E),(∧I ),(∨E),(≤) 2.5
TA∗∧∨ �∗ S,K, I, (VAR), (→ E),(∧I ),(∨E),(≤∗) 2.9
TA∧ �∧ S,K, I, (VAR), (→ E), (∧I ), (≤∧) 2.10
TA# �# S#,K#, I#, (VAR), (→ E), (≤∧) 2.26
TA � S#,K#, I#, (VAR), (→ E), (≤∗) 2.29

Table 1.

Lastly, we want to point out that our approach is in the framework of Curry-Howard
isomorphism and so it is completely different from that of Lopez-Escobar [15],
Mintz [19], Alessi and Barbanera [2], and Barbanera and Martini [5]. In fact the au-
thors of those papers investigated the intersection as a proof-theoretic operator, in the
context of “untyped terms as realizers of logical formulas.”

2 Intersection and union types for combinatory logic For the main definitions and
notions in combinatory logic we refer to Hindley and Seldin [13], chapter 2. Let us
recall some basic notions in order to fix the notations.
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Definition 2.1 (Combinatory logic) Assume that an infinite set of variables and the
basic combinatorsS, K, andI are given. The setC of CL-terms is built from variables
andS, K, I by application. Anatomis a variable or a basic combinator, acombina-
tor is a CL-term without variables. Each atomic combinator is assumed to have an
axiom-scheme for reduction:

S fgx→ f x(gx) (composition)
Kxy→ x (formation of constant function)
Ix → x (identity).

Weak reduction(→) of CL-terms is defined as usual.
Let us recall also the followingabstraction algorithmwhich is defined in [8]

section 6A:

λ∗x.x ≡ I
λ∗x.M ≡ K M if x �∈ FV(M)

λ∗x.Ux ≡ U if x �∈ FV(U)

λ∗x.UV ≡ S(λ∗x.U)(λ∗x.V) otherwise.

2.1 Type inference Weconsider the set of types built out of an infinite set of type
variables by the function space (‘→’), intersection (‘∧’), and union (‘∨’) type con-
structors.

Definition 2.2 (Intersection and union types) The setT of intersection and union
types is inductively defined by:

1. α, β, γ, δ, . . . ∈ T (type variables);
2. σ, τ ∈ T =⇒ (σ → τ), (σ ∧ τ), (σ ∨ τ) ∈ T.

Notation 2.3 Weomit parentheses assuming that:

1. → associates to the right;
2. ∧ and∨ have precedence over→.

∧
i∈I σi and

∨
i∈I σi , where I = {i1, . . . , in}, are shorts forσi1 ∧ · · · ∧ σin andσi1 ∨

· · · ∨ σin, respectively.

A preorderrelation on types naturally arises if→ is regarded as the function space
constructor, while∧ and∨ are regarded as intersection and union on sets, respec-
tively.

Definition 2.4 (Preorder≤ on T)

(i) Thepreorder≤ on T is inductively defined by the following axioms and rules:

(a) Axioms

1. σ ≤ σ ∧ σ, σ ∨ σ ≤ σ

2. σ ∧ τ ≤ σ, σ ∧ τ ≤ τ

3. σ ≤ σ ∨ τ, τ ≤ σ ∨ τ

4. (σ → ρ) ∧ (σ → τ) ≤ σ → ρ ∧ τ

5. (σ → ρ) ∧ (τ → ρ) ≤ σ ∨ τ → ρ

6. σ ∧ (τ ∨ ρ) ≤ (σ ∧ τ) ∨ (σ ∧ ρ)
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(b) Rules

1. σ ≤ σ′, τ ≤ τ′ =⇒ σ ∧ τ ≤ σ′ ∧ τ′

2. σ ≤ σ′, τ ≤ τ′ =⇒ σ ∨ τ ≤ σ′ ∨ τ′

3. σ ≤ σ′, τ ≤ τ′ =⇒ σ′ → τ ≤ σ → τ′

4. σ ≤ τ, τ ≤ ρ =⇒ σ ≤ ρ.

(ii) The relation of equivalence∼ on T is defined in the following way:

σ ∼ τ if and only if σ ≤ τ and τ ≤ σ.

Many interesting equivalence relations on types are provable: reflexivity of∼, com-
mutativity and associativity of∧ and∨. Wemention here also that

(∗) (σ → ρ) ∧ (τ → ρ) ∼ σ ∨ τ → ρ

(∗∗) σ ∧ (τ ∨ ρ) ∼ (σ ∧ τ) ∨ (σ ∧ ρ),

since these relations will be used in the following. (∗) holds by axiom 5 in one di-
rection, and by axioms 1 and 3, and rules 1, 3, and 4 in the other one. (∗∗) holds by
axiom 6 in one direction, and by axioms 1 and 2 and rules 1, 2, and 4 in the other one.
The following expressions link the notions of types and terms.

1. A statementis an expression of the formM : σ, whereM is a term (subject)
andσ is a type (predicate).

2. An assumptionis a statement whose subject is a term variable.
3. A basisis a set of assumptions with distinct term variables.

If � is a basis, thenFV(�) will denote the set of term variables which are subjects
of some assumption in�. Given a basis� such thatx �∈ FV(�), the basis� ∪ {x : σ}
will be denoted by�, x : σ. Now we introduce a type inference system, as a set of
axioms and rules deriving intersection and union types for untyped CL-terms.

Definition 2.5 (The type assignment systemTA∧∨) A statementM : σ is derivable
from a basis�, notation� �∧∨ M : σ, if � �∧∨ M : σ can be proved using the fol-
lowing axioms and inference rules.

(a) Axioms

1. S:[(α → β → γ) → (α → β) → α → γ],

2. K:[α → β → α],

3. I:[α → α],

where [σ] denotes any instance ofσ, that is, any type obtained by substituting
types for type variables inσ.

(b) Rules

(VAR) �, x : σ �∧∨ x : σ

(→ E) � �∧∨ M : σ → τ � �∧∨ N : σ

� �∧∨ MN : τ
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(∧I ) � �∧∨ M : σ � �∧∨ M : τ

� �∧∨ M : σ ∧ τ

(∨E)
�, x : σ �∧∨ M : ρ �, x : τ �∧∨ M : ρ � �∧∨ N : σ ∨ τ

� �∧∨ M[N/x] : ρ

(≤)
� �∧∨ M : σ σ ≤ τ

� �∧∨ M : τ

For example,�∧∨ SII : (α ∧ (α → β) → β)∨ δ. Clearly, if� �∧∨ M : σ and�′ ⊇ �,
then�′ �∧∨ M : σ. The rules

(∧E) � �∧∨ M : σ ∧ τ

� �∧∨ M : σ

� �∧∨ M : σ ∧ τ

� �∧∨ M : τ

and

(∨I ) � �∧∨ M : σ

� �∧∨ M : σ ∨ τ

� �∧∨ M : τ

� �∧∨ M : σ ∨ τ

are derivable inTA∧∨, as particular cases of rule(≤). Moreover, it is easy to check
that the following rules are admissible:

(≤ L)
�, x : σ �∧∨ M : τ ρ ≤ σ

�, x : ρ �∧∨ M : τ

(∨I L)
�, x : σ �∧∨ M : ρ �, x : τ �∧∨ M : ρ

�, x : σ ∨ τ �∧∨ M : ρ

The admissibility of rule(≤ L) is an immediate consequence of using rule(≤) on
premises. For rule(∨I L) notice that its assumptions imply�, y : σ �∧∨ M[y/x] : ρ

and�, y : τ �∧∨ M[y/x] : ρ, wherey does not occur in� andM, since derivations
are independent from the names of free term variables. So the following deduction
shows the admissibility of(∨I L):

(∨E)

�, x : σ ∨ τ, y : σ �∧∨ M[y/x] : ρ

�, x : σ ∨ τ, y : τ �∧∨ M[y/x] : ρ �, x : σ ∨ τ �∧∨ x : σ ∨ τ

�, x : σ ∨ τ �∧∨ M : ρ

The aim of this paper, as mentioned in the introduction, is to investigate the logical
characterization of the systemTA∧∨ by means of the Curry-Howard approach.

