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with Few Models

BAKHADYR KHOUSSAINOV, ANDRE NIES,
and RICHARD A. SHORE

Abstract In this paper we investigate computable models of X;-categorical
theories and Ehrenfeucht theories. For instance, we give an example of an &;-
categorical but not 8q-categorical theory T such that all the countable models
of T except its prime model have computable presentations. We also show that
there exists an R;-categorical but not Xg-categorical theory T such that all the
countable models of T except the saturated model, have computabl e presenta-
tions.

1 Introduction  We begin by presenting some basic definitions from effective
model theory. A computable structure is one with a computable domain and uni-
formly computable atomic relations. Without lost of generality, we can always sup-
pose that the domain of every computable structure is the set of all natural numbers
o and that its language does not contain function symbols. If astructure 4 isisomor-
phic to a computable structure B, then 4 is computably presentable and B is a com-
putable presentation of 4. Let o be an effective signature. Let g C 0y C o2 C -
be an effective sequence of finite signatures such that o = | J; 0. It is clear that a
structure A4 of signature o is computable if and only if there exists an effective se-
guence Ag C A, C Ay, C --- of finite structures such that for each i the domain of
A;is{0, ..., t}, thefunctioni — t; iscomputable, 4; isastructure of signature o,
Ai11 isan expansion and extension of A4;, and the structure 4 istheunion | J; ;. The
domain of 4 isdenoted by A. For astructure 4 of signature o we write P? to denote
the interpretation of the predicate symbol P € o in 4. When it does not cause con-
fusion, we write P instead of P2. In this paper we only deal with finite or countable
structures.

A basic question in computable model theory is whether a given first-order the-
ory T hasacomputable model. A standard Henkin type construction showsthat each
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decidable theory, that is, the theory whose set of theorems is computable, has a com-
putable model. Moreover, the satisfaction predicate for this model is computable.
Such computable models are called decidable. Constructing computable (decidable)
presentations for specific models of T has been an intensive area of research in effec-
tive model theory (see Ershov [2], Goncharov [E], and Millar [E]). For example, the
computableness of homogeneous models, in particular of prime and saturated mod-
els has been well studied. In [2] and [€] it is proved that the saturated model of T
has a decidable presentation if and only if there exists a procedure which uniformly
computes the set of al typesof T. Goncharov [[4] and Harrington [IE] gavecriteriafor
prime models to have decidable presentations. It is also known that the decidability
of the saturated model of T implies the existence of a decidable presentation of the
prime mode! of T ([2], Morley [10]). Thus, ageneral question arises as to how com-
putable models of undecidable theories behave in comparison to computable models
of decidable theories. In this paper we investigate computable models of complete
theories with “few countable models’ [10]. Examples of such theories are theories
with countably many countable models such as ®;-categorical theories and theories
with finitely many countable models (Ehrenfeucht theories).

In [, Baldwin and Lachlan developed the theory of RX1-categoricity in terms
of strongly minimal sets. They settled affirmatively Vaught's conjecture for 8-
categorical complete theories by proving that each complete X1-categorical theory
has either exactly one or &g many countable models up to isomorphisms. Their pa-
per also shows that all the countable models of any 8;-categorical theory T can be
listed inan w + 1 chain.

of elementary embeddings with 4 and 4, being the prime and saturated models of
T, respectively [[1]. The results of Baldwin and Lachlan lead one to investigate the
effective content of R1-categorical theories and their models. Based on the theory de-
veloped by Baldwin and Lachlan, Harrington and Khissamiev [[€] proved that every
countable model of each decidable X1-categorical theory T has a decidable presenta-
tion.

This result of Harrington and Khissamiev motivated the study of computable
models of X-categorical undecidable theories. In 1972, Goncharov [[3] constructed
an example of an K;-categorical but not Rq-categorical theory T for which the only
model with a computable presentation is the prime model, that is, the first element
of chain(T). Later in 1980, Kudeiberganov [Iﬁl modified Goncharov’s construction
to provide an example of an R,-categorical but not Rg-categorical theory T with ex-
actly n computable models. These models arethefirst n elements of chain(T). These
results lead to the following two questions which have remained open.

