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Abstract In this paper we investigate computable models of ℵ1-categorical
theories and Ehrenfeucht theories. For instance, we give an example of an ℵ1-
categorical but not ℵ0-categorical theory T such that all the countable models
of T except its prime model have computable presentations. We also show that
there exists an ℵ1-categorical but not ℵ0-categorical theory T such that all the
countable models of T except the saturated model, have computable presenta-
tions.

1 Introduction We begin by presenting some basic definitions from effective
model theory. A computable structure is one with a computable domain and uni-
formly computable atomic relations. Without lost of generality, we can always sup-
pose that the domain of every computable structure is the set of all natural numbers
ω and that its language does not contain function symbols. If a structure A is isomor-
phic to a computable structure B , then A is computably presentable and B is a com-
putable presentation of A . Let σ be an effective signature. Let σ0 ⊂ σ1 ⊂ σ2 ⊂ · · ·
be an effective sequence of finite signatures such that σ = ⋃

t σt. It is clear that a
structure A of signature σ is computable if and only if there exists an effective se-
quence A0 ⊂ A1 ⊂ A2 ⊂ · · · of finite structures such that for each i the domain of
A i is {0, . . . , ti}, the function i −→ ti is computable, A i is a structure of signature σi,
A i+1 is an expansion and extension of A i, and the structure A is the union

⋃
i A i. The

domain of A is denoted by A. For a structure A of signature σ we write PA to denote
the interpretation of the predicate symbol P ∈ σ in A . When it does not cause con-
fusion, we write P instead of PA . In this paper we only deal with finite or countable
structures.

A basic question in computable model theory is whether a given first-order the-
ory T has a computable model. A standard Henkin type construction shows that each
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decidable theory, that is, the theory whose set of theorems is computable, has a com-
putable model. Moreover, the satisfaction predicate for this model is computable.
Such computable models are called decidable. Constructing computable (decidable)
presentations for specific models of T has been an intensive area of research in effec-
tive model theory (see Ershov [2], Goncharov [4], and Millar [9]). For example, the
computableness of homogeneous models, in particular of prime and saturated mod-
els has been well studied. In [2] and [9] it is proved that the saturated model of T
has a decidable presentation if and only if there exists a procedure which uniformly
computes the set of all types of T . Goncharov [4] and Harrington [8] gave criteria for
prime models to have decidable presentations. It is also known that the decidability
of the saturated model of T implies the existence of a decidable presentation of the
prime model of T ([2], Morley [10]). Thus, a general question arises as to how com-
putable models of undecidable theories behave in comparison to computable models
of decidable theories. In this paper we investigate computable models of complete
theories with “few countable models” [10]. Examples of such theories are theories
with countably many countable models such as ℵ1-categorical theories and theories
with finitely many countable models (Ehrenfeucht theories).

In [1], Baldwin and Lachlan developed the theory of ℵ1-categoricity in terms
of strongly minimal sets. They settled affirmatively Vaught’s conjecture for ℵ1-
categorical complete theories by proving that each complete ℵ1-categorical theory
has either exactly one or ℵ0 many countable models up to isomorphisms. Their pa-
per also shows that all the countable models of any ℵ1-categorical theory T can be
listed in an ω + 1 chain.

chain(T): A0 ≺ A1 ≺ · · · ≺ An ≺ · · · ≺ Aω

of elementary embeddings with A0 and Aω being the prime and saturated models of
T , respectively [1]. The results of Baldwin and Lachlan lead one to investigate the
effective content of ℵ1-categorical theories and their models. Based on the theory de-
veloped by Baldwin and Lachlan, Harrington and Khissamiev [6] proved that every
countable model of each decidable ℵ1-categorical theory T has a decidable presenta-
tion.

This result of Harrington and Khissamiev motivated the study of computable
models of ℵ1-categorical undecidable theories. In 1972, Goncharov [3] constructed
an example of an ℵ1-categorical but not ℵ0-categorical theory T for which the only
model with a computable presentation is the prime model, that is, the first element
of chain(T). Later in 1980, Kudeiberganov [7] modified Goncharov’s construction
to provide an example of an ℵ1-categorical but not ℵ0-categorical theory T with ex-
actly n computable models. These models are the first n elements of chain(T). These
results lead to the following two questions which have remained open.