Intersection and union considered as type forming operators look like the propo-
sitional connectivesconjunctionanddisjunction, respectively. However in [12] it is
shown that intersection on types does not correspond to (product) types, that is, to
propositional conjunction. After a brief look at the type inference system one can
notice immediately that in order to assign an intersection type, sayσ ∧ τ , to aterm
M from a basis� it is necessary to assign separately both typesσ andτ to the term
M from the same basis�. Thus the termM in the conclusion is the same term in
both premises. This is a point where the Curry-Howard isomorphism is lost, since
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the term remains the same, although the inference (deduction) grows, that is, terms
are not encoding deductions anymore. Nevertheless an equivalent type inference sys-
tem for the restriction ofTA∧∨ to the intersection types is conceived in [20], together
with the Hilbert-style logical system which corresponds to it by the Curry-Howard
isomorphism. The main idea in [20] is to avoid rule(∧I ) replacing it by “structural”
inference rules.

If we analyze the union types in the same framework, we notice that a similar
difficulty arises in the case of rule(∨E), since the termM has to be the same in both
premises. So our aim is to consider a system containing both intersection and union
types as defined above and then to show that rule(∨E) can be avoided too, still as-
signing the same types to the same combinators.

First, let us discuss the consequences of leaving out rule(∨E). In [4] i t isshown
that the type inference systemTA∧∨ is closed under parallelβ-reduction, that is, types
are preserved under parallelβ-reduction. The following example shows that this
property is lost by leaving out rule(∨E).

Example 2.6 Let� = {x : (σ → σ → ρ)∧ (τ → τ → ρ), y : ϕ → σ ∨ τ, z : ϕ}.
Wehave the following derivation inTA∧∨

(∨E)
�, t : σ �∧∨ xtt : ρ �, t : τ �∧∨ xtt : ρ � �∧∨ yz : σ ∨ τ

� �∧∨ x(yz)(yz) : ρ

Weobtain the following derivation without rule(∨E), from the same basis� by set-
ting

I : (σ → σ) ∧ (τ → τ), and

S : ((σ → σ → ρ) → (σ → σ) → σ → ρ)∧ ((τ → τ → ρ) → (τ → τ) → τ → ρ),

(→ E)

� �∧∨ SxI : (σ → ρ) ∧ (τ → ρ)

� �∧∨ SxI : σ ∨ τ → ρ
(≤)

� �∧∨ yz : σ ∨ τ

� �∧∨ SxI(yz) : ρ

However,x(yz)(yz) is the normal form ofSxI(yz). Without rule(∨E) it is not pos-
sible to derive� �∧∨ x(yz)(yz) : ρ. This shows that types are not preserved under
any notion of reduction. Thus we obtain the same type inhabited, but for an expanded
term.

2.2 How to avoid the (∨E) rule It is shown in [4] that the type inference system
TA∧∨ is not closed under weak reduction. However, a union type inference system
is introduced in [3], which is shown to be closed under weak reduction. This system
is characterized by a new preorder on types, denoted by≤∗, defined as an extension
of the preorder≤ which is given in Definition2.4. ≤∗ uses the predicateP : T →
{ true, f alse}, which is essentially a syntactical constraint such thatP is true for a
typeτ if ∨ occurs inτ only in the left arguments of some arrows.

Definition 2.7 (Preorder relation≤∗ on T)

(i) The predicateP : T → {true, f alse} is defined by induction on types as fol-
lows:
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P(α) = true
P(σ → τ) = P(τ)

P(σ ∧ τ) = P(σ) and P(τ) (Hereand is the usual logical conjunction.)
P(σ ∨ τ) = false.

(ii) The preorder relation≤∗ on T is inductively defined by adding to the axioms
and the rules of Definition2.4the following axiom.

7. σ → ρ ∨ τ ≤∗ (σ → ρ) ∨ (σ → τ) for anyσ such thatP(σ) is true.

(iii) σ ∼∗ τ if and only if σ ≤∗ τ andτ ≤∗ σ.

Notice that we can prove the following equivalence relation:

(∗ ∗ ∗) σ → ρ ∨ τ ∼∗ (σ → ρ) ∨ (σ → τ)

for anyσ such thatP(σ) is true. (∗ ∗ ∗) holds by axiom 7 in one direction, and by
axioms 1 and 3 and rules 2, 3, and 4 in the other one. Using (∗), (∗∗), and (∗ ∗ ∗),
we can rewrite any typeσ as an equivalent typeσ1 ∨ · · · ∨ σn (n > 0), such that each
σi does not contain the union type operator. Namely, a very simple procedure can be
devised to pull out all union types from the inside ofσ. In fact by(∗) we can eliminate
union types on the left side of arrows. By(∗∗) we can pull unions out of intersections.
Lastly by(∗∗∗) we pull out unions which occur in the right arguments of arrows. For
example, we have

(α → µ ∨ ν) → ϕ ∼∗ ((α → µ) → ϕ) ∧ ((α → ν) → ϕ).

In fact,
(α → µ ∨ ν) → ϕ ∼∗ (α → µ) ∨ (α → ν) → ϕ

by (∗ ∗ ∗) and

(α → µ) ∨ (α → ν) → ϕ ∼∗ ((α → µ) → ϕ) ∧ ((α → ν) → ϕ)

by (∗). The mappingm of Definition 2.13will show this property in a formal way,
by associating to each typeσ a set of typesm(σ) = {σ1, . . . , σn}, such thatσ ∼∗ σ1 ∨
· · · ∨ σn and noσi contains∨.

Remark 2.8 In the definition of≤∗, the additional axiom 7 does not naturally arise
from the interpretation of→ as function space constructor. However, if types are
interpreted as subsets of Scott domains which can model the lambda calculus, then
“ P(σ) is true” implies that the interpretation ofσ has a least element; whenP(σ)

is false, either the interpretation ofσ does not have a least element, or there exists
a τ such thatσ ∼∗ τ and P(τ) is true. There is an obvious relation between the
presentP and the predicateC as defined in Abramsky [1], that is, P(σ) = true im-
plies C(σ) = true andC(σ) = true implies that there is aτ such thatσ ∼∗ τ and
P(τ) = true. Actually in [1] types are interpreted ascompact-opensubsets and the
conditionC means “to be acoprime.”