Question 1.1 (Goncharov [[5])  If an R4-categorical but not Ro-categorical theory T
has a computable model, is the prime model of T computably presentable?

Question 1.2 If all models Ag, A1, ..., 4j,...,1 € w, in chain(T) of an 8-
categorical but not Rg-categorical theory T, have computable presentations, is the
saturated model 4, of T computably presentable?
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The above result of Harrington and Khissamiev also inspired Nerode to ask whether
the hypothesis of X1-categoricity of T can be replaced by the hypothesis that T has
only finitely many countable models, that is, whether every countable model of ade-
cidable Ehrenfeucht theory has a decidable presentation. Morley noted that if the
countable saturated model of such atheory is decidable, then the theory has at least
three computable models [10]. Lachlan answered Nerode's question by giving an ex-
ample of adecidable theory with exactly six models of which only the prime one has
a computable presentation. Later, for each natural number n > 3, Peretyatkin con-
structed an example of decidable theory with exactly n models such that the prime
model of thetheory iscomputable and none of the other model s of the theory has com-
putable presentations [L1]. In [ Kudeiberganov constructed an example of atheory
with exactly three models such that the theory has only one computable model and
that model isprime. The saturated model of the theory cannot be decidable, since oth-
erwise, al three models of the theory would have computable presentations. These
results lead Morley to ask whether any countable model of a decidable Ehrenfeucht
theory T with a decidable saturated model has a decidable presentation [10]. There
isanatural analog of this question for computable models.

Question 1.3  If the saturated model of an Ehrenfeucht theory is computable, does
there exist a nonsaturated, computable model of the theory?

Inthispaper we answer the above three questions by providing appropriate counterex-
amples. Our examples of models which answer the first two questions have infinite
signatures. However these questions remain open for theories of finite signatures.

Thegeneral problem suggested by these resultsisto characterize the spectrum of
computable models of ¥;-categorical theories: let T bean X;-categorical but not RXq-
categorical completetheory. Consider chain(T). The spectrum of computable models
of T, denoted by SRM(T), isthe set

{i < w| themodd 4; in chain(T) has a computable presentation.}

Problem 1.4 Describe all subsets of w which are of the form SRM (T) for some
N1-categorical theory T.

Theresult of Harrington and Khissamiev showsthat if T isdecidable, then SRM(T)=
o | J{w}. Theresults of Goncharov and Kudeiberganov show that the sets{1, ..., n},
wheren € w, are spectraof computable models of 8;-categorical theories. Inthispa-
per we show that the sets w — {0} | J{w} and w are a so spectra of computable models
of 8;-categorical theories.

2 Mainresults Theresults of this paper are based on the idea of coding X9 or 19
sets with certain recursion-theoretic propertiesinto R4-categorical theories. Our first
result is the following theorem which answers Question[L.1]

Theorem 2.1  There exists an R;-categorical but not w-categorical theory T such
that all the countable models of T except its prime model have computable presenta-
tions (and so SRM(T) = w — {0} J{w}).
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Before proving this theorem we would like to give the basic idea of our proof. For an
infinite subset S C w we construct astructure As of infinite signature (Py, Py, P>, ...)
where each P isabinary predicate symbol. We will show that the theory Ts of the
structure As is 81-categorical and As isthe prime model of Ts. The countable mod-
elsof Tswill havethe following property: every nonprime model A4 of Ts hasacom-
putable presentationif and only if theset Sisa Zg—set. The existence of acomputable
presentation of the prime model will imply that the set Shas a certain recursion theo-
retic property. Our recursion theoretic lemma(Lemmal2.6) will show that there exists
a Zg-set Swhich does not have this property.

2.1 The construction of cubes Let n be a nonzero natural number. Let o =
(Po, ..., Pn_1) be asignature such that each B, is a binary predicate symbol. For
each nonzero natural number n we define a finite structure of signature o, called an
n-cube, asfollows. a 1-cube C; isastructure ({a, b}, Py) such that Py(x, y) holdsin
Cifandonlyif x=aandy=bory=aand x=h.