Question 1.1 (Goncharov [5]) If an ℵ1-categorical but not ℵ0-categorical theory T
has a computable model, is the prime model of T computably presentable?

Question 1.2 If all models A0, A1, . . . , A i, . . . , i ∈ ω, in chain(T) of an ℵ1-
categorical but not ℵ0-categorical theory T , have computable presentations, is the
saturated model Aω of T computably presentable?
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The above result of Harrington and Khissamiev also inspired Nerode to ask whether
the hypothesis of ℵ1-categoricity of T can be replaced by the hypothesis that T has
only finitely many countable models, that is, whether every countable model of a de-
cidable Ehrenfeucht theory has a decidable presentation. Morley noted that if the
countable saturated model of such a theory is decidable, then the theory has at least
three computable models [10]. Lachlan answered Nerode’s question by giving an ex-
ample of a decidable theory with exactly six models of which only the prime one has
a computable presentation. Later, for each natural number n > 3, Peretyatkin con-
structed an example of decidable theory with exactly n models such that the prime
model of the theory is computable and none of the other models of the theory has com-
putable presentations [11]. In [7] Kudeiberganov constructed an example of a theory
with exactly three models such that the theory has only one computable model and
that model is prime. The saturated model of the theory cannot be decidable, since oth-
erwise, all three models of the theory would have computable presentations. These
results lead Morley to ask whether any countable model of a decidable Ehrenfeucht
theory T with a decidable saturated model has a decidable presentation [10]. There
is a natural analog of this question for computable models.

Question 1.3 If the saturated model of an Ehrenfeucht theory is computable, does
there exist a nonsaturated, computable model of the theory?

In this paper we answer the above three questions by providing appropriate counterex-
amples. Our examples of models which answer the first two questions have infinite
signatures. However these questions remain open for theories of finite signatures.

The general problem suggested by these results is to characterize the spectrum of
computable models of ℵ1-categorical theories: let T be an ℵ1-categorical but not ℵ0-
categorical complete theory. Consider chain(T). The spectrum of computable models
of T , denoted by SRM(T), is the set

{i ≤ ω | the model A i in chain(T ) has a computable presentation.}

Problem 1.4 Describe all subsets of ω which are of the form SRM(T) for some
ℵ1-categorical theory T .

The result of Harrington and Khissamiev shows that if T is decidable, then SRM(T)=
ω

⋃{ω}. The results of Goncharov and Kudeiberganov show that the sets {1, . . . , n},
where n ∈ ω, are spectra of computable models of ℵ1-categorical theories. In this pa-
per we show that the sets ω − {0}⋃{ω} and ω are also spectra of computable models
of ℵ1-categorical theories.

2 Main results The results of this paper are based on the idea of coding �0
2 or �0

2
sets with certain recursion-theoretic properties into ℵ1-categorical theories. Our first
result is the following theorem which answers Question 1.1.

Theorem 2.1 There exists an ℵ1-categorical but not ω-categorical theory T such
that all the countable models of T except its prime model have computable presenta-
tions (and so SRM(T ) = ω − {0}⋃{ω}).
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Before proving this theorem we would like to give the basic idea of our proof. For an
infinite subset S ⊂ ω we construct a structure AS of infinite signature (P0, P1, P2, . . .)

where each Pi is a binary predicate symbol. We will show that the theory TS of the
structure AS is ℵ1-categorical and AS is the prime model of TS. The countable mod-
els of TS will have the following property: every nonprime model A of TS has a com-
putable presentation if and only if the set S is a �0

2-set. The existence of a computable
presentation of the prime model will imply that the set S has a certain recursion theo-
retic property. Our recursion theoretic lemma (Lemma 2.6) will show that there exists
a �0

2-set S which does not have this property.

2.1 The construction of cubes Let n be a nonzero natural number. Let σn =
(P0, . . . , Pn−1) be a signature such that each Pi is a binary predicate symbol. For
each nonzero natural number n we define a finite structure of signature σn, called an
n-cube, as follows: a 1-cube C1 is a structure ({a, b}, P0) such that P0(x, y) holds in
C1 if and only if x = a and y = b or y = a and x = b.