Definition 2.9 (The type assignment systemTA∗∧∨) The type inference systemTA∗∧∨
is defined by the axioms and rules of Definition2.5, where rule(≤) is substituted by
rule (≤∗), obtained by replacing the preorder≤ by ≤∗. We write � �∗ M : σ for the
derivability in this system.
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This is the type inference system introduced and investigated in [4]. The derivabil-
ity in the subsystem of [16] restricted to the type constructors→, ∧, and∨ implies
derivability in the systemTA∗

∧∨.
Let TA∧ denote the system obtained fromTA∗

∧∨ by restricting types to intersec-
tion types only. In order to show thatTA∗

∧∨ is closed under weak reduction one has
to relate it toTA∧. Then the problem is shifted toTA∧, which is known to be closed
under weak reduction.

Definition 2.10 (The type assignment systemTA∧)

(i) T∧ is the set ofintersection typesbuilt out of type variables using only the type
constructors→ and∧.

(ii) The preorder≤∧ is the relation defined by restricting all axioms and rules in
Definition2.4to types inT∧.

(iii) The systemTA∧ is the subsystem ofTA∗
∧∨ where only types fromT∧ are used.

Wewrite � �∧ M : σ for the derivability in this system.

Namely, inTA∧, rule (∨E) is not included and in rule(≤∗) the preorder≤∗ is re-
placed by the preorder≤∧. Rule (≤∧) will denote this restriction of rule(≤∗). Theo-
rem2.20will show thatTA∗

∧∨ is conservative overTA∧. The systemTA∧ for deriving
intersection types for CL-terms has been formulated in [9], where the following prop-
erty is proved for a number of abstraction algorithms, including the one considered
in the present paper.

Lemma 2.11 ([9]) �, x : σ �∧ M : τ ⇐⇒ � �∧ λ∗x.M : σ → τ.

In order to associate to each type inT aset of intersection types (a subset ofT∧), we
can use some properties of types which are stated in [4]. The mapping of intersection
and union type derivability into intersection type derivability, stated in the following
Theorem2.20, means that rule(∨E) can be avoided in type derivations by essentially
using rule(≤∗). We shall obtain, as a main result, that any derivation inTA∗

∧∨ is
associated to a set of derivations inTA∧.

First we define a mappingm between types with→,∨, and∧, and sets of types
without∨. This mapping is extended to bases in a natural way.

Notation 2.12 �( I1, . . . , In, J) is the finite set of all functions fromI1 × · · · × In

to J, whereI1, . . . , In, J range over finite sets of indexes.

Definition 2.13 (Mapping betweenT andT∧)

(i) The mappingm : T → P (T∧) is inductively defined by

m(α) = {α}
m(ρ → τ) = {∧i∈I (ρi → τχ(i )) | χ ∈ �( I, J)}
m(ρ ∧ τ) = {ρi ∧ τ j | i ∈ I, j ∈ J}
m(ρ ∨ τ) = m(ρ) ∪ m(τ),

under the assumptionsm(ρ) = {ρi | i ∈ I } andm(τ) = {τ j | j ∈ J}.
(ii) If � is a basis, thenB(�) is the set of bases defined by

B(�) = {�′ | FV(�) = FV(�′) and

x : σ ∈ � =⇒ ∃σ′ ∈ m(σ) such that x : σ′ ∈ �′}.
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A way of rephrasing2.13(ii) is: if x : σ is a statement in�, then each�′ in B(�) will
contain one statementx : σ′ for someσ′ ∈ m(σ) (and vice versa). Notice that only
types without∨ occur in the bases belonging toB(�).

Example 2.14 If σ ≡ α1 ∨ α2 → β1 ∨ β2, and2 = {1,2}, then we have

m(α1 ∨ α2) = {α1, α2}
m(β1 ∨ β2) = {β1, β2}
m(σ) = {∧1≤ i ≤2(αi → βχ(i )) | χ ∈ �(2, 2)}

= {(α1 → β1) ∧ (α1 → β2) ∧ (α2 → β1) ∧ (α2 → β2)}.
If � = {x : α1 ∨ α2, y : β1 ∨ β2}, thenB(�) contains exactly the following four bases:

�1 = {x : α1, y : β1}
�2 = {x : α1, y : β2}
�3 = {x : α2, y : β1}
�4 = {x : α2, y : β2}.

Lemma 2.15 For all σ ∈ T, if m(σ) = {σ1, . . . , σn}, thenσ ∼∗ σ1 ∨ · · · ∨ σn.

Proof: By induction onσ. All cases follow easily from Definition2.13(i) except
σ ≡ ρ → τ. Let m(ρ) = {ρi | i ∈ I } andm(τ) = {τ j | j ∈ J}, thenm(σ) =
{∧i∈I (ρi → τχ(i )) | χ ∈ �( I, J)}. By induction we haveρ ∼∗ ∨i∈I ρi . This implies
σ ∼∗ ∨i∈I ρi → τ. By iterated applications of the equivalence(∗) to ∨i∈I ρi → τ we
can derive

σ ∼∗ ∧i∈I (ρi → τ) (1)

Again by inductionτ ∼∗ ∨ j∈Jτ j . It is easy to verify thatP(µ) is true for all types
µ ∈ T∧, so in particular we haveP(ρi ) true for all i ∈ I . By iterated applications of
the equivalence(∗ ∗ ∗) to ρi → ∨ j∈Jτ j we can derive

ρi → ∨ j∈Jτ j ∼∗ ∨ j∈J(ρi → τ j ) (2)

From (1) and (2) wehave

σ ∼∗ ∧i∈I ∨ j∈J (ρi → τ j ),

and by repeatedly applying the equivalence(∗∗) we conclude

σ ∼∗ ∨χ∈�( I,J) ∧i∈I (ρi → τχ(i )). �
The following property of the mappingm was stated and proved in Lemma 4.4 of [4].

Lemma 2.16 For all σ, τ ∈ T, σ ≤∗ τ if and only if for allσ′ ∈ m(σ) there isτ′ ∈
m(τ) such thatσ′ ≤∧ τ′.

Now we can prove the main result, that is, we can associate to each derivation inTA∗
∧∨

a set of derivations inTA∧, one for each basis inB(�), where� is the basis which
occurs in the conclusion of the current derivation. The same property has been proved
in [4] for λ-calculus instead of combinatory logic. Notice that the difference between
the present systems and those given in [4] isthe replacement of axiomsS, K, andI for
the standard rule of→-introduction. For this reason, we have to prove the property
for the axiomsS, K, andI only, while for rules we refer to the proof of Theorem 4.6
in [4].
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Lemma 2.17 If �∗ C : ζ is an axiom, then there isζ′ ∈ m(ζ) such that�∧ C : ζ′.

Proof: Wedistinguish the casesC ≡ S, K, or I.