Suppose that n-cubes have been defined. Let 4 = (A, Pyl,..., P ) and B=
(B, P2, ..., P2 ) ben-cubessuchthat A B = @. Thesetwo n-cubes are isomor-
phic. Let f beanisomorphism from A4 to B. Then an n+ 1-cube Cn, 1 iS

(AlJB. R JPS..... P PRY 1 P,

where P,(x, y) holdsif and only if f(x) = yor f~1(x) = y. It follows that we can
naturally define an w-cube C,, = | J;,, Ci s an increasing union of n-cubes formed
in this way.

An w-cube C, is a structure of the infinite signature o = (Py, P>, ...). From
these definitions of cubes we make the following claim.

Claim 2.2 For each n < w any two n-cubes are isomorphic.

Each binary predicate P, in any cube 4 is a partial function and sets up aoneto one
mapping from dom(PR,) onto range(P,). Therefore we can also write B (x) = yin-
stead P, (X, y). Moreover, by the definition of P, dom(PR,) = range(PR).

2.2 Construction of 4s  For each natural number n € w consider an n-cube denoted
by An. Assumethat A, Ar = @ foral n#t. Let Sbe asubset of . Define a
structure As by

As=_J an.

nesS

Thusthe structure As isthe disjoint union of all cubes 4, n € S, with the natural in-
terpretations of predicate symbolsof signatureo. Let Ts bethetheory of the structure
As.
Claim 2.3 If Sisan infinite set, then the theory Ts is R;-categorical but not RXq-
categorical.

Proof: Themodel As satisfies the following list of statements. It is easy to see that
thislist of statements can be written as an (infinite) set of statementsin thefirst-order
logic.

1. vx3yPy (X, y) and for each n, P, isapartial one to one function.
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2. Foral n# mandfor al X, Py(X) # Pn(X).

3. Foreachnandfor al xif P,(x) isdefined, then Py(x), Pi1(X), ..., Pi_1(X) are
also defined.

4. Foraln, mandforal xif P,(x) and Pn(P,(X)) aredefined, then Py, (Pa (X)) =
Pn(Pm(X)).

5 Foral kn>ny >n > --- > Mg > ng, for al elements x, Py (...,
(Ph(X), ...) # Pa(X).

6. For eachn € w, n € Sif and only if there exists exactly one n-cube that is not
contained in an n + 1-cube.

Let M be amodel which satisfies al the above statements. Then for eachne S M
must have an n-cube which isnot contained in an n + 1-cube. Moreover, if anx € M
does not belong to any n-cube for n € S, then x isin an w-cube. Note that each w-
cubeiscountable. Using the previous claim it can be seen that any two modelswhich
satisfy the above list of axioms are isomorphic if and only if these two models have
the same number of w-cubes. Suppose that A and M, are models of Tg and their
cardinalities are 8. Since each cube is a countable set it follows that the number
of w-cubesin M; and M, is ;. Therefore the models M, and M, are isomorphic.
Hence Tsisan 8q-categorical but not Rq-categorical theory. O

Clam 2.4 Theset Sisin Eg if and only if every nonprime model of Tg possesses
a computabl e presentation.

Proof: Each w-cube has a computable presentation. Therefore it suffices to prove
that S e X9 if and only if the nonprime model M of Ts with exactly one w-cube
has a computable presentation. If M is computable, then s € Sif and only if
Ax3yVz(Ps(X, y) & =Ps;1(X, 2)). Therefore Se x9.

Now suppose that S € Eg. There exists a computable function f such that for
every n € o, n € Sif and only if Ws isfinite. We construct an effective sequence

MycMycMcC---

of finite structures by stages such that

1. the model M isisomorphic to |, Mn;

2. each M; has exactly t + 1 cubes and the function t — card(M;) is com-
putable;

3. each M, is a structure of signature (P, ..., Pn), wherei — n; is a com-
putable function.