Suppose that n-cubes have been defined. Let A = (A, PA
0 , . . . , PA

n−1) and B =
(B, PB

0 , . . . , PB
n−1) be n-cubes such that A

⋂
B = ∅. These two n-cubes are isomor-

phic. Let f be an isomorphism from A to B . Then an n + 1-cube Cn+1 is

(A
⋃

B, PA
0

⋃
PB

0 , . . . , PA
n−1

⋃
PB

n−1, Pn),

where Pn(x, y) holds if and only if f (x) = y or f −1(x) = y. It follows that we can
naturally define an ω-cube Cω = ⋃

i∈ω C i as an increasing union of n-cubes formed
in this way.

An ω-cube Cω is a structure of the infinite signature σ = (P0, P2, . . .). From
these definitions of cubes we make the following claim.

Claim 2.2 For each n ≤ ω any two n-cubes are isomorphic.

Each binary predicate Pi in any cube A is a partial function and sets up a one to one
mapping from dom(Pi) onto range(Pi). Therefore we can also write Pi(x) = y in-
stead Pi(x, y). Moreover, by the definition of Pi, dom(Pi) = range(Pi).

2.2 Construction of AS For each natural number n ∈ ω consider an n-cube denoted
by A n. Assume that An

⋂
At = ∅ for all n �= t. Let S be a subset of ω. Define a

structure AS by
AS =

⋃

n∈S

A n.

Thus the structure AS is the disjoint union of all cubes A n, n ∈ S, with the natural in-
terpretations of predicate symbols of signature σ. Let TS be the theory of the structure
AS.

Claim 2.3 If S is an infinite set, then the theory TS is ℵ1-categorical but not ℵ0-
categorical.

Proof: The model AS satisfies the following list of statements. It is easy to see that
this list of statements can be written as an (infinite) set of statements in the first-order
logic.

1. ∀x∃yP0(x, y) and for each n, Pn is a partial one to one function.
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2. For all n �= m and for all x, Pn(x) �= Pm(x).
3. For each n and for all x if Pn(x) is defined, then P0(x), P1(x), . . . , Pn−1(x) are

also defined.
4. For all n, m and for all x if Pn(x) and Pm(Pn(x)) are defined, then Pm(Pn(x)) =

Pn(Pm(x)).
5. For all k, n > n1 ≥ n2 ≥ · · · ≥ nk−1 ≥ nk, for all elements x, Pn1 (. . . ,

(Pnk (x), . . .) �= Pn(x).

6. For each n ∈ ω, n ∈ S if and only if there exists exactly one n-cube that is not
contained in an n + 1-cube.

Let M be a model which satisfies all the above statements. Then for each n ∈ S, M
must have an n-cube which is not contained in an n + 1-cube. Moreover, if an x ∈ M
does not belong to any n-cube for n ∈ S, then x is in an ω-cube. Note that each ω-
cube is countable. Using the previous claim it can be seen that any two models which
satisfy the above list of axioms are isomorphic if and only if these two models have
the same number of ω-cubes. Suppose that M1 and M2 are models of TS and their
cardinalities are ℵ1. Since each cube is a countable set it follows that the number
of ω-cubes in M1 and M2 is ℵ1. Therefore the models M1 and M2 are isomorphic.
Hence TS is an ℵ1-categorical but not ℵ0-categorical theory. �

Claim 2.4 The set S is in �0
2 if and only if every nonprime model of TS possesses

a computable presentation.

Proof: Each ω-cube has a computable presentation. Therefore it suffices to prove
that S ∈ �0

2 if and only if the nonprime model M of TS with exactly one ω-cube
has a computable presentation. If M is computable, then s ∈ S if and only if
∃ x ∃ y ∀ z(Ps(x, y)&¬Ps+1(x, z)). Therefore S ∈ �0

2.
Now suppose that S ∈ �0

2. There exists a computable function f such that for
every n ∈ ω, n ∈ S if and only if W f (n) is finite. We construct an effective sequence

M0 ⊂ M1 ⊂ M2 ⊂ · · ·
of finite structures by stages such that

1. the model M is isomorphic to
⋃

n Mn;
2. each M t has exactly t + 1 cubes and the function t −→ card(M t) is com-

putable;
3. each M t is a structure of signature (P0, . . . , Pni ), where i −→ ni is a com-

putable function.