Case 1 C≡ I: In this case, thenζ ≡ σ → σ. By Definition2.13(i) if m(σ) = {σi |
i ∈ I }, thenm(σ → σ) = {∧i∈I (σi → σχ(i )) | χ ∈ �( I, I )}. Let us chooseχ(i ) as the
identity, that is,χ(i ) = i, so thatζ′ ≡ ∧i∈I (σi → σi ) ∈ m(σ → σ). By axiomI, �∧ I :
σi → σi for all i ∈ I , sinceσi ∈ T∧ by construction. Therefore�∧ I : ∧i∈I (σi → σi )

by using(∧I ).

Case 2 C≡ K: In this case, thenζ ≡ σ → τ → σ. By Definition2.13(i) if m(σ) =
{σi | i ∈ I } andm(τ) = {τ j | j ∈ J}, thenm(σ → τ → σ) = {∧i∈I ∧ j∈J (σi → τ j →
σχ(i, j)) | χ ∈ �( I, J, I )}. Let us chooseχ(i, j) as the first projection, that is,χ(i, j) =
i, sothatζ′ ≡ ∧i∈I ∧ j∈J (σi → τ j → σi ) ∈ m(σ → τ → σ). By axiomK, �∧ K :
σi → τ j → σi for all i ∈ I and j ∈ J, sinceσi , τ j ∈ T∧ by construction. Therefore
�∧ K : ∧i∈I ∧ j∈J (σi → τ j → σi ) by using(∧I ).

Case 3 C≡ S: In this case, thenζ ≡ (σ → τ → ρ) → (σ → τ) → σ → ρ.
Let �(�( I, J, L),�( I, J), I, L) denote the finite set of functions from�( I, J, L) ×
�( I, J) × I to L. By Definition 2.13(i) if m(σ) = {σi | i ∈ I }, m(τ) = {τ j | j ∈
J}, andm(ρ) = {ρl | l ∈ L}, thenm((σ → τ → ρ) → (σ → τ) → σ → ρ) =
{∧χ1∈�( I,J,L) ∧χ2∈�( I,J) ∧i∈I [ϕ(χ1) → ψ(χ2) → σi → ρχ3(χ1,χ2,i )] | χ3 ∈
�(�( I, J, L),�( I, J), I, L)}, whereϕ(χ1) ≡ ∧i ′∈I ∧ j ′∈J (σi ′ → τ j ′ → ρχ1(i ′, j ′)), and
ψ(χ2) ≡ ∧i ′′∈I (σi ′′ → τχ2(i ′′)). Let us chooseχ3(χ1, χ2, i ) = χ1(i, χ2(i )), so that
ζ′ ≡ ∧χ1∈�( I,J,L) ∧χ2∈�( I,J) ∧i∈I [ϕ(χ1) → ψ(χ2) → σi → ρχ1(i,χ2(i ))] ∈ m(ζ).

By axiomS,�∧ S : (σi → τ j → ρl ) → (σi → τ j ) → σi → ρl for all i ∈ I , j ∈ J,
l ∈ L sinceσi , τ j , ρl ∈ T∧ by construction. Therefore�∧ S : ∧l∈L ∧ j∈J ∧i∈I [(σi →
τ j → ρl ) → (σi → τ j ) → σi → ρl ] by using(∧I ).

Now we conclude the proof by showing that

(♣) ∧l∈L ∧ j∈J ∧i∈I [(σi → τ j → ρl ) → (σi → τ j ) → σi → ρl ] ≤∧ ζ′,

that is,ζ′ can be assigned toS by using(≤∧). To this aim let us define the type

µ ≡ ∧χ1∈�( I,J,L) ∧χ2∈�( I,J) ∧i∈I [(σi → τχ2(i ) → ρχ1(i,χ2(i )))

→ (σi → τχ2(i )) → σi → ρχ1(i,χ2(i ))],

then we prove(♣) in two steps. First we show thatµ ≤∧ ζ′. Second, we verify that
∧l∈L ∧ j∈J ∧i∈I [(σi → τ j → ρl ) → (σi → τ j ) → σi → ρl ] ≡ µ. First notice that
∧i ′∈I ∧ j ′∈J (σi ′ → τ j ′ → ρχ1(i ′, j ′)) ≤∧ σi ′ → τ j ′ → ρχ1(i ′, j ′) for all i ′ ∈ I, j ′ ∈ J, so
in particular wheni ′ = i and j ′ = χ2(i ). Analogously∧i ′′∈I (σi ′′ → τχ2(i ′′)) ≤∧ σi ′′ →
τχ2(i ′′) for all i ′′ ∈ I , so in particular wheni ′′ = i. Thereforeµ ≤∧ ζ′ because of the
contravariance of the arrow in the definition of≤∧.

Second, let us replace∧χ2∈�( I,J) by ∧ j∈J in µ. This leavesµ unchanged, since
χ2(i ) is used only when the argumenti is fixed. So we can rewriteµ as follows.

∧χ1∈�( I,J,L) ∧ j∈J ∧i∈I [(σi → τ j → ρχ1(i, j)) → (σi → τ j ) → σi → ρχ1(i, j)].
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Analogously we can replace∧χ1∈�( I,J,L) by ∧l∈L in the last type. So we can rewrite
µ as follows:

∧l∈L ∧ j∈J ∧i∈I [(σi → τ j → ρl ) → (σi → τ j ) → σi → ρl ]. �

Example 2.18 If σ ≡ (α1 ∨ α2 → β → γ) → (α1 ∨ α2 → β) → α1 ∨ α2 → γ,
then

m(σ) = {(α1 → β → γ) ∧ (α2 → β → γ)→
(α1 → β) ∧ (α2 → β) → (α1 → γ) ∧ (α2 → γ)}.

Wehave�∗ S : σ, and also

�∧ S : (α1→β→γ)∧(α2→β→γ)→ (α1→β)∧(α2→β)→ (α1→γ)∧(α2→γ),

by axiom(S) and rule(≤∧).

Example 2.19 If σ ≡ (α → β → γ1 ∨ γ2) → (α → β) → α → γ1 ∨ γ2, then

m(σ) = {[(α → β → γ1) → (α → β) → α → γ1]∧
[(α → β → γ2) → (α → β) → α → γ1],
[(α → β → γ1) → (α → β) → α → γ1]∧
[(α → β → γ2) → (α → β) → α → γ2],
[(α → β → γ1) → (α → β) → α → γ2]∧
[(α → β → γ2) → (α → β) → α → γ1],
[(α → β → γ1) → (α → β) → α → γ2]∧
[(α → β → γ2) → (α → β) → α → γ2]}.

Wehave�∗ S : σ, and also

�∧ S : [(α→β→γ1)→ (α→β)→α→γ1]∧[(α→β→γ2)→ (α→β)→α→γ2],

by axiom(S) and rule(∧I ).

Theorem 2.20 (Relations betweenTA∗
∧∨ andTA∧)

� �∗ M : σ ⇐⇒ ∀�′ ∈ B(�) ∃σ′ ∈ m(σ).�′ �∧ M : σ′.

Proof: By induction on derivations. The first step is proved in Lemma2.17. For
the induction step, we can use the proof of Theorem 4.6 in [4]. �
Theorem2.20allows us to extend the most important properties of intersection type
disciplines to union types as well, in particular the invariance of types under weak
reduction of subjects.