Stage 0 Construct a 1-cube My and mark this structure with the symbol O,
Stage s+1 Suppose that Mg has been constructed as the disjoint union

MS,OUMS,IU"'UMS,SU Msw,

whereeach M, i < sisani-cube, and Ms,, isthe cube marked with (J,, at the previ-
ous stage. Compute Ws ) st1, - - - » Wr(s).n+1, Wr(s+1),s+1- FOr eachi < s+ 1 define
M; 1 and Ms, 1, asfollows.
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1. If Wf(i)’s_i_l = Wf(i)’s, then let M,&H = MS

2. If Wey.s+1 # Wi().s, then construct a new i-cube and let M 5,1 be this new
cube.

3. Extend the cube 4 ,, to afinite cube denoted by Ms, 1 ,, suchthat for eachi <'s
if Wf(i)’s+1 #* Wf(i)75, then Ms+1’w contains .‘7‘/[37i.

Ms+1.0 U Msi11 U . U Mst1,5+1 U Ms 1,00

Define
M, =9

By the construction, the structure M, is computable. The construction of 4, guar-
antees that the structure M,, isisomorphic to the model M. O

Now we need the following definition and recursion theoretic lemma. We will prove
the lemmain the next section.

Definition 25 A function f is limitwise monotonic if there exists a computable
function ¢(x, t) suchthat p(X,t) < (X, t+ 1) foral x,t € w, limy (X, t) existsfor
every X € w and f(x) = limgp(x, t).

Lemma 2.6 (Recursion theoretic lemma) There existsa Ag set Awhichisnot the
range of any limitwise monotonic function.

Proof of Theorem[Z.I] We need the following lemma.

LemmaZ2.7 If the prime model As is computable, then the set Sisthe range of a
[imitwise monotonic function.

Proof: Let x € 4s. Notethat each cubein Agisfinite. Define ¢(X) to be an s such
that x isin an s-cube and this cube is not contained in an s+ 1-cube. It is clear that
¢ witnesses that Sisthe range of alimitwise monotonic function. O

By the recursion theoretic lemma there existsan S Ag which is not the range of
any limitwise monatonic function. Consider the structure Ag and itstheory Ts. The
claims above and Lemmal_Zlshow that Tsisthe required theory and so prove Theo-
remR.1] O

Now we give an answer to Question[L2] The idea of our proof is the following. We
take a 19 but not =9 set Sand code this set into a theory Ts. The language of Ts
will contain infinitely many unary predicates Py, Py, ... and infinitely many predi-
cates of arity n for each n € w. We will prove that Tg is an KX1-categorica but not
No-categorical theory. Our construction of Ts guarantees that all the countable mod-
elsof Tgs, except the saturated model, have computable presentations. The existence
of acomputable presentation for the saturated model will imply that the set Sisa 9
set. Thiswill contradict with the choice of S.

Theorem 2.8 Thereexistsan KX1-categorical but not Rq-categorical theory T such
that all the countable models of T except the saturated model, have computable pre-
sentations.
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Proof: We construct a structure of the infinite signature

(Po, Pr,..., Rio, Ri1, Rio, ooy Reos Re1, Reas - o),

where each P isaunary predicate and each Ry s is a predicate of arity k.

Let Sbea(I19\ £9) set. There exists acomputable predicate H suchthatn € S
if and only if Vx3yH(X,y, n) holds. Below we present a step by step construction
of acomputable structure denoted by As and provethat the theory Ts of this structure
satisfies the requirements of the theorem.

Stage O Let A9 = ({0}, Py), where Py(0) holds.
Stage t+1 Thedomain A, 10f 4;,1i8{0,...,t+1}. Thesignatureof 4,1 is

oty1=(Po,..., Py1, Ruos s Ritgr, -0 Ry00 -0 Rger).

Foreachi < t+ 1let B(x) hold if and only if x > i. For k,s < t+ 1, let
Rk.s(X1, ..., Xx) holdif and only if X1, ..., X are pairwise different and for the max-
imal number j < t+ 1 suchthat all Pj(x1), ..., Pj(Xc) hold we have ¥n < sdm <
jH(n, m, k). We have defined the model Ay, 1.