Stage 0 Construct a 1-cube M0 and mark this structure with the symbol �ω.

Stage s+1 Suppose that Ms has been constructed as the disjoint union

Ms,0

⋃
Ms,1

⋃
· · ·

⋃
Ms,s

⋃
Ms,ω,

where each Ms,i, i ≤ s is an i-cube, and Ms,ω is the cube marked with �ω at the previ-
ous stage. Compute W f (0),s+1, . . . , W f (s),n+1, W f (s+1),s+1. For each i ≤ s + 1 define
Mi,s+1 and Ms+1,ω as follows.
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1. If W f (i),s+1 = W f (i),s, then let Mi,s+1 = Mi,s.

2. If W f (i),s+1 �= W f (i),s, then construct a new i-cube and let Mi,s+1 be this new
cube.

3. Extend the cube Ms,ω to a finite cube denoted by Ms+1,ω such that for each i ≤ s
if W f (i),s+1 �= W f (i),s, then Ms+1,ω contains Ms,i.

Let Ms+1 be

Ms+1,0

⋃
Ms+1,1

⋃
· · ·

⋃
Ms+1,s+1

⋃
Ms+1,ω.

Define
Mω =

⋃

s

Ms.

By the construction, the structure Mω is computable. The construction of Mω guar-
antees that the structure Mω is isomorphic to the model M . �
Now we need the following definition and recursion theoretic lemma. We will prove
the lemma in the next section.

Definition 2.5 A function f is limitwise monotonic if there exists a computable
function ϕ(x, t) such that ϕ(x, t) ≤ ϕ(x, t + 1) for all x, t ∈ ω, limt ϕ(x, t) exists for
every x ∈ ω and f (x) = limt ϕ(x, t).

Lemma 2.6 (Recursion theoretic lemma) There exists a �0
2 set A which is not the

range of any limitwise monotonic function.

Proof of Theorem 2.1: We need the following lemma.

Lemma 2.7 If the prime model AS is computable, then the set S is the range of a
limitwise monotonic function.

Proof: Let x ∈ AS. Note that each cube in AS is finite. Define ϕ(x) to be an s such
that x is in an s-cube and this cube is not contained in an s + 1-cube. It is clear that
ϕ witnesses that S is the range of a limitwise monotonic function. �
By the recursion theoretic lemma there exists an S ∈ �0

2 which is not the range of
any limitwise monotonic function. Consider the structure AS and its theory TS. The
claims above and Lemma 2.7 show that TS is the required theory and so prove Theo-
rem 2.1. �
Now we give an answer to Question 1.2. The idea of our proof is the following. We
take a �0

2 but not �0
2 set S and code this set into a theory TS. The language of TS

will contain infinitely many unary predicates P0, P1, . . . and infinitely many predi-
cates of arity n for each n ∈ ω. We will prove that TS is an ℵ1-categorical but not
ℵ0-categorical theory. Our construction of TS guarantees that all the countable mod-
els of TS, except the saturated model, have computable presentations. The existence
of a computable presentation for the saturated model will imply that the set S is a �0

2
set. This will contradict with the choice of S.

Theorem 2.8 There exists an ℵ1-categorical but not ℵ0-categorical theory T such
that all the countable models of T except the saturated model, have computable pre-
sentations.
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Proof: We construct a structure of the infinite signature

(P0, P1, . . . , R1,0, R1,1, R1,2, . . . , Rk,0, Rk,1, Rk,2, . . .),

where each Pi is a unary predicate and each Rk,s is a predicate of arity k.
Let S be a (�0

2 \ �0
2) set. There exists a computable predicate H such that n ∈ S

if and only if ∀ x ∃ y H(x, y, n) holds. Below we present a step by step construction
of a computable structure denoted by AS and prove that the theory TS of this structure
satisfies the requirements of the theorem.

Stage 0 Let A0 = ({0}, P0), where P0(0) holds.

Stage t+1 The domain At+1 of A t+1 is{0, . . . , t + 1}. The signature of A t+1 is

σt+1 = (P0, . . . , Pt+1, R1,0, . . . , R1,t+1, . . . , Rt+1,0, . . . , Rt+1,t+1).