Theorem 2.21 (Invariance of types under weak reduction)

(i) � �∧ M : σ and M→ N =⇒ � �∧ N : σ.

(ii) � �∗ M : σ and M→ N =⇒ � �∗ N : σ.

Proof:

(i) This property is the invariance of types under weak reduction proved in [9].
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(ii) Immediately from (i) and Theorem2.20. �

The meaning of Theorem2.20is that one associates to each deduction inTA∗
∧∨ afinite

set of deductions inTA∧, in aunique way, for the same CL-term, mainly by eliminat-
ing rule(∨E) and by replacing rule(≤∧) for rule (≤∗). It isworth pointing out that
axioms 5, 6, and 7 of the definition of the preorder≤∗ are significant for the existence
of the mappingm. Hence their importance for the type invariance ofTA∗

∧∨ is obvious.
Wecan also associate to each deduction inTA∗

∧∨ exactly one deduction inTA∧.
The price that must be paid is that of considering the abstractionλ∗ of the given CL-
term with respect to all variables which have union types as predicates in the current
basis. The remaining part of the present section is devoted to this proof.

The following lemma allows to eliminate the unions occurring in� by taking
advantage ofB(�).

Lemma 2.22

(i) If σi ∼∗ ∨ j∈Ji σ
( j)
i (1 ≤ i ≤ n), then

∧ j1∈J1 · · · ∧ jn∈Jn (σ
( j1)

1 → ·· · → σ
( jn)
n → τ) ∼∗ σ1 → ·· · → σn → τ.

(ii) Let B(�) = {�h}1≤ h≤m where�h = {xi : σ
(h)
i }1≤ i ≤n. If σi ∼∗ ∨1≤ h≤mσ

(h)
i ,

then

∧1≤ h≤m(σ
(h)
1 → ·· · → σ(h)

n → τ) ∼∗ σ1 → ·· · → σn → τ.

Proof:

(i) First notice that we have

(ρ → µ) ∧ (ρ → ν) ∼∗ (ρ → µ ∧ ν)

by axiom 4 in one direction, and by axioms 1 and 2 and rules 1, 3, and 4 in the
other one. This implies

∧ jn∈Jn (σ1 → ·· · → σn−1 → σ
( jn)
n → τ) ∼∗ σ1 → ·· · (3)

→ σn−1 → ∧ jn∈Jn(σ
( jn)
n → τ)

By iterated applications of equivalence (∗) to σn ∼∗ ∨ j∈Jnσ
( j)
n , wehave

∧ jn∈Jn (σ
( jn)
n → τ) ∼∗ σn → τ (4)

From (3) and (4) wederive:

∧ jn∈Jn(σ1 → ·· · → σn−1 → σ
( jn)
n → τ) ∼∗ σ1 → ·· · → σn−1 → σn → τ.

Analogously, by repeating this argument in turn toσn−1, . . . , σ1, weprove the
lemma.
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(ii) Notice that, by construction, ifm(σi ) = {σ( j)
i | j ∈ Ji}, then

∧ j1∈J1 · · · ∧ jn∈Jn (σ
( j1)

1 → ·· · → σ
( jn)
n → τ) ∼∗

∧1≤ h≤m(σ
(h)
1 → ·· · → σ(h)

n → τ)

for all τ. Therefore (i) implies

∧1≤ h≤m(σ
(h)
1 → ·· · → σ(h)

n → τ) ∼∗ σ1 → ·· · → σn → τ. �

Obviously, any basis� can be split into a basis�∧, containing the assumptions whose
predicates can be written without∨, and a basis�∨, containing all the predicates
which require the∨-operator.

Definition 2.23 For any basis�, let �∧ and�∨ denote the following related bases:

1. �∧ = {x : σ | x : σ ∈ � andm(σ) contains only one type}, and
2. �∨ = � − �∧.

Theorem 2.24 (Mapping ofTA∗
∧∨ into TA∧) Let � be a basis andB(�∨) =

{�h}1≤ h≤m where�h = {xi : σ
(h)
i }1≤ i ≤n. Then

� �∗ M : τ ⇐⇒ �∧ �∧ λ∗x1, . . . , xn.M : ∧1≤ h≤m(σ
(h)
1 → ·· · → σ(h)

n → τ(h))

for a suitableτ(h) ∈ m(τ).

Proof:

(=⇒) � �∗ M : τ

⇐⇒ ∀�h∃τ(h) ∈ m(τ). �∧ ∪ �h �∧ M : τ(h) (by Theorem2.20,
sinceB(�) = {�∧ ∪ �h}1≤ h≤m by construction)

⇐⇒ ∀�h∃τ(h) ∈ m(τ).

�∧ �∧ λ∗x1, . . . , xn.M : σ
(h)
1 → ·· · → σ

(h)
n → τ(h) (by Lemma2.11)

=⇒ �∧ �∧ λ∗x1, . . . , xn.M : ∧1≤ h≤m(σ
(h)
1 → ·· · → σ

(h)
n →

τ(h)) by the rule(∧I ).

(⇐=) Lemma2.22(ii) implies
∧1≤ h≤m(σ

(h)
1 → ·· · → σ

(h)
n → τ(h)) ≤∗ σ1 → ·· · → σn → τ,

recalling thatτ(h) ∈ m(τ) impliesτ(h) ≤∗ τ.

�∧ �∧ λ∗x1, . . . , xn.M : ∧1≤ h≤m(σ
(h)
1 → ·· · → σ

(h)
n → τ(h))

=⇒ �∧ �∗ λ∗x1, . . . , xn.M : σ1 → ·· · → σn → τ

(by above and rule(≤∗))
=⇒ � �∗ (λ∗x1, . . . , xn.M)x1, . . . , xn : τ

(by iterated applications of rule(→ E))
=⇒ � �∗ M : τ

by Theorem2.21(ii). �

Example 2.25 Let � = {x : (σ → σ → ρ) ∧ (τ → τ → ρ), y : σ ∨ τ}, then�∧ =
{x : (σ → σ → ρ) ∧ (τ → τ → ρ)} andB(�∨) = {�1, �2}, where�1 = {y : σ} and
�2 = {y : τ}. Wehave� �∗ xyy : ρ and�∧ �∧ λ∗y.xyy : (σ → ρ) ∧ (τ → ρ).
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2.3 How to avoid the (∧I ) rule Rule (∧I ) has to be eliminated as well as (∨E),
because of its proof-functional shape. This has already been done in [20], where a
new formulation of the systemTA∧ has been defined. This new formulation denoted
TA# here (andTA�

∧ in [20]) has been proved to be equivalent to the original system
while avoiding rule (∧I ). The systemTA# can be defined from the systemTA∧ by

(i) replacing in the axioms “one instance” by “any finite intersection of instances,”
(ii) eliminating rule (∧I ).

Definition 2.26 (The type assignment systemTA#) Let us consider only types
belonging toT∧. For any typeσ ∈ T∧, let [σ]# denote an arbitrary intersection of
instances ofσ, that is, anyσ1 ∧ · · · ∧ σn (n ≥ 1) such that eachσi is an instance of
σ(1 ≤ i ≤ n). A statementM : σ is derivable from a basis�, notation� �# M : σ, if
� �# M : σ can be obtained using the following axioms and rules.