Thuswe have an effective sequence Ay, A1, Ay, . . . of finite structures such that
each 4;,, isan extension and expansion of 4;. Therefore we can define Ag by

ﬂg:Uﬂli.
i

It is clear that the model Ag iscomputable.
Claim 2.9 Thetheory Tsof themodel AgisN;-categorical but not Rg-categorical.

Proof: The modd Ag satisfies the following list of properties which can be written
as an infinite set of statements in the language of the first-order logic.

1. Foral xif B1(x) holds, then P (x) aso holds. Moreover, VXPy(X) istrue.

2. For eachi € w there existsaunique x such that P (x) & =R 11(X), 1 € w.

3. Foralk,se w,if R¢s(X1, ..., X) holds, then xy, ..., X¢ are pairwise distinct.

4. Let k € S. For every s € w there exists a j € w such that Vn < sdm <
jH(n,m,s). Let js be the minima number which has this property.
Then for al pairwise distinct Xq, ..., X if Pj(X1) & --- Pj;(X¢) holds, then
Rk s(X1, ..., Xx) holds.

5. Letk ¢ S. There exists an s¢ such that for all s > sy and for al xq, ..., X,
Rk s(X1, ..., Xx) does not hold.

Let A4 beamodel of Ts. Consider the set (), P1. For any two elementsa, b € (), P

| |
there exists an automorphism « of the model A4 such that «(a) = b. Thus a proof
of 81-categoricity can be based on the following observation. Two models B and C
of the theory Ts are isomorphic if and only if the cardinalities of the sets (), P? and
N P¢ areequal. Hence if B and C are models of cardinality R, then both (), P2

and (), P have exactly X, elements. It followsthat B and C areisomorphic. [
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From the proof of Claim[P.9] it followsthat if B is a countable unsaturated model of
the theory Ts, then ) P? has afinite number of e ements.

Claim 2.10 If C is a countable and unsaturated model of Ts, then C has a com-
putable presentation.

Proof: Let C beacountable, unsaturated model of Ts. The set (); P has afinite
number of elements, say n. We construct a computable presentation of C by stages.

Letay, ..., a, benew symbols. Inour construction of acomputable presentation
A of C weputtheelementsay, ..., a,into); Piﬂ. Let ps, ..., pnbetheall elements
of S{0,1,...,n}.

Stage 0 Define Ap= ({0, @, ..., an}, Po), letting Py(0), Py(az), ..., Po(an)
hold.

Stage t+1 Thedomain A, q of 44, 1is{0,...,t+1 ay,...,ay}. Thesignature
of the A, 1 is

oiy1= (Po, ..., Py1, Rios - s Rit1, ooy Rita.00 -+ Repaern)-

Foreachi <t+1llet B(x) holdifandonlyif x>iorxe{as,...,an}. Fork,s<
t+ 1, let R s(X1, ..., Xs) hold if and only if one of the followings holds:

L ke{pr,....pn}s (X1, ..., X) €{a1, ..., an}",and xq, ..., Xc arepairwisedis-
tinct, or
2. X1, ..., %\ {a1, ..., an} # 2, thedementsx, ..., Xk are pairwise different,

and for the maximal number j < t+ 1suchthatal Pj(xy), ..., Pj(x) hold we
haveVn < sdm < jH(n, m, k).

Thus this stage defines the structure A4, 1. For eachi € w, 4,1 isan extension and
expansionof 4;. DefineA4 by A4 = | J; 4. Itisclear that the structure 4 iscomputable
and isomorphic to the model C. O

Claim 2.11  Thecountable saturated model B of T does not have a computable pre-
sentation.