For each i ≤ t + 1 let Pi(x) hold if and only if x ≥ i. For k, s ≤ t + 1, let
Rk,s(x1, . . . , xk) hold if and only if x1, . . . , xk are pairwise different and for the max-
imal number j ≤ t + 1 such that all Pj(x1), . . . , Pj(xk) hold we have ∀n ≤ s∃m ≤
jH(n, m, k). We have defined the model A t+1.

Thus we have an effective sequence A0, A1, A2, . . . of finite structures such that
each A i+1 is an extension and expansion of Ai. Therefore we can define AS by

AS =
⋃

i

A i.

It is clear that the model AS is computable.

Claim 2.9 The theory TS of the model AS is ℵ1-categorical but not ℵ0-categorical.

Proof: The model AS satisfies the following list of properties which can be written
as an infinite set of statements in the language of the first-order logic.

1. For all x if Pi+1(x) holds, then Pi(x) also holds. Moreover, ∀xP0(x) is true.
2. For each i ∈ ω there exists a unique x such that Pi(x)&¬Pi+1(x), i ∈ ω.

3. For all k, s ∈ ω, if Rk,s(x1, . . . , xk) holds, then x1, . . . , xk are pairwise distinct.
4. Let k ∈ S. For every s ∈ ω there exists a j ∈ ω such that ∀n ≤ s∃m <

jH(n, m, s). Let js be the minimal number which has this property.
Then for all pairwise distinct x1, . . . , xk if Pjs (x1)& · · · Pjs (xk) holds, then
Rk,s(x1, . . . , xk) holds.

5. Let k �∈ S. There exists an s0 such that for all s ≥ s0 and for all x1, . . . , xk,

Rk,s(x1, . . . , xk) does not hold.

Let A be a model of TS. Consider the set
⋂

i PA
i . For any two elements a, b ∈ ⋂

i PA
i

there exists an automorphism α of the model A such that α(a) = b. Thus a proof
of ℵ1-categoricity can be based on the following observation. Two models B and C
of the theory TS are isomorphic if and only if the cardinalities of the sets

⋂
i PB

i and⋂
i PC

i are equal. Hence if B and C are models of cardinality ℵ1, then both
⋂

i PB
i

and
⋂

i PC
i have exactly ℵ1 elements. It follows that B and C are isomorphic. �
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From the proof of Claim 2.9, it follows that if B is a countable unsaturated model of
the theory TS, then

⋂
PB

i has a finite number of elements.

Claim 2.10 If C is a countable and unsaturated model of TS, then C has a com-
putable presentation.

Proof: Let C be a countable, unsaturated model of TS. The set
⋂

i PC
i has a finite

number of elements, say n. We construct a computable presentation of C by stages.
Let a1, . . . , an be new symbols. In our construction of a computable presentation

A of C we put the elements a1, . . . , an into
⋂

i PA
i . Let p1, . . . , pn be the all elements

of S
⋂{0, 1, . . . , n}.

Stage 0 Define A0 = ({0, a1, . . . , an}, P0), letting P0(0), P0(a1), . . . , P0(an)

hold.

Stage t+1 The domain At+1 of A t+1 is {0, . . . , t + 1, a1, . . . , an}. The signature
of the A t+1 is

σt+1 = (P0, . . . , Pt+1, R1,0, . . . , R1,t+1, . . . , Rt+1,0, . . . , Rt+1,t+1).

For each i ≤ t + 1 let Pi(x) hold if and only if x ≥ i or x ∈ {a1, . . . , an}. For k, s ≤
t + 1, let Rk,s(x1, . . . , xs) hold if and only if one of the followings holds:

1. k ∈ {p1, . . . , pn}, (x1, . . . , xk) ∈ {a1, . . . , an}n, and x1, . . . , xk are pairwise dis-
tinct, or

2. {x1, . . . , xk} \ {a1, . . . , an} �= ∅, the elements x1, . . . , xk are pairwise different,
and for the maximal number j ≤ t + 1 such that all Pj(x1), . . . , Pj(xk) hold we
have ∀n ≤ s∃m ≤ jH(n, m, k).

Thus this stage defines the structure A t+1. For each i ∈ ω, Ai+1 is an extension and
expansion of A i. Define A by A = ⋃

i A i. It is clear that the structure A is computable
and isomorphic to the model C . �

Claim 2.11 The countable saturated model B of T does not have a computable pre-
sentation.