(a) Axioms

(S#) S: [(α → β → δ) → (α → β) → α → δ]#

(K#) K: [α → β → α]#

(I#) I: [α → α]#.

(b) Rules(VAR), (→ E), (≤∧).

Theorem 2.27 (Equivalence betweenTA∧ andTA# [20]) � �∧ M : σ ⇐⇒ � �#

M : σ.

Hence, we can map any derivation ofTA∗
∧∨ into a derivation ofTA#, by using first the

mapping fromTA∗
∧∨ to TA∧, and then the above equivalence betweenTA∧ andTA#.

Again we have to apply the mappingm to types and consider the abstraction of the
given CL-term with respect to some term variables occurring in the current basis.

Corollary 2.28 (Mapping TA∗
∧∨ into TA#) Let � be a basis andB (�∨) =

{�(h)}1≤ h≤m, where�(h) = {xi : σ
(h)
i }1≤ i ≤n. It follows that

� �∗ M : τ ⇐⇒ �∧ �# λ∗x1, . . . , xn.M : ∧1≤ h≤m(σ
(h)
1 → ·· · → σ(h)

n → τ(h))

for a suitableτ(h) ∈ m(τ).

Proof: � �∗ M : τ

⇐⇒ �∧ �∧ λ∗x1, . . . , xn.M : ∧1≤ h≤m(σ
(h)
1 → ·· · → σ

(h)
n → τ(h))

(by Theorem2.24)
⇐⇒ �∧ �# λ∗x1, . . . , xn.M : ∧1≤ h≤m(σ

(h)
1 → ·· · → σ

(h)
n → τ(h))

(by Theorem2.27). �

A natural way of generalizing the systemTA# is to extend the set of types fromT∧ to
T and then to replace rule(≤∧) by rule(≤∗) in order to assign intersection and union
types to CL-terms.

Definition 2.29 (The type assignment systemTA) Let σ and all the types of� be-
long to T. A statementM : σ is derivable from a basis�, notation� � M : σ, if
� � M : σ can be obtained by using the following axioms and rules.
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(a) Axioms(S#), (K#), (I#)

(b) Rules(VAR), (→ E), (≤∗)

TA is the final system allowing the assignment of intersection and union types to CL-
terms, while avoiding rules(∧I ) and(∨E). So, we are interested in the relation be-
tweenTA∗∧∨ andTA. Since(S#), (K#), and(I#) are derived rules inTA∗∧∨, thenTA∗∧∨
is an extension ofTA. But unfortunately, it is a proper extension. In other words, the
equivalence betweenTA∧ andTA# cannot be generalized to union types. For exam-
ple,{x : (σ → σ → ρ)∧ (τ → τ → ρ), y : σ ∨ τ} �∗ xyy: ρ, but this does not hold for
�. Our result is that any derivation inTA∗∧∨ having subjectM and predicateσ can be
translated into a derivation inTA assigning the same typeσ to a CL-termM ′ weakly
reducing toM. This translation leaves the basis unchanged. We have, for example,
{x : (σ → σ → ρ) ∧ (τ → τ → ρ), y : σ ∨ τ} � (λ∗t.xtt)y : ρ. However, if M is a
combinator, then the typeσ can be assigned exactly toM in TA.

Theorem 2.30 (MappingTA∗∧∨ into TA)

(i) Let � be a basis and�∨ = {x1 : σ1, . . . , xn : σn}. Then� �∗ M : τ ⇐⇒ � �
(λ∗x1, . . . , xn.M)x1, . . . , xn : τ.

(ii) �∗ M : τ ⇐⇒ � M : τ.

Proof:

(i) (=⇒) Let B(�∨) = {�(h)}1≤ h≤m, where�(h) = {xi : σ
(h)
i }1≤ i ≤n. Then

� �∗ M : τ

=⇒ �∧ �# λ∗x1, . . . , xn.M : ∧1≤ h≤m(σ
(h)
1 → ·· · → σ

(h)
n → τ(h))

whereτ(h) ∈ m(τ), by Corollary2.28.
=⇒ �∧ � λ∗x1, . . . , xn.M : ∧1≤ h≤m(σ

(h)
1 → ·· · → σ

(h)
n → τ(h))

sinceTA is an extension ofTA#.
This implies, by Lemma2.22(ii) and by applying rule(≤∗)

�∧ � λ∗x1, . . . , xn.M : σ1 → ·· ·σn → τ,

from which the result follows by(→ E).

(⇐=) � � (λ∗x1, . . . , xn.M)x1, . . . , xn : τ

=⇒ � �∗ (λ∗x1, . . . , xn.M)x1, . . . , xn : τ

sinceTA∗∧∨ is an extension ofTA
=⇒ � �∗ M : τ by Theorem2.21(ii).

(ii) Immediate from (i). �

3 Typed CL-terms The systemTA does not involve any proof-functional rule, such
as(∧I ) and(∨E), while preserving derivability of union and intersection types. So
it allows us to define the setCT of typed CL-terms which corresponds in the standard
way to the set of deductions inTA. Namely, by erasing the type information in a typed
CL-term of typeσ we will obtain a CL-term which has the typeσ in TA (and vice
versa).
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Definition 3.1 (The setCT of typed CL-terms)

(i) The set of preterms is generated by

M := x | S | K | I | MM | σM | Mσ,

wherex ranges over term variables andσ over the types ofT.
(ii) A preterm M is a typed CL-term if and only if there are a basis� and a typeσ

such that� �T M : σ can be obtained by using the following axioms and rules.

(a) Axioms

Sσ1τ1ρ1, . . . , σnτnρn : ∧1≤ i ≤n((σi → τi → ρi ) → (σi → τi ) →
σi → ρi )

Kσ1τ1, . . . , σnτn : ∧1≤ i ≤n(σi → τi → σi )

Iσ1, . . . , σn : ∧1≤ i ≤n(σi → σi ).

(b) Rules

(VAR) �, x : σ �T x : σ

(→ E) � �T M : σ → τ � �T N : σ

� �T MN : τ

(≤∗) � �T M : σ σ ≤∗ τ

� �T (σ → τ)M : τ

(iii) CT is the set of all typed CL-terms.

Let us remark that the only terms of the shapeMσ we allow are those generated by
the axioms. In contrast the terms of the shapeσM are used to represent applications
of the subsumption rule (≤∗).

Definition 3.2 (Forgetful map) There is a trivial forgetful map| | from preterms to
CL-terms defined as follows:

|x| = x
|S| = S
|K| = K
|I| = I

|σM| = |M|
|Mσ| = |M| .

We can easily prove, by induction on derivations, the desired correspondence be-
tweenCT andTA.

Theorem 3.3 (CT is the typed version ofTA)

(i) Let M be a typed CL-term. Then� �T M : σ implies� � |M| : σ.
(ii) Let M be a CL-term. Then� � M : σ implies that there is a typed CL-term M′

such that� �T M ′ : σ and|M ′| = M.
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4 Relevant logic corresponding to ≤∗ Types of Definition2.2can be considered as
logical formulas of a propositional language, such that the type variables,→, ∧, and
∨ correspond to propositional variables, implication, conjunction, and disjunction,
respectively.