Proof: Supposethat B iscomputable. Since B is saturated the number of elements
in ) F’i3 isinfinite. It can becheckedthat for eachk € w, k € Sif and only if there ex-
ist different elementsyy, . .., yx from ) PF; suchthat forall s> 1, R¢s(y1, - .-, Yk)

holds. The set Swould then be a £9-set. This contradicts with our assumption that
Semj\ =d. O

These claims prove Theorem[2.8] O

Thus the above theorems prove the following corollary about spectra of computable
models (SRM) of RX;-categorical theories.

Corollary 2.12

1. There exists an Ni-categorical but not w-categorical theory T such that
SRM(T) = o — {0} U{}.



COMPUTABLE MODELS 173

2. There exists an Ni-categorical but not Rq-categorical theory T such that
SRM(T) = w.

In the next theorem, which answers Question[L.3] we provide an example of atheory
Ts with exactly three countable models of which only the saturated model is com-
putably presentable. To prove that Ts has exactly three countable models, we use the
known ideas which show that the theory of themodel (Q, <, cg, ¢4, ...), where<is
the linear ordering of rationals, and the constants are such that cg > ¢, > ¢ > - -+,
has exactly three countable models [12].

Theorem 2.13 There exists a theory T with exactly three countable models such
that the only model of T which hasa computable presentation isthe saturated model.

Proof: Let Q be the set of all rational numbers. For each cardinal nhumber m e
o | {w} define astructure Qo(m) asfollows. The domain of the structureis

{ae Q1=aqi| Jicgr.--..cqmla e Q).

where {cq,i|q € Q,1 <i < m}isaset of new elements. The signature of the model is
(=<, f),where <isabinary predicateand f isaunary function symbol. The predicate
< and the function f are defined as follows. For all x, y we have x < y if and only
if X,y € Qand x islessthan or equal to y as rational numbers. For al z, y define

f(z) = yif and only if for somerational number g, y=qandze {Cy1, ..., Cqm} Of
y=z=(. Let Q(m) bethestructure obtained from Qg (m) by removing the elements
1,¢c11,...,C1mfromthe domain of Qp(m).

If 4 and B are isomorphic copies of the structures Qq(n) and Qg (m), respec-
tively, and A(") B = @, then one can naturally define the isomorphism type of the
structure Qp(n) + Qo(m) asfollows. Thedomain of the new structureis A(_J B. The
predicate < in the new structure is the least partial ordering which contains the par-
tial ordering of 4, the partial ordering of B, and therelation {(x, y)|x € A& fA(x) =
x&y e B& f8(y) = y}. Theunary function f in the new structureis the union of the
unary operations of the first and the second structures.

Ifng, N1, Ny, ..., N, ..., 1 < wisasequence of natural numbers, then as above
we can define the structure

Qo(Ng) + Qo(ny) + Qo(nz) + - --.

Let Sheasetin A9 which is not the range of alimitwise monotonic function. There
exists a computable function g such that, for al nh(n) = limsg(n, s) exists and
range(h) = S. Consider the model Qq(S) defined by

Qo(h(0)) + Qo(h(1)) + Qo(h(2)) + - -.

Define the theory Ts to be the theory of the structue Qg (S).
Claim 2.14 Thetheory Ts has exactly three countable models.

Proof: Thefirst model of Tgis Qg(S). Thismodel isthe prime model of the theory
Ts. The second model of Tgis

Q'(S) = Qo(h(0)) + Qo(h(1)) + Qo(h(2)) + - - + Qo(w).



174 KHOUSSAINOV, NIES, and SHORE

Thethird model M of Tgis

Q(h(0)) + Qo(h(1)) + Qo(h(2)) +--- + Q(w).

These structures are indeed models of Ts. To see this, note that Qg(S) is a sub-
model of Q'(S), and Q'(S) isasubmodel of M. It can be checked that for any for-
mula3dxe(X, a;,...,ap) andal ag,...,ap € Qu(S)(ay, ..., an, € Q(9)) if thefor-
mula3xe(X, ag, ..., an) istruein Q' (S)—in M—thenthereexistsab € Qu(S)(b e
Q'(9) suchthat ¢(b, ay, ..., an) istruein Qp(S)—in Q'(S). Therefore the embed-
dings are elementary.