Proof: Suppose that B is computable. Since B is saturated the number of elements
in

⋂
i PB

i is infinite. It can be checked that for each k ∈ ω, k ∈ S if and only if there ex-
ist different elements y1, . . . , yk from

⋂
i PB

i such that for all s ≥ 1, Rk,s(y1, . . . , yk)

holds. The set S would then be a �0
2-set. This contradicts with our assumption that

S ∈ �0
2 \ �0

2. �
These claims prove Theorem 2.8. �
Thus the above theorems prove the following corollary about spectra of computable
models (SRM) of ℵ1-categorical theories.

Corollary 2.12

1. There exists an ℵ1-categorical but not ω-categorical theory T such that
SRM(T ) = ω − {0}⋃{ω}.
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2. There exists an ℵ1-categorical but not ℵ0-categorical theory T such that
SRM(T ) = ω.

In the next theorem, which answers Question 1.3, we provide an example of a theory
TS with exactly three countable models of which only the saturated model is com-
putably presentable. To prove that TS has exactly three countable models, we use the
known ideas which show that the theory of the model (Q,≤, c0, c1, . . .), where ≤ is
the linear ordering of rationals, and the constants are such that c0 > c1 > c2 > · · ·,
has exactly three countable models [12].

Theorem 2.13 There exists a theory T with exactly three countable models such
that the only model of T which has a computable presentation is the saturated model.

Proof: Let Q be the set of all rational numbers. For each cardinal number m ∈
ω

⋃{ω} define a structure Q0(m) as follows. The domain of the structure is

{q ∈ Q|1 ≤ q}
⋃

{cq,1, . . . , cq,m|q ∈ Q},
where {cq,i|q ∈ Q, 1 ≤ i ≤ m} is a set of new elements. The signature of the model is
(≤, f ), where ≤ is a binary predicate and f is a unary function symbol. The predicate
≤ and the function f are defined as follows. For all x, y we have x ≤ y if and only
if x, y ∈ Q and x is less than or equal to y as rational numbers. For all z, y define
f (z) = y if and only if for some rational number q, y = q and z ∈ {cq,1, . . . , cq,m} or
y = z = q. Let Q(m) be the structure obtained from Q0(m) by removing the elements
1, c1,1, . . . , c1,m from the domain of Q0(m).

If A and B are isomorphic copies of the structures Q0(n) and Q0(m), respec-
tively, and A

⋂
B = ∅, then one can naturally define the isomorphism type of the

structure Q0(n)+ Q0(m) as follows. The domain of the new structure is A
⋃

B. The
predicate ≤ in the new structure is the least partial ordering which contains the par-
tial ordering of A , the partial ordering of B , and the relation {(x, y)|x ∈ A & f A (x) =
x &y ∈ B & f B (y) = y}. The unary function f in the new structure is the union of the
unary operations of the first and the second structures.

If n0, n1, n2, . . . , ni, . . . , i < ω is a sequence of natural numbers, then as above
we can define the structure

Q0(n0) + Q0(n1) + Q0(n2) + · · · .
Let S be a set in �0

2 which is not the range of a limitwise monotonic function. There
exists a computable function g such that, for all nh(n) = lims g(n, s) exists and
range(h) = S. Consider the model Q0(S) defined by

Q0(h(0)) + Q0(h(1)) + Q0(h(2)) + · · · .
Define the theory TS to be the theory of the structue Q0(S).

Claim 2.14 The theory TS has exactly three countable models.

Proof: The first model of TS is Q0(S). This model is the prime model of the theory
TS. The second model of TS is

Q′(S) = Q0(h(0)) + Q0(h(1)) + Q0(h(2)) + · · · + Q0(ω).
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The third model M of TS is

Q(h(0)) + Q0(h(1)) + Q0(h(2)) + · · · + Q(ω).

These structures are indeed models of TS. To see this, note that Q0(S) is a sub-
model of Q′(S), and Q′(S) is a submodel of M . It can be checked that for any for-
mula ∃xϕ(x, a1, . . . , an) and all a1, . . . , an ∈ Q0(S)(a1, . . . , an ∈ Q′(S)) if the for-
mula ∃xϕ(x, a1, . . . , an) is true in Q′(S)—in M —then there exists a b ∈ Q0(S)(b ∈
Q′(S)) such that ϕ(b, a1, . . . , an) is true in Q0(S)—in Q′(S). Therefore the embed-
dings are elementary.