Definition 4.1 (The setF of logical formulas) The setF of logical formulas is in-
ductively defined by

1. propositional letters are formulas;

2. A, B ∈ F =⇒ (A → B), (A∧ B), (A∨ B) ∈ F.

Clearly, we can identify the setT of types with the setF of logical formulas. In this
approach, Definition2.4and2.7of ≤∗ can be viewed as a system allowing us to prove
theorems of the shapeA ≤∗ B by using axioms 1 – 7 and rules 1 – 4 as a set of axioms
and rules, respectively.

The logical system representing≤∗ will be showed to be a minimal relevant
logic, in which the usual contraction and weakening laws do not hold. Namely this
logic is the systemB+, defined in [17] and Meyer and Routley [18], without the
“Church constant,” plus an axiom corresponding to axiom 7 of Definition2.7.

A similar correspondence has been proved in [20] between the definition of≤∧
and the systemB+ restricted to axioms and rules involving only implicational and
conjunctive formulas. In the present paper this result is extended to disjunctive for-
mulas. The logical meaning of axiom 7 is discussed in Remark5.5.

Definition 4.2 (The minimal relevant logicRL) RL is the logic on the languageF
defined by the following axioms and rules.

(a) Axioms

(a1) A → A
(a2) A∧ B → A, A∧ B → B
(a3) A → A∨ B, B → A∨ B
(a4) (A → B) ∧ (A → C) → (A → B∧ C)

(a5) (A → C) ∧ (B → C) → (A∨ B → C)

(a6) A∧ (B∨ C) → (A∧ B) ∨ (A∧ C)

(a7) (A → B∨ C) → (A → B) ∨ (A → C) for any A such that
P(A) is true, whereP is given in Definition2.7. (Harrop)

(b) Rules

A, A → B =⇒ B (modus ponens)
A, B =⇒ A∧ B (adjunction)
A → B =⇒ (B → C) → A → C (suffixing)
B → C =⇒ (A → B) → A → C (prefixing).

Th(RL) will denote the set of theorems ofRL. For example,A → A∧ A, A∨ A →
A ∈ Th(RL). These theorems can be proved from(A → A) ∧ (A → A)—which
belongs toTh(RL) by axiom(a1) and rule(adjunction)—by using axioms(a4) and
(a5), respectively. It is easy to verify that, if we erase(a7) from the definition ofRL,
we obtain theB+ logic, without the “Church constant.” A property corresponding to
the Extended Disjunction Property of Harrop formulas (see [11]) holds in B+, that is
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“for any formulaA such thatP(A), if A → B∨ C is provable then eitherA → B or
A → C is provable”. Analogously, the extended disjunction property is an admissible
rule, but not a derived rule, in intuitionistic logic.

Let RL∧ denote the restriction ofRL to formulas which do not contain∨.
Th(RL∧) will denote the set of its theorems. We want to prove that the logical connec-
tives of implication, conjunction, and disjunction ofRL are the type constructors→,
∧, and∨, when the≤∗-relation is mapped into the minimal relevant implication. In
order to do this we extend the equivalence which has been proved in [20] betweenTA∧
andRL∧ and we use the correspondence betweenRL andRL∧ proved in Lemma4.4.

Theorem 4.3 (Equivalence between≤∧ andRL∧ [20])

A ≤∧ B ⇐⇒ A → B ∈ Th(RL∧).

Notice that, by reading types as formulas, the mappingm becomes a way of associ-
ating to each formula inRL a set of formulas inRL∧.

Lemma 4.4 (Relation betweenRL∧ andRL) If A ∈ Th(RL), then∃A′ ∈ m(A)

such that A′ ∈ Th(RL∧).

Proof: By induction on a proof ofA.
First step:Notice that all axioms ofRL are of the shapeB → C whereB ≤∗ C.

Then by Lemma2.16, ∀B′ ∈ m(B) ∃C′ ∈ m(C) such thatB′ ≤∧ C′, which implies
B′ → C′ ∈ Th(RL∧) by Theorem4.3.

Induction step:The only interesting case is when the last applied rule is modus
ponens:

B, B → C =⇒ C.

Let m(B) = {B1, . . . , Bn}. By the induction hypothesis∃k (1 ≤ k ≤ n) such that
Bk ∈ Th(RL∧) and∃D ∈ m(B → C) such thatD ∈ Th(RL∧). By definition D ≡
∧1≤ i ≤n(Bi → Ci ), for someCi ∈ m(C). Then the result follows by modus ponens
from Bk andBk → Ck. �

Corollary 4.5 If A → B ∈ Th(RL) then∀Ai ∈ m(A)∃Bi ∈ m(B) Ai → Bi ∈
Th(RL∧).

Proof: By Lemma4.4 there existsD ∈ m(A → B) such thatD ∈ Th(RL∧). Let
m(A) = {A1, . . . , An}. Then D is of the form∧1≤ i ≤n(Ai → Bi ), for someBi ∈
m(B), and the thesis follows easily. �

Theorem 4.6 (Relation between≤∗ andRL)

A ≤∗ B ⇐⇒ A → B ∈ Th(RL).

Proof: (=⇒) Straightforward by induction on the definition of≤∗, using the ex-
tended disjunction property.

(⇐=) Let m(A) = {A1, . . . , An}. If A → B ∈ Th(RL), then, by Corollary4.5,
∀Ai ∈ m(A) ∃Bi ∈ m(B) such thatAi → Bi ∈ Th(RT∧), that is,∀i(1≤ i ≤ n) Ai ≤∧
Bi by Theorem4.3. Then by rule 2,∨1≤ i ≤n Ai ≤ ∨1≤ i ≤nBi , so we can conclude
A ≤∗ B since∨1≤ i ≤n Ai ∼∗ A and∨1≤ i ≤nBi ≤∗ B. �
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Let us notice the absence of the theoremA → B → A∧ B as well as the absence of
the exportation law

(exp) (A∧ B → C) → A → B → C

in RL. On the other hand, the following formula

(A → B → C) → A∧ B → A∧ B → C

is a theorem ofRL. This will allow the converse formula of (exp), that is, the impor-
tation law, to be provable in the logical system (presented in the next section) whose
derivations will parallel typed CL-terms.

The disjunction is the dual notion of the relevant conjunction. So the axiom
for the elimination of disjunction is(A → C) ∧ (B → C) → A ∨ B → C, which
is not equivalent to the intuitionistic axiom for the disjunction elimination, that is,
(A → C) → (B → C) → (A∨ B → C).

5 Typed CL-terms as logical proofs Now we shall present a logical system whose
deductions correspond, in a Curry-Howard isomorphism, to the typed CL-terms of
Definition3.1. This logic contains a Hilbert-style version of the implicative fragment
of the intuitionistic propositional logic. Moreover, conjunctive and disjunctive for-
mulas are derived by means of the following features.

(i) The standard notion of axiom-schemes is extended to include as axioms not
only any instance but also any conjunction of instances of the axiom scheme.

(ii) A Relevant Modus Ponens is added as an inference rule, using theorems of the
relevant logicRL as major premises.