We have to prove that any countable model of Tsis isomorphic to one of the
three models described above. Let 4 be a model of Ts. For eachi € w we define
by induction an element a; € A asfollows. The element ag is the minimal element
with respect to the partial orderingin 4. Notethat the set {b|b # ag & f (b) = ag} has
exactly h(0) elements. Also put kg = 0.

Suppose that the elements ag, . .., a_1 € A and the numbersky, ..., ki_1 have
been defined. Let ki bethe least element such that h(k) # h(k;) for j=1,...,i - 1.
The element & is the one such that the following properties hold:

1. theset {blb +# a; & f(b) = &} has exactly h(k;) elements;
2. for each x < a; the cardinality of the set {b|b £ x& f (b) = x} isin{h(kp), ...,
h(ki—1}.

Consider the sequence ag, a3, @, .... Clearly ag < a; < a» < ---. Thus we have
three cases.

Casel: lim; & doesnot exist and for any x € Asuchthat f(x) = x thereexistsan
i such that g > X,

Case2: limjg exists,

Case3: lim;a; does not exist and there existsan x such that f(x) = xand x > &
for al a;.

Inthefirst case 4 isisomorphicto Qp(S). Inthesecond case 4 isismorphicto Q' (S).
In the third case 4 is isomorphic to M. Note that Qg (S) is the prime model. The
model Q'(S) isnot saturated sinceit doesnot realizethetype containing {X > a; &C >
X|i € w}, wherec = lim;a;. Hence M isthe saturated model of Ts. O

Claim 2.15 The unsaturated models of the theory Ts do not have computable pre-
sentations.

Proof: Consider the prime model Qq(S). Suppose Qu(S) is a computable model.
Then it can be easily checked that the set Sis the range of a limitwise monotonic
function. This contradicts the assumption on S. If the other unsaturated model

Q'(S) = Qo(h(0)) + Qo(h(1)) + Qo(h(2)) + - - + Qo(w)

were computable, then Qq(S) would be a computably enumerable submodel of the
model Q'(S). Hence Qu(S) would have a computable presentation. Thisisagain a
contradiction. O
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Claim 2.16 Thesaturated model A of thetheory T hasa computabl e presentation.

Proof: We present aconstuction of the saturated model M by stages. The construc-
tion will clearly show that the saturated model has a computabl e presentation.

Stage O Consider the structure Qg (g(0, 0))+ Q(w). Denote thismodel by 4.
Stage n+1 Suppose that A4, has been defined and isisomorphic to

Qo(9(0,n) +--- + Qo(g(n, n)) + Q(w).

Compute
g0, n+1),..., gn+1,n+1).

Leti < nbetheminima number such that g(i, n) # g(i, n+ 1).4, can be extended
to astructure A,,, 1 isomorphic to

Qo(g(0,n+1)) +---+ Qo(gi —1,n+1))
+Qo(9(i,n+1)) +---+ Qo(g(n+1,n+ 1)) + Q(w).

To seethis, take the substructure
Qo(g(i, M) + -+ Qo(g(n, ) + Qw)
of 4,; extend this substructure to Q(w); insert the new structure
Qo(g(i,n+1)) +---+ Qo(g(n+1,n+1))
between the structures
Qo(g9(0,n+1)) +---+ Qo(g(i —1,n+1))

and the extended structure Q(w). The structure obtained in thisway is 4p 1.
Thus we have the sequence

Agc A1 Cc A, C---.

Define

Ay = An.
i

It is easy to seethat the model A4, isismorphic to

Qo(h(0)) + Qo(h(1)) + -+ -+ Qo(h(n)) + - - - + Q(w).

Now it is clear that the above description can be effectivized. O
These claims prove the theorem. O

Finally we have to prove the promised recursion theoretic lemma.
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3 Proof of therecursion theoretic lemma  Let pe(X, ), € € w, be auniform enu-
meration of all partial computable functions ¢ such that for al t' > t if ¢(x,t') is
defined, then ¢(x, t) isdefined and (X, t) < ¢(x,t’). At stage s of our construction
we define afinite set Ag in such away that A(y) = limsAs(y) exists for al y. We
satisfy the requirement Rg asserting that, if fo(X) = limipe(X, t) < w for al x, then
range( fe) £ A.