We have to prove that any countable model of TS is isomorphic to one of the
three models described above. Let A be a model of TS. For each i ∈ ω we define
by induction an element ai ∈ A as follows. The element a0 is the minimal element
with respect to the partial ordering in A . Note that the set {b|b �= a0 & f (b) = a0} has
exactly h(0) elements. Also put k0 = 0.

Suppose that the elements a0, . . . , ai−1 ∈ A and the numbers k0, . . . , ki−1 have
been defined. Let ki be the least element such that h(ki) �= h(k j) for j = 1, . . . , i − 1.
The element ai is the one such that the following properties hold:

1. the set {b|b �= ai & f (b) = ai} has exactly h(ki) elements;
2. for each x < ai the cardinality of the set {b|b �= x & f (b) = x} is in {h(k0), . . . ,

h(ki−1}.
Consider the sequence a0, a1, a2, . . .. Clearly a0 < a1 < a2 < · · ·. Thus we have
three cases.

Case 1: limi ai does not exist and for any x ∈ A such that f (x) = x there exists an
i such that ai ≥ x,

Case 2: limiai exists,

Case 3: limiai does not exist and there exists an x such that f (x) = x and x ≥ ai

for all ai.

In the first case A is isomorphic to Q0(S). In the second case A is ismorphic to Q′(S).
In the third case A is isomorphic to M . Note that Q0(S) is the prime model. The
model Q′(S) is not saturated since it does not realize the type containing {x > ai &c >

x|i ∈ ω}, where c = limiai. Hence M is the saturated model of TS. �

Claim 2.15 The unsaturated models of the theory TS do not have computable pre-
sentations.

Proof: Consider the prime model Q0(S). Suppose Q0(S) is a computable model.
Then it can be easily checked that the set S is the range of a limitwise monotonic
function. This contradicts the assumption on S. If the other unsaturated model

Q′(S) = Q0(h(0)) + Q0(h(1)) + Q0(h(2)) + · · · + Q0(ω)

were computable, then Q0(S) would be a computably enumerable submodel of the
model Q′(S). Hence Q0(S) would have a computable presentation. This is again a
contradiction. �
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Claim 2.16 The saturated model M of the theory T has a computable presentation.

Proof: We present a constuction of the saturated model M by stages. The construc-
tion will clearly show that the saturated model has a computable presentation.

Stage 0 Consider the structure Q0(g(0, 0))+Q(ω). Denote this model by A0.

Stage n+1 Suppose that A n has been defined and is isomorphic to

Q0(g(0, n)) + · · · + Q0(g(n, n)) + Q(ω).

Compute
g(0, n + 1), . . . , g(n + 1, n + 1).

Let i ≤ n be the minimal number such that g(i, n) �= g(i, n + 1).A n can be extended
to a structure A n+1 isomorphic to

Q0(g(0, n + 1)) + · · · + Q0(g(i − 1, n + 1))

+Q0(g(i, n + 1)) + · · · + Q0(g(n + 1, n + 1)) + Q(ω).

To see this, take the substructure

Q0(g(i, n)) + · · · + Q0(g(n, n)) + Q(ω)

of A n; extend this substructure to Q(ω); insert the new structure

Q0(g(i, n + 1)) + · · · + Q0(g(n + 1, n + 1))

between the structures

Q0(g(0, n + 1)) + · · · + Q0(g(i − 1, n + 1))

and the extended structure Q(ω). The structure obtained in this way is A n+1.
Thus we have the sequence

A0 ⊂ A1 ⊂ A2 ⊂ · · · .

Define
Aω =

⋃

i

A n.

It is easy to see that the model Aω is ismorphic to

Q0(h(0)) + Q0(h(1)) + · · · + Q0(h(n)) + · · · + Q(ω).