Definition 5.1 (The logicL) Let [D]# denote a conjunction of instances ofD, that
is, anyD1 ∧ · · · ∧ Dn(n ≥ 1) such that eachDi is an instance ofD (1 ≤ i ≤ n). F is
the language of propositional formulas involving→, ∧, and∨ as connectives.L is
the logic on the languageF, given by the following axioms and rules

(a) Axioms

[(A → B → C) → (A → B) → A → C]#

[ A → B → A]#

[ A → A]#.

(b) Rules

MP (Modus Ponens) A → B, A =⇒ B
RMP (Relevant Modus Ponens)A → B ∈ Th(RL), A =⇒ B.

� will denote a set of assumptions. We will write� �L A if and only if there is a
deduction ofA from �.

Our main result is that typed CL-terms codify�L-derivations. Let us keep on
reading types as formulas, so�T-derivability may be viewed as derivability of for-
mulas for CL-terms.
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Theorem 5.2 (Curry-Howard isomorphism)

� �L A ⇐⇒ � �T M : A for some M∈ CT,

where B∈ � if and only if x: B ∈ � for some variable x.

Proof: By induction on the deductions. The proof is trivial by associating:

(i) the typed atomic combinators with axioms ofL,
(ii) the rule(→ E) with the inference ruleMP,

(iii) the rule (≤∗) with the inference ruleRMP, taking into account thatA ≤∗ B if
and only if A → B ∈ Th(RL), by Theorem4.6. �

Example 5.3 (Contraction law) �L (A→ A→ B)→ A→ B. A proof of the pre-
vious theorem is codified by the typed CL-termMN, whereM ≡ (S(A→ A→ B)

(A → A)(A → B))(SAAB), andN ≡ (K(A → A)(A → A → B))(IA). Moreover,
by using the contraction law and the theorem(A → B → C) → A∧ B → A∧ B →
C, one proves

�L (A → B → C) → A∧ B → C (importation law)
and

(♦) �L (A → B) ∧ (C → B) → A∨ C → B (disjunction elimination).

A proof of (♦) is codified by the typed CL-termD(I(A → B) ∧ (C → B)), where
D ≡ ((A → B) ∧ (C → B) → (A → B) ∧ (C → B)) → (A → B) ∧ (C → B) →
A∨ C → B is a theorem ofRL.

Let us consider the subsystemL∧ defined from Definition5.1by considering the lan-
guage of implicational conjunctive formulas, and by replacingTh(RL∧) to Th(RL)

in theRMP-rule. In [20], L∧ has been proved to be a logical system corresponding
to the intersection type inference. Then the following corollary characterizes deriv-
ability in L by means of derivability inL∧. Roughly speaking, it says that any proof
D of a theorem inL can be transformed into a proofD∗ of an equivalent formula
(modulo∼∗) such thatD∗ is built up of a proof inL∧ plus one application of rule
(≤∗).

Corollary 5.4

(i) �∧ M : A ⇐⇒ �L∧ A.
(ii) �L A =⇒ ∃B such that B≤∗ A and�L∧ B, where B is an implicational con-

junctive formula.

Proof:

(i) Lemma 4.8 in [20].
(ii) Let m(A) = {A1, . . . , An}, then by2.15 A ∼∗ A1 ∨ · · · ∨ An.

�L A =⇒ �T M : A for some typed CL-termM by 5.2
=⇒ �∗ |M| : A by 3.3(i) and2.30(ii)
=⇒ �∧ |M| : Aj for some j ≤ n by 2.20
⇐⇒ �L∧ Aj from point (i),

so we can chooseB ≡ Aj . �
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Remark 5.5 (L versus intuitionistic and Dummet’s logic) It is interesting to look
at the systemL just from the logical point of view, thus comparing it with the intu-
itionistic and Dummet’s logics [10]. To this end let us defineL as in Definition5.1,
but erasing the relevant modus ponens, while adding all theorems ofRL as axioms for
simplicity. This is clearly an equivalent formulation, since ifA → B ∈ Th(RL), then
we can deduce�L A → BbyRMPfrom (A → A) → A → B ∈ Th(RL) (pre f ixing)
and the axiomA → A.

As far as implicational-conjunctive formulas are concerned,L∧ turns out to be
a subsystem of intuitionistic logic, since the intersection is a “relevant” restriction
of intuitionistic conjuction as proved in [20]. The handling of disjunction is more
difficult, since all axioms ofRL are intuitionistic theorems, but the Harrop axiom (a7)
is not so.

The logic known as Dummet’s logic(DL) can be defined by adding to the intu-
itionistic axiomatization the axiom scheme

(D-Ax) (A → B∨ C) → (A → B) ∨ (A → C).

(D-Ax) is valid inL only whenA is a Harrop formula, and it is not valid in intuitionis-
tic logic. In DL one gets two different results. The first one is that all the disjunctions
are pulled out from the inside of the formulas, by using both (D-Ax) and the law

(◦) (A∨ B → C) → (A → C) ∧ (B → C).

The second result is that the pure implicational fragment turns out to be also stronger
than intuitionistic logic. Namely, inDL one can prove the following theorem, which
is not intuitionistically valid.

(◦◦) ((A → B) → C) → ((B → A) → C) → C.

Thus a question arises about the Harrop-Axiom ofL, which looks very similar to (D-
Ax), except for restricting the validity of the axiom to the case in whichA is a Harrop
formula: By adding the (Harrop) axiom, do we get inL the same effect as in Dum-
met’s logic?

The answer is positive with respect to the first result (the elimination of disjunc-
tion inside formulas shown by the mappingm) and negative with respect to the second
one (the extension of intuitionistic implication). This last result shows the “construc-
tive” meaning of the union-type constructor.

Let us notice that inL both the restricted shape of the (Harrop) axiom versus the
(D-Ax) and the lack of the exportation law(A∧ B → C) → (A → B → C) avoid to
prove the above formula(◦◦). On the other hand, Corollary5.4(ii) and the fact that
L∧ is a subsystem of the implicational conjunctive intuitionistic logic mean that any
disjunctive formula provable inL must be considered equivalent to an intuitionistic
theorem. Namely, the last one is provable from some implicational conjunctive the-
orem by using essentially only the∨-introduction rule. Let us consider, for example,
the Harrop formula:

(A → B∨ C) → (A → B) ∨ (A → C),

which is a theorem itself in the case in whichA is a propositional variable. InL it is
proved to be equivalent to an intuitionistic disjunction of implicational conjunctive
formulas in the following way:
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(A → B∨ C) → (A → B) ∨ (A → C)

∼∗

(A → B) ∨ (A → C) → (A → B) ∨ (A → C) by (Harrop)
∼∗

((A → B) → (A → B) ∨ (A → C)) ∧ ((A → C) →
(A → B) ∨ (A → C)) by (◦)

∼∗

(((A → B) → A → B) ∨ ((A → B) → A → C))∧
(((A → C) → A → B) ∨ ((A → C) → A → C)) by (Harrop)

∼∗

(((A → B) → A → B) ∧ ((A → C) → A → C)) ∨ · · · by distributivity

where((A → B) → A → B) ∧ ((A → C) → A → C) is an intuitionistic theorem.
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