Thestrategy for asingle Rgisasfollows: at stage s pick awitness me, enumerate
me into A (i.e., As(me) = 1). Now R is satisfied (since me remains in A) unless
at some later stage to we find an x such that ge(X, tg) = me. If SO, Re ensures that
A(pe(X,1)) = 0foradl t > to. Thus, either fo(X) 1 or fe(X) | and fe(X) € A.

Keeping pe(X, t) out of Afor all t > tg can conflict with alower priority (i > e)
requirement R; sinceit may bethe casethat my = ¢e(X, t') for somet’ > to. However,
if fe(X) |, then this holds permanently for just one number, and if fo(x) 1, then the
restriction is transitory for each number. So each lower priority R; will be able to
choose a stable witness at some stage.

3.1 Construction At stage swe try to determine the values of parameters me, Xe,
and ne = @e(Xe, S) for Re. Each parameter may remain undefined. Moreover, we
define the approximation Agto A at stage s.

Stage O Let Ag = @, and declare all parameters to be undefined.

Stage s Foreache=0,..., s— linturngo through substage e by perform-
ing the following actions.

1. If me isundefined, let me be the least number in w!® greater thanall mi(i < e)
which isnot equal to any nj. Let As(me) = 1 and proceed to the next subtage,
ortostages+ life=s—1.

2. If X is undefined and ¢e(X, s) = me for some X, let Xe = X, ne = Me, and
As(ne) = 0, and proceed to the next stages+ life=s— 1.

3. Let ng = pe(Xe, S) and Ag(neg) = 0. If ng = m; for somei > e, declare al the
parameters of the R;, j > i, to be undefined.

For each y, if Ag(y) isnot determined by the end of stage s, then assign to As(y) its
previous value As_1(Yy). The stage is now completed. Now we will verify that the
construction succeeds.

Claim 3.1 Each me is defined and is constant from some stage on.

Proof:  Suppose inductively that the claim holds for each i < e. Let 55 be a stage
such that each m; hasreached itslimit for i < e, and if x; ever becomes defined after
S, and limg n; s < oo, then the limit has been reached at sp. Moreover, let k > e be
the least number which does not equal any of these limits and is greater than al m
fori < e. Alsosupposethat nj 5, > Kif limsnjs = oo, (j < e). If meis cancelled
after stage so, then me = k is permanent from the next stage on. O

Claim 3.2 For eachy, limg Ag(y) exists. Thereforetheset A =limg Agisa Ag-set.
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Proof: Supposethat y € »l®, and let sy be astage at which me hasreached itslimit.
Since y can only be enumerated into A if y = m, after stage o, A(y) can change at
most once. This provesthe claim. O

Claim 3.3 Suppose fe(X) = lim; pe(X, t) existsfor each x. Then A # range( fe).

Proof: Suppose that A = range(fe). Let 59 be the stage at which me reaches its
limit. Then at some stage s > 9 we must reach the second instruction of the con-
struction, otherwise A(me) = 1 but me & range( fe). Suppose that pe(X, S) = me for
the minimal s > 55 at which we reach the second instruction of the construction. It
followsthat fort > s, Ne = @e(X, t) and Ai(ne) = 0. So A(fe(X)) = 0. This contra-
diction proves the claim and hence the lemma. O

Remark 3.4 Itispossibleto make Ad.r.e, that is, A= B — C for somer.e. sets
B, C. To do so, we have to set aside an interval |, roughly of size 2, for Re, lp <
1 < ---. Asafirst choice for me, we take the maximal element of |, and then we
proceed downward. The pointisthat, if Reisinjuredby R;,i < €, vian; = mg, then
all further values of n; are above the next values of me (unless R; injured itself |ater).
Obviously A can be neither r.e. nor co-r.e.
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