Now it is clear that the above description can be effectivized. �
These claims prove the theorem. �

Finally we have to prove the promised recursion theoretic lemma.
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3 Proof of the recursion theoretic lemma Let ϕe(x, t), e ∈ ω, be a uniform enu-
meration of all partial computable functions ϕ such that for all t′ ≥ t if ϕ(x, t′) is
defined, then ϕ(x, t) is defined and ϕ(x, t) ≤ ϕ(x, t′). At stage s of our construction
we define a finite set As in such a way that A(y) = lims As(y) exists for all y. We
satisfy the requirement Re asserting that, if fe(x) = limtϕe(x, t) < ω for all x, then
range( fe) �= A.

The strategy for a single Re is as follows: at stage s pick a witness me, enumerate
me into A (i.e., As(me) = 1). Now Re is satisfied (since me remains in A) unless
at some later stage t0 we find an x such that ϕe(x, t0) = me. If so, Re ensures that
A(ϕe(x, t)) = 0 for all t ≥ t0. Thus, either fe(x) ↑ or fe(x) ↓ and fe(x) �∈ A.

Keeping ϕe(x, t) out of A for all t ≥ t0 can conflict with a lower priority (i > e)

requirement Ri since it may be the case that mi = ϕe(x, t′) for some t′ > t0. However,
if fe(x) ↓, then this holds permanently for just one number, and if fe(x) ↑, then the
restriction is transitory for each number. So each lower priority Ri will be able to
choose a stable witness at some stage.

3.1 Construction At stage s we try to determine the values of parameters me, xe,
and ne = ϕe(xe, s) for Re. Each parameter may remain undefined. Moreover, we
define the approximation As to A at stage s.

Stage 0 Let A0 = ∅, and declare all parameters to be undefined.

Stage s For each e = 0, . . . , s − 1 in turn go through substage e by perform-
ing the following actions.

1. If me is undefined, let me be the least number in ω[e] greater than all mi(i < e)

which is not equal to any ni. Let As(me) = 1 and proceed to the next subtage,
or to stage s + 1 if e = s − 1.

2. If xe is undefined and ϕe(x, s) = me for some x, let xe = x, ne = me, and
As(ne) = 0, and proceed to the next stage s + 1 if e = s − 1.

3. Let ne = ϕe(xe, s) and As(ne) = 0. If ne = mi for some i > e, declare all the
parameters of the R j, j ≥ i, to be undefined.

For each y, if As(y) is not determined by the end of stage s, then assign to As(y) its
previous value As−1(y). The stage is now completed. Now we will verify that the
construction succeeds.

Claim 3.1 Each me is defined and is constant from some stage on.

Proof: Suppose inductively that the claim holds for each i < e. Let s0 be a stage
such that each mi has reached its limit for i < e, and if xi ever becomes defined after
s0, and lims ni,s < ∞, then the limit has been reached at s0. Moreover, let k ≥ e be
the least number which does not equal any of these limits and is greater than all mi

for i < e. Also suppose that ni,s0 > k if lims n j,s = ∞, ( j < e). If me is cancelled
after stage s0, then me = k is permanent from the next stage on. �

Claim 3.2 For each y, lims As(y) exists. Therefore the set A = lims As is a �0
2-set.
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Proof: Suppose that y ∈ ω[e], and let s0 be a stage at which me has reached its limit.
Since y can only be enumerated into A if y = me, after stage s0, A(y) can change at
most once. This proves the claim. �

Claim 3.3 Suppose fe(x) = limt ϕe(x, t) exists for each x. Then A �= range( fe).

Proof: Suppose that A = range( fe). Let s0 be the stage at which me reaches its
limit. Then at some stage s > s0 we must reach the second instruction of the con-
struction, otherwise A(me) = 1 but me �∈ range( fe). Suppose that ϕe(x, s) = me for
the minimal s ≥ s0 at which we reach the second instruction of the construction. It
follows that for t ≥ s, ne = ϕe(x, t) and At(ne) = 0. So A( fe(x)) = 0. This contra-
diction proves the claim and hence the lemma. �

Remark 3.4 It is possible to make A d.r.e., that is, A = B − C for some r.e. sets
B, C. To do so, we have to set aside an interval Ie, roughly of size 2e, for Re, I0 <

I1 < · · ·. As a first choice for me, we take the maximal element of Ie, and then we
proceed downward. The point is that, if Re is injured by Ri, i < e, via ni = me, then
all further values of ni are above the next values of me (unless Ri injured itself later).
Obviously A can be neither r.e. nor co-r.e.
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